1
|
Villaça CDBP, de Paula CC, de Oliveira CC, Vilas-Boas EA, Dos Santos-Silva JC, de Oliveira SF, Abdulkader F, Ferreira SM, Ortis F. Beneficial effects of physical exercise for β-cell maintenance in a type 1 diabetes mellitus animal model. Exp Physiol 2021; 106:1482-1497. [PMID: 33913203 DOI: 10.1113/ep088872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Type 1 diabetes mellitus (T1D) leads to hyperglycaemia owing to pancreatic β-cell destruction by the immune system. Physical exercise has been shown to have potentially beneficial protective roles against cytokine-induced pancreatic β-cell death, but its benefits are yet to be proved and should be understood better, especially in the islet environment. What is the main finding and its importance? Physical exercise protects against β-cell loss in a well-described animal model for T1D, induced by multiple low doses of streptozotocin. This seems to be related to reduced cytokine-induced β-cell death and increased islet cell proliferation. Contributions of islet neogenesis and/or transdifferentiation of pancreatic non-β-cells into β-cells cannot be excluded. ABSTRACT Physical exercise has beneficial effects on pancreatic β-cell function and survival in a pro-inflammatory environment. Although these effects have been linked to decreased islet inflammation and modulation of pro-apoptotic pathways, little is known about the islet microenvironment. Our aim was to evaluate the effects of physical exercise in islet histomorphology in a mouse model of type 1 diabetes mellitus induced by multiple low doses of streptozotocin. As expected, induction of type 1 diabetes mellitus led to β-cell loss and, consequently, decreased islet area. Interestingly, although the decrease in islet area was not prevented by physical exercise, this was not the case for the decrease in β-cell mass. This was probably related to induction of β-cell regeneration, because we observed increased proliferation and regeneration markers, such as Ki67 and Pcna, in islets of trained mice. These were found in the central and peripheral regions of the islets. An increase in the percentage of α- and δ-cells in these conditions, combined with an increase in proliferation and Pax4 labelling in peripheral regions, suggest that β-cell regeneration might also occur by transdifferentiation. This agrees with the presence of cells double stained for insulin and glucagon only in islets of diabetic trained mice. In addition, this group had more extra-islet insulin-positive cells and islets associated with ducts than diabetic mice. Physical exercise also decreased nuclear factor-κB activation in islet cells of diabetic trained compared with diabetic untrained mice, indicating a decrease in pro-inflammatory cytokine-induced β-cell death. Taken together, these findings indicate that preservation of β-cell mass induced by physical exercise involves an increase in β-cell replication and decrease in β-cell death, together with islet neogenesis and islet cell transdifferentiation.
Collapse
Affiliation(s)
| | - Carolina Cavalcante de Paula
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Caroline Cruz de Oliveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Eloisa Aparecida Vilas-Boas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | | | - Sérgio Ferreira de Oliveira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Fernando Abdulkader
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| | - Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Fernanda Ortis
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
2
|
Teixeira CJ, Santos-Silva JC, de Souza DN, Rafacho A, Anhe GF, Bordin S. Dexamethasone during pregnancy impairs maternal pancreatic β-cell renewal during lactation. Endocr Connect 2019; 8:120-131. [PMID: 30768422 PMCID: PMC6376996 DOI: 10.1530/ec-18-0505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic β-cell proliferation rate and mass. Increased apoptosis during early lactation contributes to the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids during pregnancy has been previously reported to impair insulin secretion, but its impacts on pancreatic islet morphological changes during pregnancy and lactation have not been described. To address this issue, we assessed the morphological and molecular characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX). Pancreatic islets were analyzed on the 20th day of pregnancy (P20) and on the 3rd, 8th, 14th and 21st days of lactation (L3, L8, L14 and L21, respectively). Pancreatic islets from CTL rats exhibited transitory increases in cellular proliferation and pancreatic β-cell mass at P20, which were reversed at L3, when a transitory increase in apoptosis was observed. This was followed by the appearance of morphological features of pancreatic islet neogenesis at L8. Islets from DEX rats did not demonstrate an increase in apoptosis at L3, which coincided with an increase in the expression of M2 macrophage markers relative to M1 macrophage and T lymphocyte markers. Islets from DEX rats also did not exhibit the morphological characteristics of pancreatic islet neogenesis at L8. Our data demonstrate that maternal pancreatic islets undergo a renewal process during lactation that is impaired by exposure to DEX during pregnancy.
Collapse
Affiliation(s)
- Caio Jordão Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gabriel Forato Anhe
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Correspondence should be addressed to S Bordin:
| |
Collapse
|
3
|
Crookshank JA, Serrano D, Wang GS, Patrick C, Morgan BS, Paré MF, Scott FW. Changes in insulin, glucagon and ER stress precede immune activation in type 1 diabetes. J Endocrinol 2018; 239:181-195. [PMID: 30139929 DOI: 10.1530/joe-18-0328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022]
Abstract
It is unknown whether there is a gene signature in pancreas which is associated with type 1 diabetes (T1D). We performed partial pancreatectomies on 30-day preinsulitic, diabetes-prone BioBreeding (BBdp) rats to prospectively identify factors involved in early prediabetes. Microarrays of the biopsies revealed downregulation of endoplasmic reticulum (ER) stress, metabolism and apoptosis. Based on these results, additional investigations compared gene expression in control (BBc) and BBdp rats age ~8, 30 and 60 days using RT-qPCR. Neonates had increased ER stress gene expression in pancreas. This was associated with decreased insulin, cleaved caspase-3 and Ins1 whereas Gcg and Pcsk2 were increased. The increase in ER stress was not sustained at 30 days and decreased by 60 days. In parallel, the liver gene profile showed a similar signature in neonates but with an early decrease of the unfolded protein response (UPR) at 30 days. This suggested that changes in the liver precede those in the pancreas. Tnf and Il1b expression was increased in BBdp pancreas in association with increased caspase-1, cleaved caspase-3 and decreased proinsulin area. Glucagon area was increased in both 30-day and 60-day BBdp rats. Increased colocalization of BIP and proinsulin was observed at 60 days in the pancreas, suggesting insulin-related ER dysfunction. We propose that dysregulated metabolism leads to ER stress in neonatal rats long before insulitis, creating a microenvironment in both pancreas and liver that promotes autoimmunity.
Collapse
Affiliation(s)
- Jennifer A Crookshank
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Daniel Serrano
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Baylie S Morgan
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biomedical Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-France Paré
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Scott FW, Pound LD, Patrick C, Eberhard CE, Crookshank JA. Where genes meet environment-integrating the role of gut luminal contents, immunity and pancreas in type 1 diabetes. Transl Res 2017; 179:183-198. [PMID: 27677687 DOI: 10.1016/j.trsl.2016.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
The rise in new cases of type 1 diabetes (T1D) in genetically susceptible individuals over the past half century has been attributed to numerous environmental "triggers" or promoters such as enteroviruses, diet, and most recently, gut bacteria. No single cause has been identified in humans, likely because there are several pathways by which one can develop T1D. There is renewed attention to the role of the gut and its immune system in T1D pathogenesis based largely on recent animal studies demonstrating that altering the gut microbiota affects diabetes incidence. Although T1D patients display dysbiosis in the gut microbiome, it is unclear whether this is cause or effect. The heart of this question involves several moving parts including numerous risk genes, diet, viruses, gut microbiota, timing, and loss of immune tolerance to β-cells. Most clinical trials have addressed only one aspect of this puzzle using some form of immune suppression, without much success. The key location where our genes meet and deal with the environment is the gastrointestinal tract. The influence of all of its major contents, including microbes, diet, and immune system, must be understood as part of the integrative biology of T1D before we can develop durable means of preventing, treating, or curing this disease. In the present review, we expand our previous gut-centric model based on recent developments in the field.
Collapse
Affiliation(s)
- Fraser W Scott
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| | - Lynley D Pound
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Christopher Patrick
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, The Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
5
|
Aslani S, Mahmoudi M, Karami J, Jamshidi AR, Malekshahi Z, Nicknam MH. Epigenetic alterations underlying autoimmune diseases. Autoimmunity 2016; 49:69-83. [DOI: 10.3109/08916934.2015.1134511] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Pound LD, Patrick C, Eberhard CE, Mottawea W, Wang GS, Abujamel T, Vandenbeek R, Stintzi A, Scott FW. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria. Diabetes 2015; 64:4135-47. [PMID: 26370175 DOI: 10.2337/db15-0788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/22/2015] [Indexed: 11/13/2022]
Abstract
Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota.
Collapse
Affiliation(s)
- Lynley D Pound
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Christopher Patrick
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Chandra E Eberhard
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Walid Mottawea
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Gen-Sheng Wang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Turki Abujamel
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Roxanne Vandenbeek
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fraser W Scott
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Husseini M, Wang GS, Patrick C, Crookshank JA, MacFarlane AJ, Noel JA, Strom A, Scott FW. Heme Oxygenase-1 Induction Prevents Autoimmune Diabetes in Association With Pancreatic Recruitment of M2-Like Macrophages, Mesenchymal Cells, and Fibrocytes. Endocrinology 2015; 156:3937-49. [PMID: 26252059 DOI: 10.1210/en.2015-1304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunoregulatory and regenerative processes are activated in the pancreas during the development of type 1 diabetes (T1D) but are insufficient to prevent the disease. We hypothesized that the induction of cytoprotective heme oxygenase-1 (HO-1) by cobalt protophoryrin (CoPP) would prevent T1D by promoting anti-inflammatory and pro-repair processes. Diabetes-prone BioBreeding rats received ip CoPP or saline twice per week for 3 weeks, starting at 30 days and were monitored for T1D. Immunohistochemistry, confocal microscopy, quantitative RT-PCR, and microarrays were used to evaluate postinjection pancreatic changes at 51 days, when islet inflammation is first visible. T1D was prevented in CoPP-treated rats (29% vs 73%). Pancreatic Hmox1 was up-regulated along with islet-associated CD68(+)HO-1(+) cells, which were also observed in a striking peri-lobular interstitial infiltrate. Most interstitial cells expressed the mesenchymal marker vimentin and the hematopoietic marker CD34. Spindle-shaped, CD34(+)vimentin(+) cells coexpressed collagen V, characteristic of fibrocytes. M2 macrophage factors Krüppel-like factor 4, CD163, and CD206 were expressed by interstitial cells, consistent with pancreatic upregulation of several M2-associated genes. CoPP upregulated islet-regenerating REG genes and increased neogenic REG3β(+) and insulin(+) clusters. Thus, short-term induction of HO-1 promoted a protective M2-like milieu in the pancreas and recruited mesenchymal cells, M2 macrophages, and fibrocytes that imparted immunoregulatory and pro-repair effects, preventing T1D.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, CD34/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Collagen Type V/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/prevention & control
- Enzyme Induction/drug effects
- Female
- Gene Expression/drug effects
- Heme Oxygenase-1/biosynthesis
- Heme Oxygenase-1/genetics
- Insulin/genetics
- Insulin/metabolism
- Kruppel-Like Factor 4
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mannose Receptor
- Mannose-Binding Lectins/metabolism
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Microscopy, Confocal
- Pancreas/drug effects
- Pancreas/metabolism
- Pancreatitis-Associated Proteins
- Protoporphyrins/pharmacology
- Rats
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vimentin/metabolism
Collapse
Affiliation(s)
- Mahmoud Husseini
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Gen-Sheng Wang
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Christopher Patrick
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Jennifer A Crookshank
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Amanda J MacFarlane
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - J Ariana Noel
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Alexander Strom
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Fraser W Scott
- Chronic Disease Program (M.H., G.-S.W., C.P., J.A.C., J.A.N., A.S., F.W.S.), Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6 and Departments of Biochemistry, Microbiology, and Immunology (M.H., C.P., A.J.M., J.A.N., F.W.S.) and Medicine (F.W.S.), University of Ottawa, Ottawa, Ontario, Canada K1H 8L6; Food Directorate (A.J.M.), Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
8
|
Peres RS, Chiuso-Minicucci F, da Rosa LC, Domingues A, Zorzella-Pezavento SFG, França TGD, Ishikawa LLW, do Amarante AFT, Sartori A. Previous contact with Strongyloides venezuelensis contributed to prevent insulitis in MLD-STZ diabetes. Exp Parasitol 2013; 134:183-9. [DOI: 10.1016/j.exppara.2013.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 03/02/2013] [Indexed: 11/24/2022]
|
9
|
Crivello M, Bonaventura MM, Chamson-Reig A, Arany E, Bettler B, Libertun C, Lux-Lantos V. Postnatal development of the endocrine pancreas in mice lacking functional GABAB receptors. Am J Physiol Endocrinol Metab 2013; 304:E1064-76. [PMID: 23531612 DOI: 10.1152/ajpendo.00569.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult mice lacking functional GABAB receptors (GABAB1KO) have glucose metabolism alterations. Since GABAB receptors (GABABRs) are expressed in progenitor cells, we evaluated islet development in GABAB1KO mice. Postnatal day 4 (PND4) and adult, male and female, GABAB1KO, and wild-type littermates (WT) were weighed and euthanized, and serum insulin and glucagon was measured. Pancreatic glucagon and insulin content were assessed, and pancreas insulin, glucagon, PCNA, and GAD65/67 were determined by immunohistochemistry. RNA from PND4 pancreata and adult isolated islets was obtained, and Ins1, Ins2, Gcg, Sst, Ppy, Nes, Pdx1, and Gad1 transcription levels were determined by quantitative PCR. The main results were as follows: 1) insulin content was increased in PND4 GABAB1KO females and in both sexes in adult GABAB1KOs; 2) GABAB1KO females had more clusters (<500 μm(2)) and less islets than WT females; 3) cluster proliferation was decreased at PND4 and increased in adult GABAB1KO mice; 4) increased β-area at the expense of the α-cell area was present in GABAB1KO islets; 5) Ins2, Sst, and Ppy transcription were decreased in PND4 GABAB1KO pancreata, adult GABAB1KO female islets showed increased Ins1, Ins2, and Sst expression, Pdx1 was increased in male and female GABAB1KO islets; and 6) GAD65/67 was increased in adult GABAB1KO pancreata. We demonstrate that several islet parameters are altered in GABAB1KO mice, further pinpointing the importance of GABABRs in islet physiology. Some changes persist from neonatal ages to adulthood (e.g., insulin content in GABAB1KO females), whereas other features are differentially regulated according to age (e.g., Ins2 was reduced in PND4, whereas it was upregulated in adult GABAB1KO females).
Collapse
Affiliation(s)
- Martín Crivello
- Neuroendocrinology Laboratory, Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
10
|
Wakae-Takada N, Xuan S, Watanabe K, Meda P, Leibel RL. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia 2013; 56:856-66. [PMID: 23354125 PMCID: PMC3927460 DOI: 10.1007/s00125-012-2824-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
Abstract
AIMS/HYPOTHESIS In rodents and humans, the rate of beta cell proliferation declines rapidly after birth; formation of the islets of Langerhans begins perinatally and continues after birth. Here, we tested the hypothesis that increasing levels of E-cadherin during islet formation mediate the decline in beta cell proliferation rate by contributing to a reduction of nuclear β-catenin and D-cyclins. METHODS We examined E-cadherin, nuclear β-catenin, and D-cyclin levels, as well as cell proliferation during in vitro and in vivo formation of islet cell aggregates, using β-TC6 cells and transgenic mice with green fluorescent protein (GFP)-labelled beta cells, respectively. We tested the role of E-cadherin using antisense-mediated reductions of E-cadherin in β-TC6 cells, and mice segregating for a beta cell-specific E-cadherin knockout (Ecad [also known as Cdh1] βKO). RESULTS In vitro, pseudo-islets of β-TC6 cells displayed increased E-cadherin but decreased nuclear β-catenin and cyclin D2, and reduced rates of cell proliferation, compared with monolayers. Antisense knockdown of E-cadherin increased cell proliferation and levels of cyclins D1 and D2. After birth, beta cells showed increased levels of E-cadherin, but decreased levels of D-cyclin, whereas islets of Ecad βKO mice showed increased levels of D-cyclins and nuclear β-catenin, as well as increased beta cell proliferation. These islets were significantly larger than those of control mice and displayed reduced levels of connexin 36. These changes correlated with reduced insulin response to ambient glucose, both in vitro and in vivo. CONCLUSIONS/INTERPRETATION The findings support our hypothesis by indicating an important role of E-cadherin in the control of beta cell mass and function.
Collapse
Affiliation(s)
- N. Wakae-Takada
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| | - S. Xuan
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - K. Watanabe
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| | - P. Meda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - R. L. Leibel
- Department of Pediatrics, Columbia University, New York, NY, USA
- Naomi Berrie Diabetes Center, Russ Berrie Medical Science Pavilion, 1150 St Nicholas Ave, Suite 620, New York, NY 10032, USA
| |
Collapse
|
11
|
van Buerck L, Schuster M, Rathkolb B, Sabrautzki S, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R, Herbach N. Enhanced oxidative stress and endocrine pancreas alterations are linked to a novel glucokinase missense mutation in ENU-derived Munich Gck(D217V) mutants. Mol Cell Endocrinol 2012; 362:139-48. [PMID: 22698525 DOI: 10.1016/j.mce.2012.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/04/2012] [Accepted: 06/04/2012] [Indexed: 01/01/2023]
Abstract
In the large-scale Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project murine models recapitulating human diseases were generated. In one strain, a novel missense mutation (D217V) in the glucokinase (Gck) gene was identified, resulting in decreased glucokinase activity. Heterozygous mutants display mild hyperglycaemia, disturbed glucose tolerance, and decreased glucose-induced insulin secretion. In contrast, homozygous mutants exhibit severe but not survival affecting hyperglycaemia, mild growth retardation, diminished oxidative capacity, and increased abundance of CHOP protein in the islets. Furthermore, the total islet and β-cell volumes and the total volume of isolated β-cells are significantly decreased in adult homozygous mutants, whereas in neonatal mice, β-cell mass is not yet significantly decreased and islet neogenesis is unaltered. Therefore, reduced total islet and β-cell volumes of adult homozygous mutants might predominantly emerge from disturbed postnatal islet neogenesis. Thus, we identified a novel Gck mutation in mice, with relevance in humans, leading to glycaemic disease.
Collapse
Affiliation(s)
- L van Buerck
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Burke GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diab Rep 2011; 11:413-9. [PMID: 21660419 PMCID: PMC4018301 DOI: 10.1007/s11892-011-0206-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pancreas transplantation is a therapeutic option for patients with type 1 diabetes. Advances in immunosuppression have reduced immunologic failures, and these are usually categorized as chronic rejection. Yet studies in our cohort of pancreas transplant recipients identified several patients in whom chronic islet autoimmunity led to recurrent diabetes, despite immunosuppression that prevented rejection. Recurrent diabetes in our cohort is as frequent as chronic rejection, and thus is a significant cause of immunologic graft failure. Our studies demonstrated islet autoimmunity by the presence of autoantibodies and autoreactive T cells, which mediated ß-cell destruction in a transplantation model. Biopsy of the transplanted pancreas revealed variable degrees of ß-cell loss, with or without insulitis, in the absence of pancreas and kidney transplant rejection. Additional research is needed to better understand recurrent disease and to identify new treatment regimens that can suppress autoimmunity, as in our experience this is not effectively inhibited by conventional immunosuppression.
Collapse
Affiliation(s)
- George W. Burke
- Department of Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, 1801 NW 9th Avenue, Miami FL 33136, Tel. 305-355-5000 Fax 305-355-5134
| | - Francesco Vendrame
- Diabetes Research Institute, Leonard Miller School of Medicine, University of Miami, 1450 NW 10th Avenue, Miami, FL 33136 USA, Tel. 305-243-5353 Fax 305-243-4404
| | - Antonello Pileggi
- Diabetes Research Institute and Department of Surgery, Leonard Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136 USA, Tel. 305-243-2924 Fax 305-243-4404
| | - Gaetano Ciancio
- Departments of Urology and Surgery, Division of Transplantation, Leonard Miller School of Medicine, University of Miami, 1801 NW 9th Avenue, Miami FL 33136, Tel. 305-355-5000 Fax 305-355-5134
| | - Helena Reijonen
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, Tel. 206-223-8813 Fax 206-223-7638
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, and Department of Microbiology and Immunology, Leonard Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136 USA, Tel. 305-243-5348 Fax 305-243-4404
| |
Collapse
|
13
|
Domingues A, Sartori A, Golim MA, Valente LMM, da Rosa LC, Ishikawa LLW, Siani AC, Viero RM. Prevention of experimental diabetes by Uncaria tomentosa extract: Th2 polarization, regulatory T cell preservation or both? JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:635-642. [PMID: 21718770 DOI: 10.1016/j.jep.2011.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/26/2011] [Accepted: 06/12/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Uncaria tomentosa (Willd.) DC (Rubiaceae) is a species native to the Amazon rainforest and surrounding tropical areas that is endowed with immunomodulatory properties and widely used around the world. In this study we investigated the immunomodulatory potential of Uncaria tomentosa (UT) aqueous-ethanol extract on the progression of immune-mediated diabetes. MATERIALS AND METHODS C57BL/6 male mice were injected with MLDS (40 mg/kg) and orally treated with UT at 10-400mg/kg during 21 days. Control groups received MLDS alone or the respective dilution vehicle. Pancreatic mononuclear infiltrate and β-cell insulin content were analyzed by HE and immunohistochemical staining, respectively, and measured by digital morphometry. Lymphocyte immunophenotyping and cytokine production were determined by flow cytometry analysis. RESULTS Treating the animals with 50-400mg/kg of UT caused a significant reduction in the glycemic levels, as well as in the incidence of diabetes. The morphometric analysis of insulitis revealed a clear protective effect. Animals treated with UT at 400mg/kg presented a higher number of intact islets and a significant inhibition of destructive insulitis. Furthermore, a significant protection against the loss of insulin-secreting presented β-cells was achieved, as observed by a careful immunohistochemical evaluation. The phenotypic analysis indicated that the groups treated with higher doses (100-400mg/kg) presented CD4(+) and CD8(+) T-cell values similar to those observed in healthy animals. These same higher doses also increased the number of CD4(+)CD25(+)Foxp3(+) regulatory T-cells. Moreover, the extract modulated the production of Th1 and Th2, with increased levels of IL-4 and IL-5. CONCLUSIONS The extract was effective to prevent the progression of immune-mediated diabetes by distinct pathways.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cat's Claw/chemistry
- Cell Polarity/drug effects
- Cells, Cultured
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/prevention & control
- Dose-Response Relationship, Drug
- Ethanol/chemistry
- Flow Cytometry
- Forkhead Transcription Factors/metabolism
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Immunohistochemistry
- Immunophenotyping/methods
- Insulin/metabolism
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Interleukin-4/metabolism
- Interleukin-5/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Solvents/chemistry
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Alexandre Domingues
- Department of Pathology, Medical School, São Paulo State University (UNESP), Botucatu, São Paulo 18618-000, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gao P, Jiao Y, Xiong Q, Wang CY, Gerling I, Gu W. Genetic and Molecular Basis of QTL of Diabetes in Mouse: Genes and Polymorphisms. Curr Genomics 2011; 9:324-37. [PMID: 19471607 PMCID: PMC2685644 DOI: 10.2174/138920208785133253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 12/14/2022] Open
Abstract
A systematic study has been conducted of all available reports in PubMed and OMIM (Online Mendelian Inheritance in Man) to examine the genetic and molecular basis of quantitative genetic loci (QTL) of diabetes with the main focus on genes and polymorphisms. The major question is, What can the QTL tell us? Specifically, we want to know whether those genome regions differ from other regions in terms of genes relevant to diabetes. Which genes are within those QTL regions, and, among them, which genes have already been linked to diabetes? whether more polymorphisms have been associated with diabetes in the QTL regions than in the non-QTL regions. Our search revealed a total of 9038 genes from 26 type 1 diabetes QTL, which cover 667,096,006 bp of the mouse genomic sequence. On one hand, a large number of candidate genes are in each of these QTL; on the other hand, we found that some obvious candidate genes of QTL have not yet been investigated. Thus, the comprehensive search of candidate genes for known QTL may provide unexpected benefit for identifying QTL genes for diabetes.
Collapse
Affiliation(s)
- Peng Gao
- Departments of Orthopaedic Surgery, Campbell Clinic and Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
16
|
Wang GS, Kauri LM, Patrick C, Bareggi M, Rosenberg L, Scott FW. Enhanced islet expansion by β-cell proliferation in young diabetes-prone rats fed a protective diet. J Cell Physiol 2010; 224:501-8. [DOI: 10.1002/jcp.22151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
van Bürck L, Blutke A, Kautz S, Rathkolb B, Klaften M, Wagner S, Kemter E, Hrabé de Angelis M, Wolf E, Aigner B, Wanke R, Herbach N. Phenotypic and pathomorphological characteristics of a novel mutant mouse model for maturity-onset diabetes of the young type 2 (MODY 2). Am J Physiol Endocrinol Metab 2010; 298:E512-23. [PMID: 19952346 DOI: 10.1152/ajpendo.00465.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several mutant mouse models for human diseases such as diabetes mellitus have been generated in the large-scale Munich ENU (N-ethyl-N-nitrosourea) mouse mutagenesis project. The aim of this study was to identify the causal mutation of one of these strains and to characterize the resulting diabetic phenotype. Mutants exhibit a T to G transversion mutation at nt 629 in the glucokinase (Gck) gene, leading to an amino acid exchange from methionine to arginine at position 210. Adult Munich Gck(M210R) mutant mice demonstrated a significant reduction of hepatic glucokinase enzyme activity but equal glucokinase mRNA and protein abundances. While homozygous mutant mice exhibited growth retardation and died soon after birth in consequence of severe hyperglycemia, heterozygous mutant mice displayed only slightly elevated blood glucose levels, present from birth, with development of disturbed glucose tolerance and glucose-induced insulin secretion. Additionally, insulin sensitivity and fasting serum insulin levels were slightly reduced in male mutant mice from an age of 90 days onward. While beta-cell mass was unaltered in neonate heterozygous and homozygous mutant mice, the total islet and beta-cell volumes and the total volume of isolated beta-cells were significantly decreased in 210-day-old male, but not female heterozygous mutant mice despite undetectable apoptosis. These findings indicate that reduced total islet and beta-cell volumes of male mutants might emerge from disturbed postnatal islet neogenesis. Considering the lack of knowledge about the pathomorphology of maturity-onset diabetes of the young type 2 (MODY 2), this glucokinase mutant model of reduced total islet and total beta-cell volume provides the opportunity to elucidate the impact of a defective glucokinase on development and maintenance of beta-cell mass and its relevance in MODY 2 patients.
Collapse
Affiliation(s)
- L van Bürck
- Inst. of Veterinary Pathology, Center for Clinical Veterinary Medicine, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
MacFarlane AJ, Strom A, Scott FW. Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 2009; 20:624-32. [PMID: 19697079 DOI: 10.1007/s00335-009-9213-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 07/20/2009] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that has increased two- to threefold over the past half century by as yet unknown means. It is generally accepted that T1D is the result of gene-environment interactions, but such rapid increases in incidence are not explained by Mendelian inheritance. There have been numerous advances in our knowledge of the pathogenesis of T1D. Indeed, there has been a large number of genes identified that contribute to risk for this disease and several environmental factors have been proposed. The complexity of such interactions is yet to be understood for any major chronic disease. Epigenetic regulation is one way to explain the rapid increase in incidence and could be a central mechanism by which environmental factors influence development of diabetes. However, there is remarkably little known about the contribution of epigenetics to T1D pathogenesis. Here we speculate on various candidate processes and molecules of the immune and endocrine systems that could modify risk for T1D through epigenetic regulation.
Collapse
Affiliation(s)
- Amanda J MacFarlane
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A0K9, Canada.
| | | | | |
Collapse
|
19
|
Di Bella A, Regoli M, Nicoletti C, Ermini L, Fonzi L, Bertelli E. An appraisal of intermediate filament expression in adult and developing pancreas: vimentin is expressed in alpha cells of rat and mouse embryos. J Histochem Cytochem 2009; 57:577-86. [PMID: 19223297 PMCID: PMC2690409 DOI: 10.1369/jhc.2009.952861] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 01/27/2009] [Indexed: 01/27/2023] Open
Abstract
Intermediate filaments are frequently used in studies of developmental biology as markers of cell differentiation. To assess whether they can be useful to identify differentiating pancreatic endocrine cells, we examined the pattern of expression of nestin, cytokeratin 20, and vimentin on acetone-fixed cryosections of rat adult and developing pancreas. We also studied vimentin expression in mouse embryonic pancreas at E19. Cytokeratin 20 was found in all pancreatic epithelial cell lineages during the entire development of the rat gland and in the adult animals. Under our experimental conditions, therefore, cytokeratin 20 is not an exclusive marker of rat duct cells. Nestin was detected exclusively in stromal cells either in the adult or developing rat pancreas. Vimentin was observed within cells located in the primitive ducts of rat pancreas starting from E12.5. Their number rapidly increased, reaching its highest level in newborn animals. Vimentin was also spotted in alpha cells starting from E12.5 but disappeared soon after birth, likely identifying immature or recently differentiated alpha cells. In addition, vimentin was observed in duct and alpha cells of mouse developing pancreas showing that its expression in such cells is not an event restricted to the rat. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Alessandro Di Bella
- Department of Pharmacology Giorgio Segre, Section of Morphology, Via Aldo Moro 2, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2008; 15:383-93. [PMID: 18594281 DOI: 10.1097/med.0b013e32830c6b8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|