1
|
Shastry A, Wilkinson MS, Miller DM, Kuriakose M, Veeneman JLMH, Smith MR, Hindmarch CCT, Dunham-Snary KJ. Multi-tissue metabolomics reveal mtDNA- and diet-specific metabolite profiles in a mouse model of cardiometabolic disease. Redox Biol 2025; 81:103541. [PMID: 39983345 DOI: 10.1016/j.redox.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
RATIONALE Excess consumption of sugar- and fat-rich foods has heightened the prevalence of cardiometabolic disease, which remains a driver of cardiovascular disease- and type II diabetes-related mortality globally. Skeletal muscle insulin resistance is an early feature of cardiometabolic disease and is a precursor to diabetes. Insulin resistance risk varies with self-reported race, whereby African-Americans have a greater risk of diabetes development relative to their White counterparts. Self-reported race is strongly associated with mitochondrial DNA (mtDNA) haplogroups, and previous reports have noted marked differences in bioenergetic and metabolic parameters in cells belonging to distinct mtDNA haplogroups, but the mechanism of these associations remains unknown. Additionally, distinguishing nuclear DNA (nDNA) and mtDNA contributions to cardiometabolic disease remains challenging in humans. The Mitochondrial-Nuclear eXchange (MNX) mouse model enables in vivo preclinical investigation of the role of mtDNA in cardiometabolic disease development, and has been implemented in studies of insulin resistance, fatty liver disease, and obesity in previous reports. METHODS Six-week-old male C57nDNA:C57mtDNA and C3HnDNA:C3HmtDNA wild-type mice, and C57nDNA:C3HmtDNA and C3HnDNA:C57mtDNA MNX mice, were fed sucrose-matched high-fat (45% kcal fat) or control diet (10% kcal fat) until 12 weeks of age (n = 5/group). Mice were weighed weekly and total body fat was collected at euthanasia. Gastrocnemius skeletal muscle and plasma metabolomes were characterized using untargeted dual-chromatography mass spectrometry; both hydrophilic interaction liquid chromatography (HILIC) and C18 columns were used, in positive- and negative-ion modes, respectively. RESULTS Comparative analyses between nDNA-matched wild-type and MNX strains demonstrated significantly increased body fat percentage in mice possessing C57mtDNA regardless of nDNA background. High-fat diet in mice possessing C57mtDNA was associated with differential abundance of phosphatidylcholines, lysophosphatidylcholines, phosphatidylethanolamines, and glucose. Conversely, high-fat diet in mice possessing C3HmtDNA was associated with differential abundance of phosphatidylcholines, cardiolipins, and alanine. Glycerophospholipid metabolism and beta-alanine signaling pathways were enriched in skeletal muscle and plasma, indicating mtDNA-directed priming of mitochondria towards oxidative stress and increased fatty acid oxidation in C57nDNA:C57mtDNA wild-type and C3HnDNA:C57mtDNA MNX mice, relative to their nDNA-matched counterparts. In mtDNA-matched mice, C57mtDNA was associated with metabolite co-expression related to the pentose phosphate pathway and sugar-related metabolism; C3HmtDNA was associated with branched chain amino acid metabolite co-expression. CONCLUSIONS These results reveal novel nDNA-mtDNA interactions that drive significant changes in metabolite levels. Alterations to key metabolites involved in mitochondrial bioenergetic dysfunction and electron transport chain activity are implicated in elevated beta-oxidation during high-fat diet feeding; abnormally elevated rates of beta-oxidation may be a key driver of insulin resistance. The results reported here support the hypothesis that mtDNA influences cardiometabolic disease-susceptibility by modulating mitochondrial function and metabolic pathways.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Dalia M Miller
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Michelle Kuriakose
- Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | | | - Matthew Ryan Smith
- Atlanta Veterans Affairs Health Care System, Decatur, GA, 30033, USA; Department of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Charles C T Hindmarch
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada; Queen's CardioPulmonary Unit, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
2
|
Luppi E, De Luise M, Bini C, Pelletti G, Tioli G, Kurelac I, Iommarini L, Pelotti S, Gasparre G. The landscape of rare mitochondrial DNA variants in sudden cardiac death: A potential role for ATP synthase. Heliyon 2025; 11:e41592. [PMID: 39866453 PMCID: PMC11759642 DOI: 10.1016/j.heliyon.2024.e41592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
Sudden cardiac death (SCD) is a major health concern, which can be the sign of a latent mitochondrial disease. However, mitochondrial DNA (mtDNA) contribution is largely unexplored in SCD at population level. Recently, mtDNA variants have been associated with congenital cardiopathy and higher risk of ischemic heart disease, suggesting them as potential risk factors also in SCD. Therefore, we aimed to define the mtDNA mutational landscape in such phenotype, by sequencing the whole blood mtDNA genome in a pilot cohort of 28 unrelated subjects. Coding variants were prioritized according to their population and haplogroup frequency. Out of 28 patients, 36% were diagnosed with coronary artery disease, 39% with structural defects and 25% with unspecified cardiac disease. The overall frequency of macro-haplogroups followed the distribution in the European population. No known or novel mtDNA pathogenic variants were found. Two rRNA and 8 missense variants were rarer than polymorphisms as they had a frequency lower than 1% in population databases. 5/8 missense variants clustered in ATP synthase genes and 4/8 missense variants were previously detected in patients with suspected mitochondriopathy. We concluded that primary mitochondrial disease is not a major cause of SCD, but rare mtDNA variants may occur (35.7% in our cohort vs 0.65% in the population; p < 0.01), potentially modifying the risk.
Collapse
Affiliation(s)
- Elena Luppi
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Monica De Luise
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carla Bini
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Guido Pelletti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gaia Tioli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Susi Pelotti
- Unit of Legal Medicine, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Unit of Medical Genetics, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Onieva A, Martin J, R Cuesta-Aguirre D, Planells V, Coronado-Zamora M, Beyer K, Vega T, Lozano JE, Santos C, Aluja MP. Complete mitochondrial DNA profile in stroke: A geographical matched case-control study in Spanish population. Mitochondrion 2023; 73:51-61. [PMID: 37793469 DOI: 10.1016/j.mito.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Stroke, the second leading cause of death worldwide, is a complex disease influenced by many risk factors among which we can find reactive oxygen species (ROS). Since mitochondria are the main producers of cellular ROS, nowadays studies are trying to elucidate the role of these organelles and its DNA (mtDNA) variation in stroke risk. The aim of the present study was to perform a comprehensive evaluation of the association between mtDNA mutations and mtDNA content and stroke risk. MATERIAL AND METHODS Homoplasmic and heteroplasmic mutations of the mtDNA were analysed in a case-controls study using 110 S cases and their corresponding control individuals. Mitochondrial DNA copy number (mtDNA-CN) was analysed in 73 of those case-control pairs. RESULTS Our results suggest that haplogroup V, specifically variants m.72C > T, m.4580G > A, m.15904C > T and m.16298 T > C have a protective role in relation to stroke risk. On the contrary, variants m.73A > G, m.11719G > A and m.14766C > T appear to be genetic risk factors for stroke. In this study, we found no statistically significant association between stroke risk and mitochondrial DNA copy number. CONCLUSIONS These results demonstrate the possible role of mtDNA genetics on the pathogenesis of stroke, probably through alterations in mitochondrial ROS production.
Collapse
Affiliation(s)
- Ana Onieva
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Joan Martin
- Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel R Cuesta-Aguirre
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Violeta Planells
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Marta Coronado-Zamora
- Institut de Biotecnologia i Biomedicina; Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute, Badalona 08916 Barcelona, Spain
| | - Tomás Vega
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - José Eugenio Lozano
- Dirección General de Salud Pública. Consejería de Sanidad. Junta de Castilla y León, 47007 Valladolid, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Departament BAVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
6
|
Tessema B, Haag J, Sack U, König B. The Determination of Mitochondrial Mass Is a Prerequisite for Accurate Assessment of Peripheral Blood Mononuclear Cells' Oxidative Metabolism. Int J Mol Sci 2023; 24:14824. [PMID: 37834272 PMCID: PMC10573504 DOI: 10.3390/ijms241914824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Mitochondria are responsible for ATP synthesis through oxidative phosphorylation in cells. However, there are limited data on the influence of mitochondrial mass (MM) in the adequate assessment of cellular stress assay (CSA) results in human peripheral blood mononuclear cells (PBMCs). Therefore, the aim of this study was to determine MM in PBMCS and assess its influence on the results of CSA measurements. Blood samples were collected and sent to the laboratory for MM and CSA measurements during different seasons of the year. The mitochondrial mass was determined based on the mtDNA:nDNA ratio in PBMCs using quantitative real-time PCR (qRT-PCR). CSA was measured using Seahorse technology. The MM was significantly lower during summer and autumn compared to winter and spring (p < 0.0001). On the contrary, we found that the maximal respiration per mitochondrion (MP) was significantly higher in summer and autumn compared to winter and spring (p < 0.0001). The estimated effect of MM on mitochondrial performance was -0.002 pmol/min/mitochondrion (p < 0.0001) and a correlation coefficient (r) of -0.612. Similarly, MM was negatively correlated with maximal respiration (r = -0.12) and spare capacity (in % r = -0.05, in pmol/min r = -0.11). In conclusion, this study reveals that MM changes significantly with seasons and is negatively correlated with CSA parameters and MP. Our findings indicate that the mitochondrial mass is a key parameter for determination of mitochondrial fitness. Therefore, we recommend the determination of MM during the measurement of CSA parameters for the correct interpretation and assessment of mitochondrial function.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Janine Haag
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Brigitte König
- Magdeburg Molecular Diagnostics GmbH & Co. KG, 39104 Magdeburg, Germany; (J.H.); (B.K.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Beckley MA, Shrestha S, Singh KK, Portman MA. The role of mitochondria in the pathogenesis of Kawasaki disease. Front Immunol 2022; 13:1017401. [PMID: 36300112 PMCID: PMC9592088 DOI: 10.3389/fimmu.2022.1017401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Kawasaki disease is a systemic vasculitis, especially of the coronary arteries, affecting children. Despite extensive research, much is still unknown about the principal driver behind the amplified inflammatory response. We propose mitochondria may play a critical role. Mitochondria serve as a central hub, influencing energy generation, cell proliferation, and bioenergetics. Regulation of these biological processes, however, comes at a price. Release of mitochondrial DNA into the cytoplasm acts as damage-associated molecular patterns, initiating the development of inflammation. As a source of reactive oxygen species, they facilitate activation of the NLRP3 inflammasome. Kawasaki disease involves many of these inflammatory pathways. Progressive mitochondrial dysfunction alters the activity of immune cells and may play a role in the pathogenesis of Kawasaki disease. Because they contain their own genome, mitochondria are susceptible to mutation which can propagate their dysfunction and immunostimulatory potential. Population-specific variants in mitochondrial DNA have also been linked to racial disparities in disease risk and treatment response. Our objective is to critically examine the current literature of mitochondria’s role in coordinating proinflammatory signaling pathways, focusing on potential mitochondrial dysfunction in Kawasaki disease. No association between impaired mitochondrial function and Kawasaki disease exists, but we suggest a relationship between the two. We hypothesize a framework of mitochondrial determinants that may contribute to ethnic/racial disparities in the progression of Kawasaki disease.
Collapse
Affiliation(s)
- Mikayla A. Beckley
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- *Correspondence: Mikayla A. Beckley,
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health University of Alabama at Birmingham, Birmingham, AL, United States
| | - Keshav K. Singh
- Department of Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael A. Portman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, Division of Cardiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Vilne B, Sawant A, Rudaka I. Examining the Association between Mitochondrial Genome Variation and Coronary Artery Disease. Genes (Basel) 2022; 13:genes13030516. [PMID: 35328073 PMCID: PMC8953999 DOI: 10.3390/genes13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
Large-scale genome-wide association studies have identified hundreds of single-nucleotide variants (SNVs) significantly associated with coronary artery disease (CAD). However, collectively, these explain <20% of the heritability. Hypothesis: Here, we hypothesize that mitochondrial (MT)-SNVs might present one potential source of this “missing heritability”. Methods: We analyzed 265 MT-SNVs in ~500,000 UK Biobank individuals, exploring two different CAD definitions: a more stringent (myocardial infarction and/or revascularization; HARD = 20,405), and a more inclusive (angina and chronic ischemic heart disease; SOFT = 34,782). Results: In HARD cases, the most significant (p < 0.05) associations were for m.295C>T (control region) and m.12612A>G (ND5), found more frequently in cases (OR = 1.05), potentially related to reduced cardiorespiratory fitness in response to exercise, as well as for m.12372G>A (ND5) and m.11467A>G (ND4), present more frequently in controls (OR = 0.97), previously associated with lower ROS production rate. In SOFT cases, four MT-SNVs survived multiple testing corrections (at FDR < 5%), all potentially conferring increased CAD risk. Of those, m.11251A>G (ND4) and m.15452C>A (CYB) have previously shown significant associations with body height. In line with this, we observed that CAD cases were slightly less physically active, and their average body height was ~2.00 cm lower compared to controls; both traits are known to be related to increased CAD risk. Gene-based tests identified CO2 associated with HARD/SOFT CAD, whereas ND3 and CYB associated with SOFT cases (p < 0.05), dysfunction of which has been related to MT oxidative stress, obesity/T2D (CO2), BMI (ND3), and angina/exercise intolerance (CYB). Finally, we observed that macro-haplogroup I was significantly (p < 0.05) more frequent in HARD cases vs. controls (3.35% vs. 3.08%), potentially associated with response to exercise. Conclusions: We found only spurious associations between MT genome variation and HARD/SOFT CAD and conclude that more MT-SNV data in even larger study cohorts may be needed to conclusively determine the role of MT DNA in CAD.
Collapse
Affiliation(s)
- Baiba Vilne
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
- Correspondence:
| | - Aniket Sawant
- Bioinformatics Lab, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| | - Irina Rudaka
- Scientific Laboratory of Molecular Genetics, Rīga Stradiņš University, LV-1007 Riga, Latvia;
| |
Collapse
|
9
|
Wang H, Han Y, Li S, Chen Y, Chen Y, Wang J, Zhang Y, Zhang Y, Wang J, Xia Y, Yuan J. Mitochondrial DNA Depletion Syndrome and Its Associated Cardiac Disease. Front Cardiovasc Med 2022; 8:808115. [PMID: 35237671 PMCID: PMC8882844 DOI: 10.3389/fcvm.2021.808115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/23/2021] [Indexed: 12/06/2022] Open
Abstract
Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a “power plant” by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yijun Han
- Clinical Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yunan Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jing Wang
- Dongying Fifth People's Hospital, Dongying, China
| | - Yuqing Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yawen Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
- Yong Xia
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- *Correspondence: Jinxiang Yuan
| |
Collapse
|
10
|
Sammy MJ, Connelly AW, Brown JA, Holleman C, Habegger KM, Ballinger SW. Mito-Mendelian interactions alter in vivo glucose metabolism and insulin sensitivity in healthy mice. Am J Physiol Endocrinol Metab 2021; 321:E521-E529. [PMID: 34370595 PMCID: PMC8560378 DOI: 10.1152/ajpendo.00069.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The regulation of euglycemia is essential for human health with both chronic hypoglycemia and hyperglycemia having detrimental effects. It is well documented that the incidence of type 2 diabetes increases with age and exhibits racial disparity. Interestingly, mitochondrial DNA (mtDNA) damage also accumulates with age and its sequence varies with geographic maternal origins (maternal race). From these two observations, we hypothesized that mtDNA background may contribute to glucose metabolism and insulin sensitivity. Pronuclear transfer was used to generate mitochondrial-nuclear eXchange (MNX) mice to directly test this hypothesis, by assessing physiologic parameters of glucose metabolism in nuclear isogenic C57BL/6J mice harboring either a C57BL/6J (C57n:C57mt wild type-control) or C3H/HeN mtDNA (C57n:C3Hmt-MNX). All mice were fed normal chow diets. MNX mice were significantly leaner, had lower leptin levels, and were more insulin sensitive, with lower modified Homeostatic Model Assessment of Insulin Resistance (mHOMA-IR) values and enhanced insulin action when compared with their control counterparts. Further interrogation of muscle insulin signaling revealed higher phosphorylated Akt/total Akt ratios in MNX animals relative to control, consistent with greater insulin sensitivity. Overall, these results are consistent with the hypothesis that different mtDNA combinations on the same nuclear DNA (nDNA) background can significantly impact glucose metabolism and insulin sensitivity in healthy mice.NEW & NOTEWORTHY Different mitochondrial DNAs on the same nuclear genetic background can significantly impact body composition, glucose metabolism, and insulin sensitivity in healthy mice.
Collapse
Affiliation(s)
- Melissa J Sammy
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ashley W Connelly
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jamelle A Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Cassie Holleman
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kirk M Habegger
- Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
11
|
da Cunha Menezes Souza L, Chen M, Ikeno Y, Salvadori DMF, Bai Y. The implications of mitochondria in doxorubicin treatment of cancer in the context of traditional and modern medicine. TRADITIONAL MEDICINE AND MODERN MEDICINE 2021. [DOI: 10.1142/s2575900020300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Doxorubicin (DOX) is an antibiotic anthracycline extensively used in the treatment of different malignancies, such as breast cancer, lymphomas and leukemias. The cardiotoxicity induced by DOX is one of the most important pathophysiological events that limit its clinical application. Accumulating evidence highlights mitochondria as a central role in this process. Modulation of mitochondrial functions as therapeutic strategy for DOX-induced cardiotoxicity has thus attracted much attention. In particular, emerging studies investigated the potential of natural mitochondria-targeting compounds from Traditional Chinese Medicine (TCM) as adjunct or alternative treatment for DOX-induced toxicity. This review summarizes studies about the mechanisms of DOX-induced cardiotoxicity, evidencing the importance of mitochondria and presenting TCM treatment alternatives for DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, P. R. China
| | - Yuji Ikeno
- Barshop Institute of Longevity and Aging Research, University of Texas Health San Antonio, San Antonio, Texas, USA
| | | | - Yidong Bai
- Barshop Institute of Longevity and Aging Research, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas, 78229, USA
| |
Collapse
|
12
|
Friedrich VK, Rubel MA, Schurr TG. Mitochondrial genetic variation in human bioenergetics, adaptation, and adult disease. Am J Hum Biol 2021; 34:e23629. [PMID: 34146380 DOI: 10.1002/ajhb.23629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Mitochondria are critical for the survival of eukaryotic organisms due to their ability to produce cellular energy, which drives virtually all aspects of host biology. However, the effects of mitochondrial DNA (mtDNA) variation in relation to disease etiology and adaptation within contemporary global human populations remains incompletely understood. METHODS To develop a more holistic understanding of the role of mtDNA diversity in human adaptation, health, and disease, we investigated mitochondrial biology and bioenergetics. More specifically, we synthesized details from studies of mitochondrial function and variation in the context of haplogroup background, climatic adaptation, and oxidative disease. RESULTS The majority of studies show that mtDNA variation arose during modern human dispersal around the world. Some of these variants appear to have been positively selected for their adaptiveness in colder climates, with these sequence changes having implications for tissue-specific function and thermogenic capacity. In addition, many variants modulating energy production are also associated with damaging metabolic byproducts and mitochondrial dysfunction, which, in turn, are implicated in the onset and severity of several different adult mitochondrial diseases. Thus, mtDNA variation that governs bioenergetics, metabolism, and thermoregulation may potentially have adverse consequences for human health, depending on the genetic background and context in which it occurs. CONCLUSIONS Our review suggests that the mitochondrial research field would benefit from independently replicating mtDNA haplogroup-phenotype associations across global populations, incorporating potentially confounding environmental, demographic, and disease covariates into studies of mtDNA variation, and extending association-based studies to include analyses of complete mitogenomes and assays of mitochondrial function.
Collapse
Affiliation(s)
- Volney K Friedrich
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Meagan A Rubel
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Translational Imaging and Precision Medicine, University of California - San Diego, La Jolla, California, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Brown JA, Sammy MJ, Ballinger SW. An evolutionary, or "Mitocentric" perspective on cellular function and disease. Redox Biol 2020; 36:101568. [PMID: 32512469 PMCID: PMC7281786 DOI: 10.1016/j.redox.2020.101568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
The incidence of common, metabolic diseases (e.g. obesity, cardiovascular disease, diabetes) with complex genetic etiology has been steadily increasing nationally and globally. While identification of a genetic model that explains susceptibility and risk for these diseases has been pursued over several decades, no clear paradigm has yet been found to disentangle the genetic basis of polygenic/complex disease development. Since the evolution of the eukaryotic cell involved a symbiotic interaction between the antecedents of the mitochondrion and nucleus (which itself is a genetic hybrid), we suggest that this history provides a rational basis for investigating whether genetic interaction and co-evolution of these genomes still exists. We propose that both mitochondrial and Mendelian, or "mito-Mendelian" genetics play a significant role in cell function, and thus disease risk. This paradigm contemplates the natural variation and co-evolution of both mitochondrial and nuclear DNA backgrounds on multiple mitochondrial functions that are discussed herein, including energy production, cell signaling and immune response, which collectively can influence disease development. At the nexus of these processes is the economy of mitochondrial metabolism, programmed by both mitochondrial and nuclear genomes.
Collapse
Affiliation(s)
- Jamelle A Brown
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Melissa J Sammy
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Scott W Ballinger
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
15
|
Abstract
Maternally mitochondrial dysfunction includes a heterogeneous group of genetic disorders which leads to the impairment of the final common pathway of energy metabolism. Coronary heart disease and coronary venous disease are two important clinical manifestations of mitochondrial dysfunction due to abnormality in the setting of underlying pathways. Mitochondrial dysfunction can lead to cardiomyopathy, which is involved in the onset of acute cardiac and pulmonary failure. Mitochondrial diseases present other cardiac manifestations such as left ventricular noncompaction and cardiac conduction disease. Different clinical findings from mitochondrial dysfunction originate from different mtDNA mutations, and this variety of clinical symptoms poses a diagnostic challenge for cardiologists. Heart transplantation may be a good treatment, but it is not always possible, and other complications of the disease, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome, should be considered. To diagnose and treat most mitochondrial disorders, careful cardiac, neurological, and molecular studies are needed. In this study, we looked at molecular genetics of MIDs and cardiac manifestations in patients with mitochondrial dysfunction.
Collapse
|
16
|
Tran HC, Van Aken O. Mitochondrial unfolded protein-related responses across kingdoms: similar problems, different regulators. Mitochondrion 2020; 53:166-177. [PMID: 32502630 DOI: 10.1016/j.mito.2020.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are key components of eukaryotic cells, so their proper functioning is monitored via different mitochondrial signalling responses. One of these mitochondria-to-nuclear 'retrograde' responses to maintain mitochondrial homeostasis is the mitochondrial unfolded protein response (UPRmt), which can be activated by a variety of defects including blocking mitochondrial translation, respiration, protein import or transmembrane potential. Although UPRmt was first reported in cultured mammalian cells, this signalling pathway has also been extensively studied in the nematode Caenorhabditis elegans. In yeast, there are no published studies focusing on UPRmt in a strict sense, but other unfolded protein responses (UPR) that appear related to UPRmt have been described, such as the UPR activated by protein mistargeting (UPRam) and mitochondrial compromised protein import response (mitoCPR). In plants, very little is known about UPRmt and only recently some of the regulators have been identified. In this paper, we summarise and compare the current knowledge of the UPRmt and related responses across eukaryotic kingdoms: animals, fungi and plants. Our comparison suggests that each kingdom has evolved its own specific set of regulators, however, the functional categories represented among UPRmt-related target genes appear to be largely overlapping. This indicates that the strategies for preserving proper mitochondrial functions are partially conserved, targeting mitochondrial chaperones, proteases, import components, dynamics and stress response, but likely also non-mitochondrial functions including growth regulators/hormone balance and amino acid metabolism. We also identify homologs of known UPRmt regulators and responsive genes across kingdoms, which may be interesting targets for future research.
Collapse
|
17
|
Braganza A, Annarapu GK, Shiva S. Blood-based bioenergetics: An emerging translational and clinical tool. Mol Aspects Med 2020; 71:100835. [PMID: 31864667 PMCID: PMC7031032 DOI: 10.1016/j.mam.2019.100835] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/11/2019] [Indexed: 12/16/2022]
Abstract
Accumulating studies demonstrate that mitochondrial genetics and function are central to determining the susceptibility to, and prognosis of numerous diseases across all organ systems. Despite this recognition, mitochondrial function remains poorly characterized in humans primarily due to the invasiveness of obtaining viable tissue for mitochondrial studies. Recent studies have begun to test the hypothesis that circulating blood cells, which can be obtained by minimally invasive methodology, can be utilized as a biomarker of systemic bioenergetic function in human populations. Here we present the available methodologies for assessing blood cell bioenergetics and review studies that have applied these techniques to healthy and disease populations. We focus on the validation of this methodology in healthy subjects, as well as studies testing whether blood cell bioenergetics are altered in disease, correlate with clinical parameters, and compare with other methodology for assessing human mitochondrial function. Finally, we present the challenges and goals for the development of this emerging approach into a tool for translational research and personalized medicine.
Collapse
Affiliation(s)
- Andrea Braganza
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Gowtham K Annarapu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Zhao Z, Li Y, Wang M, Jin Y, Liao W, Zhao Z, Fang J. Mitochondrial DNA haplogroups participate in osteoarthritis: current evidence based on a meta-analysis. Clin Rheumatol 2020; 39:1027-1037. [PMID: 31897963 DOI: 10.1007/s10067-019-04890-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial genes' variants encoded in both the nuclear and mitochondrial genomes can disrupt mitochondrial function, resulting in losing of cartilage and generating osteoarthritis (OA). However, the association between mtDNA haplogroups and OA still lacks strength evidence supporting. The aim of this meta-analysis is to assess the role of mtDNA haplogroups in speculating the pathogenesis and progression of OA. PubMed, Embase, the Cochrane Central Register of Controlled Trials, and World Health Organization clinical trials' registry center were searched to identify relevant studies up to the end of March 2019. Inclusion citations required a case-control or cohort study to demonstrate the association between mtDNA haplogroups and OA's prevalence or progression. Title, abstract, and full-text screening were sequentially assessed by three reviewers. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were conducted to explore potential heterogeneities. We collected results from 7 articles. The cluster TJ cases showed a lower proportion in OA cases (RR = 0.83, 95% CI 0.72, 0.96). However, there is no evidence that revealed this kind of impact originated from neither type J nor type T individually. Besides, the type B and G analyses among Asian populations also elucidated a negative association. Moreover, the cluster TJ of mtDNA haplogroups revealed a lower cumulative probability of radiographic OA progression (ES = 0.77, 95% CI 0.63, 0.94), which was contributed by type T (ES = 0.61, 95% CI 0.45, 0.82).The mtDNA haplogroups do have impacts on the prevalence and progression of OA. Cluster TJ could help reduce the prevalence and slow down the radiographic changes; however, the impacts came from type J and type T, respectively.
Collapse
Affiliation(s)
- Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengjiao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Ying Jin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd section, South Renmin Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Hill BG, Shiva S, Ballinger S, Zhang J, Darley-Usmar VM. Bioenergetics and translational metabolism: implications for genetics, physiology and precision medicine. Biol Chem 2019; 401:3-29. [PMID: 31815377 PMCID: PMC6944318 DOI: 10.1515/hsz-2019-0268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
It is now becoming clear that human metabolism is extremely plastic and varies substantially between healthy individuals. Understanding the biochemistry that underlies this physiology will enable personalized clinical interventions related to metabolism. Mitochondrial quality control and the detailed mechanisms of mitochondrial energy generation are central to understanding susceptibility to pathologies associated with aging including cancer, cardiac and neurodegenerative diseases. A precision medicine approach is also needed to evaluate the impact of exercise or caloric restriction on health. In this review, we discuss how technical advances in assessing mitochondrial genetics, cellular bioenergetics and metabolomics offer new insights into developing metabolism-based clinical tests and metabolotherapies. We discuss informatics approaches, which can define the bioenergetic-metabolite interactome and how this can help define healthy energetics. We propose that a personalized medicine approach that integrates metabolism and bioenergetics with physiologic parameters is central for understanding the pathophysiology of diseases with a metabolic etiology. New approaches that measure energetics and metabolomics from cells isolated from human blood or tissues can be of diagnostic and prognostic value to precision medicine. This is particularly significant with the development of new metabolotherapies, such as mitochondrial transplantation, which could help treat complex metabolic diseases.
Collapse
Affiliation(s)
- Bradford G. Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, Center for Metabolism & Mitochondrial Medicine, University of Pittsburgh, Pittsburgh, PA 15143
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
20
|
Tian R, Colucci WS, Arany Z, Bachschmid MM, Ballinger SW, Boudina S, Bruce JE, Busija DW, Dikalov S, Dorn GW, Galis ZS, Gottlieb RA, Kelly DP, Kitsis RN, Kohr MJ, Levy D, Lewandowski ED, McClung JM, Mochly-Rosen D, O’Brien KD, O’Rourke B, Park JY, Ping P, Sack MN, Sheu SS, Shi Y, Shiva S, Wallace DC, Weiss RG, Vernon HJ, Wong R, Longacre LS. Unlocking the Secrets of Mitochondria in the Cardiovascular System: Path to a Cure in Heart Failure—A Report from the 2018 National Heart, Lung, and Blood Institute Workshop. Circulation 2019; 140:1205-1216. [PMID: 31769940 PMCID: PMC6880654 DOI: 10.1161/circulationaha.119.040551] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondria have emerged as a central factor in the pathogenesis and progression of heart failure, and other cardiovascular diseases, as well, but no therapies are available to treat mitochondrial dysfunction. The National Heart, Lung, and Blood Institute convened a group of leading experts in heart failure, cardiovascular diseases, and mitochondria research in August 2018. These experts reviewed the current state of science and identified key gaps and opportunities in basic, translational, and clinical research focusing on the potential of mitochondria-based therapeutic strategies in heart failure. The workshop provided short- and long-term recommendations for moving the field toward clinical strategies for the prevention and treatment of heart failure and cardiovascular diseases by using mitochondria-based approaches.
Collapse
Affiliation(s)
- Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine,, University of Washington, Seattle, WA
| | | | - Zoltan Arany
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Scott W. Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Sihem Boudina
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - David W. Busija
- Department of Pharmacology, Tulane University, New Orleans, LA
| | - Sergey Dikalov
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Gerald W. Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University, St. Louis, MO
| | - Zorina S. Galis
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Daniel P. Kelly
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard N. Kitsis
- Department of Medicine, Department of Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Mark J. Kohr
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD
| | - Daniel Levy
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA
| | | | - Brian O’Rourke
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Joon-Young Park
- Department of Kinesiology, Temple University, Philadelphia, PA
| | - Peipei Ping
- Department of Physiology and Department of Medicine, University of California, Los Angeles
| | - Michael N. Sack
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | | - Yang Shi
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | - Sruti Shiva
- Department of Pharmacology and Chemical Biology and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA
| | - Robert G. Weiss
- Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Hilary J. Vernon
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD
| | - Renee Wong
- National, Heart, Lung, and Blood Institute, NIH, Bethesda, MD
| | | |
Collapse
|
21
|
Veronese N, Stubbs B, Koyanagi A, Vaona A, Demurtas J, Schofield P, Maggi S. Mitochondrial genetic haplogroups and cardiovascular diseases: Data from the Osteoarthritis Initiative. PLoS One 2019; 14:e0213656. [PMID: 30921349 PMCID: PMC6438497 DOI: 10.1371/journal.pone.0213656] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Background Some case-control studies reported that mitochondrial haplogroups could be associated with the onset of cardiovascular diseases (CVD), but the literature regarding this topic is limited. We aimed to investigate whether any mitochondrial haplogroup carried a higher or lower risk of CVD in a large cohort of North American people affected by knee osteoarthritis or at high risk for this condition. Materials and methods A longitudinal cohort study including individuals from the Osteoarthritis Initiative was done. Haplogroups were assigned through a combination of sequencing and PCR-RFLP techniques. All the mitochondrial haplogroups have been named following this nomenclature: HV, JT, UK, IWX, and superHV/others. The strength of the association between mitochondrial haplogroups and incident CVD was evaluated through a Cox’s regression analysis, adjusted for potential confounders, and reported as hazard ratios (HRs) with their 95% confidence intervals (CIs). Results Overall, 3,288 Caucasian participants (56.8% women) with a mean age of 61.3±9.2 years without CVD at baseline were included. During a median follow-up of 8 years, 322 individuals (= 9.8% of baseline population) developed a CVD. After adjusting for 11 potential confounders at baseline and taking those with the HV haplotype as reference (the most frequent), those with JT carried a significant lower risk of CVD (HR = 0.75; 95%CI: 0.54–0.96; p = 0.03). Participants with the J haplogroup had the lowest risk of CVD (HR = 0.71; 95%CI: 0.46–0.95; p = 0.02). Conclusions The presence of JT haplogroups (particularly J) may be associated with a reduced risk of CVD. However, this result was not based on a high level of statistical significance. Thus, future research with larger sample size is needed to assess whether our results can be corroborated.
Collapse
Affiliation(s)
- Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Castellana Grotte (Ba), Italy
- * E-mail:
| | - Brendon Stubbs
- South London and Maudsley NHS Foundation Trust, Denmark Hill, London, United Kingdom
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, CIBERSAM, Sant Boi de Llobregat, Barcelona, Spain
| | - Alberto Vaona
- Primary Care Department, Azienda ULSS20 Verona, Verona, Italy
| | - Jacopo Demurtas
- Primary Care Department, Azienda USL Toscana Sud Est, Grosseto, Italy
| | - Patricia Schofield
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, United Kingdom
| | - Stefania Maggi
- National Research Council, Neuroscience Institute, Aging Branch, Padova, National Institute of Gastroenterology “S. De Bellis” Research Hospital, Castellana Grotte (Ba), Italy
| |
Collapse
|
22
|
Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, Duan H, Zhou K, Hua Y, Wu G, Li Y. Association between mitochondrial DNA copy number and cardiovascular disease: Current evidence based on a systematic review and meta-analysis. PLoS One 2018; 13:e0206003. [PMID: 30403687 PMCID: PMC6221293 DOI: 10.1371/journal.pone.0206003] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022] Open
Abstract
Background Mitochondria are energy-producing structure of the cell and help to maintain redox environment. In cardiovascular disease, the number of mitochondrial DNA (mtDNA) will changes accordingly compare to normal condition. Some investigators ask whether it has a clear association between mtDNA and cardiovascular disease with its adverse events. Thus, we conduct the meta-analysis to assess the role of circulating mtDNA in evaluating cardiovascular disease. Methods The meta-analysis was conducted in accordance with a predetermined protocol following the recommendations of Cochrane Handbook of Systematic Reviews. We searched the Pubmed, Embase, the Cochrane Central Register of Controlled Trials and World Health Organization clinical trials registry center to identify relevant studies up to the end of October 2017. Data were analyzed using STATA. Besides, publication bias and meta-regression analysis were also conducted. Results We collected results from 5 articles for further analyses with 8,252 cases and 20,904 control. The normalized mtDNA copy number level is lower in cardiovascular disease (CVD) than the control groups with a pooled standard mean difference (SMD) of -0.36(95%CI,-0.65 to -0.08); The pooled odds ratio (OR) for CVD proportion associated with a 1-SD (standard deviation) decrease in mtDNA copy number level is 1.23 (95% CI,1.06–1.42); The OR for CVD patients with mtDNA copy number lower than median level is 1.88(95% CI,1.65–2.13); The OR for CVD patients with mtDNA copy number located in the lowest quartile part is 2.15(95% CI, 1.46–3.18); the OR between mtDNA copy number and the risk of sudden cardiac death (SCD) is 1.83(95% CI, 1.22–2.74). Conclusion Although inter-study variability, the overall performance test of mtDNA for evaluating CVD and SCD revealed that the mtDNA copy number presented the potential to be a biomarker for CVD and SCD prediction. Given that, the fewer copies of mtDNA, the higher the risk of CVD.
Collapse
Affiliation(s)
- Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Jing
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Lei Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gang Wu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Melber A, Haynes CM. UPR mt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 2018; 28:281-295. [PMID: 29424373 PMCID: PMC5835775 DOI: 10.1038/cr.2018.16] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial network is not only required for the production of energy, essential cofactors and amino acids, but also serves as a signaling hub for innate immune and apoptotic pathways. Multiple mechanisms have evolved to identify and combat mitochondrial dysfunction to maintain the health of the organism. One such pathway is the mitochondrial unfolded protein response (UPRmt), which is regulated by the mitochondrial import efficiency of the transcription factor ATFS-1 in C. elegans and potentially orthologous transcription factors in mammals (ATF4, ATF5, CHOP). Upon mitochondrial dysfunction, import of ATFS-1 into mitochondria is reduced, allowing it to be trafficked to the nucleus where it promotes the expression of genes that promote survival and recovery of the mitochondrial network. Here, we discuss recent findings underlying UPRmt signal transduction and how this adaptive transcriptional response may interact with other mitochondrial stress response pathways.
Collapse
Affiliation(s)
- Andrew Melber
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Quercetin Prevents Diastolic Dysfunction Induced by a High-Cholesterol Diet: Role of Oxidative Stress and Bioenergetics in Hyperglycemic Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7239123. [PMID: 29576853 PMCID: PMC5821945 DOI: 10.1155/2018/7239123] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Alterations in cardiac energy metabolism play a key role in the pathogenesis of diabetic cardiomyopathy. Hypercholesterolemia associated with bioenergetic impairment and oxidative stress has not been well characterized in the cardiac function under glycemic control deficiency conditions. This work aimed to determine the cardioprotective effects of quercetin (QUE) against the damage induced by a high-cholesterol (HC) diet in hyperglycemic rats, addressing intracellular antioxidant mechanisms and bioenergetics. Quercetin reduced HC-induced alterations in the lipid profile and glycemia in rats. In addition, QUE attenuated cardiac diastolic dysfunction (increased E:A ratio), prevented cardiac cholesterol accumulation, and reduced the increase in HC-induced myocyte density. Moreover, QUE reduced HC-induced oxidative stress by preventing the decrease in GSH/GSSG ratio, Nrf2 nuclear translocation, HO-1 expression, and antioxidant enzymatic activity. Quercetin also counteracted HC-induced bioenergetic impairment, preventing a reduction in ATP levels and alterations in PGC-1α, UCP2, and PPARγ expression. In conclusion, the mechanisms that support the cardioprotective effect of QUE in rats with HC might be mediated by the upregulation of antioxidant mechanisms and improved bioenergetics on the heart. Targeting bioenergetics with QUE can be used as a pharmacological approach to modulate structural and functional changes of the heart under hypercholesterolemic and hyperglycemic conditions.
Collapse
|
25
|
Umbria M, Ramos A, Caner J, Vega T, Lozano JE, Santos C, Aluja MP. Involvement of mitochondrial haplogroups in myocardial infarction and stroke: A case-control study in Castile and Leon (Spain) population. Mitochondrion 2017; 44:1-6. [PMID: 29258787 DOI: 10.1016/j.mito.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/05/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
Abstract
There are strong evidences that common mitochondrial DNA (mtDNA) haplogroups may influence the pathogenesis of cardiovascular diseases (CVDs). In this matched case-control study, we investigate the association between mtDNA haplogroups and two CVDs, myocardial infarction (MI) and stroke, and classical cardiovascular risk factors. Data obtained show that haplogroup H constitute a susceptibility risk factor for MI (p=0.001; OR=2.379, 95% CI [1.440-3.990]). Otherwise, our data also suggest a beneficial role of haplogroup J against hypertension (p=0.019; OR=0.348, 95% CI [0.144-0.840]). These results may provide some guidance for predicting the genetic risk of these diseases in different human populations through the differences in energy efficiency between haplogroups.
Collapse
Affiliation(s)
- Miriam Umbria
- Unitat d'Antropologia Biològica, Department BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Amanda Ramos
- Unitat d'Antropologia Biològica, Department BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Jennifer Caner
- Unitat d'Antropologia Biològica, Department BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Tomás Vega
- Dirección General de Salud Pública, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - José Eugenio Lozano
- Dirección General de Salud Pública, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - Cristina Santos
- Unitat d'Antropologia Biològica, Department BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Maria Pilar Aluja
- Unitat d'Antropologia Biològica, Department BABVE, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
26
|
Lee SR, Han J. Mitochondrial Mutations in Cardiac Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:81-111. [PMID: 28551783 DOI: 10.1007/978-3-319-55330-6_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria individually encapsulate their own genome, unlike other cellular organelles. Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs). The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell. mtDNA mutations can be inherited or sporadic. Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content. Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects. Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype. Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations. Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation.In this chapter, we summarize our current understanding of mtDNA mutations and their role in cardiac involvement. In addition, epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in cardiac involvement. Finally, current strategies for dealing with mitochondrial mutations in cardiac disorders are briefly stated.
Collapse
Affiliation(s)
- Sung Ryul Lee
- Department of Integrated Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, 47392, South Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Cardiovascular and Metabolic Disease Center, Department of Physiology, College of Medicine, Inje University, Busan, 47392, South Korea.
| |
Collapse
|
27
|
Sericin improves heart and liver mitochondrial architecture in hypercholesterolaemic rats and maintains pancreatic and adrenal cell biosynthesis. Exp Cell Res 2017; 358:301-314. [DOI: 10.1016/j.yexcr.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/17/2017] [Accepted: 07/01/2017] [Indexed: 01/07/2023]
|
28
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
29
|
Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8060949. [PMID: 28680532 PMCID: PMC5478868 DOI: 10.1155/2017/8060949] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 04/03/2017] [Indexed: 11/18/2022]
Abstract
Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology.
Collapse
|
30
|
dos Santos FS, Dias GG, de Freitas RP, Santos LS, de Lima GF, Duarte HA, de Simone CA, Rezende LMSL, Vianna MJX, Correa JR, Neto BAD, da Silva Júnior EN. Redox Center Modification of Lapachones towards the Synthesis of Nitrogen Heterocycles as Selective Fluorescent Mitochondrial Imaging Probes. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fabíola S. dos Santos
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Gleiston G. Dias
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Rossimiriam P. de Freitas
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Lucas S. Santos
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Guilherme F. de Lima
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Hélio A. Duarte
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| | - Carlos A. de Simone
- Department of Physics and Informatics; Institute of Physics; University of São Paulo; 13560-160 São Carlos SP Brazil
| | - Lidia M. S. L. Rezende
- Institute of Chemistry; University of Brasilia; P. O. Box 4478 70904970 Brasilia DF Brazil
| | - Monique J. X. Vianna
- Institute of Chemistry; University of Brasilia; P. O. Box 4478 70904970 Brasilia DF Brazil
| | - José R. Correa
- Institute of Chemistry; University of Brasilia; P. O. Box 4478 70904970 Brasilia DF Brazil
| | - Brenno A. D. Neto
- Institute of Chemistry; University of Brasilia; P. O. Box 4478 70904970 Brasilia DF Brazil
| | - Eufrânio N. da Silva Júnior
- Institute of Exact Sciences; Department of Chemistry; Federal University of Minas Gerais; 31270-901 Belo Horizonte MG Brazil
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is responsible for more morbidity and mortality worldwide than any other ailment. Strategies for reducing CVD prevalence must involve identification of individuals at high risk for these diseases, and the prevention of its initial development. Such preventive efforts are currently limited by an incomplete understanding of the genetic determinants of CVD risk. In this review, evidence for the involvement of inherited mitochondrial mutations in development of CVD is examined. RECENT FINDINGS Several forms of CVD have been documented in the presence of pathogenic mitochondrial DNA (mtDNA) mutations, both in isolation and as part of larger syndromes. Other 'natural' mtDNA polymorphisms not overtly tied to any pathology have also been associated with alterations in mitochondrial function and individual risk for CVD, but until very recently these studies have been merely correlative. Fortunately, novel animal models are now allowing investigators to define a causal relationship between inherited 'natural' mtDNA polymorphisms, and cardiovascular function and pathology. SUMMARY Cardiovascular involvement is highly prevalent among patients with pathogenic mtDNA mutations. The relationship between CVD susceptibility and 'natural' mtDNA polymorphisms requires further investigation, but will be aided in the near future by several novel experimental models.
Collapse
Affiliation(s)
- Alexander W. Bray
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham
| | - Scott W. Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
32
|
Wende AR, Young ME, Chatham J, Zhang J, Rajasekaran NS, Darley-Usmar VM. Redox biology and the interface between bioenergetics, autophagy and circadian control of metabolism. Free Radic Biol Med 2016; 100:94-107. [PMID: 27242268 PMCID: PMC5124549 DOI: 10.1016/j.freeradbiomed.2016.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/01/2022]
Abstract
Understanding molecular mechanisms that underlie the recent emergence of metabolic diseases such as diabetes and heart failure has revealed the need for a multi-disciplinary research integrating the key metabolic pathways which change the susceptibility to environmental or pathologic stress. At the physiological level these include the circadian control of metabolism which aligns metabolism with temporal demand. The mitochondria play an important role in integrating the redox signals and metabolic flux in response to the changing activities associated with chronobiology, exercise and diet. At the molecular level this involves dynamic post-translational modifications regulating transcription, metabolism and autophagy. In this review we will discuss different examples of mechanisms which link these processes together. An important pathway capable of linking signaling to metabolism is the post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc). This is a nutrient regulated protein modification that plays an important role in impaired cellular stress responses. Circadian clocks have also emerged as critical regulators of numerous cardiometabolic processes, including glucose/lipid homeostasis, hormone secretion, redox status and cardiovascular function. Central to these pathways are the response of autophagy, bioenergetics to oxidative stress, regulated by Keap1/Nrf2 and mechanisms of metabolic control. The extension of these ideas to the emerging concept of bioenergetic health will be discussed.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namakkal S Rajasekaran
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Mitochondrial Medicine Laboratory, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
33
|
Krzywanski DM, Moellering DR, Westbrook DG, Dunham-Snary KJ, Brown J, Bray AW, Feeley KP, Sammy MJ, Smith MR, Schurr TG, Vita JA, Ambalavanan N, Calhoun D, Dell'Italia L, Ballinger SW. Endothelial Cell Bioenergetics and Mitochondrial DNA Damage Differ in Humans Having African or West Eurasian Maternal Ancestry. ACTA ACUST UNITED AC 2016; 9:26-36. [PMID: 26787433 DOI: 10.1161/circgenetics.115.001308] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/13/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND We hypothesized that endothelial cells having distinct mitochondrial genetic backgrounds would show variation in mitochondrial function and oxidative stress markers concordant with known differential cardiovascular disease susceptibilities. To test this hypothesis, mitochondrial bioenergetics were determined in endothelial cells from healthy individuals with African versus European maternal ancestries. METHODS AND RESULTS Bioenergetics and mitochondrial DNA (mtDNA) damage were assessed in single-donor human umbilical vein endothelial cells belonging to mtDNA haplogroups H and L, representing West Eurasian and African maternal ancestries, respectively. Human umbilical vein endothelial cells from haplogroup L used less oxygen for ATP production and had increased levels of mtDNA damage compared with those in haplogroup H. Differences in bioenergetic capacity were also observed in that human umbilical vein endothelial cells belonging to haplogroup L had decreased maximal bioenergetic capacities compared with haplogroup H. Analysis of peripheral blood mononuclear cells from age-matched healthy controls with West Eurasian or African maternal ancestries showed that haplogroups sharing an A to G mtDNA mutation at nucleotide pair 10398 had increased mtDNA damage compared with those lacking this mutation. Further study of angiographically proven patients with coronary artery disease and age-matched healthy controls revealed that mtDNA damage was associated with vascular function and remodeling and that age of disease onset was later in individuals from haplogroups lacking the A to G mutation at nucleotide pair 10398. CONCLUSIONS Differences in mitochondrial bioenergetics and mtDNA damage associated with maternal ancestry may contribute to endothelial dysfunction and vascular disease.
Collapse
Affiliation(s)
- David M Krzywanski
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Douglas R Moellering
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - David G Westbrook
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Kimberly J Dunham-Snary
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Jamelle Brown
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Alexander W Bray
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Kyle P Feeley
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Melissa J Sammy
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Matthew R Smith
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Theodore G Schurr
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Joseph A Vita
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Namasivayam Ambalavanan
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - David Calhoun
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Louis Dell'Italia
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.)
| | - Scott W Ballinger
- From the Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport (D.M.K.); Department of Nutrition Sciences (D.R.M.), Center for Free Radical Biology and Medicine (D.R.M., D.G.W., K.J.D.-S., J.B., A.W.B., K.P.F., M.J.S., M.R.S., L.D., S.W.B.), Division of Molecular and Cellular Pathology, Department of Pathology (D.G.W., J.B., A.W.B., K.P.F., M.J.S., M.R.S., S.W.B.), Department of Pediatrics (N.A.), Department of Medicine (D.C., L.D.), University of Alabama at Birmingham; Department of Medicine, Queen's University, Kingston, Ontario, Canada (K.J.D.-S.); Department of Anthropology, University of Pennsylvania, Philadelphia (T.G.S.); and Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (J.A.V.).
| |
Collapse
|
34
|
Wang J, Lin F, Guo LL, Xiong XJ, Fan X. Cardiovascular Disease, Mitochondria, and Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:143145. [PMID: 26074984 PMCID: PMC4449907 DOI: 10.1155/2015/143145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/06/2014] [Accepted: 09/14/2014] [Indexed: 01/24/2023]
Abstract
Recent studies demonstrated that mitochondria play an important role in the cardiovascular system and mutations of mitochondrial DNA affect coronary artery disease, resulting in hypertension, atherosclerosis, and cardiomyopathy. Traditional Chinese medicine (TCM) has been used for thousands of years to treat cardiovascular disease, but it is not yet clear how TCM affects mitochondrial function. By reviewing the interactions between the cardiovascular system, mitochondrial DNA, and TCM, we show that cardiovascular disease is negatively affected by mutations in mitochondrial DNA and that TCM can be used to treat cardiovascular disease by regulating the structure and function of mitochondria via increases in mitochondrial electron transport and oxidative phosphorylation, modulation of mitochondrial-mediated apoptosis, and decreases in mitochondrial ROS. However further research is still required to identify the mechanism by which TCM affects CVD and modifies mitochondrial DNA.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Fei Lin
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Li-li Guo
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xing-jiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xun Fan
- Clinical Medical College, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
35
|
Kim B, Lee H, Kawata K, Park JY. Exercise-mediated wall shear stress increases mitochondrial biogenesis in vascular endothelium. PLoS One 2014; 9:e111409. [PMID: 25375175 PMCID: PMC4222908 DOI: 10.1371/journal.pone.0111409] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Enhancing structural and functional integrity of mitochondria is an emerging therapeutic option against endothelial dysfunction. In this study, we sought to investigate the effect of fluid shear stress on mitochondrial biogenesis and mitochondrial respiratory function in endothelial cells (ECs) using in vitro and in vivo complementary studies. METHODS AND RESULTS Human aortic- or umbilical vein-derived ECs were exposed to laminar shear stress (20 dyne/cm2) for various durations using a cone-and-plate shear apparatus. We observed significant increases in the expression of key genes related to mitochondrial biogenesis and mitochondrial quality control as well as mtDNA content and mitochondrial mass under the shear stress conditions. Mitochondrial respiratory function was enhanced when cells were intermittently exposed to laminar shear stress for 72 hrs. Also, shear-exposed cells showed diminished glycolysis and decreased mitochondrial membrane potential (ΔΨm). Likewise, in in vivo experiments, mice that were subjected to a voluntary wheel running exercise for 5 weeks showed significantly higher mitochondrial content determined by en face staining in the conduit (greater and lesser curvature of the aortic arch and thoracic aorta) and muscle feed (femoral artery) arteries compared to the sedentary control mice. Interestingly, however, the mitochondrial biogenesis was not observed in the mesenteric artery. This region-specific adaptation is likely due to the differential blood flow redistribution during exercise in the different vessel beds. CONCLUSION Taken together, our findings suggest that exercise enhances mitochondrial biogenesis in vascular endothelium through a shear stress-dependent mechanism. Our findings may suggest a novel mitochondrial pathway by which a chronic exercise may be beneficial for vascular function.
Collapse
Affiliation(s)
- Boa Kim
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania, United States of America
- Cardiovascular Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hojun Lee
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Keisuke Kawata
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Joon-Young Park
- Department of Kinesiology, Temple University, Philadelphia, Pennsylvania, United States of America
- Cardiovascular Research Center, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
Wang C, Chen X, Zou H, Chen X, Liu Y, Zhao S. The roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas. Eur J Med Res 2014; 19:49. [PMID: 25256833 PMCID: PMC4200193 DOI: 10.1186/s40001-014-0049-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
Background Among glioma treatment strategies, arsenic trioxide (As2O3) has shown efficacy as a therapeutic agent against human gliomas. However, the exact antitumor mechanism of action of As2O3 is still unclear. Mitochondria are considered to be the major source of intracellular reactive oxygen species (ROS), which are known to be associated with As2O3-induced cell damage. Therefore, we investigated whether mitoferrin-2, a mitochondrial iron uptake transporter, participates in As2O3-induced cell killing in human gliomas. Methods Human glioma cell lines were used to explore the mechanism of As2O3’s antitumor effects. First, expression of mitoferrin-2 was analyzed in glioma cells that were pretreated with As2O3. Changes in ROS production and apoptosis were assessed. Furthermore, cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Results In the present study we found that As2O3 induced ROS production and apoptosis in glioma cells. In addition, gene expression of mitoferrin-2, a mitochondrial iron uptake transporter, was increased 4 to 5 fold after exposure to As2O3 (5 μM) for 48 hours. Furthermore, apoptosis and cytotoxicity induced by As2O3 in glioma cells were decreased after silencing the mitoferrin-2 gene. Conclusions Our findings indicated that mitoferrin-2 participates in mitochondrial ROS-dependent mechanisms underlying As2O3-mediated damage in glioma cells.
Collapse
|
37
|
Abstract
Bioenergetics has become central to our understanding of pathological mechanisms, the
development of new therapeutic strategies and as a biomarker for disease progression
in neurodegeneration, diabetes, cancer and cardiovascular disease. A key concept is
that the mitochondrion can act as the ‘canary in the coal mine’ by
serving as an early warning of bioenergetic crisis in patient populations. We propose
that new clinical tests to monitor changes in bioenergetics in patient populations
are needed to take advantage of the early and sensitive ability of bioenergetics to
determine severity and progression in complex and multifactorial diseases. With the
recent development of high-throughput assays to measure cellular energetic function
in the small number of cells that can be isolated from human blood these clinical
tests are now feasible. We have shown that the sequential addition of
well-characterized inhibitors of oxidative phosphorylation allows a bioenergetic
profile to be measured in cells isolated from normal or pathological samples. From
these data we propose that a single value–the Bioenergetic Health Index
(BHI)–can be calculated to represent the patient's composite mitochondrial
profile for a selected cell type. In the present Hypothesis paper, we discuss how BHI
could serve as a dynamic index of bioenergetic health and how it can be measured in
platelets and leucocytes. We propose that, ultimately, BHI has the potential to be a
new biomarker for assessing patient health with both prognostic and diagnostic
value.
Collapse
|
38
|
Dunham-Snary KJ, Ballinger SW. Mitochondrial genetics and obesity: evolutionary adaptation and contemporary disease susceptibility. Free Radic Biol Med 2013; 65:1229-1237. [PMID: 24075923 PMCID: PMC3859699 DOI: 10.1016/j.freeradbiomed.2013.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/22/2022]
Abstract
Obesity is a leading risk factor for a variety of metabolic diseases including cardiovascular disease, diabetes, and cancer. Although in its simplest terms, obesity may be thought of as a consequence of excessive caloric intake and sedentary lifestyle, it is also evident that individual propensity for weight gain can vary. The etiology of individual susceptibility to obesity seems to be complex-involving a combination of environmental-genetic interactions. Herein, we suggest that the mitochondrion plays a major role in influencing individual susceptibility to this disease via mitochondrial-nuclear interaction processes and that environmentally influenced selection events for mitochondrial function that conveyed increased reproductive and survival success during the global establishment of human populations during prehistoric times can influence individual susceptibility to weight gain and obesity.
Collapse
Affiliation(s)
- Kimberly J Dunham-Snary
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Ballinger
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
39
|
Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload. Biochem J 2013; 455:157-67. [PMID: 23924350 DOI: 10.1042/bj20130029] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.
Collapse
|
40
|
Beyond retrograde and anterograde signalling: mitochondrial-nuclear interactions as a means for evolutionary adaptation and contemporary disease susceptibility. Biochem Soc Trans 2013; 41:111-7. [PMID: 23356268 DOI: 10.1042/bst20120227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although there is general agreement that most forms of common disease develop as a consequence of a combination of factors, including genetic, environmental and behavioural contributors, the actual mechanistic basis of how these factors initiate or promote diabetes, cancer, neurodegenerative and cardiovascular diseases in some individuals but not in others with seemingly identical risk factor profiles, is not clearly understood. In this respect, consideration of the potential role for mitochondrial genetics, damage and function in influencing common disease susceptibility seems merited, given that the prehistoric challenges were the original factors that moulded cellular function, and these were based upon the mitochondrial-nuclear relationships that were established during evolutionary history. These interactions were probably refined during prehistoric environmental selection events that, at present, are largely absent. Contemporary risk factors such as diet, sedentary lifestyle and increased longevity, which influence our susceptibility to a variety of chronic diseases were not part of the dynamics that defined the processes of mitochondrial-nuclear interaction, and thus cell function. Consequently, the prehistoric challenges that contributed to cell functionality and evolution should be considered when interpreting and designing experimental data and strategies. Although several molecular epidemiological studies have generally supported this notion, studies that probe beyond these associations are required. Such investigation will mark the initial steps for mechanistically addressing the provocative concept that contemporary human disease susceptibility is the result of prehistoric selection events for mitochondrial-nuclear function, which increased the probability for survival and reproductive success during evolution.
Collapse
|
41
|
Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol 2013; 6:19. [PMID: 23442817 PMCID: PMC3599349 DOI: 10.1186/1756-8722-6-19] [Citation(s) in RCA: 541] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 02/20/2013] [Indexed: 12/13/2022] Open
Abstract
There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoimmune diseases, and cardiovascular diseases all share common phenotype of increased mtROS production above basal levels. Several excellent reviews on this topic have been published, but ever-changing new discoveries mandated a more up-to-date and comprehensive review on this topic. Therefore, we update recent understanding of how mitochondria generate and regulate the production of mtROS and the function of mtROS both in physiological and pathological conditions. In addition, we describe newly developed methods to probe or scavenge mtROS and compare these methods in detail. Thorough understanding of this topic and the application of mtROS-targeting drugs in the research is significant towards development of better therapies to combat inflammatory diseases and inflammatory malignancies.
Collapse
Affiliation(s)
- Xinyuan Li
- Cardiovascular Research Center, Department of Pharmacology and Thrombosis Research Center, Temple University School of Medicine, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
42
|
Neto BAD, Corrêa JR, Silva RG. Selective mitochondrial staining with small fluorescent probes: importance, design, synthesis, challenges and trends for new markers. RSC Adv 2013. [DOI: 10.1039/c2ra21995f] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
43
|
Hill BG, Benavides GA, Lancaster JR, Ballinger S, Dell’Italia L, Zhang J, Darley-Usmar VM. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012; 393:1485-1512. [PMID: 23092819 PMCID: PMC3594552 DOI: 10.1515/hsz-2012-0198] [Citation(s) in RCA: 366] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 06/22/2012] [Indexed: 02/06/2023]
Abstract
Bioenergetic dysfunction is emerging as a cornerstone for establishing a framework for understanding the pathophysiology of cardiovascular disease, diabetes,cancer and neurodegeneration. Recent advances in cellular bioenergetics have shown that many cells maintain a substantial bioenergetic reserve capacity, which is a prospective index of ‘ healthy ’ mitochondrial populations.The bioenergetics of the cell are likely regulated by energy requirements and substrate availability. Additionally,the overall quality of the mitochondrial population and the relative abundance of mitochondria in cells and tissues also impinge on overall bioenergetic capacity and resistance to stress. Because mitochondria are susceptible to damage mediated by reactive oxygen/nitrogen and lipid species, maintaining a ‘ healthy ’ population of mitochondria through quality control mechanisms appears to be essential for cell survival under conditions of pathological stress. Accumulating evidence suggest that mitophagy is particularly important for preventing amplification of initial oxidative insults, which otherwise would further impair the respiratory chain or promote mutations in mitochondrial DNA (mtDNA). The processes underlying the regulation of mitophagy depend on several factors, including the integrity of mtDNA, electron transport chain activity, and the interaction and regulation of the autophagic machinery. The integration and interpretation of cellular bioenergetics in the context of mitochondrial quality control and genetics is the theme of this review.
Collapse
Affiliation(s)
- Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY
- Departments of Biochemistry and Molecular Biology and Physiology and Biophysics, University of Louisville, Louisville, KY
| | - Gloria A. Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jack R. Lancaster
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Scott Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lou Dell’Italia
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veteran Affairs Medical Center, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
44
|
Current world literature. Curr Opin Nephrol Hypertens 2012; 21:557-66. [PMID: 22874470 DOI: 10.1097/mnh.0b013e3283574c3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Abstract
Homeotherms maintain an optimal body temperature that is most often above their environment or ambient temperature. As ambient temperature decreases, energy expenditure (and energy intake) must increase to maintain thermal homeostasis. With the wide spread adoption of climate control, humans in modern society are buffered from temperature extremes and spend an increasing amount of time in a thermally comfortable state where energetic demands are minimized. This is hypothesized to contribute to the contemporary increase in obesity rates. Studies reporting exposures of animals and humans to different ambient temperatures are discussed. Additional consideration is given to the potentially altered metabolic and physiologic responses in obese versus lean subjects at a given temperature. The data suggest that ambient temperature is a significant contributor to both energy intake and energy expenditure, and that this variable should be more thoroughly explored in future studies as a potential contributor to obesity susceptibility.
Collapse
Affiliation(s)
- Douglas R. Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Diabetes Research and Training Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
46
|
Manczak M, Sesaki H, Kageyama Y, Reddy PH. Dynamin-related protein 1 heterozygote knockout mice do not have synaptic and mitochondrial deficiencies. Biochim Biophys Acta Mol Basis Dis 2012; 1822:862-74. [PMID: 22387883 DOI: 10.1016/j.bbadis.2012.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 12/21/2022]
Abstract
The objective of this study was to elucidate the effect of partial reduction of the mitochondrial fission protein, dynamin-related protein 1 (Drp1) on mitochondrial activity and synaptic viability. Recent knockout studies of Drp1 revealed that homozygote Drp1 knockout mice are embryonic lethal due to reduced mitochondrial fission, and that this reduced fission leads to developmental defects in the brain. In contrast, heterozygote Drp1 knockout mice appear to be normal in terms of lifespan, fertility, and viability, and phenotypically these animals are not different from wild-type mice. However, the effects of partial Drp1 reduction on mitochondrial function and synaptic activity are not well understood. In the present study, we sought to characterize synaptic, dendritic and mitochondrial proteins, and mitochondrial function and GTPase enzymatic activity, in Drp1 heterozygote knockout mice. Interestingly, we found no significant changes in synaptic, dendritic, and mitochondrial proteins in the Drp1 heterozygote knockout mice compared to the wild-type mice. Further, mitochondrial function and GTPase enzymatic activity appeared to be normal. However, H(2)O(2) and lipid peroxidation levels were significantly reduced in the Drp1 heterozygote knockout mice compared to the wild-type mice. These findings suggest that partial Drp1 reduction does not affect mitochondrial and synaptic viability and may have therapeutic use in treating patients with Alzheimer's disease and Huntington's disease.
Collapse
Affiliation(s)
- Maria Manczak
- Neurogenetics Laboratory, Neuroscience Division, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
47
|
Lam MPY, Scruggs SB, Kim TY, Zong C, Lau E, Wang D, Ryan CM, Faull KF, Ping P. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue. J Proteomics 2012; 75:4602-9. [PMID: 22387130 DOI: 10.1016/j.jprot.2012.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/28/2012] [Accepted: 02/15/2012] [Indexed: 11/29/2022]
Abstract
The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Maggie P Y Lam
- Departments of Physiology and Medicine, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Burwell RG, Dangerfield PH, Moulton A, Grivas TB. Adolescent idiopathic scoliosis (AIS), environment, exposome and epigenetics: a molecular perspective of postnatal normal spinal growth and the etiopathogenesis of AIS with consideration of a network approach and possible implications for medical therapy. SCOLIOSIS 2011; 6:26. [PMID: 22136338 PMCID: PMC3293085 DOI: 10.1186/1748-7161-6-26] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022]
Abstract
Genetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences. DNA methylation is one important epigenetic mechanism operating at the interface between genome and environment to regulate phenotypic plasticity with a complex regulation across the genome during the first decade of life. The word exposome refers to the totality of environmental exposures from conception onwards, comprising factors in external and internal environments. The word exposome is used here also in relation to physiologic and etiopathogenetic factors that affect normal spinal growth and may induce the deformity of AIS. In normal postnatal spinal growth we propose a new term and concept, physiologic growth-plate exposome for the normal processes particularly of the internal environments that may have epigenetic effects on growth plates of vertebrae. In AIS, we propose a new term and concept pathophysiologic scoliogenic exposome for the abnormal processes in molecular pathways particularly of the internal environment currently expressed as etiopathogenetic hypotheses; these are suggested to have deforming effects on the growth plates of vertebrae at cell, tissue, structure and/or organ levels that are considered to be epigenetic. New research is required for chromatin modifications including DNA methylation in AIS subjects and vertebral growth plates excised at surgery. In addition, consideration is needed for a possible network approach to etiopathogenesis by constructing AIS diseasomes. These approaches may lead through screening, genetic, epigenetic, biochemical, metabolic phenotypes and pharmacogenomic research to identify susceptible individuals at risk and modulate abnormal molecular pathways of AIS. The potential of epigenetic-based medical therapy for AIS cannot be assessed at present, and must await new research derived from the evaluation of epigenetic concepts of spinal growth in health and deformity. The tenets outlined here for AIS are applicable to other musculoskeletal growth disorders including infantile and juvenile idiopathic scoliosis.
Collapse
Affiliation(s)
- R Geoffrey Burwell
- Centre for Spinal Studies and Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Derby Road, Nottingham, NG7 2UH, UK
| | - Peter H Dangerfield
- University of Liverpool, Ashton Street, L69 3GE, UK
- Staffordshire University, Leek Road, Stoke-on-Trent, ST4 2DF. UK
- Royal Liverpool Children's Hospital, Eaton Road, Liverpool, L12 2AP, UK
| | - Alan Moulton
- Department of Orthopaedic Surgery, King's Mill Hospital, Sutton Road, Mansfield NG17 4JL, UK
| | - Theodoros B Grivas
- Department of Trauma and Orthopedics, "Tzanio" General Hospital, Tzani and Afendouli 1 st, Piraeus 18536, Greece.co.uk
| |
Collapse
|
49
|
Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ, Reddy AP, Mao P, Manczak M. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta Mol Basis Dis 2011; 1822:639-49. [PMID: 22037588 DOI: 10.1016/j.bbadis.2011.10.011] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
Abstract
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- P Hemachandra Reddy
- Neurogenetics Laboratory, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Oliva CR, Moellering DR, Gillespie GY, Griguer CE. Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS One 2011; 6:e24665. [PMID: 21931801 PMCID: PMC3170372 DOI: 10.1371/journal.pone.0024665] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 08/15/2011] [Indexed: 12/18/2022] Open
Abstract
Temozolomide (TMZ) is an alkylating agent used for treating gliomas. Chemoresistance is a severe limitation to TMZ therapy; there is a critical need to understand the underlying mechanisms that determine tumor response to TMZ. We recently reported that chemoresistance to TMZ is related to a remodeling of the entire electron transport chain, with significant increases in the activity of complexes II/III and cytochrome c oxidase (CcO). Moreover, pharmacologic and genetic manipulation of CcO reverses chemoresistance. Therefore, to test the hypothesis that TMZ-resistance arises from tighter mitochondrial coupling and decreased production of reactive oxygen species (ROS), we have assessed mitochondrial function in TMZ-sensitive and -resistant glioma cells, and in TMZ-resistant glioblastoma multiform (GBM) xenograft lines (xenolines). Maximum ADP-stimulated (state 3) rates of mitochondrial oxygen consumption were greater in TMZ-resistant cells and xenolines, and basal respiration (state 2), proton leak (state 4), and mitochondrial ROS production were significantly lower in TMZ-resistant cells. Furthermore, TMZ-resistant cells consumed less glucose and produced less lactic acid. Chemoresistant cells were insensitive to the oxidative stress induced by TMZ and hydrogen peroxide challenges, but treatment with the oxidant L-buthionine-S,R-sulfoximine increased TMZ-dependent ROS generation and reversed chemoresistance. Importantly, treatment with the antioxidant N-acetyl-cysteine inhibited TMZ-dependent ROS generation in chemosensitive cells, preventing TMZ toxicity. Finally, we found that mitochondrial DNA-depleted cells (ρ°) were resistant to TMZ and had lower intracellular ROS levels after TMZ exposure compared with parental cells. Repopulation of ρ° cells with mitochondria restored ROS production and sensitivity to TMZ. Taken together, our results indicate that chemoresistance to TMZ is linked to tighter mitochondrial coupling and low ROS production, and suggest a novel mitochondrial ROS-dependent mechanism underlying TMZ-chemoresistance in glioma. Thus, perturbation of mitochondrial functions and changes in redox status might constitute a novel strategy for sensitizing glioma cells to therapeutic approaches.
Collapse
Affiliation(s)
- Claudia R. Oliva
- Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Douglas R. Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - G. Yancey Gillespie
- Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Corinne E. Griguer
- Division of Neurosurgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|