1
|
Yu Y, Chen Z, Zheng B, Huang M, Li J, Li G. Molecular distinctions of bronchoalveolar and alveolar organoids under differentiation conditions. Physiol Rep 2024; 12:e16057. [PMID: 38825580 PMCID: PMC11144550 DOI: 10.14814/phy2.16057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
The bronchoalveolar organoid (BAO) model is increasingly acknowledged as an ex-vivo platform that accurately emulates the structural and functional attributes of proximal airway tissue. The transition from bronchoalveolar progenitor cells to alveolar organoids is a common event during the generation of BAOs. However, there is a pressing need for comprehensive analysis to elucidate the molecular distinctions characterizing the pre-differentiated and post-differentiated states within BAO models. This study established a murine BAO model and subsequently triggered its differentiation. Thereafter, a suite of multidimensional analytical procedures was employed, including the morphological recognition and examination of organoids utilizing an established artificial intelligence (AI) image tracking system, quantification of cellular composition, proteomic profiling and immunoblots of selected proteins. Our investigation yielded a detailed evaluation of the morphologic, cellular, and molecular variances demarcating the pre- and post-differentiation phases of the BAO model. We also identified of a potential molecular signature reflective of the observed morphological transformations. The integration of cutting-edge AI-driven image analysis with traditional cellular and molecular investigative methods has illuminated key features of this nascent model.
Collapse
Affiliation(s)
- Yan Yu
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Bin Zheng
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Min Huang
- Guangdong Research Center of Organoid Engineering and TechnologyGuangzhouChina
| | - Junlang Li
- Guangzhou No.3 High SchoolGuangzhouChina
| | - Gang Li
- Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
2
|
Gao Y, Cao F, Tian X, Zhang Q, Xu C, Ji B, Zhang YA, Du L, Han J, Li L, Zhou S, Gong Y, Ying B, Gao-Smith F, Jin S. Inhibition the ubiquitination of ENaC and Na,K-ATPase with erythropoietin promotes alveolar fluid clearance in sepsis-induced acute respiratory distress syndrome. Biomed Pharmacother 2024; 174:116447. [PMID: 38518606 DOI: 10.1016/j.biopha.2024.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Sepsis-induced acute respiratory distress syndrome (ARDS) causes significant fatalities worldwide and lacks pharmacological intervention. Alveolar fluid clearance (AFC) plays a pivotal role in the remission of ARDS and is markedly impaired in the pathogenesis of ARDS. Here, we demonstrated that erythropoietin could effectively ameliorate lung injury manifestations and lethality, restore lung function and promote AFC in a rat model of lipopolysaccharide (LPS)-induced ARDS. Moreover, it was proven that EPO-induced restoration of AFC occurs through triggering the total protein expression of ENaC and Na,K-ATPase channels, enhancing their protein abundance in the membrane, and suppressing their ubiquitination for degeneration. Mechanistically, the data indicated the possible involvement of EPOR/JAK2/STAT3/SGK1/Nedd4-2 signaling in this process, and the pharmacological inhibition of the pathway markedly eliminated the stimulating effects of EPO on ENaC and Na,K-ATPase, and subsequently reversed the augmentation of AFC by EPO. Consistently, in vitro studies of alveolar epithelial cells paralleled with that EPO upregulated the expression of ENaC and Na,K-ATPase, and patch-clamp studies further demonstrated that EPO substantially strengthened sodium ion currents. Collectively, EPO could effectively promote AFC by improving ENaC and Na,K-ATPase protein expression and abundance in the membrane, dependent on inhibition of ENaC and Na,K-ATPase ubiquitination, and resulting in diminishing LPS-associated lung injuries.
Collapse
Affiliation(s)
- Ye Gao
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fei Cao
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China; Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xinyi Tian
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Qianping Zhang
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congcong Xu
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Bowen Ji
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Ye-An Zhang
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Linan Du
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jun Han
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Li Li
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Siyu Zhou
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yuqiang Gong
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Binyu Ying
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao-Smith
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China; Centre for Translational Inflammation Research, Institute of Inflammation and Aging, University of Birmingham, Birmingham, United Kingdom.
| | - Shengwei Jin
- Department of Anaesthesia, Pain and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Zhejiang, China; Laboratory of Anesthesiology of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
3
|
Shi QQ, Huang YH, Li YF, Zhen SY, Li YH, Huang JY, Wang JY, Zhou XY. PEBP4 deficiency aggravates LPS-induced acute lung injury and alveolar fluid clearance impairment via modulating PI3K/AKT signaling pathway. Cell Mol Life Sci 2024; 81:133. [PMID: 38472560 DOI: 10.1007/s00018-024-05168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Acute lung injury (ALI) is a common clinical syndrome, which often results in pulmonary edema and respiratory distress. It has been recently reported that phosphatidylethanolamine binding protein 4 (PEBP4), a basic cytoplasmic protein, has anti-inflammatory and hepatoprotective effects, but its relationship with ALI remains undefined so far. In this study, we generated PEBP4 knockout (KO) mice to investigate the potential function of PEBP4, as well as to evaluate the capacity of alveolar fluid clearance (AFC) and the activity of phosphatidylinositide 3-kinases (PI3K)/serine-theronine protein kinase B (PKB, also known as AKT) signaling pathway in lipopolysaccharide (LPS)-induced ALI mice models. We found that PEBP4 deficiency exacerbated lung pathological damage and edema, and increased the wet/dry weight ratio and total protein concentration of bronchoalveolar lavage fluid (BALF) in LPS-treated mice. Meanwhile, PEBP4 KO promoted an LPS-induced rise in the pulmonary myeloperoxidase (MPO) activity, serum interleuin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and pulmonary cyclooxygenase-2 (COX-2) expression. Mechanically, PEBP4 deletion further reduced the protein expression of Na+ transport markers, including epithelial sodium channel (ENaC)-α, ENaC-γ, Na,K-ATPase α1, and Na,K-ATPase β1, and strengthened the inhibition of PI3K/AKT signaling in LPS-challenged mice. Furthermore, we demonstrated that selective activation of PI3K/AKT with 740YP or SC79 partially reversed all of the above effects caused by PEBP4 KO in LPS-treated mice. Altogether, our results indicated the PEBP4 deletion has a deterioration effect on LPS-induced ALI by impairing the capacity of AFC, which may be achieved through modulating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Qiao-Qing Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Science and Education, Jiangxi Chest Hospital, Nanchang, 330006, China
| | - Yong-Hong Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Yu-Fei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China
| | - Shuang-Yan Zhen
- Sino-German Joint Research Institute, Nanchang University, Nanchang, 330047, China
| | - Yan-Hong Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jia-Yi Huang
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330103, China
| | - Jia-Yang Wang
- School of Stomatology, Nanchang University, Nanchang, 330103, China
| | - Xiao-Yan Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 461 BaYi Road, Nanchang, 330006, Jiangxi, P.R. China.
- Jiangxi Province Key Laboratory of Tumor Etiology and Molecular Pathology, Nanchang, 330006, China.
| |
Collapse
|
4
|
Lu X, Li G, Liu Y, Luo G, Ding S, Zhang T, Li N, Geng Q. The role of fatty acid metabolism in acute lung injury: a special focus on immunometabolism. Cell Mol Life Sci 2024; 81:120. [PMID: 38456906 PMCID: PMC10923746 DOI: 10.1007/s00018-024-05131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 03/09/2024]
Abstract
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
5
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Jiang H, Song D, Zhou X, Chen F, Yu Q, Ren L, Dai Q, Zeng M. Maresin1 ameliorates MSU crystal-induced inflammation by upregulating Prdx5 expression. Mol Med 2023; 29:158. [PMID: 37996809 PMCID: PMC10668345 DOI: 10.1186/s10020-023-00756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Maresin1 (MaR1) is a potent lipid mediator that exhibits significant anti-inflammatory activity in the context of several inflammatory diseases. A previous study reported that MaR1 could suppress MSU crystal-induced peritonitis in mice. To date, the molecular mechanism by which MaR1 inhibits MSU crystal-induced inflammation remains poorly understood. METHODS Mousebone marrow-derived macrophages (BMDMs) were pretreated with MaR1 and then stimulated with FAs (palmitic, C16:0 and stearic, C18:0) plus MSU crystals (FAs + MSUc). In vivo, the effects of MaR1 treatment or Prdx5 deficiency on MSUc induced peritonitis and arthritis mouse models were evaluated. RESULTS The current study indicated that MaR1 effectively suppressed MSUc induced inflammation in vitro and in vivo. MaR1 reversed the decrease in Prdx5 mRNA and protein levels induced by FAs + MSUc. Further assays demonstrated that MaR1 acceleratedPrdx5 expression by regulating the Keap1-Nrf2 signaling axis. Activation of AMPK by Prdx5 improved homeostasis of the TXNIP and TRX proteins and alleviated mitochondrial fragmentation. In addition, Prdx5 overexpression inhibited the expression of CPT1A, a key enzyme for fatty acid oxidation (FAO). Prdx5 protected against defects in FA + MSUc induced FAO and the urea cycle. CONCLUSION MaR1 treatment effectively attenuated MSUc induced inflammation by upregulating Prdx5 expression. Our study provides a new strategy by which Prdx5 may help prevent acute gout attacks.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
| | - DianZe Song
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan, China
| | - Xiaoqin Zhou
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
| | - Feng Chen
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
| | - Qingqing Yu
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan, China
| | - Long Ren
- The Fifth People's Hospital of Nanchong City, 21# Bajiao Street, Nanchong, 637100, Sichuan, China
| | - Qian Dai
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China
| | - Mei Zeng
- Institute of Rheumatology and Immunology, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan Province, China.
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, 234# Fujiang Road, Nanchong, 637001, Sichuan Province, China.
- Medical Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of North Sichuan Medical College, 1# South Maoyuan Road, Nanchong, 637001, Sichuan, China.
- The Fifth People's Hospital of Nanchong City, 21# Bajiao Street, Nanchong, 637100, Sichuan, China.
| |
Collapse
|
7
|
Wen XP, Li M, Zhang RQ, Wan QQ. Insulin reverses impaired alveolar fluid clearance in ARDS by inhibiting LPS-induced autophagy and inflammatory. Front Immunol 2023; 14:1162159. [PMID: 37654494 PMCID: PMC10466042 DOI: 10.3389/fimmu.2023.1162159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Until now, acute respiratory distress syndrome (ARDS) has been a difficult clinical condition with a high mortality and morbidity rate, and is characterized by a build-up of alveolar fluid and impaired clearance. The underlying mechanism is not yet fully understood and no effective medications available. Autophagy activation is associated with ARDS caused by different pathogenic factors. It represents a new direction of prevention and treatment of ARDS to restrain autophagy to a reasonable level through pharmacological and molecular genetic methods. Na, K-ATPase is the main gradient driver of pulmonary water clearance in ARDS and could be degraded by the autophagy-lysosome pathway to affect its abundance and enzyme activity. As a normal growth hormone in human body, insulin has been widely used in clinical for a long time. To investigate the association of insulin with Na, K-ATPase, autophagy and inflammatory markers in LPS-treated C57BL/6 mice by survival assessment, proteomic analysis, histologic examination, inflammatory cell counting, myeloperoxidase, TNF-α and IL-1β activity analysis etc. This was also verified on mouse alveolar epithelial type II (AT II) and A549 cells by transmission electron microscopy. We found that insulin restored the expression of Na, K-ATPase, inhibited the activation of autophagy and reduced the release of inflammatory factors caused by alveolar epithelial damage. The regulation mechanism of insulin on Na, K-ATPase by inhibiting autophagy function may provide new drug targets for the treatment of ARDS.
Collapse
Affiliation(s)
- Xu-peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ru-qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Qi-quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Tian X, Chen Y, Peng Z, Lin Q, Sun A. NEDD4 E3 ubiquitin ligases: promising biomarkers and therapeutic targets for cancer. Biochem Pharmacol 2023:115641. [PMID: 37307883 DOI: 10.1016/j.bcp.2023.115641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Accumulating evidence has demonstrated that NEDD4 E3 ubiquitin ligase family plays a pivotal oncogenic role in a variety of malignancies via mediating ubiquitin dependent degradation processes. Moreover, aberrant expression of NEDD4 E3 ubiquitin ligases is often indicative of cancer progression and correlated with poor prognosis. In this review, we are going to address association of expression of NEDD4 E3 ubiquitin ligases with cancers, the signaling pathways and the molecular mechanisms by which the NEDD4 E3 ubiquitin ligases regulate oncogenesis and progression, and the therapies targeting the NEDD4 E3 ubiquitin ligases. This review provides the systematic and comprehensive summary of the latest research status of E3 ubiquitin ligases in the NEDD4 subfamily, and proposes that NEDD4 family E3 ubiquitin ligases are promising anti-cancer drug targets, aiming to provide research direction for clinical targeting of NEDD4 E3 ubiquitin ligase therapy.
Collapse
Affiliation(s)
- Xianyan Tian
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Ziluo Peng
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China
| | - Aiqin Sun
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, China.
| |
Collapse
|
9
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
10
|
Leroy V, Cai J, Tu Z, McQuiston A, Sharma S, Emtiazjoo A, Atkinson C, Upchurch GR, Sharma AK. Resolution of post-lung transplant ischemia-reperfusion injury is modulated via Resolvin D1-FPR2 and Maresin 1-LGR6 signaling. J Heart Lung Transplant 2022; 42:562-574. [PMID: 36628837 DOI: 10.1016/j.healun.2022.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dysregulation of inflammation-resolution pathways leads to postlung transplant (LTx) ischemia-reperfusion (IR) injury and allograft dysfunction. Our hypothesis is that combined treatment with specialized pro-resolving lipid mediators, that is, Resolvin D1 (RvD1) and Maresin-1 (MaR1), enhances inflammation-resolution of lung IR injury. METHODS Expression of RvD1 and MaR1 was analyzed in bronchoalveolar lavage (BAL) fluid of patients on days 0, 1, and 7 post-LTx. Lung IR injury was evaluated in C57BL/6 (WT), FPR2-/-, and LGR6 siRNA treated mice using a hilar-ligation model with or without administration with RvD1 and/or MaR1. A donation after circulatory death and murine orthotopic lung transplantation model was used to evaluate the protection by RvD1 and MaR1 against lung IR injury. In vitro studies analyzed alveolar macrophages and type II epithelial cell activation after treatment with RvD1 or MaR1. RESULTS RvD1 and MaR1 expressions in BAL from post-LTx patients was significantly increased on day 7 compared to days 0 and 1. Concomitant RvD1 and MaR1 treatment significantly mitigated early pulmonary inflammation and lung IR injury in WT mice, which was regulated via FPR2 and LGR6 receptors. In the murine orthotopic donation after cardiac death LTx model, RvD1 and MaR1 treatments significantly attenuated lung IR injury and increased PaO2 levels compared to saline-treated controls. Mechanistically, RvD1/FPR2 signaling on alveolar macrophages attenuated HMGB1 and TNF-α secretion and upregulated uptake of macrophage-dependent apoptotic neutrophils (efferocytosis), whereas MaR1/LGR6 signaling mitigated CXCL1 secretion by epithelial cells. CONCLUSIONS Bioactive proresolving lipid mediator-dependent signaling that is, RvD1/FPR2 and MaR1/LGR6- offers a novel therapeutic strategy in post-LTx injury.
Collapse
Affiliation(s)
- Victoria Leroy
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Jun Cai
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Zhenxiao Tu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Alexander McQuiston
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Simrun Sharma
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Amir Emtiazjoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | - Carl Atkinson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Ashish K Sharma
- Department of Surgery, University of Florida, Gainesville, Florida; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
11
|
Ding N, Xu X, Wang Y, Li H, Cao Y, Zheng L. Contribution of prognostic ferroptosis-related subtypes classification and hub genes of sepsis. Transpl Immunol 2022; 74:101660. [PMID: 35787932 DOI: 10.1016/j.trim.2022.101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Sepsis in patients is a great threat to human health due to its high incidence rate, its rapid and unpredictable progression, as well as it is difficult to treat, and it has poor prognosis. Ferroptosis is a newly discovered type of cell death characterized by the iron-dependent peroxide aggregation. Furthermore, ferroptosis is different from other forms of cell death, namely apoptosis, necrosis, pyroptosis and autophagy. Our study investigated the role of ferroptosis-related genes in sepsis. METHODS The GSE65682 dataset from the Gene Expression Omnibus (GEO) database was used to screen ferroptosis-related genes associated with sepsis, and the GSE134347 dataset for the external validation of selected hub genes. The univariate Cox regression analysis, Kaplan-Meier (K-M) survival analysis and weighted gene co-expression network analysis (WGCNA) were used to identify hub genes. Evaluation of the immune cell infiltration in sepsis was used to explain the immune heterogeneity among the cell subtypes. Gene set variation analysis (GSVA) and transcriptional regulatory analysis of selected hub genes further elucidated the probable mechanism of ferroptosis-related genes associated with prognosis in sepsis. Finally, we constructed a competing endogenous RNA (ceRNA) network model. RESULTS A total of 479 RNA-seq data points were used for analysis, including 365 samples from patients who survived sepsis and 114 samples from patients who succumbed to sepsis from the available GSE65682 dataset. Consequently, the univariate Cox regression analysis and consensus clustering analysis divide all 479 sepsis samples into two clusters of "survivals" vs. "non-survivals". Following complex analysis were identified as the most important ferroptosis-related genes. Indeed, the WGCNA and K-M analyses associated the expression patterns of NEDD4L and SIAH2 hub genes as the best prognosis for the survival of sepsis (p < 0.05). The expression trend was also consistent with the survival trend of the NEDD4L and SIAH2 hub genes by the external validation of GSE134347 (p < 0.05). Immune cell infiltration analysis indicated that the types and numbers of different immune cells vary among different subtypes and NEDD4L and SIAH2 hub genes. For example, NEDD4L and SIAH2 gene expression had a positive correlation with M0 macrophages and a negative correlation with neutrophils (p > 0.05). Finally, analysis of two hub genes and transcription factors (TFs) showed that 71 TFs were predicted to be related to NEDD4L while 64 TFs to SIAH2 by the Cistrome DB online database. CONCLUSION We suggest that NEDD4L and SIAH2 hub genes are involved in the ferroptosis-associated sepsis. The pattern of NEDD4L and SIAH2 expression in patients undergoing sepsis may have prognostic potential for the severity of sepsis and eventually for patients' survival.
Collapse
Affiliation(s)
- Ni Ding
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518071, Guangdong, China
| | - Xiangzhao Xu
- Department of Anesthesiology, The Fifth People's Hospital of Ningxia, Shizuishan 753000, Ningxia, China
| | - Yuting Wang
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518071, Guangdong, China
| | - Huiting Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, Guangzhou 753000, Guangdong, China
| | - Yuling Cao
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518071, Guangdong, China
| | - Lei Zheng
- Department of Anesthesiology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518071, Guangdong, China.
| |
Collapse
|
12
|
Wen XP, Long G, Zhang YZ, Huang H, Liu TH, Wan QQ. Identification of different proteins binding to Na, K-ATPase α1 in LPS-induced ARDS cell model by proteomic analysis. Proteome Sci 2022; 20:10. [PMID: 35681168 PMCID: PMC9178877 DOI: 10.1186/s12953-022-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is characterized by refractory hypoxemia caused by accumulation of pulmonary fluid, which is related to inflammatory cell infiltration, impaired tight junction of pulmonary epithelium and impaired Na, K-ATPase function, especially Na, K-ATPase α1 subunit. Up until now, the pathogenic mechanism at the level of protein during lipopolysaccharide- (LPS-) induced ARDS remains unclear. Methods Using an unbiased, discovery and quantitative proteomic approach, we discovered the differentially expressed proteins binding to Na, K-ATPase α1 between LPS-A549 cells and Control-A549 cells. These Na, K-ATPase α1 interacting proteins were screened by co-immunoprecipitation (Co-IP) technology. Among them, some of the differentially expressed proteins with significant performance were identified and quantified by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Data are available via ProteomeXchange with identifier PXD032209. The protein interaction network was constructed by the related Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Several differentially expressed proteins were validated by Western blot. Results Of identified 1598 proteins, 89 were differentially expressed proteins between LPS-A549 cells and Control-A549 cells. Intriguingly, protein–protein interaction network showed that there were 244 significantly enriched co-expression among 60 proteins in the group control-A549. while the group LPS-A549 showed 43 significant enriched interactions among 29 proteins. The related GO and KEGG analysis found evident phenomena of ubiquitination and deubiquitination, as well as the pathways related to autophagy. Among proteins with rich abundance, there were several intriguing ones, including the deubiquitinase (OTUB1), the tight junction protein zonula occludens-1 (ZO-1), the scaffold protein in CUL4B-RING ubiquitin ligase (CRL4B) complexes (CUL4B) and the autophagy-related protein sequestosome-1 (SQSTM1). Conclusions In conclusion, our proteomic approach revealed targets related to the occurrence and development of ARDS, being the first study to investigate significant differences in Na, K-ATPase α1 interacting proteins between LPS-induced ARDS cell model and control-A549 cell. These proteins may help the clinical diagnosis and facilitate the personalized treatment of ARDS. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00193-3.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Guo Long
- Respiratory ICU, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Yue-Zhong Zhang
- Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - He Huang
- Hunan International Travel Health Care Center, Changsha, 410001, Hunan, China
| | - Tao-Hua Liu
- Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, China
| | - Qi-Quan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
13
|
Hua Y, Han A, Yu T, Hou Y, Ding Y, Nie H. Small Extracellular Vesicles Containing miR-34c Derived from Bone Marrow Mesenchymal Stem Cells Regulates Epithelial Sodium Channel via Targeting MARCKS. Int J Mol Sci 2022; 23:ijms23095196. [PMID: 35563590 PMCID: PMC9101277 DOI: 10.3390/ijms23095196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022] Open
Abstract
Epithelial sodium channel (ENaC) is a pivotal regulator of alveolar fluid clearance in the airway epithelium and plays a key role in the treatment of acute lung injury (ALI), which is mainly composed of the three homologous subunits (α, β and γ). The mechanisms of microRNAs in small extracellular vesicles (sEVs) derived from mesenchymal stem cell (MSC-sEVs) on the regulation of lung ion transport are seldom reported. In this study, we aimed at investigating whether miR-34c had an effect on ENaC dysfunction induced by lipopolysaccharide and explored the underlying mechanism in this process. Primarily, the effect of miR-34c on lung edema and histopathology changes in an ALI mouse model was investigated. Then the uptake of PKH26-labeled sEVs was observed in recipient cells, and we observed that the overexpression of miR-34c in MSC-sEVs could upregulate the LPS-inhibited γ-ENaC expression. The dual luciferase reporter gene assay demonstrated that myristoylated alanine-rich C kinase substrate (MARCKS) was one of target genes of miR-34c, the protein expression of which was negatively correlated with miR-34c. Subsequently, either upregulating miR-34c or knocking down MARCKS could increase the protein expression of phospho-phosphatidylinositol 3-kinase (p-PI3K) and phospho-protein kinase B (p-AKT), implying a downstream regulation pathway was involved. All of the above suggest that miR-34c in MSC-sEVs can attenuate edematous lung injury via enhancing γ-ENaC expression, at least partially, through targeting MARCKS and activating the PI3K/AKT signaling pathway subsequently.
Collapse
|
14
|
Yang W, Wang Y, Zhang C, Huang Y, Yu J, Shi L, Zhang P, Yin Y, Li R, Tao K. Maresin1 Protect Against Ferroptosis-Induced Liver Injury Through ROS Inhibition and Nrf2/HO-1/GPX4 Activation. Front Pharmacol 2022; 13:865689. [PMID: 35444546 PMCID: PMC9013935 DOI: 10.3389/fphar.2022.865689] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Drugs, viruses, and chemical poisons stimulating live in a short period of time can cause acute liver injury (ALI). ALI can further develop into serious liver diseases such as cirrhosis and liver cancer. Therefore, how to effectively prevent and treat ALI has become the focus of research. Numerous studies have reported Maresin1 (MaR1) has anti-inflammatory effect and protective functions on organs. In the present study, we used d-galactosamine/lipopolysaccharide (D-GalN/LPS) to establish an ALI model, explored the mechanism of liver cells death caused by D-GalN/LPS, and determined the effect of MaR1 on D-GalN/LPS-induced ALI. In vivo experiments, we found that MaR1 and ferrostatin-1 significantly alleviated D-GalN/LPS-induced ALI, reduced serum alanine transaminase and aspartate transaminase levels, and improved the survival rate of mice. Meanwhile, MaR1 inhibited hepatocyte death, inhibited tissue reactive oxygen species (ROS) expression, reduced malondialdehyde (MDA), reduced glutathione (GSH), GSH/oxidized glutathione (GSSG), and iron content induced by D-GalN/LPS in mice. In addition, MaR1 inhibited ferroptosis-induced liver injury through inhibiting the release of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Subsequently, western blot showed that MaR1 improved the expression of nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1)/glutathione peroxidase 4 (GPX4). In vitro experiments, we found that MaR1 inhibited LPS-induced and erastin-induced cell viability reduction. Meanwhile, we found that MaR1 increased the MDA and GSH levels in cells. Western blot showed that MaR1 increased the expression level of Nrf2/HO-1/GPX4. Next, the Nrf2 was knocked down in HepG2 cells, and the results showed that the protective effect of MaR1 significantly decreased. Finally, flow cytometry revealed that MaR1 inhibited ROS production and apoptosis. Overall, our study showed MaR1 inhibited ferroptosis-induced liver injury by inhibiting ROS production and Nrf2/HO-1/GPX4 activation.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenggang Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongzhou Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxian Yu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Schebb NH, Kühn H, Kahnt AS, Rund KM, O’Donnell VB, Flamand N, Peters-Golden M, Jakobsson PJ, Weylandt KH, Rohwer N, Murphy RC, Geisslinger G, FitzGerald GA, Hanson J, Dahlgren C, Alnouri MW, Offermanns S, Steinhilber D. Formation, Signaling and Occurrence of Specialized Pro-Resolving Lipid Mediators-What is the Evidence so far? Front Pharmacol 2022; 13:838782. [PMID: 35308198 PMCID: PMC8924552 DOI: 10.3389/fphar.2022.838782] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Formation of specialized pro-resolving lipid mediators (SPMs) such as lipoxins or resolvins usually involves arachidonic acid 5-lipoxygenase (5-LO, ALOX5) and different types of arachidonic acid 12- and 15-lipoxygenating paralogues (15-LO1, ALOX15; 15-LO2, ALOX15B; 12-LO, ALOX12). Typically, SPMs are thought to be formed via consecutive steps of oxidation of polyenoic fatty acids such as arachidonic acid, eicosapentaenoic acid or docosahexaenoic acid. One hallmark of SPM formation is that reported levels of these lipid mediators are much lower than typical pro-inflammatory mediators including the monohydroxylated fatty acid derivatives (e.g., 5-HETE), leukotrienes or certain cyclooxygenase-derived prostaglandins. Thus, reliable detection and quantification of these metabolites is challenging. This paper is aimed at critically evaluating i) the proposed biosynthetic pathways of SPM formation, ii) the current knowledge on SPM receptors and their signaling cascades and iii) the analytical methods used to quantify these pro-resolving mediators in the context of their instability and their low concentrations. Based on current literature it can be concluded that i) there is at most, a low biosynthetic capacity for SPMs in human leukocytes. ii) The identity and the signaling of the proposed G-protein-coupled SPM receptors have not been supported by studies in knock-out mice and remain to be validated. iii) In humans, SPM levels were neither related to dietary supplementation with their ω-3 polyunsaturated fatty acid precursors nor were they formed during the resolution phase of an evoked inflammatory response. iv) The reported low SPM levels cannot be reliably quantified by means of the most commonly reported methodology. Overall, these questions regarding formation, signaling and occurrence of SPMs challenge their role as endogenous mediators of the resolution of inflammation.
Collapse
Affiliation(s)
- Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid S. Kahnt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina M. Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Valerie B. O’Donnell
- School of Medicine, Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolas Flamand
- Département de Médecine, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
| | - Nadine Rohwer
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, Ruppin General Hospital, Brandenburg Medical School, Neuruppin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Robert C. Murphy
- Department of Pharmacology, University of Colorado-Denver, Aurora, CO, United States
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt, University Hospital of Goethe-University, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Liège, Belgium
- Laboratory of Medicinal Chemistry, Centre for Interdisciplinary Research on Medicines (CIRM), University of Liège, Liège, Belgium
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohamad Wessam Alnouri
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, ITMP and Fraunhofer Cluster of Excellence for Immune Mediated Diseases, CIMD, Frankfurt, Germany
| |
Collapse
|
16
|
Abstract
Coronavirus disease 2019 (COVID-19) due to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been an ongoing pandemic causing significant morbidity and mortality worldwide. The “cytokine storm” is a critical driving force in severe COVID-19 cases, leading to hyperinflammation, multi-system organ failure, and death. A paradigm shift is emerging in our understanding of the resolution of inflammation from a passive course to an active biochemical process driven by endogenous specialized pro-resolving mediators (SPMs), such as resolvins, protectins, lipoxins, and maresins. SPMs stimulate macrophage-mediated debris clearance and counter pro-inflammatory cytokine production, a process collectively termed as the “resolution of inflammation.” Hyperinflammation is not unique to COVID-19 and also occurs in neoplastic conditions, putting individuals with underlying health conditions such as cancer at elevated risk of severe SARS-CoV-2 infection. Despite approaches to block systemic inflammation, there are no current therapies designed to stimulate the resolution of inflammation in patients with COVID-19 or cancer. A non-immunosuppressive therapeutic approach that reduces the cytokine storm in patients with COVID-19 and cancer is urgently needed. SPMs are potent immunoresolvent and organ-protective lipid autacoids that stimulate the resolution of inflammation, facilitate clearance of infections, reduce thrombus burden, and promote a return to tissue homeostasis. Targeting endogenous lipid mediators, such as SPMs, offers an entirely novel approach to control SARS-CoV-2 infection and cancer by increasing the body’s natural reserve of pro-resolving mediators without overt toxicity or immunosuppression.
Collapse
Affiliation(s)
- Chantal Barksdale
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Shreya Tripathy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, 07103, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02215, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
17
|
Hou Y, Li J, Ding Y, Cui Y, Nie H. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114654. [PMID: 34537283 DOI: 10.1016/j.jep.2021.114654] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (Lut) was recently identified as the major active ingredient of Mosla scabra, which was a typical representative traditional Chinese medicine and had been used to treat pulmonary diseases for thousands of years. AIM OF THE STUDY This study was to explore the effects and relative mechanisms of Lut in LPS-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). The main characteristic of ALI/ARDS is pulmonary edema, and epithelial sodium channel (ENaC) is a key factor in effective removal of excessive alveolar edematous fluid, which is essential for repairing gas exchange and minimizing damage to the peripheral tissues. However, whether the therapeutic effects of Lut on respiratory diseases are relative with ENaC is still unknown. MATERIALS AND METHODS Alveolar fluid clearance was calculated in BALB/c mice and ENaC function was measured in H441 cells. Moreover, ENaC membrane protein and mRNA were detected by Western blot and real-time PCR, respectively. We also studied the involvement of cGMP/PI3K pathway during the regulation of Lut on ENaC during LPS-induced ALI/ARDS by ELISA method and applying cGMP/PI3K inhibitors/siRNA. RESULTS The beneficial effects of Lut in ALI/ARDS were evidenced by the alleviation of pulmonary edema, and enhancement of both amiloride-sensitive alveolar fluid clearance and short-circuit currents. Lut could alleviate the LPS decreased expression levels of ENaC mRNA and membrane protein in H441 cells and mouse lung. In addition, cGMP concentration was increased after the administration of Lut in ALI/ARDS mice, while the inhibition of cGMP/PI3K pathway could abrogate the enhanced AFC and ENaC protein expression of Lut. CONCLUSION These results implied that Lut could attenuate pulmonary edema via enhancing the abundance of membrane ENaC at least partially through the cGMP/PI3K pathway, which could provide a promising therapeutic strategy for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
18
|
Ju Y, Qiu L, Sun X, Liu H, Gao W. Ac2-26 mitigated acute respiratory distress syndrome rats via formyl peptide receptor pathway. Ann Med 2021; 53:653-661. [PMID: 34008449 PMCID: PMC8143635 DOI: 10.1080/07853890.2021.1925149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is characterized by severe local and systemic inflammation. Ac2-26, an Annexin A1 Peptide, can reduce the lung injury induced by reperfusion via the inhibition of inflammation. The present study aims to evaluate the effect and mechanism of Ac2-26 in ARDS. METHODS Thirty-two rats were anaesthetized and randomized into four groups: sham (S), ARDS (A), ARDS/Ac2-26 (AA), and ARDS/Ac2-26/BOC-2 (AAB) groups. Rats in the S group received saline for intratracheal instillation, while rats in the other three groups received endotoxin for intratracheal instillation, in order to prepare the ARDS and inject the saline, Ac2-26, and Ac2-26 combined with BOC-2. After 24 h, the PaO2/FiO2 ratio was calculated. The lung tissue wet-to-dry weight ratio and the protein level in bronchoalveolar lavage fluid (BALF) were tested. Then, the cytokines in BALF and serum, and the inflammatory cells in BALF were investigated. Afterwards, the oxidative stress response and histological injury was evaluated. Subsequently, the epithelium was cultured and analyzed to estimate the effect of Ac2-26 on apoptosis. RESULTS Compared to the S group, all indexes worsened in the A, AA, and AAB groups. Furthermore, compared to the S group, Ac2-26 significantly improved the lung injury and alveolar-capillary permeability, and inhibited the oxidative stress response. In addition, Ac2-26 reduced the local and systemic inflammation through the regulation of pro- and anti-inflammatory cytokines, and the decrease in inflammatory cells in BALF. Moreover, Ac2-26 inhibited the epithelium apoptosis induced by LPS through the modulation of apoptosis-regulated proteins. The protective effect of Ac2-26 on ARDS was partially reversed by the FPR inhibitor, BOC-2. CONCLUSION Ac2-26 reduced the lung injury induced by LPS, promoted alveolar-capillary permeability, ameliorated the local and systemic inflammation, and inhibited the oxidative stress response and apoptosis. The protection of Ac2-26 on ARDS was mainly dependent on the FPR pathway.
Collapse
Affiliation(s)
- Yingnan Ju
- Department of ICU, The Cancer Hospital of Harbin Medical University, Harbin, China
| | - Lin Qiu
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xikun Sun
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengyu Liu
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Gao
- Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
19
|
Ding Y, Cui Y, Hou Y, Nie H. Bone marrow mesenchymal stem cell-conditioned medium facilitates fluid resolution via miR-214-activating epithelial sodium channels. MedComm (Beijing) 2021; 1:376-385. [PMID: 34766129 PMCID: PMC8491198 DOI: 10.1002/mco2.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is featured with severe lung edema at the early exudative phase, resulting from the imbalance of alveolar fluid turnover and clearance. Mesenchymal stem cells (MSCs) belong to multipotent stem cells, which have shown potential therapeutic effects during ALI. Of note, MSC‐conditioned medium (MSC‐CM) improved alveolar fluid clearance (AFC) in vivo, whereas the involvement of miRNAs is seldom known. We thus aim to explore the roles of miR‐214 in facilitating MSC‐CM mediated fluid resolution of impaired AFC. In this study, AFC was increased significantly by intratracheally administrated MSC‐CM in lipopolysaccharide‐treated mice. MSC‐CM augmented amiloride‐sensitive currents in intact H441 monolayers, and increased α‐epithelial sodium channel (α‐ENaC) expression level in H441 and mouse alveolar type 2 epithelial cells. Meanwhile, MSC‐CM increased the expression of miR‐214, which may participate in regulating ENaC expression and function. Our results suggested that MSC‐CM enhanced AFC in ALI mice in vivo through a novel mechanism, involving miR‐214 regulation of ENaC.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Yong Cui
- Department of Anesthesiology the First Affiliated Hospital of China Medical University Shenyang China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine College of Basic Medical Science China Medical University Shenyang China
| |
Collapse
|
20
|
Pro-Resolving Mediator Resolvin E1 Restores Alveolar Fluid Clearance In Acute Respiratory Distress Syndrome. Shock 2021; 57:565-575. [DOI: 10.1097/shk.0000000000001865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Palmas F, Clarke J, Colas RA, Gomez EA, Keogh A, Boylan M, McEvoy N, McElvaney OJ, McElvaney O, Alalqam R, McElvaney NG, Curley GF, Dalli J. Dysregulated plasma lipid mediator profiles in critically ill COVID-19 patients. PLoS One 2021; 16:e0256226. [PMID: 34437568 PMCID: PMC8389414 DOI: 10.1371/journal.pone.0256226] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease (COVID)-19, as a result of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, has been the direct cause of over 2.2 million deaths worldwide. A timely coordinated host-immune response represents the leading driver for restraining SARS-CoV-2 infection. Indeed, several studies have described dysregulated immunity as the crucial determinant for critical illness and the failure of viral control. Improved understanding and management of COVID-19 could greatly reduce the mortality and morbidity caused by SARS-CoV-2. One aspect of the immune response that has to date been understudied is whether lipid mediator production is dysregulated in critically ill patients. In the present study, plasma from COVID-19 patients with either severe disease and those that were critically ill was collected and lipid mediator profiles were determined using liquid chromatography tandem mass spectrometry. Results from these studies indicated that plasma concentrations of both pro-inflammatory and pro-resolving lipid mediator were reduced in critically ill patients when compared with those with severe disease. Furthermore, plasma concentrations of a select group of mediators that included the specialized pro-resolving mediators (SPM) Resolvin (Rv) D1 and RvE4 were diagnostic of disease severity. Interestingly, peripheral blood SPM concentrations were also linked with outcome in critically ill patients, where we observed reduced overall concentrations of these mediators in those patients that did not survive. Together the present findings establish a link between plasma lipid mediators and disease severity in patients with COVID-19 and indicate that plasma SPM concentrations may be linked with survival in these patients.
Collapse
Affiliation(s)
- Francesco Palmas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jennifer Clarke
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Romain A. Colas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Esteban A. Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Aoife Keogh
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Maria Boylan
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Natalie McEvoy
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Oliver J. McElvaney
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Oisin McElvaney
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Razi Alalqam
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Noel G. McElvaney
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Gerard F. Curley
- Department of Anaesthesia and Critical Care, Royal College of Surgeons, Dublin, Ireland
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Zhou Z, Hua Y, Ding Y, Hou Y, Yu T, Cui Y, Nie H. Conditioned Medium of Bone Marrow Mesenchymal Stem Cells Involved in Acute Lung Injury by Regulating Epithelial Sodium Channels via miR-34c. Front Bioeng Biotechnol 2021; 9:640116. [PMID: 34368091 PMCID: PMC8336867 DOI: 10.3389/fbioe.2021.640116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the characteristics of acute lung injury (ALI) is severe pulmonary edema, which is closely related to alveolar fluid clearance (AFC). Mesenchymal stem cells (MSCs) secrete a wide range of cytokines, growth factors, and microRNA (miRNAs) through paracrine action to participate in the mechanism of pulmonary inflammatory response, which increase the clearance of edema fluid and promote the repair process of ALI. The epithelial sodium channel (ENaC) is the rate-limiting step in the sodium–water transport and edema clearance in the alveolar cavity; the role of bone marrow-derived MSC-conditioned medium (BMSC-CM) in edema clearance and how miRNAs affect ENaC are still seldom known. Methods CCK-8 cell proliferation assay was used to detect the effect of BMSC-CM on the survival of alveolar type 2 epithelial (AT2) cells. Real-time polymerase chain reaction (RT-PCR) and western blot were used to detect the expression of ENaC in AT2 cells. The effects of miR-34c on lung fluid absorption were observed in LPS-treated mice in vivo, and the transepithelial short-circuit currents in the monolayer of H441 cells were examined by the Ussing chamber setup. Dual luciferase reporter gene assay was used to detect the target gene of miR-34c. Results BMSC-CM could increase the viability of mouse AT2 cells. RT-PCR and western blot results showed that BMSC-CM significantly increased the expression of the γ-ENaC subunit in mouse AT2 cells. MiR-34c could restore the AFC and lung wet/dry weight ratio in the ALI animal model, and Ussing chamber assay revealed that miR-34c enhanced the amiloride-sensitive currents associated with ENaC activity in intact H441 cell monolayers. In addition, we observed a higher expression of miR-34c in mouse AT2 cells administrated with BMSC-CM, and the overexpression or inhibition of miR-34c could regulate the expression of ENaC protein and alter the function of ENaC. Finally, we detected that myristoylated alanine-rich C kinase substrate (MARCKS) may be one of the target genes of miR-34c. Conclusion Our results indicate that BMSC-CM may alleviate LPS-induced ALI through miR-34c targeting MARCKS and regulate ENaC indirectly, which further explores the benefit of paracrine effects of bone marrow-derived MSCs on edematous ALI.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Hua
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
23
|
Cui X, Chen W, Zhou H, Gong Y, Zhu B, Lv X, Guo H, Duan J, Zhou J, Marcon E, Ma H. Pulmonary Edema in COVID-19 Patients: Mechanisms and Treatment Potential. Front Pharmacol 2021; 12:664349. [PMID: 34163357 PMCID: PMC8215379 DOI: 10.3389/fphar.2021.664349] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
COVID-19 mortality is primarily driven by abnormal alveolar fluid metabolism of the lung, leading to fluid accumulation in the alveolar airspace. This condition is generally referred to as pulmonary edema and is a direct consequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are multiple potential mechanisms leading to pulmonary edema in severe Coronavirus Disease (COVID-19) patients and understanding of those mechanisms may enable proper management of this condition. Here, we provide a perspective on abnormal lung humoral metabolism of pulmonary edema in COVID-19 patients, review the mechanisms by which pulmonary edema may be induced in COVID-19 patients, and propose putative drug targets that may be of use in treating COVID-19. Among the currently pursued therapeutic strategies against COVID-19, little attention has been paid to abnormal lung humoral metabolism. Perplexingly, successful balance of lung humoral metabolism may lead to the reduction of the number of COVID-19 death limiting the possibility of healthcare services with insufficient capacity to provide ventilator-assisted respiration.
Collapse
Affiliation(s)
- Xinyu Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wuyue Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyan Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Gong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lv
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Li K, Huang Z, Tian S, Chen Y, Yuan Y, Yuan J, Zou X, Zhou F. MicroRNA-877-5p alleviates ARDS via enhancing PI3K/Akt path by targeting CDKN1B both in vivo and in vitro. Int Immunopharmacol 2021; 95:107530. [PMID: 33735715 DOI: 10.1016/j.intimp.2021.107530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a public health problem with high morbidity and mortality worldwide due to lacking known characteristic biomarkers and timely intervention. Pulmonary edema caused by inflammation and pulmonary microvascular endothelial cell disfunction is the main pathophysiological change of ARDS. Circulating microRNAs (miRNAs) are differentially expressed between subjects who did and did not develop ARDS. Many miRNAs have been exemplified to be involved in ARDS and could represent the novel therapeutic targets, but the role of microRNA-877-5p (miR-877-5p) in ARDS and its regulatory mechanisms are still unknown. Herein, we explore the underlying function of miR-877-5p toward anesis of ARDS and addressed that miRNA-877 can reduce the release of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 thus attenuating the damage of pulmonary microvascular endothelial cells (HPMECs). Have further evaluated the protein expression, we detected that miR-877-5p contributed to the relief of ARDS by suppressing Cyclin-dependent kinase inhibitor 1B (CDKN1B), which serves as a regulator of endothelial cell polarization and migration through phosphatidylinositol-3-kinase and AKT (PI3K/Akt) signaling pathway. Besides, we noticed that CDKN1B restrains cell differentiation by inhibiting Cdk2 (cyclin-dependent kinase 2), instead of Cdk4 (cyclin-dependent kinase 4), during which the nuclear translocation of CDKN1B may participate. Together, our works testified that miR-877-5p might suppress inflammatory responses and promote HPMECs regeneration via targeting CDKN1B by modulation of Cdk2 and PI3K/Akt path. These molecules likely modulating ARDS progression may inform biomarkers and therapeutic development.
Collapse
Affiliation(s)
- Kaili Li
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Zuoting Huang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Shijing Tian
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Yi Chen
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Yuan Yuan
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Jianghan Yuan
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Xuan Zou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Fachun Zhou
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
25
|
Hou Y, Zhou Z, Liu H, Zhang H, Ding Y, Cui Y, Nie H. Mesenchymal Stem Cell-Conditioned Medium Rescues LPS-Impaired ENaC Activity in Mouse Trachea via WNK4 Pathway. Curr Pharm Des 2021; 26:3601-3607. [PMID: 32003683 DOI: 10.2174/1381612826666200131141732] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Airway epithelium plays an essential role in maintaining the homeostasis and function of respiratory system as the first line of host defense. Of note, epithelial sodium channel (ENaC) is one of the victims of LPS-induced airway injury. Regarding the great promise held by mesenchymal stem cells (MSCs) for regenerative medicine in the field of airway injury and the limitations of cell-based MSCs therapy, we focused on the therapeutic effect of MSCs conditioned medium (MSCs-CM) on the ENaC activity in mouse tracheal epithelial cells. METHODS Ussing chamber apparatus was applied to record the short-circuit currents in primary cultured mouse tracheal epithelial cells, which reflects the ENaC activity. Expressions of α and γ ENaC were measured at the protein and mRNA levels by western blot and real-time PCR, respectively. The expression of with-no-lysinekinase- 4 (WNK4) and ERK1/2 were measured at protein levels, and the relationship between WNK4 and ERK1/2 was determined by WNK4 knockdown. RESULTS MSCs-CM restored the LPS-impaired ENaC activity, as well as enhanced the mRNA and protein expressions of ENaC in primary cultured mouse tracheal epithelial cells. Meanwhile, WNK4 and ERK1/2, both negative-regulators of ENaC, were suppressed accordingly after the administration of MSCs-CM in LPS-induced airway injury. After WNK4 gene was knocked down by siRNA, the level of ERK1/2 phosphorylation decreased. CONCLUSION In light of the key role of ENaC in fluid reabsorption and the beneficial effects of MSCs-CM in the injury of airway epithelium, our results suggest that MSCs-CM is effective in alleviating LPS-induced ENaC dysfunction through WNK4-ERK1/2 pathway, which will provide a potent direction for the therapy of airway injury.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongfei Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Ding H, Wang JJ, Zhang XY, Yin L, Feng T. Lycium barbarum Polysaccharide Antagonizes LPS-Induced Inflammation by Altering the Glycolysis and Differentiation of Macrophages by Triggering the Degradation of PKM2. Biol Pharm Bull 2020; 44:379-388. [PMID: 33390389 DOI: 10.1248/bpb.b20-00752] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. Pyruvate kinase 2 (PKM2) is a protein kinase and transcriptional coactivator that plays an important role in glycolysis. Recent studies have confirmed that glycolysis maintains the M1 differentiation and induces immune activation in macrophages. Lycium barbarum polysaccharide (LBP), the main bioactive component of Chinese wolfberry, suppresses glycolysis and inflammation. Here, RAW264.7 macrophages were treated with LBP for evaluating its effects against LPS-induced inflammation. The differentiation of M1/M2 macrophages was assessed by flow cytometry for assessing the cell surface markers, CD86 and CD206. The enrichment of hypoxia inducible factor (HIF)-1α and ubiquitin in the PKM2 protein complex was determined by co-immunoprecipitation. LBP suppressed LPS-induced glycolysis, differentiation of M1 macrophages, and the production of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and high mobility group (HMG) 1 proteins. The suppressive effects of LBP were similar to those of PKM2 knockdown, but were abolished by the overexpression of PKM2. LPS elevated the mRNA and protein levels of PKM2. LBP reduced the LPS-induced expression of PKM2 protein, but had no effects on the expression of PKM2 mRNA. LPS inhibited the ubiquitination of PKM2, probably by downregulating the expression of ubiquitin ligases, including Nedd4L, Nedd4, and Gnb2. LBP interfered with the inhibition of PKM2 ubiquitination by upregulating the expression of Nedd4L, Nedd4, and Gnb2. In conclusion, LBP suppressed the LPS-induced inflammation by altering glycolysis and the M1 differentiation of macrophages. The effects of LBP were mediated by the downregulation of PKM2 via enhanced ubiquitination.
Collapse
Affiliation(s)
- Huan Ding
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Jing-Jing Wang
- Coronary Care Unit (CCU), Department of Cardiology, General Hospital of Ningxia Medical University
| | - Xiao-Ya Zhang
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Lei Yin
- Intensive Care Unit (ICU), Department of Critical Care Unit, General Hospital of Ningxia Medical University
| | - Tao Feng
- Intensive Care Unit (ICU), Department of Critical Care Unit, Ningxia Third Hospital
| |
Collapse
|
27
|
Bone marrow mesenchymal stem cells derived miRNA-130b enhances epithelial sodium channel by targeting PTEN. Respir Res 2020; 21:329. [PMID: 33308227 PMCID: PMC7731743 DOI: 10.1186/s12931-020-01595-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Aims Acute lung injury (ALI) is a clinical syndrome with high morbidity and mortality, and severe pulmonary edema is one of the characteristics. Epithelial sodium channel (ENaC) located on the apical side of alveolar type 2 epithelial (AT2) cells is the primary rate limiting segment in alveolar fluid clearance. Many preclinical studies have revealed that mesenchymal stem cells (MSCs) based therapy has great therapeutic potential for ALI, while the role of ENaC in this process is rarely known. Methods We studied the effects of bone marrow-derived MSCs (BMSCs) on the protein/mRNA expression and activity of ENaC in primary mouse AT2 and human H441 cells by co-culture with them, respectively. Moreover, the changes of miRNA-130b in AT2 cells were detected by qRT-PCR, and we studied the involvement of phosphatase and tensin homolog deleted on chromosome ten (PTEN) and the downstream PI3K/AKT pathway in the miRNA-130b regulation of ENaC. Results Our results demonstrated that BMSCs could increase ENaC protein expression and function, as well as the expression level of miRNA-130b. The dual luciferase target gene assay verified that PTEN was one of the target genes of miR-130b, which showed adverse effects on the protein expression of α/γ-ENaC and PTEN in AT2 cells. Upregulating miR-130b and/or knocking down PTEN resulted in the increase of α/γ-ENaC protein level, and the protein expression of p-AKT/AKT was enhanced by miR-130b. Both α and γ-ENaC protein expressions were increased after AT2 cells were transfected with siPTEN, which could be reversed by the co-administration of PI3K/AKT inhibitor LY294002. Conclusion In summary, miRNA-130b in BMSCs can enhance ENaC at least partially by targeting PTEN and activating PI3K/AKT pathway, which may provide a promising new direction for therapeutic strategy in ALI.
Collapse
|
28
|
Li J, Liu L, Zhou X, Lu X, Liu X, Li G, Long J. Melatonin Attenuates Sepsis-Induced Acute Lung Injury Through Improvement of Epithelial Sodium Channel-Mediated Alveolar Fluid Clearance Via Activation of SIRT1/SGK1/Nedd4-2 Signaling Pathway. Front Pharmacol 2020; 11:590652. [PMID: 33362546 PMCID: PMC7759566 DOI: 10.3389/fphar.2020.590652] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury is characterized by alveolar vascular barrier injury, and protein-rich pulmonary oedema. Alveolar fluid clearance is closely related to the prognosis of patients with acute lung injury. Melatonin has been shown to have a protective effect on multiple organ injury induced by sepsis. In this study we investigated the effect of melatonin on alveolar fluid clearance (AFC) and explored its potential mechanisms in sepsis-induced acute lung injury. The cecal ligation and puncture was adopted to establish mouse sepsis model. Morphological changes of lung tissues with the hematoxylin staining were observed. AFC and lung wet/dry weight ratio were measured to assess pulmonary edema. Inflammatory mediators in bronchoalveolar lavage fluid were analyzed via enzyme-linked immunosorbent assay. NAD+/NADH and SIRT1 activity were measured by colorimetric assay kit. The protein expressions of epithelial sodium channel (ENaC), silent information regulator1 (SIRT1), SGK1 and Nedd4-2 were immunoblotted by western blot in vivo and in vitro. The distribution of α-ENaC and SIRT1 was detected by immunofluorescence. We found that melatonin attenuated sepsis induced lung injury, improved survival rate, enhanced alveolar fluid clearance, improved SIRT1 activity, increased protein expressions of SIRT1 and ENaC, and activated SGK1/Nedd4-2 pathway. Furthermore, SIRT1 inhibitor EX527 counteracted the effects of melatonin on alveolar fluid clearance and ENaC. These results revealed that melatonin enhanced ENaC-mediated AFC via the SIRT1/SGK1/Nedd4-2 signaling pathway. Our study demonstrated that melatonin might provide a novel therapeutic strategy for sepsis-induced acute lung injury.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Longfei Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiaojun Zhou
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xianzhou Lu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xianrong Liu
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Guojuan Li
- Department of Endocrinology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jianwu Long
- Department of Hepatobiliary Surgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
29
|
Wu C, Li H, Zhang P, Tian C, Luo J, Zhang W, Bhandari S, Jin S, Hao Y. Lymphatic Flow: A Potential Target in Sepsis-Associated Acute Lung Injury. J Inflamm Res 2020; 13:961-968. [PMID: 33262632 PMCID: PMC7695606 DOI: 10.2147/jir.s284090] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is life-threatening organ dysfunction caused by an imbalance in the body’s response to infection and acute lung injury (ALI) related to sepsis is a common complication. The rapid morbidity and high mortality associated with sepsis is a significant clinical problem facing critical care medicine. Inflammation plays a vital role in the occurrence of sepsis. Notably, the body produces different immune cells and pro-inflammatory factors to clear pathogens. However, excessive inflammation can damage multiple tissues and organs when it fails to resolve in time. Additionally, lymphatic vessels could effectively transfer inflammatory cells and factors away from tissues and into blood circulation, thereby reducing damage, and promoting the resolution of inflammation. Therefore, any dysfunction and/or destruction of the lymphatic system may result in lymphedema followed by inflammatory storms and eventual sepsis. Consequently, the present study aimed to review and highlight the role of lymphatic vessels in related body tissues and organs during sepsis and other associated diseases.
Collapse
Affiliation(s)
- Chenghua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Hui Li
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.,Key Laboratory of Anaesthesiology of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Puhong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun Luo
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Wenyan Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Suwas Bhandari
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Shengwei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
30
|
Briottet M, Shum M, Urbach V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front Pharmacol 2020; 11:1290. [PMID: 32982730 PMCID: PMC7493015 DOI: 10.3389/fphar.2020.01290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Cystic Fibrosis (CF) is a recessive genetic disease due to mutations of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene encoding the CFTR chloride channel. The ion transport abnormalities related to CFTR mutation generate a dehydrated airway surface liquid (ASL) layer, which is responsible for an altered mucociliary clearance, favors infections and persistent inflammation that lead to progressive lung destruction and respiratory failure. The inflammatory response is normally followed by an active resolution phase to return to tissue homeostasis, which involves specialized pro-resolving mediators (SPMs). SPMs promote resolution of inflammation, clearance of microbes, tissue regeneration and reduce pain, but do not evoke unwanted immunosuppression. The airways of CF patients showed a decreased production of SPMs even in the absence of pathogens. SPMs levels in the airway correlated with CF patients' lung function. The prognosis for CF has greatly improved but there remains a critical need for more effective treatments that prevent excessive inflammation, lung damage, and declining pulmonary function for all CF patients. This review aims to highlight the recent understanding of CF airway inflammation and the possible impact of SPMs on functions that are altered in CF airways.
Collapse
Affiliation(s)
| | | | - Valerie Urbach
- Institut national de la santé et de la recherche médicale (Inserm) U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
| |
Collapse
|
31
|
Qiao N, Lin Y, Wang Z, Chen JY, Ge YY, Yao SL, Gong J. Maresin1 Promotes M2 Macrophage Polarization Through Peroxisome Proliferator-Activated Receptor-γ Activation to Expedite Resolution of Acute Lung Injury. J Surg Res 2020; 256:584-594. [PMID: 32805581 DOI: 10.1016/j.jss.2020.06.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute lung injury (ALI), manifested by progressive hypoxemia and respiratory distress, is associated with high morbidity and mortality, which lacks the effective therapies in clinics. Our previous studies demonstrated that maresin1 (MaR1), a specialized proresolving mediator, could effectively mitigate the inflammation of lipopolysaccharide (LPS)-induced ALI. However, whether MaR1 impacts the macrophage polarization to alleviate ALI remains unclear. Our study explored the effects and underlying mechanisms of MaR1 on the macrophage phenotypes in ALI. MATERIAL AND METHODS Male BALB/c mice were subjected to endotracheal instillation of LPS to induce ALI and then intravenously injected with MaR1 or normal saline. Intraperitoneal administration of peroxisome proliferator-activated receptor-γ (PPAR-γ) inhibitor GW9662 was given 30 mins before MaR1. We measured the pathohistologic changes, pulmonary edema, inflammatory cytokines, and the flow cytometry of macrophage phenotypes. RESULTS Our results illustrated that MaR1 ameliorated lung injury and increased monocyte or macrophage recruitment and the release of anti-inflammatory cytokines. The flow cytometry showed that MaR1 promoted polarization of CD11c-CD206+ (M2) macrophages and inhibited polarization of CD11c+CD206- (M1) macrophages. Besides, the western blotting revealed that MaR1 increased the expression of PPAR-γ. The pretreatment with PPAR-γ antagonist GW9662 could significantly suppress the polarization of M2 macrophages and antagonize the protective effects of MaR1 on LPS-stimulated ALI. CONCLUSIONS MaR1 was able to promote M2 macrophage polarization by reversing LPS-mediated PPAR-γ inhibition, thereby expediting the recovery of LPS-stimulated ALI.
Collapse
Affiliation(s)
- Nan Qiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Yang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang-Long Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Gong
- Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The First Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
32
|
Autologous transplantation of adipose-derived stromal cells combined with sevoflurane ameliorates acute lung injury induced by cecal ligation and puncture in rats. Sci Rep 2020; 10:13760. [PMID: 32792558 PMCID: PMC7426944 DOI: 10.1038/s41598-020-70767-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose-derived stromal cells (ADSCs) have excellent capacities for regeneration and tissue protection, while sevoflurane, as a requisite component of surgical procedures, has shown therapeutic benefit in animal models of sepsis. This study therefore determined if the combination of sevoflurane and ADSCs exerted additional protective effects against acute lung injury (ALI) induced by cecal ligation and puncture (CLP) in rats. The animals were randomized into five groups: (sham operation (group I), CLP followed by mechanical ventilation (group II), CLP plus sevoflurane at 0.5 minimum alveolar concentration (group III), CLP plus intravenous autologous 5 × 106 ADSCs (group IV), and CLP plus sevoflurane and ADSCs (group V). Levels of the pro-inflammatory cytokines tumor necrosis factor-α, transforming growth factor-β1, interleukin-1β and interleukin-6 were significantly increased in CLP rats. Moreover, epithelial sodium channel expression levels and activities of Na/K-ATPase and alveolar fluid clearance were significantly reduced in CLP-induced ALI rats. ADSCs improved all these parameters, and these effects were further enhanced by the addition of sevoflurane. In conclusion, combined treatment with ADSCs and sevoflurane is superior to either ADSCs or sevoflurane therapy alone for preventing ALI. This beneficial effect may be partly due to improved alveolar fluid clearance by the paracrine or systemic production of keratinocyte growth factor and via anti-inflammatory properties.
Collapse
|
33
|
Zheng S, Ma M, Li Z, Hao Y, Li H, Fu P, Jin S. Posttreatment of Maresin1 Inhibits NLRP3 inflammasome activation via promotion of NLRP3 ubiquitination. FASEB J 2020; 34:11944-11956. [PMID: 32667092 DOI: 10.1096/fj.202000665rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Maresin1 is a potent lipid mediator exhibiting potential anti-inflammatory activity in a variety of inflammatory diseases, however, the underlying mechanisms remain poorly understood. Excessive activation of NLRP3 inflammasome has been established in multiple inflammatory diseases. Here, we show that Maresin1 dose-dependently inhibited the NLRP3 inflammasome activation and subsequent caspase-1 activation and IL-1β secretion. This inhibitory effect could be reversed by KH7 and H89, the inhibitors of the cAMP-PKA signaling pathway. Activation of PKA kinase induced by Maresin1 led to the K63-linked ubiquitination of NLRP3 in macrophages. Maresin1 attenuated serum IL-1β secretion through inhibition of NLRP3 inflammasome in vivo using Nlrp3-deficient mouse models of lipopolysaccharide (LPS)-induced sepsis. Maresin1 also repressed MSU-induced peritonitis. This study suggests that Maresin1 is an inhibitor of NLRP3 inflammasome activation and can be used clinically in the treatment of NLRP3 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Sisi Zheng
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Minqi Ma
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Zhongwang Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Hui Li
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Panhan Fu
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, P.R. China
| |
Collapse
|
34
|
Liang Z, Yin X, Sun W, Zhang S, Chen X, Pei L, Zhao N. Enhanced protection against lipopolysaccharide-induced acute lung injury by autologous transplantation of adipose-derived stromal cells combined with low tidal volume ventilation in rats. J Cell Physiol 2020; 236:1295-1308. [PMID: 32662079 DOI: 10.1002/jcp.29936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/02/2020] [Indexed: 12/30/2022]
Abstract
Adipose-derived stromal cells (ADSCs) showed excellent capacity in regeneration and tissue protection. Low tidal volume ventilation (LVT) strategy demonstrates a therapeutic benefit on the treatment of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). This study, therefore, aimed to undertaken determine whether the combined LVT and ADSCs treatment exerts additional protection against lipopolysaccharide (LPS)-induced ALI in rats. The animals were randomized into seven groups: Group I (control), Group II (instillation of LPS at 10 mg/kg intratracheally), Group III (LPS+LVT 6 ml/kg), Group IV (LPS+intravenous autologous 5 × 106 ADSCs which were pretreated with a scrambled small interfering RNA [siRNA] of keratinocyte growth factor [KGF] negative control), Group V (LPS+ADSCs which were pretreated with a scrambled siRNA of KGF, Group VI (LPS+LVT and ADSCs as in the Group IV), and Group VII (LPS+LVT and ADSCs as in the Group V). We found that levels of tumor necrosis factor-α, transforming growth factor-β1, and interleukin (IL)-1β and IL-6, the proinflammatory cytokines, were remarkably increased in LPS rats. Moreover, the expressions of ENaC, activity of Na, K-ATPase, and alveolar fluid clearance (AFC) were obviously reduced by LPS-induced ALI. The rats treated by ADSCs showed improved effects in all these changes of ALI and further enhanced by ADSCs combined with LVT treatment. Importantly, the treatment of ADSCs with siRNA-mediated knockdown of KGF partially eliminated the therapeutic effects. In conclusion, combined treatment with ADSCs and LVT not only is superior to either ADSCs or LVT therapy alone in the prevention of ALI. Evidence of the beneficial effect may be partly due to improving AFC by paracrine or systemic production of KGF and anti-inflammatory properties.
Collapse
Affiliation(s)
- Zuodi Liang
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Xiuru Yin
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Wenchong Sun
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Shuo Zhang
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Xiaohuan Chen
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Ling Pei
- Department of Anesthesiology, The First Hospital Affiliated at China Medical University, Shenyang, China
| | - Ning Zhao
- Department of ENT, The First Hospital Affiliated at China Medical University, Shenyang, China
| |
Collapse
|
35
|
Zhang H, Cui Y, Zhou Z, Ding Y, Nie H. Alveolar Type 2 Epithelial Cells as Potential Therapeutics for Acute Lung Injury/Acute Respiratory Distress Syndrome. Curr Pharm Des 2020; 25:4877-4882. [PMID: 31801451 DOI: 10.2174/1381612825666191204092456] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Acute lung injury/acute respiratory distress syndrome is a common clinical illness with high morbidity and mortality, which is still one of the medical problems urgently needed to be solved. Alveolar type 2 epithelial cells are an important component of lung epithelial cells and as a kind of stem cells, they can proliferate and differentiate into alveolar type 1 epithelial cells, thus contributing to lung epithelial repairment. In addition, they synthesize and secrete all components of the surfactant that regulates alveolar surface tension in the lungs. Moreover, alveolar type 2 epithelial cells play an active role in enhancing alveolar fluid clearance and reducing lung inflammation. In recent years, as more advanced approaches appear in the field of stem and progenitor cells in the lung, many preclinical studies have shown that the cell therapy of alveolar type 2 epithelial cells has great potential effects for acute lung injury/acute respiratory distress syndrome. We reviewed the recent progress on the mechanisms of alveolar type 2 epithelial cells involved in the damaged lung repairment, aiming to explore the possible therapeutic targets in acute lung injury/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhiyu Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Zhang PH, Han J, Cao F, Liu YJ, Tian C, Wu CH, Smith FG, Hao Y, Jin SW. PCTR1 improves pulmonary edema fluid clearance through activating the sodium channel and lymphatic drainage in lipopolysaccharide-induced ARDS. J Cell Physiol 2020; 235:9510-9523. [PMID: 32529661 DOI: 10.1002/jcp.29758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a lethal clinical syndrome characterized by damage of the epithelial barriers and accumulation of pulmonary edema fluid. Protectin conjugates in tissue regeneration 1 (PCTR1), an endogenously produced lipid mediator, are believed to exert anti-inflammatory and pro-resolution effects. PCTR1 (1 µg/kg) was injected at 8 hr after lipopolysaccharide (LPS; 14 mg/kg) administration, and the rate of pulmonary fluid clearance was measured in live rats at 1 hr after PCTR1 treatment. The primary type II alveolar epithelial cells were cultured with PCTR1 (10 nmol/ml) and LPS (1 μg/ml) for 8 hr. PCTR1 effectively improved pulmonary fluid clearance and ameliorated morphological damage and reduced inflammation of lung tissue, as well as improved the survival rate in the LPS-induced acute lung injury (ALI) model. Moreover, PCTR1 markedly increased sodium channel expression as well as Na, K-ATPase expression and activity in vivo and in vitro. In addition, PCTR1i also upregulated the expression of LYVE-1 in vivo. Besides that, BOC-2, HK7, and LY294002 blocked the promoted effect of PCTR1 on pulmonary fluid clearance. Taken together, PCTR1 upregulates sodium channels' expression via activating the ALX/cAMP/P-Akt/Nedd4-2 pathway and increases Na, K-ATPase expression and activity to promote alveolar fluid clearance. Moreover, PCTR1 also promotes the expression of LYVE-1 to recover the lymphatic drainage resulting in the increase of lung interstitial fluid clearance. In summary, these results highlight a novel systematic mechanism for PCTR1 in pulmonary edema fluid clearance after ALI/ARDS, suggesting its potential role in a therapeutic approach for ALI/ARDS.
Collapse
Affiliation(s)
- Pu-Hong Zhang
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jun Han
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fei Cao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yong-Jian Liu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Chao Tian
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Cheng-Hua Wu
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Fang Gao Smith
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China.,Academic Department of Anesthesia, Critical Care, Resuscitation and Pain, Heart of England NHS Foundation Trust, Bordesley Green, Birmingham, United Kingdom
| | - Yu Hao
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Sheng-Wei Jin
- Department of Anaesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
37
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
38
|
Im DS. Maresin-1 resolution with RORα and LGR6. Prog Lipid Res 2020; 78:101034. [DOI: 10.1016/j.plipres.2020.101034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
|
39
|
An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed Pharmacother 2020; 125:109983. [PMID: 32092816 DOI: 10.1016/j.biopha.2020.109983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (Nedd4-1 and Nedd4-2) is a member of the HECT E3 ubiquitin ligase family. It has been shown to mediate numerous pathophysiological processes, including the regulation of synaptic plasticity and Wnt-associated signaling, via promoting the ubiquitination of its substrates, such as cyclic adenosine monophosphate (cAMP)-response element binding protein regulated transcription coactivator 3 (CRTC3), alpha-amino-3-hydroxy-5-methyl-4-isoxazo-lepropionic acid receptor (AMPAR), and Dishevelled2 (Dvl2). In the respiratory system, both Nedd4-1 and Nedd4-2 are expressed in epithelial cells and functionally associated with lung cancer development and alveolar fluid regulation. Nedd4-1 mediates lung cancer migration, metastasis, or drug resistance mainly through inducing phosphate and tension homology deleted on chromsome ten (PTEN) degradation or promoting cathepsin B secretion. Unlike Nedd4-1, Nedd4-2 displays more complex effects in lung cancers. On one hand it suppresses lung cancer cell migration and metastasis, and on the other hand it has been shown to promote lung cancer survival via inducing general control nonrepressed 2 (GCN2) degradation. Another important function of Nedd4-2 is to regulate the activity of epithelial sodium channel (ENaC), a membrane channel which mediates the clearance of fluid from the alveolar space at birth or during pulmonary edema. Here, we make an outlined review for the expression and function of Nedd4-1 and Nedd4-2 in the respiratory system in hope of getting an in-depth insight into their roles in lung disorders.
Collapse
|
40
|
Yin P, Wang X, Wang S, Wei Y, Feng J, Zhu M. Maresin 1 Improves Cognitive Decline and Ameliorates Inflammation in a Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2019; 13:466. [PMID: 31680874 PMCID: PMC6803487 DOI: 10.3389/fncel.2019.00466] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative disease. Accumulating evidences suggest an active role of inflammation in the pathogenesis of AD. Inflammation resolution is an active process that terminates inflammation and facilitates the restoration of inflamed tissue to homeostasis. Resolution of inflammation has been shown to be conducted by a group of specialized pro-resolving lipid mediators (SPMs) including lipoxins, resolvins, protectins, and maresins (MaRs). Recent studies have demonstrated that failure of inflammation resolution can lead to chronic inflammation and, hence, contribute to AD progression. We have previously shown that MaR1 can improve neuronal survival and increase microglial phagocytosis of Aβ. However, the effects of MaR1 on animal models of AD have not been reported. In this study, we aim to investigate the effects of MaR1 on behavioral deficits and pathological changes in a mouse model of AD. Mice received bilateral injections of Aβ42 protein into the hippocampus, followed by administration of MaR1 by intra-cerebroventricular injection. The behavioral changes in the mice were analyzed using Morris water maze. Immunohistochemistry, Fluoro-Jade B (FJB) staining, cytometric beads array (CBA), and western blot analysis were used to demonstrate molecular changes in the mice hippocampus and cortex. Our results showed that MaR1 treatment significantly improved the cognitive decline, attenuated microglia and astrocyte activation. In addition, we found that MaR1 decreased the pro-inflammatory cytokines TNF-α, IL-6, and MCP-1 production induced by Aβ42 and increased the anti-inflammatory cytokines IL-2, IL-10 secretion with or without Aβ42 stimulation. Moreover, western blot results showed that MaR1 up-regulated the levels of proteins related to survival pathway including PI3K/AKT, ERK and down-regulated the levels of proteins associated with inflammation, autophagy, and apoptosis pathways such as p38, mTOR and caspase 3. To conclude, MaR1 improved the cognitive decline, ameliorated pro-inflammatory glia cells activation via improving survival, enhancing autophagy, inhibiting inflammation and apoptosis pathways. In conclusion, this study shows that inflammation resolution may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Shuang Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China.,Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
41
|
Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R, Verri WA. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol 2019; 176:1728-1744. [PMID: 30830967 DOI: 10.1111/bph.14647] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Maresin 1 (MaR1) is a specialised pro-resolving lipid mediator with anti-inflammatory and analgesic activities. In this study, we addressed the modulation of peripheral and spinal cord cells by MaR1 in the context of inflammatory pain. EXPERIMENTAL APPROACH Mice were treated with MaR1 before intraplantar injection of carrageenan or complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed using the electronic von Frey and thermal hyperalgesia using a hot plate. Spinal cytokine production and NF-κB activation were determined by ELISA and astrocytes and microglia activation by RT-qPCR and immunofluorescence. CGRP release by dorsal root ganglia (DRG) neurons was determined by EIA. Neutrophil and macrophage recruitment were determined by immunofluorescence, flow cytometry, and colorimetric methods. Trpv1 and Nav1.8 expression and calcium imaging of DRG neurons were determined by RT-qPCR and Fluo-4AM respectively. KEY RESULTS MaR1 reduced carrageenan- and CFA-induced mechanical and thermal hyperalgesia and neutrophil and macrophage recruitment proximal to CGRP+ fibres in the paw skin. Moreover, MaR1 reduced NF-κB activation, IL-1β and TNF-α production, and spinal cord glial cells activation. In the DRG, MaR1 reduced CFA-induced Nav1.8 and Trpv1 mRNA expression and calcium influx and capsaicin-induced release of CGRP by DRG neurons. CONCLUSIONS AND IMPLICATIONS MaR1 reduced DRG neurons activation and CGRP release explaining, at least in part, its analgesic and anti-inflammatory effects. The enduring analgesic and anti-inflammatory effects and also post-treatment activity of MaR1 suggest that specialised pro-resolving lipid mediators have potential as a new class of drugs for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Victor Fattori
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | | | - Sergio M Borghi
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Ana C Rossaneis
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|
42
|
Niu F, Xu X, Zhang R, Sun L, Gan N, Wang A. Ursodeoxycholic acid stimulates alveolar fluid clearance in LPS-induced pulmonary edema via ALX/cAMP/PI3K pathway. J Cell Physiol 2019; 234:20057-20065. [PMID: 30972764 DOI: 10.1002/jcp.28602] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
This study aims to examine the impact of ursodeoxycholic acid (UDCA) on pulmonary edema and explore the underlying molecular mechanisms. The effects of UDCA on pulmonary edema were assessed through hematoxylin and eosin (H&E) staining, lung dry/wet (W/D) ratio, TNF-α/IL-1β levels of bronchoalveolar lavage fluid (BALF), protein expression of epithelial sodium channel (ENaC), and Na+ /K+ -ATPase. Besides, the detailed mechanisms were explored in primary rat alveolar type (AT) II epithelial cells by determining the effects of BOC-2 (ALX [lipoxin A4 receptor] inhibitor), Rp-cAMP (cAMP inhibitor), LY294002 (PI3K inhibitor), and H89 (PKA inhibitor) on the therapeutic effects of UDCA against lipopolysaccharide (LPS)-induced changes. Histological examination suggested that LPS-induced lung injury was obviously attenuated by UDCA. BALF TNF-α/IL-1β levels and lung W/D ratios were decreased by UDCA in LPS model rats. UDCA stimulated alveolar fluid clearance (AFC) though the upregulation of ENaC and Na+ /K+ -ATPase. BOC-2, Rp-cAMP, and LY294002 largely suppressed the therapeutic effects of UDCA. Significant attenuation of pulmonary edema and lung inflammation was revealed in LPS-challenged rats after the UDCA treatment. The therapeutic efficacy of UDCA against LPS was mainly achieved through the ALX/cAMP/PI3K pathway. Our results suggested that UDCA might be a potential drug for the treatment of pulmonary edema induced by LPS.
Collapse
Affiliation(s)
- Fangfang Niu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaotao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lingling Sun
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ning Gan
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Aizhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
43
|
Treatment with maresin 1, a docosahexaenoic acid-derived pro-resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Sci Rep 2019; 9:3062. [PMID: 30816324 PMCID: PMC6395735 DOI: 10.1038/s41598-019-39584-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022] Open
Abstract
Acute exposure to UVB irradiation causes skin inflammation and oxidative stress, and long-term exposure to UVB irradiation may lead to carcinogenesis. Our organism has endogenous mechanisms to actively limit inflammation. Maresin 1 (MaR1; 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is a pro-resolution lipid mediator derived from the docosahexaenoic acid, which presents anti-inflammatory and pro-resolution effects. However, it remains to be determined if treatment with MaR1 can inhibit inflammatory and oxidative alterations in the skin triggered by UVB. The treatment with MaR1 (0.1-10 ng/mice at -10 min relative to the UVB irradiation protocol) reduced UVB-induced skin edema, neutrophil recruitment (MPO; myeloperoxidase activity, and migration of LysM-eGFP+ cells), cytokine production, matrix metalloproteinase-9 activity, keratinocyte apoptosis, epidermal thickening, mast cells counts and degradation of skin collagen in hairless mice. UVB irradiation caused a decrease of GSH (reduced glutathione) levels, activity of the enzyme catalase, ferric reducing ability (FRAP), and ABTS radical scavenging capacity as well as induced lipid hydroperoxide, superoxide anion production, and gp91phox mRNA expression. These parameters that indicate oxidative stress were inhibited by MaR1 treatment. Therefore, these data suggest MaR1 as a promising pharmacological tool in controlling the deleterious effects related to UVB irradiation.
Collapse
|
44
|
Maresin1 Alleviates Metabolic Dysfunction in Septic Mice: A 1H NMR-Based Metabolomics Analysis. Mediators Inflamm 2019; 2019:2309175. [PMID: 30800000 PMCID: PMC6360043 DOI: 10.1155/2019/2309175] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/12/2018] [Accepted: 11/04/2018] [Indexed: 12/27/2022] Open
Abstract
Maresin1 (MaR1), a new anti-inflammatory and proresolving lipid mediator, has been proven to exert organ-protective effects in septic animal models. However, the potential mechanisms are still not fully elucidated. In this study, we sought to explore the impact of MaR1 on metabolic dysfunction in cecal ligation and puncture- (CLP-) induced septic mice. We found that MaR1 significantly increased the overall survival rate and attenuated lung and liver injuries in septic mice. In addition, MaR1 markedly reduced the levels of proinflammatory cytokines (TNF-α and IL-6) and alleviated mitochondrial damage. Based on a 1H NMR-based metabolomics analysis, CLP-induced septic mice had increased levels of acetate, pyruvate, and lactate in serum and decreased levels of alanine, aspartate, glutamate, and fumarate in lungs. However, these metabolic disorders, mainly involving energy and amino acid metabolism, can be recovered by MaR1 treatment. Therefore, our results suggest that the protective effects of MaR1 on sepsis could be related to the recovery of metabolic dysfunction and the alleviation of inflammation and mitochondrial damage.
Collapse
|
45
|
Zhang JZ, Liu ZL, Zhang YX, Lin HJ, Zhang ZJ. Lipoxin A4 Ameliorates Lipopolysaccharide-Induced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1. Chin Med J (Engl) 2018; 131:1342-1348. [PMID: 29786049 PMCID: PMC5987507 DOI: 10.4103/0366-6999.232788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4. Methods: A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing of A549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis of A549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression. Results: The A549 cell models of ALI were constructed and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream-regulated gene-1 (NDRG1) was validated by real-time-PCR and Western blot. NDRG1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG1 expression induced by LXA4. NDRG1 siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605 ± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P = 0.001) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ± 0.025, P < 0.001) expressions and serum- and glucocorticoid-inducible kinase 1 phosphorylation (treatment vs. control, 0.442 ± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG1 expression induced by LXA4. Conclusion: Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.
Collapse
Affiliation(s)
- Jun-Zhi Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhan-Li Liu
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yao-Xian Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Hai-Jiu Lin
- Research and Development Department, Shenzhen Acen Regenerative Medicine, Shenzhen, Guangdong 518122, China
| | - Zhong-Jun Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
46
|
Wang Q, Yan SF, Hao Y, Jin SW. Specialized Pro-resolving Mediators Regulate Alveolar Fluid Clearance during Acute Respiratory Distress Syndrome. Chin Med J (Engl) 2018; 131:982-989. [PMID: 29664060 PMCID: PMC5912066 DOI: 10.4103/0366-6999.229890] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Objective Acute respiratory distress syndrome (ARDS) is an acute and lethal clinical syndrome that is characterized by the injury of alveolar epithelium, which impairs active fluid transport in the lung, and impedes the reabsorption of edema fluid from the alveolar space. This review aimed to discuss the role of pro-resolving mediators on the regulation of alveolar fluid clearance (AFC) in ARDS. Data Sources Articles published up to September 2017 were selected from the PubMed, with the keywords of "alveolar fluid clearance" or "lung edema" or "acute lung injury" or "acute respiratory distress syndrome", and "specialized pro-resolving mediators" or "lipoxin" or "resolvin" or "protectin" or "maresin" or "alveolar epithelial cells" or "aspirin-triggered lipid mediators" or "carbon monoxide and heme oxygenase" or "annexin A1". Study Selection We included all relevant articles published up to September 2017, with no limitation of study design. Results Specialized pro-resolving mediators (SPMs), as the proinflammatory mediators, not only upregulated epithelial sodium channel, Na,K-ATPase, cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporins levels, but also improved Na,K-ATPase activity to promote AFC in ARDS. In addition to the direct effects on ion channels and pumps of the alveolar epithelium, the SPMs also inhibited the inflammatory cytokine expression and improved the alveolar epithelial cell repair to enhance the AFC in ARDS. Conclusions The present review discusses a novel mechanism for pulmonary edema fluid reabsorption. SPMs might provide new opportunities to design "reabsorption-targeted" therapies with high degrees of precision in controlling ALI/ARDS.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Song-Fan Yan
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yu Hao
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
47
|
Maresin 1 attenuates mitochondrial dysfunction through the ALX/cAMP/ROS pathway in the cecal ligation and puncture mouse model and sepsis patients. J Transl Med 2018; 98:715-733. [PMID: 29467458 DOI: 10.1038/s41374-018-0031-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Inflammation always accompanies infection during sepsis. Mitochondrial dysfunction and the role of reactive oxygen species (ROS) produced by mitochondria have been proposed in the pathogenesis of sepsis. Maresins have protective and resolving effects in experimental models of infection. In the present study, we investigated the effects of maresin 1 (MaR1) on mitochondrial function in cecal ligation and puncture (CLP)-induced sepsis and sepsis patients to identify mechanisms underlying maresin 1-mediated stimulation of ROS in mitochondria. We found that treatment with MaR1 significantly inhibited production of cytokines, decreased bacterial load in the peritoneal lavage fluid, reduced the number of neutrophils, decreased lactic acid level and upregulated cyclic AMP (cAMP) concentration, with the outcome of decreased lung injury in CLP-induced sepsis in mice. The effects of MaR1 on downregulation nitric oxide (NOX) activity, improvement CAT and SOD activity to inhibit ROS production in mitochondria was dependent on lipoxin receptor (ALX) and cAMP. Survival rates were significantly increased after the treatment of mice with MaR1. In BMDM stimulated with LPS, MaR1 inhibited the ROS production, downregulated enzyme activity, reduced mtO2 production, increased mitochondrial membrane potential, improved adenosine triphosphate (ATP) content and mitochondrial DNA (mtDNA) copy number. Finally, the effects of MaR1 on ROS production in the blood of healthy volunteers stimulated with LPS or sepsis patients were associated with ALX and cAMP. Taken together, these data suggest that treatment with MaR1 could attenuate mitochondrial dysfunction during sepsis through regulating ROS production.
Collapse
|
48
|
Chen L, Xia HF, Shang Y, Yao SL. Molecular Mechanisms of Ventilator-Induced Lung Injury. Chin Med J (Engl) 2018; 131:1225-1231. [PMID: 29553050 PMCID: PMC5956775 DOI: 10.4103/0366-6999.226840] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Mechanical ventilation (MV) has long been used as a life-sustaining approach for several decades. However, researchers realized that MV not only brings benefits to patients but also cause lung injury if used improperly, which is termed as ventilator-induced lung injury (VILI). This review aimed to discuss the pathogenesis of VILI and the underlying molecular mechanisms. DATA SOURCES This review was based on articles in the PubMed database up to December 2017 using the following keywords: "ventilator-induced lung injury", "pathogenesis", "mechanism", and "biotrauma". STUDY SELECTION Original articles and reviews pertaining to mechanisms of VILI were included and reviewed. RESULTS The pathogenesis of VILI was defined gradually, from traditional pathological mechanisms (barotrauma, volutrauma, and atelectrauma) to biotrauma. High airway pressure and transpulmonary pressure or cyclic opening and collapse of alveoli were thought to be the mechanisms of barotraumas, volutrauma, and atelectrauma. In the past two decades, accumulating evidence have addressed the importance of biotrauma during VILI, the molecular mechanism underlying biotrauma included but not limited to proinflammatory cytokines release, reactive oxygen species production, complement activation as well as mechanotransduction. CONCLUSIONS Barotrauma, volutrauma, atelectrauma, and biotrauma contribute to VILI, and the molecular mechanisms are being clarified gradually. More studies are warranted to figure out how to minimize lung injury induced by MV.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hai-Fa Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
49
|
Reduced adipogenesis after lung tumor exosomes priming in human mesenchymal stem cells via TGFβ signaling pathway. Mol Cell Biochem 2017; 435:59-66. [PMID: 28523512 DOI: 10.1007/s11010-017-3056-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
Abstract
A key feature of cancer cachexia is the loss of adipose tissue, mainly due to increased lipolysis and an impairment of adipogenesis. Recent findings have shown that cancer exosomes promoted lipolysis in adipose tissue. However, effects of cancer exosomes on adipogenesis were not reported. In this study, we found that lung cancer exosomes could be internalized by human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) and significantly inhibited hAD-MSC adipogenesis as demonstrated by Oil Red O staining and decreased expression of adipogenic-specific genes. Specifically, TGFβ signaling pathway was demonstrated to be involved in the inhibitive effects of lung cancer exosomes on hAD-MSC adipogenesis. Additionally, TGFβ was detected in A549 exosomes. Herein, this study reports that the effect of lung cancer cell exosomes on hAD-MSC adipogenic differentiation was mediated by TGFβ signaling pathway and suggests the involvement of cancer exosomes in weight loss of cancer cachexia.
Collapse
|