1
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Chandiwana NC, Siedner MJ, Marconi VC, Hill A, Ali MK, Batterham RL, Venter WDF. Weight Gain After HIV Therapy Initiation: Pathophysiology and Implications. J Clin Endocrinol Metab 2024; 109:e478-e487. [PMID: 37437159 PMCID: PMC10795932 DOI: 10.1210/clinem/dgad411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Rapid advances in the potency, safety, and availability of modern HIV antiretroviral therapy (ART) have yielded a near-normal life expectancy for most people living with HIV (PLWH). Ironically, considering the history of HIV/AIDS (initially called "slim disease" because of associated weight loss), the latest dilemma faced by many people starting HIV therapy is weight gain and obesity, particularly Black people, women, and those who commenced treatment with advanced immunodeficiency. We review the pathophysiology and implications of weight gain among PLWH on ART and discuss why this phenomenon was recognized only recently, despite the availability of effective therapy for nearly 30 years. We comprehensively explore the theories of the causes, from initial speculation that weight gain was simply a return to health for people recovering from wasting to comparative effects of newer regimens vs prior toxic agents, to direct effects of agents on mitochondrial function. We then discuss the implications of weight gain on modern ART, particularly concomitant effects on lipids, glucose metabolism, and inflammatory markers. Finally, we discuss intervention options for PLWH and obesity, from the limitations of switching ART regimens or specific agents within regimens, weight-gain mitigation strategies, and potential hope in access to emerging antiobesity agents, which are yet to be evaluated in this population.
Collapse
Affiliation(s)
- Nomathemba C Chandiwana
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Mark J Siedner
- Medical Practice Evaluation Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Vincent C Marconi
- Division of Infectious Diseases and Department of Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, GA 4223, USA
| | - Andrew Hill
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 7BE, UK
| | - Mohammed K Ali
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 4223, USA
- Department of Family and Preventive Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Willem Daniel Francois Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Department of Public Health Medicine, Faculty of Health Sciences, School of Health Systems and Public Health, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
3
|
Eddy J, Pham F, Chee R, Park E, Dapprich N, DeRuiter SL, Shen A. Intestinal endothelial cells increase HIV infection and latency in resting and activated CD4 + T cells, particularly affecting CCR6 + CD4 + T cells. Retrovirology 2023; 20:7. [PMID: 37202790 PMCID: PMC10197447 DOI: 10.1186/s12977-023-00621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/29/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells. RESULTS We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection. CONCLUSION Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.
Collapse
Affiliation(s)
- Jessica Eddy
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Fisher Pham
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Rachel Chee
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Esther Park
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Nathan Dapprich
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Stacy L. DeRuiter
- Department of Mathematics & Statistics, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| | - Anding Shen
- Department of Biology, Calvin University, 3201 Burton St. SE, Grand Rapids, MI 49546 USA
| |
Collapse
|
4
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Hileman CO, Bowman ER, Gabriel J, Kettelhut A, Labbato D, Smith C, Avery A, Parran T, Funderburg N, McComsey GA. Impact of Heroin and HIV on Gut Integrity and Immune Activation. J Acquir Immune Defic Syndr 2022; 89:519-526. [PMID: 35001040 PMCID: PMC8901022 DOI: 10.1097/qai.0000000000002893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Altered gut integrity is central to HIV-related immune activation. Opioids may promote similar changes in gut permeability and/or increase systemic inflammation, potentially augmenting processes already occurring in people with HIV (PWH). SETTING Urban hospital systems in Cleveland, Ohio, and surrounding communities. METHODS This is a prospectively enrolled, cross-sectional study including people with and without HIV using heroin and people with and without HIV who have never used heroin, matched by age, sex, and CD4+ T-cell count (PWH only) to compare markers of gut integrity, microbial translocation, systemic inflammation, and immune activation. RESULTS A total of 100 participants were enrolled. Active heroin use was associated with higher concentrations of lipopolysaccharide-binding protein (LBP), beta-D-glucan (BDG), high-sensitivity C-reactive protein (hsCRP), soluble tumor necrosis factor-α-receptors I and II, soluble CD163, inflammatory monocytes, and activated CD4+ lymphocytes in adjusted models. HIV status tended to modify the effect between heroin use and LBP, BDG, hsCRP, patrolling monocytes, and activated CD4+ lymphocytes (P < 0.15 for interactions); however, it was not as expected. The effect of heroin on these markers (except patrolling monocytes) was greatest among those without HIV rather than among those with HIV. CONCLUSIONS Heroin use is associated with heightened microbial translocation, systemic inflammation, and immune activation. Concurrent HIV infection in virologically suppressed individuals does not seem to substantially worsen the effects heroin has on these markers.
Collapse
Affiliation(s)
- Corrilynn O. Hileman
- Division of Infectious Disease, Department of Medicine, MetroHealth Medical Center, Cleveland, OH
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Emily R. Bowman
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH; and
| | - Janelle Gabriel
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH; and
| | - Aaren Kettelhut
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH; and
| | - Danielle Labbato
- Division of Infectious Disease, Department of Medicine and Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Cheryl Smith
- Division of Infectious Disease, Department of Medicine, MetroHealth Medical Center, Cleveland, OH
| | - Ann Avery
- Division of Infectious Disease, Department of Medicine, MetroHealth Medical Center, Cleveland, OH
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Theodore Parran
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Nicholas Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH; and
| | - Grace A. McComsey
- Case Western Reserve University School of Medicine, Cleveland, OH
- Division of Infectious Disease, Department of Medicine and Pediatrics, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
6
|
Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: Therapeutic Use in Clinical Practice. Int J Mol Sci 2022; 23:ijms23063344. [PMID: 35328765 PMCID: PMC8952215 DOI: 10.3390/ijms23063344] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/14/2022] Open
Abstract
Medical case reports suggest that cannabinoids extracted from Cannabis sativa have therapeutic effects; however, the therapeutic employment is limited due to the psychotropic effect of its major component, Δ9-tetrahydrocannabinol (THC). The new scientific discoveries related to the endocannabinoid system, including new receptors, ligands, and mediators, allowed the development of new therapeutic targets for the treatment of several pathological disorders minimizing the undesirable psychotropic effects of some constituents of this plant. Today, FDA-approved drugs, such as nabiximols (a mixture of THC and non-psychoactive cannabidiol (CBD)), are employed in alleviating pain and spasticity in multiple sclerosis. Dronabinol and nabilone are used for the treatment of chemotherapy-induced nausea and vomiting in cancer patients. Dronabinol was approved for the treatment of anorexia in patients with AIDS (acquired immune deficiency syndrome). In this review, we highlighted the potential therapeutic efficacy of natural and synthetic cannabinoids and their clinical relevance in cancer, neurodegenerative and dermatological diseases, and viral infections.
Collapse
Affiliation(s)
- Cristina Pagano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Giovanna Navarra
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Laura Coppola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Giorgio Avilia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy or (C.P.); (G.N.); (L.C.); (G.A.)
- Correspondence: (M.B.); or (C.L.)
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Via Pansini 5, 80131 Naples, Italy
- Correspondence: (M.B.); or (C.L.)
| |
Collapse
|
7
|
Impaired differentiation of small airway basal stem/progenitor cells in people living with HIV. Sci Rep 2022; 12:2966. [PMID: 35194053 PMCID: PMC8864005 DOI: 10.1038/s41598-022-06373-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With highly active anti-retroviral therapy (HAART), higher incidence of airway abnormalities is common in the HIV population consistent with the concept of accelerated lung "aging". Our previous findings demonstrated that HIV induces human airway basal cells (BC) into destructive and inflammatory phenotypes. Since BC function as stem/progenitor cells of the small airway epithelium (SAE), responsible for self-renewal and differentiation of SAE, we hypothesized that BC from people living with HIV (PLWH) may have altered differentiation capacity that contribute to premature aging. The data demonstrates that BC from PLWH have impaired capacity to differentiate in vitro and senescent phenotypes including shortened telomeres, increased expression of β-galactosidase and cell cycle inhibitors, and mitochondrial dysfunction. In vitro studies demonstrated that BC senescence is partly due to adverse effects of HAART on BC. These findings provide an explanation for higher incidence of airway dysfunction and accelerated lung aging observed in PLWH.
Collapse
|
8
|
Wang XH, Song TZ, Zheng HY, Li YH, Zheng YT. Jejunal epithelial barrier disruption triggered by reactive oxygen species in early SIV infected rhesus macaques. Free Radic Biol Med 2021; 177:143-155. [PMID: 34687865 DOI: 10.1016/j.freeradbiomed.2021.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/07/2021] [Accepted: 10/16/2021] [Indexed: 01/03/2023]
Abstract
Intestinal epithelial barrier destruction occurs earlier than mucosal immune dysfunction in the acute stage of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. At present, however, the cause of compromised gastrointestinal integrity in early SIV infection remains unknown. In the current study, we investigated the effects of SIV infection on epithelial barrier integrity and explored oxidative stress-mediated DNA damage and apoptosis in epithelial cells from early acute SIVmac239-infected Chinese rhesus macaques (Macaca mulatta). Results showed that the sensitive molecular marker of small intestinal barrier dysfunction, i.e., intestinal fatty acid-binding protein (IFABP), was significantly increased in plasma at 14 days post-SIV infection. SIV infection induced a profound decrease in the expression of tight junction proteins, including claudin-1, claudin-3, and zonula occludens (ZO)-1, as well as a significant increase in the active form of caspase-3 level in epithelial cells. RNA sequencing (RNA-seq) analysis suggested that differentially expressed genes between pre- and post-SIV-infected jejuna were enriched in pathways involved in cell redox homeostasis, oxidoreductase activity, and mitochondria. Indeed, a SIV-mediated increase in reactive oxygen species (ROS) in the epithelium and macrophages, as well as an increase in hydrogen peroxide (H2O2) and decrease in glutathione (GSH)/glutathione disulfide (GSSG) antioxidant defense, were observed in SIV-infected jejuna. In addition, the accumulation of mitochondrial dysfunction and DNA oxidative damage led to an increase in senescence-associated β-galactosidase (SA-β-gal) and early apoptosis in intestinal epithelial cells. Furthermore, HIV-1 Tat protein-induced epithelial monolayer disruption in HT-29 cells was rescued by antioxidant N-acetylcysteine (NAC). These results indicate that mitochondrial dysfunction and oxidative stress in jejunal epithelial cells are primary contributors to gut epithelial barrier disruption in early SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Xue-Hui Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Tian-Zhang Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yong-Tang Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, National Kunming High Level Biosafety Research Center for Nonhuman Primate, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
| |
Collapse
|
9
|
Equal contributions of feline immunodeficiency virus and coinfections to morbidity in African lions. Int J Parasitol Parasites Wildl 2021; 16:83-94. [PMID: 34466379 PMCID: PMC8385399 DOI: 10.1016/j.ijppaw.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Feline immunodeficiency virus (FIV) is a pathogenic lentivirus related to human and simian immunodeficiency viruses that has been associated with AIDS-like pathologies in domestic and wild cats, as well as in hyenas. Despite known pathologies, progressive immunosuppression and ill health effects driven by these lentiviruses in association with other secondary infections remain understudied in free-ranging species. Here, the role of coinfections by gastrointestinal parasites and tick-borne hemoparasites for FIV disease progression was explored in 195 free-ranging African lions (Panthera leo) living in Kruger National Park (KNP), South Africa. Using statistical methodology, we evaluated the effects of FIV on a range of health indicators to explore how direct and indirect effects of FIV and associated coinfections align to determine lion health outcomes. Findings show direct negative effects of FIV on host immunity and nutritional status, and exacerbation of aggressive behaviors, conditions which may increase exposure/susceptibility to other secondary infections. When taken together, the contribution of coinfecting parasites to morbidity in lions is of similar magnitude as direct effects of FIV infection alone, suggesting that the particular coinfection assemblage may play a role in mediating disease progression within natural lion populations. Immunosuppression by FIV increases richness and abundance of secondary parasites. Infection by gastrointestinal parasites drives severe malnourishment in FIV hosts. Hemoparasite infection contributed to liver pathology and clinical wasting. Contributions of secondary infections to morbidity equal the direct effects of FIV.
Collapse
|
10
|
Lorvik KB, Meyer-Myklestad MH, Kushekar K, Handeland C, Medhus AW, Lund-Iversen M, Stiksrud B, Kvale D, Dyrhol-Riise AM, Taskén K, Reikvam DH. Enhanced Gut-Homing Dynamics and Pronounced Exhaustion of Mucosal and Blood CD4 + T Cells in HIV-Infected Immunological Non-Responders. Front Immunol 2021; 12:744155. [PMID: 34691047 PMCID: PMC8529151 DOI: 10.3389/fimmu.2021.744155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/23/2021] [Indexed: 11/24/2022] Open
Abstract
Immunological non-responders (INR), a subgroup of people living with HIV (PLHIV) who fail to restore CD4+ T cell numbers upon effective antiretroviral treatment, have impaired gut mucosal barrier function and an inferior clinical prognosis compared with immunological responders (IR). The contribution of gut-homing and exhaustion of mucosal T cells to the INR phenotype was previously unknown. Flow cytometry analysis of mononuclear cells from peripheral blood and ileal and colonic lamina propria showed that INR had higher fractions of gut-homing CD4+ T cells in blood compared with IR. In addition, gut-homing cells were more likely to display signs of exhaustion in INR. The increased CD4+ T cell exhaustion in INR was ubiquitous and not restricted to subpopulations defined by activation, differentiation or regulatory T cell markers. In INR, colon CD4+ T cell exhaustion correlated negatively with the fraction of CD4+ T cells in the same compartment, this was not apparent in the ileum. The fraction of exhausted mucosal CD4+ T cells correlated with I-FABP and REG3α, markers of enterocyte damage. We conclude that alterations of gut-homing and exhaustion of T cells may contribute to impaired gut immune and barrier functions associated with immunological non-response in PLHIV.
Collapse
Affiliation(s)
- Kristina Berg Lorvik
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Malin Holm Meyer-Myklestad
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kushi Kushekar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Charlotte Handeland
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | | | | | - Birgitte Stiksrud
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Margarita Dyrhol-Riise
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dag Henrik Reikvam
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Madeen EP, Maldarelli F, Groopman JD. Environmental Pollutants, Mucosal Barriers, and Pathogen Susceptibility; The Case for Aflatoxin B 1 as a Risk Factor for HIV Transmission and Pathogenesis. Pathogens 2021; 10:1229. [PMID: 34684180 PMCID: PMC8537633 DOI: 10.3390/pathogens10101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022] Open
Abstract
HIV transmission risk is dependent on the infectivity of the HIV+ partner and personal susceptibility risk factors of the HIV- partner. The mucosal barrier, as the internal gatekeeper between environment and self, concentrates and modulates the internalization of ingested pathogens and pollutants. In this review, we summarize the localized effects of HIV and dietary toxin aflatoxin B1 (AFB1), a common pollutant in high HIV burden regions, e.g., at the mucosal barrier, and evidence for pollutant-viral interactions. We compiled literature on HIV and AFB1 geographic occurrences, mechanisms of action, related co-exposures, personal risk factors, and HIV key determinants of health. AFB1 exposure and HIV sexual transmission hotspots geographically co-localize in many low-income countries. AFB1 distributes to sexual mucosal tissues generating inflammation, microbiome changes and a reduction of mucosal barrier integrity, effects that are risk factors for increasing HIV susceptibility. AFB1 exposure has a positive correlation to HIV viral load, a risk factor for increasing the infectivity of the HIV+ partner. The AFB1 exposure and metabolism generates inflammation that recruits HIV susceptible cells and generates chemokine/cytokine activation in tissues exposed to HIV. Although circumstantial, the available evidence makes a compelling case for studies of AFB1 exposure as a risk factor for HIV transmission, and a modifiable new component for combination HIV prevention efforts.
Collapse
Affiliation(s)
- Erin P. Madeen
- Department of Cancer Prevention, National Institute of Health, Shady Grove, MD 21773, USA
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI-Frederick, Frederick, MD 21703, USA;
| | - John D. Groopman
- Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To evaluate the current scientific basis for administering probiotics to people living with HIV (PLHIV) to alleviate chronic inflammation and subsequently improve their prognosis. RECENT FINDINGS The gut microbiome is a potential contributing factor to low-grade inflammation in HIV infection, and there is a scientific rationale for attempting to attenuate inflammation by administering probiotics. Sixteen reports from clinical studies in antiretroviral therapy (ART)-treated PLHIV assessing inflammation after probiotic intervention have been identified; half of them randomized control trials (RCT). Some of the studies report improvement in some parameters of inflammation, but results are inconsistent. No studies report improvement of CD4 counts. None of the RCTs report improvements in any markers of inflammation when analyzed according to protocol. SUMMARY Current scientific evidence does not support the use of probiotics to alleviate inflammation in HIV infection. The potential effect of probiotic intervention in ART-treated PLHIV with high risk for inflammation remains to be investigated.
Collapse
|
13
|
Meyer-Myklestad MH, Medhus AW, Lorvik KB, Seljeflot I, Hansen SH, Holm K, Stiksrud B, Trøseid M, Hov JR, Kvale D, Dyrhol-Riise AM, Kummen M, Reikvam DH. HIV-infected immunological non-responders have colon-restricted gut mucosal immune dysfunction. J Infect Dis 2020; 225:661-674. [PMID: 33216130 PMCID: PMC8844596 DOI: 10.1093/infdis/jiaa714] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Background Human immunodeficiency virus (HIV)–infected immunological nonresponders (INRs) fail to reconstitute their CD4+ T-cell pool after initiation of antiretroviral therapy, and their prognosis is inferior to that of immunological responders (IRs). A prevailing hypothesis is that the INR phenotype is caused by a persistently disrupted mucosal barrier, but assessments of gut mucosal immunology in different anatomical compartments are scarce. Methods We investigated circulating markers of mucosal dysfunction, immune activation, mucosal Th17 and Th22 cells, and mucosa-adherent microbiota signatures in gut mucosal specimens from sigmoid colon and terminal ileum of 19 INRs and 20 IRs in addition to 20 HIV-negative individuals. Results INRs had higher blood levels of the enterocyte damage marker intestinal fatty acid–binding protein than IRs. In gut mucosal biopsies, INRs had lower fractions of CD4+ T cells, higher fractions of interleukin 22, and a tendency to higher fractions of interleukin 17–producing CD4+ T cells. These findings were all restricted to the colon and correlated to circulating markers of enterocyte damage. There were no observed differences in gut microbial composition between INRs and IRs. Conclusions Restricted to the colon, enterocyte damage and mucosal immune dysfunction play a role for insufficient immune reconstitution in HIV infection independent of the gut microbiota.
Collapse
Affiliation(s)
- Malin Holm Meyer-Myklestad
- Dep. of Infectious diseases, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Kristina Berg Lorvik
- Dep. of Infectious diseases, Oslo University Hospital, Oslo, Norway.,Dep. for Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Center for Clinical Heart Research, Dep. of Cardiology Ullevål, Oslo University Hospital, Oslo, Norway
| | - Simen Hyll Hansen
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Kristian Holm
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Marius Trøseid
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Johannes Roksund Hov
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Dag Kvale
- Dep. of Infectious diseases, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Margarita Dyrhol-Riise
- Dep. of Infectious diseases, Oslo University Hospital, Oslo, Norway.,Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Martin Kummen
- Institute for Clinical Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.,Dep. of Oncology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
14
|
Kantamala D, Praparattanapan J, Taejaroenkul S, Srithep S, Yoosupap R, Supparatpinyo K. High microbial translocation limits gut immune recovery during short-term HAART in the area with high prevalence of foodborne infection. Cytokine 2020; 136:155257. [PMID: 32861144 DOI: 10.1016/j.cyto.2020.155257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Individuals residing in areas with high prevalence of foodborne infection could have a higher risk of gut microbial translocation which may affect monocyte activation, gut immune recovery and intestinal epithelial cell damage. We aimed to measure alterations in microbial translocation, monocyte activation, gut immune recovery, and intestinal epithelial cell damage in HAART treated individuals. METHODS A prospective, single-arm, longitudinal, cohort study was conducted among antiretroviral naïve HIV-1 infected Thai participants. All participants were in chronic stage of HIV-1 infection before starting HAART. Data and samples were collected prior to initiation of HAART and then after 24 and 48 weeks of HAART. Plasma biomarkers for microbial translocation (16S rDNA and LBP), monocyte activation (sCD14) and intestinal epithelial cell damage (I-FABP) were evaluated. We measured circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells to assess recoveries of gut immunity and gut immunity to microbial pathogens. RESULTS The kinetic studies showed no reduction in the levels of plasma 16S rDNA, sCD14 or I-FABP, significant decrease of plasma LBP level, and slow but significant increases in the frequencies of circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells during 48 weeks of HAART. Dividing participants into low and high microbial translocation (low and high MT) groups at baseline, both groups showed persistent plasma levels of 16S rDNA, sCD14 and I-FABP, and significantly decreased plasma level of LBP. The low MT group had significantly increased frequencies of circulating gut-homing CD4+ T cells and circulating gut-homing Th17 cells during 48 weeks of HAART but this was not observed in the high MT group. CONCLUSIONS We demonstrated persistent high microbial translocation, monocyte activation and intestinal epithelial cell damage with slow gut immune recovery during successful short-term HAART. Additionally, gut immune recovery was apparently limited by high microbial translocation. Our findings emphasize the adverse impact of high microbial translocation on gut immune recovery and the necessity of establishing a novel therapeutic intervention to inhibit microbial translocation.
Collapse
Affiliation(s)
- Doungnapa Kantamala
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand.
| | - Jutarat Praparattanapan
- Division of Infectious Disease, Faculty of Medicine, Chiang Mai University, 110 intavaroros Road, Chiang Mai 50200, Thailand
| | - Sineenart Taejaroenkul
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Sarinee Srithep
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Rattikan Yoosupap
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand
| | - Khuanchai Supparatpinyo
- Research Institute for Health Sciences, Chiang Mai University, P.O. Box 80 CMU, Chiang Mai 50202, Thailand; Division of Infectious Disease, Faculty of Medicine, Chiang Mai University, 110 intavaroros Road, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Tincati C, Mondatore D, Bai F, d'Arminio Monforte A, Marchetti G. Do Combination Antiretroviral Therapy Regimens for HIV Infection Feature Diverse T-Cell Phenotypes and Inflammatory Profiles? Open Forum Infect Dis 2020; 7:ofaa340. [PMID: 33005694 PMCID: PMC7513927 DOI: 10.1093/ofid/ofaa340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Immune abnormalities featuring HIV infection persist despite the use of effective combination antiretroviral therapy (cART) and may be linked to the development of noninfectious comorbidities. The aim of the present narrative, nonsystematic literature review is to understand whether cART regimens account for qualitative differences in immune reconstitution. Many studies have reported differences in T-cell homeostasis, inflammation, coagulation, and microbial translocation parameters across cART classes and in the course of triple vs dual regimens, yet such evidence is conflicting and not consistent. Possible reasons for discrepant results in the literature are the paucity of randomized controlled clinical trials, the relatively short follow-up of observational studies, the lack of clinical validation of the numerous inflammatory biomarkers utilized, and the absence of research on the effects of cART in tissues. We are currently thus unable to establish if cART classes and regimens are truly accountable for the differences observed in immune/inflammation parameters in different clinical settings. Questions still remain as to whether an early introduction of cART, specifically in the acute stage of disease, or newer drugs and novel dual drug regimens are able to significantly impact the quality of immune reconstitution and the risk of disease progression in HIV-infected subjects.
Collapse
Affiliation(s)
- Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Debora Mondatore
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Bai
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, San Paolo Hospital, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
16
|
El Kamari V, Moser C, Hileman CO, Currier JS, Brown TT, Johnston L, Hunt PW, McComsey GA. Lower Pretreatment Gut Integrity Is Independently Associated With Fat Gain on Antiretroviral Therapy. Clin Infect Dis 2020; 68:1394-1401. [PMID: 30137242 DOI: 10.1093/cid/ciy716] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fat accumulation and insulin resistance remain a threat to the success of antiretroviral therapy (ART). The role of gut dysfunction in metabolic complications associated with ART initiation is unclear. METHODS Human immunodeficiency virus (HIV)-infected ART-naive participants were randomized to tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir (RAL). Changes in the gut integrity markers zonulin, lipopolysaccharide-binding protein (LBP), and intestinal fatty acid and ileal bile acid binding proteins (I-FABP and I-BABP) were assessed over 96 weeks. Wilcoxon rank-sum tests were used to compare changes between groups and linear regression models to quantify associations between gut markers, insulin resistance, body mass index (BMI), and visceral, subcutaneous, and total adipose tissue (VAT, SAT, and TAT). RESULTS : 90% were male and 48% were White non-Hispanic. The median age was 36 years, HIV-1 ribonucleic acid was 4.56 log10 copies/mL, and CD4 count was 338 cells/µL. An overall 1.7-fold increase in I-FABP was observed throughout 96 weeks, with no difference between arms. Zonulin levels increased with RAL compared to protease inhibitor-based regimens (week 96, P = .02); minimal changes in I-BABP or LBP levels were observed. Higher baseline I-FABP levels were associated with increases in VAT, TAT, and BMI (16%, 9%, and 2.5%, respectively; P < .04) over 96 weeks. CONCLUSIONS While ART induces changes in the markers of gut barrier dysfunction, the extent to which they improve or worsen the gut barrier function remains unclear. Nevertheless, markers of gut barrier dysfunction in ART-naive individuals predict increases in total and visceral abdominal fat with treatment initiation.
Collapse
Affiliation(s)
- Vanessa El Kamari
- Case Western Reserve University, Ohio.,University Hospitals Cleveland Medical Center, Ohio
| | - Carlee Moser
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Corrilynn O Hileman
- Case Western Reserve University, Ohio.,MetroHealth Medical Center, Cleveland, Ohio
| | | | | | - Liz Johnston
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | - Grace A McComsey
- Case Western Reserve University, Ohio.,University Hospitals Cleveland Medical Center, Ohio
| |
Collapse
|
17
|
Planchais C, Kök A, Kanyavuz A, Lorin V, Bruel T, Guivel-Benhassine F, Rollenske T, Prigent J, Hieu T, Prazuck T, Lefrou L, Wardemann H, Schwartz O, Dimitrov JD, Hocqueloux L, Mouquet H. HIV-1 Envelope Recognition by Polyreactive and Cross-Reactive Intestinal B Cells. Cell Rep 2020; 27:572-585.e7. [PMID: 30970259 PMCID: PMC6458971 DOI: 10.1016/j.celrep.2019.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mucosal immune responses to HIV-1 involve the recognition of the viral envelope glycoprotein (gp)160 by tissue-resident B cells and subsequent secretion of antibodies. To characterize the B cells “sensing” HIV-1 in the gut of infected individuals, we probed monoclonal antibodies produced from single intestinal B cells binding to recombinant gp140 trimers. A large fraction of mucosal B cell antibodies were polyreactive and showed only low affinity to HIV-1 envelope glycoproteins, particularly the gp41 moiety. A few high-affinity gp140 antibodies were isolated but lacked neutralizing, potent ADCC, and transcytosis-blocking capacities. Instead, they displayed cross-reactivity with defined self-antigens. Specifically, intestinal HIV-1 gp41 antibodies targeting the heptad repeat 2 region (HR2) cluster II cross-reacted with the p38α mitogen-activated protein kinase 14 (MAPK14). Hence, physiologic polyreactivity of intestinal B cells and molecular mimicry-based self-reactivity of HIV-1 antibodies are two independent phenomena, possibly diverting and/or impairing mucosal humoral immunity to HIV-1. Polyreactive B cells in HIV-1+ intestinal mucosa interact with HIV-1 Env proteins High-affinity intestinal HIV-1 gp140 antibodies display poor antiviral activities Antibodies targeting the gp41 cluster II region cross-react with MAPK14
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Alexia Kanyavuz
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Valérie Lorin
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Florence Guivel-Benhassine
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Tim Rollenske
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Julie Prigent
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thierry Hieu
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thierry Prazuck
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, Orléans 45067, France
| | - Laurent Lefrou
- Service d'Hépato-Gastro-Entérologie, CHR d'Orléans-La Source, Orléans 45067, France
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris, 75015, France
| | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, CHR d'Orléans-La Source, Orléans 45067, France
| | - Hugo Mouquet
- Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
18
|
Reply to: Benefits of cannabis use for metabolic disorders and survival in people living with HIV with or without hepatitis C. AIDS 2020; 34:955-956. [PMID: 32271255 DOI: 10.1097/qad.0000000000002481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
: Thanks to the success of modern antiretroviral therapy (ART), people living with HIV (PLWH) have life expectancies which approach that of persons in the general population. However, despite the ability of ART to suppress viral replication, PLWH have high levels of chronic systemic inflammation which drives the development of comorbidities such as cardiovascular disease, diabetes and non-AIDS associated malignancies. Historically, cannabis has played an important role in alleviating many symptoms experienced by persons with advanced HIV infection in the pre-ART era and continues to be used by many PLWH in the ART era, though for different reasons. Δ-Tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) are the phytocannabinoids, which have received most attention for their medicinal properties. Due to their ability to suppress lymphocyte proliferation and inflammatory cytokine production, there is interest in examining their therapeutic potential as immunomodulators. CB2 receptor activation has been shown in vitro to reduce CD4 T-cell infection by CXCR4-tropic HIV and to reduce HIV replication. Studies involving SIV-infected macaques have shown that Δ-THC can reduce morbidity and mortality and has favourable effects on gut mucosal immunity. Furthermore, ΔTHC administration was associated with reduced lymph node fibrosis and diminished levels of SIV proviral DNA in spleens of rhesus macaques compared with placebo-treated macaques. In humans, cannabis use does not induce a reduction in peripheral CD4 T-cell count or loss of HIV virological control in cross-sectional studies. Rather, cannabis use in ART-treated PLWH was associated with decreased levels of T-cell activation, inflammatory monocytes and pro-inflammatory cytokine secretion, all of which are related to HIV disease progression and comorbidities. Randomized clinical trials should provide further insights into the ability of cannabis and cannabinoid-based medicines to attenuate HIV-associated inflammation. In turn, these findings may provide a novel means to reduce morbidity and mortality in PLWH as adjunctive agents to ART.
Collapse
|
20
|
Affiliation(s)
- Brett Williams
- Rush University Infectious Disease, 600 S. Paulina #143, Chicago, IL, USA.
| |
Collapse
|
21
|
Kang Y, Cai Y. Altered Gut Microbiota in HIV Infection: Future Perspective of Fecal Microbiota Transplantation Therapy. AIDS Res Hum Retroviruses 2019; 35:229-235. [PMID: 29877092 DOI: 10.1089/aid.2017.0268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
HIV infection progressively destroys CD4+ mononuclear cells, leading to profound cellular immune deficiency that manifests as life-threatening opportunistic infections and malignancies (i.e., AIDS). Gut microbiota plays key roles in the modulation of host metabolism and gene expression, maintenance of epithelial integrity, and mediation of inflammatory and immunity. Hence, the normal intestinal microbiota plays a major role in the maintenance of health and disease prevention. In fact, a large number of studies have shown that the alteration of the gut microbiota contributes to the pathogenesis of several diseases, such as inflammatory bowel diseases, irritable bowel syndrome, metabolic diseases, anorexia nervosa, autoimmune diseases, multiple sclerosis, cancer, neuropsychiatric disorders, and cardiovascular diseases. Recently, accumulating evidence has shed light on the association of dysbiosis of gut microbiota with HIV infection. Hence, the modification of gut microbiota may be a potential therapeutic tool. Fecal microbiota transplantation may improve the conditions of patients with HIV infection by manipulating the human intestinal bacteria. However, the relevant research is very limited, and a large amount of scientific research work needs to be done in the near future.
Collapse
Affiliation(s)
- Yongbo Kang
- 1 School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- 2 Medical Faculty, Kunming University of Science and Technology, Kunming, China
| | - Yue Cai
- 1 School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- 3 Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
22
|
Bwakura-Dangarembizi M, Amadi B, Bourke CD, Robertson RC, Mwapenya B, Chandwe K, Kapoma C, Chifunda K, Majo F, Ngosa D, Chakara P, Chulu N, Masimba F, Mapurisa I, Besa E, Mutasa K, Mwakamui S, Runodamoto T, Humphrey JH, Ntozini R, Wells JCK, Manges AR, Swann JR, Walker AS, Nathoo KJ, Kelly P, Prendergast AJ. Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM): rationale and methods of a longitudinal observational study. BMJ Open 2019; 9:e023077. [PMID: 30782694 PMCID: PMC6361330 DOI: 10.1136/bmjopen-2018-023077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/25/2018] [Accepted: 11/07/2018] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Mortality among children hospitalised for complicated severe acute malnutrition (SAM) remains high despite the implementation of WHO guidelines, particularly in settings of high HIV prevalence. Children continue to be at high risk of morbidity, mortality and relapse after discharge from hospital although long-term outcomes are not well documented. Better understanding the pathogenesis of SAM and the factors associated with poor outcomes may inform new therapeutic interventions. METHODS AND ANALYSIS The Health Outcomes, Pathogenesis and Epidemiology of Severe Acute Malnutrition (HOPE-SAM) study is a longitudinal observational cohort that aims to evaluate the short-term and long-term clinical outcomes of HIV-positive and HIV-negative children with complicated SAM, and to identify the risk factors at admission and discharge from hospital that independently predict poor outcomes. Children aged 0-59 months hospitalised for SAM are being enrolled at three tertiary hospitals in Harare, Zimbabwe and Lusaka, Zambia. Longitudinal mortality, morbidity and nutritional data are being collected at admission, discharge and for 48 weeks post discharge. Nested laboratory substudies are exploring the role of enteropathy, gut microbiota, metabolomics and cellular immune function in the pathogenesis of SAM using stool, urine and blood collected from participants and from well-nourished controls. ETHICS AND DISSEMINATION The study is approved by the local and international institutional review boards in the participating countries (the Joint Research Ethics Committee of the University of Zimbabwe, Medical Research Council of Zimbabwe and University of Zambia Biomedical Research Ethics Committee) and the study sponsor (Queen Mary University of London). Caregivers provide written informed consent for each participant. Findings will be disseminated through peer-reviewed journals, conference presentations and to caregivers at face-to-face meetings.
Collapse
Affiliation(s)
- Mutsa Bwakura-Dangarembizi
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Beatrice Amadi
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Claire D Bourke
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Benjamin Mwapenya
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Kanta Chandwe
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Chanda Kapoma
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Kapula Chifunda
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Florence Majo
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Deophine Ngosa
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Pamela Chakara
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Nivea Chulu
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Faithfull Masimba
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Idah Mapurisa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Ellen Besa
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Simutanyi Mwakamui
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
| | | | - Jean H Humphrey
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Robert Ntozini
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | | - Amee R Manges
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Kusum J Nathoo
- Department of Paediatrics and Child Health, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition Group, University of Zambia, Lusaka, Zambia
- Blizard Institute, Queen Mary University of London, London, UK
| | - Andrew J Prendergast
- Blizard Institute, Queen Mary University of London, London, UK
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | | |
Collapse
|
23
|
Costiniuk CT, Saneei Z, Routy JP, Margolese S, Mandarino E, Singer J, Lebouché B, Cox J, Szabo J, Brouillette MJ, Klein MB, Chomont N, Jenabian MA. Oral cannabinoids in people living with HIV on effective antiretroviral therapy: CTN PT028-study protocol for a pilot randomised trial to assess safety, tolerability and effect on immune activation. BMJ Open 2019; 9:e024793. [PMID: 30659041 PMCID: PMC6340429 DOI: 10.1136/bmjopen-2018-024793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Despite antiretroviral therapy (ART), people living with HIV have higher rates of non-infectious chronic diseases. These conditions are driven by relatively high levels of inflammation persisting on ART compared with uninfected individuals. Chronic inflammation also contributes to HIV persistence during ART. Cannabis when taken orally may represent a way to reduce inflammation and strengthen immune responses. Before planning large interventional studies, it is important to ensure that cannabis taken orally is safe and well tolerated in people living with HIV. We propose to conduct a pilot randomised trial to examine the safety and tolerability of cannabis oils containing tetrahydrocannabinol (THC) and cannabidiol (CBD) consumed orally in people living with HIV. We will also measure inflammatory markers, markers of HIV persistence in peripheral blood cells and changes in the gastrointestinal microbiome. METHODS AND ANALYSIS Twenty-six people living with HIV having undetectable viral load for at least 3 years will be randomised to receive TN-TC11LM (THC:CBD in 1:1 ratio) or TN-TC19LM (THC:CBD in 1:9 ratio) capsules daily for 12 weeks. Safety and tolerability of these capsules will be assessed through haematological, hepatic and renal blood tests, face-to-face interviews and questionnaires. Proportions of participants without any signs of significant toxicity (grades 0-2 scores on the WHO toxicity scale) and who complete the study, as well as scores on quality of life and mood will be examined using descriptive statistics. The effects on inflammatory markers, markers of peripheral blood reservoir size and effect on the composition of the gastrointestinal microbiome will be assessed before and after study completion. ETHICS AND DISSEMINATION This study has been approved by the Research Institute of the McGill University Health Centre. A Data Safety Monitor will review safety information at regular intervals. The final manuscript will be submitted to an open-access journal within 6 months of study completion. TRIAL REGISTRATION NUMBER NCT03550352.
Collapse
Affiliation(s)
- Cecilia T Costiniuk
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zahra Saneei
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
| | - Shari Margolese
- Canadian Institutes of Health Research Canadian HIV Trials Network, Vancouver, British Columbia, Canada
| | - Enrico Mandarino
- Canadian Institutes of Health Research Canadian HIV Trials Network, Vancouver, British Columbia, Canada
- WILLL Cannabis Group, Toronto, Canada
| | - Joel Singer
- Canadian Institutes of Health Research Canadian HIV Trials Network, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bertrand Lebouché
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, Canada
| | - Joseph Cox
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, Canada
| | - Jason Szabo
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
- Department of Family Medicine, McGill University Health Centre, Montreal, Canada
| | - Marie-Josée Brouillette
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
- Department of Psychiatry, McGill University Health Centre, Montreal, Canada
| | - Marina B Klein
- Chronic Viral Illness Service, McGill University Health Centre, Montreal, Canada
- Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and BioMed Research Centre, University of Quebec at Montreal (UQAM), Montreal, Quebec, Canada
| |
Collapse
|
24
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
25
|
Abstract
Impressive advances have been made in the treatment and management of HIV-1 infected individuals. Combination antiretroviral therapy (cART) has turned HIV-1 infection from an almost invariable deadly infectious disease, to a lifelong manageable infectious disease. However, a cure or vaccine has not been forthcoming. A major problem in HIV-1 infection is the persistent and latently infected cellular and tissue reservoirs. One of these reservoirs is the Gut Associated Lymphoid tissue (GALT), which has been the research focus of our group. Our group and others have shown that HIV-1 evolves differently in different parts of the gastro intestinal tract, which also appears to affect the development of antiretroviral drug resistance. The GALT is not the only reservoir. HIV-1 continues to persist and evolve in various other cell and tissue reservoirs despite intense and apparent successful antiretroviral therapy. Moreover, drug resistance mutations remain prevalent under therapy and successful viral suppression. In addition to finding a vaccine, the research on combating and eradicating the HIV-1 viral reservoirs has also been an important focus of HIV-1 cure strategies. We will discuss some of the research findings on reservoirs in the context of some of the HIV-1 cure approaches.
Collapse
Affiliation(s)
- Guido van Marle
- a Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Deirdre L Church
- b Department of Medicine, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Department of Pathology and Laboratory Medicine, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Frank van der Meer
- d Faculty of Veterinary Medicine, Department of Ecosystem and Public Health , University of Calgary , Calgary , Canada
| | - M John Gill
- a Department of Microbiology Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,b Department of Medicine, Cumming School of Medicine , University of Calgary , Calgary , Canada
| |
Collapse
|
26
|
Estes JD, LeGrand R, Petrovas C. Visualizing the Immune System: Providing Key Insights into HIV/SIV Infections. Front Immunol 2018; 9:423. [PMID: 29552017 PMCID: PMC5840205 DOI: 10.3389/fimmu.2018.00423] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/16/2018] [Indexed: 12/23/2022] Open
Abstract
Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.
Collapse
Affiliation(s)
- Jacob D Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Roger LeGrand
- CEA, Université Paris Sud 11, INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID) National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
27
|
Abstract
Abnormal immune activation and expansion of CD8+ T cells, especially of memory and effector phenotypes, take place during HIV-1 infection, and these abnormal features persist during administration of antiretroviral therapy (ART) to infected patients. The molecular mechanisms for CD8+ T-cell expansion remain poorly characterized. In this article, we review the literature addressing features of CD8+ T-cell immune pathology and present an integrated view on the mechanisms leading to abnormal CD8+ T-cell expansion during HIV-1 infection. The expression of molecules important for directing the homing of CD8+ T cells between the circulation and lymphoid tissues, in particular CCR5 and CXCR3, is increased in CD8+ T cells in circulation and in inflamed tissues during HIV-1 infection; these disturbances in the homing capacity of CD8+ T cells have been linked to increased CD8+ T-cell proliferation. The production of IL-15, a cytokine responsible for physiological proliferation of CD8+ T cells, is increased in lymphoid tissues during HIV-1 infection as result of microbial translocation and severe inflammation. IL-15, and additional inflammatory cytokines, may lead to deregulated proliferation of CD8+ T cells and explain the accumulation of CD8+ T cells in circulation. The decreased capacity of CD8+ T cells to localize to gut-associated lymphoid tissue also contributes to the accumulation of these cells in blood. Control of inflammation, through ART administration during primary HIV-1 infection or therapies aimed at controlling inflammation during HIV-1 infection, is pivotal to prevent abnormal expansion of CD8+ T cells during HIV-1 infection.
Collapse
Affiliation(s)
- A Nasi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - F Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection. Oral Dis 2017; 22 Suppl 1:53-60. [PMID: 27109273 DOI: 10.1111/odi.12390] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV infection predisposes the host to tuberculosis by impairing the hosts' immune system principally by killing and altering CD4 T-cell function. How HIV infection disrupts CD4 T-cell function, which specifically compromises host immunity to Mycobacterium tuberculosis, is poorly understood and is a critical roadblock in developing better vaccine- or immune-based strategies to control and monitor TB in HIV-infected subjects. This review considers key pathways that are altered in HIV-infected subjects that impair anti-TB immunity.
Collapse
Affiliation(s)
- A Ahmed
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - S Rakshit
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - A Vyakarnam
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Department of Infectious Diseases, King's College London, London, UK
| |
Collapse
|
29
|
Croteau JD, Engle EL, Queen SE, Shirk EN, Zink MC. Marked Enteropathy in an Accelerated Macaque Model of AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:589-604. [PMID: 28056337 DOI: 10.1016/j.ajpath.2016.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/12/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
Enteropathy in HIV infection is not eliminated with combination antiretroviral therapy and is possibly linked to microbial translocation. We used a rapidly progressing SIV/pigtailed macaque model of HIV to examine enteropathy and microbial translocation. Histologic evidence of intestinal disease was observed in only half of infected macaques during late-stage infection (LSI). Combination antiretroviral therapy initiated during acute infection prevented intestinal disease. In the ileum and colon, enteropathy was associated with increased caspase-3 staining, decreased CD3+ T cells, and increased SIV-infected cells. CD3+ T cells were preserved in LSI animals without intestinal disease, and levels of CD3 staining in all LSI animals strongly correlated with the number of infected cells in the intestine and plasma viral load. Unexpectedly, there was little evidence of microbial translocation as measured by soluble CD14, soluble CD163, lipopolysaccharide binding protein, and microbial 16s ribosomal DNA. Loss of epithelial integrity indicated by loss of the tight junction protein claudin-3 was not observed during acute infection despite significantly fewer T cells. Claudin-3 was reduced in LSI animals with severe intestinal disease but did not correlate with increased microbial translocation. LSI animals that did not develop intestinal disease had increased T-cell intracytoplasmic antigen 1-positive cytotoxic T lymphocytes, suggesting a robust adaptive cytotoxic T-lymphocyte response may, in part, confer resilience to SIV-induced intestinal damage.
Collapse
Affiliation(s)
- Joshua D Croteau
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Elizabeth L Engle
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - M Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Merlini E, Tincati C, Biasin M, Saulle I, Cazzaniga FA, d'Arminio Monforte A, Cappione AJ, Snyder-Cappione J, Clerici M, Marchetti GC. Stimulation of PBMC and Monocyte-Derived Macrophages via Toll-Like Receptor Activates Innate Immune Pathways in HIV-Infected Patients on Virally Suppressive Combination Antiretroviral Therapy. Front Immunol 2016; 7:614. [PMID: 28066424 PMCID: PMC5165253 DOI: 10.3389/fimmu.2016.00614] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
In HIV-infected, combination antiretroviral therapy (cART)-treated patients, immune activation and microbial translocation persist and associate with inadequate CD4 recovery and morbidity/mortality. We analyzed whether alterations in the toll-like receptor (TLR) pathway could be responsible for the immune hyperactivation seen in these patients. PBMC/monocyte-derived macrophages (MDMs) of 28 HIV+ untreated and 35 cART-treated patients with HIV-RNA < 40 cp/mL [20 Full Responders (FRs): CD4 ≥ 350; 15 Immunological Non-Responders (INRs): CD4 < 350], as well as of 16 healthy controls were stimulated with a panel of TLR agonists. We measured: CD4/CD8/CD14/CD38/HLA-DR/Ki67/AnnexinV/CD69/TLR4/8 (Flow Cytometry); PBMC expression of 84 TLR pathway genes (qPCR); PBMC/MDM cytokine release (Multiplex); and plasma lipopolysaccharide (LPS)/sCD14 (LAL/ELISA). PBMC/MDM from cART patients responded weakly to LPS stimulation but released high amounts of pro-inflammatory cytokines. MDM from these patients were characterized by a reduced expression of HLA-DR+ MDM and failed to expand activated HLA-DR+ CD38+ T-lymphocytes. PBMC/MDM from cART patients responded more robustly to ssRNA stimulation; this resulted in a significant expansion of activated CD38 + CD8 and the release of amounts of pro-inflammatory cytokines comparable to those seen in untreated viremic patients. Despite greater constitutive TLR pathway gene expression, PBMC from INRs seemed to upregulate only type I IFN genes following TLR stimulation, whereas PBMC from full responders showed a broader response. Systemic exposure to microbial antigens drives immune activation during cART by triggering TLRs. Bacterial stimulation modifies MDM function/pro-inflammatory profile in cART patients without affecting T-lymphocytes; this suggests translocating bacteria as selective stimulus to chronic innate activation during cART. High constitutive TLR activation is seen in patients lacking CD4 recovery, suggesting an exhausted immune milieu, anergic to further antigen encounters.
Collapse
Affiliation(s)
- Esther Merlini
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan , Milan , Italy
| | - Camilla Tincati
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan , Milan , Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences - "L. Sacco", University of Milan , Milan , Italy
| | - Irma Saulle
- Department of Biomedical and Clinical Sciences - "L. Sacco", University of Milan , Milan , Italy
| | - Federico Angelo Cazzaniga
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan , Milan , Italy
| | - Antonella d'Arminio Monforte
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan , Milan , Italy
| | | | | | - Mario Clerici
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy; Don C. Gnocchi Foundation, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Giulia Carla Marchetti
- Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan , Milan , Italy
| |
Collapse
|
31
|
Zaunders J, Danta M, Bailey M, Mak G, Marks K, Seddiki N, Xu Y, Templeton DJ, Cooper DA, Boyd MA, Kelleher AD, Koelsch KK. CD4 + T Follicular Helper and IgA + B Cell Numbers in Gut Biopsies from HIV-Infected Subjects on Antiretroviral Therapy Are Similar to HIV-Uninfected Individuals. Front Immunol 2016; 7:438. [PMID: 27822211 PMCID: PMC5075890 DOI: 10.3389/fimmu.2016.00438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/04/2016] [Indexed: 01/09/2023] Open
Abstract
Background Disruption of gastrointestinal tract epithelial and immune barriers contribute to microbial translocation, systemic inflammation, and progression of HIV-1 infection. Antiretroviral therapy (ART) may lead to reconstitution of CD4+ T cells in gut-associated lymphoid tissue (GALT), but its impact on humoral immunity within GALT is unclear. Therefore, we studied CD4+ subsets, including T follicular helper cells (Tfh), as well as resident B cells that have switched to IgA production, in gut biopsies, from HIV+ subjects on suppressive ART compared to HIV-negative controls (HNC). Methods Twenty-three HIV+ subjects on ART and 22 HNC undergoing colonoscopy were recruited to the study. Single-cell suspensions were prepared from biopsies from left colon (LC), right colon (RC), and terminal ileum (TI). T and B lymphocyte subsets, as well as EpCAM+ epithelial cells, were accurately enumerated by flow cytometry, using counting beads. Results No significant differences in the number of recovered epithelial cells were observed between the two subject groups. However, the median TI CD4+ T cell count/106 epithelial cells was 2.4-fold lower in HIV+ subjects versus HNC (19,679 versus 47,504 cells; p = 0.02). Similarly, median LC CD4+ T cell counts were reduced in HIV+ subjects (8,358 versus 18,577; p = 0.03) but were not reduced in RC. Importantly, we found no significant differences in Tfh or IgA+ B cell counts at either site between HIV+ subjects and HNC. Further analysis showed no difference in CD4+, Tfh, or IgA+ B cell counts between subjects who commenced ART in primary compared to chronic HIV-1 infection. Despite the decrease in total CD4 T cells, we could not identify a selective decrease of other key subsets of CD4+ T cells, including CCR5+ cells, CD127+ long-term memory cells, CD103+ tissue-resident cells, or CD161+ cells (surrogate marker for Th17), but there was a slight increase in the proportion of T regulatory cells. Conclusion While there were lower absolute CD4+ counts in the TI and LC in HIV+ subjects on ART, they were not associated with significantly reduced Tfh cell counts or IgA+ B cells, suggesting that this important vanguard of adaptive immune defense against luminal microbial products is normalized following ART.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark Danta
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Michelle Bailey
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Gerald Mak
- St Vincent's Hospital, Clinical School , Sydney, NSW , Australia
| | - Katherine Marks
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital , Sydney, NSW , Australia
| | - Nabila Seddiki
- Equipe 16, INSERM U955, Créteil, France; Faculté de médecine, Université Paris Est, Créteil, France; Vaccine Research Institute (VRI), Créteil, France
| | - Yin Xu
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - David J Templeton
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia; RPA Sexual Health, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David A Cooper
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Mark A Boyd
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia; The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
32
|
Liu J, Xiao Q, Zhou R, Wang Y, Xian Q, Ma T, Zhuang K, Zhou L, Guo D, Wang X, Ho WZ, Li J. Comparative Analysis of Immune Activation Markers of CD8 + T Cells in Lymph Nodes of Different Origins in SIV-Infected Chinese Rhesus Macaques. Front Immunol 2016; 7:371. [PMID: 27708644 PMCID: PMC5030343 DOI: 10.3389/fimmu.2016.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 01/09/2023] Open
Abstract
Altered T-cell homeostasis, such as expansion of CD8+ T cells to the secondary lymphatic compartments, has been suggested as a mechanism of HIV/simian immunodeficiency virus (SIV)-pathogenesis. However, the role of immune activation of CD8+ T cells in the CD4/CD8 turnover and viral replication in these tissues is not completely understood. In this study, we compared the expression of immune activation markers (CD69 and HLA-DR) on CD8+ T cells in the peripheral blood and lymph nodes (LNs) of SIV-infected/uninfected Chinese rhesus macaques. SIV-infected macaques had significantly higher percentages of CD8+CD69+ and CD8+HLA-DR+ T cells in all these anatomical compartments than uninfected macaques. LNs that located close to the gastrointestinal (GI) tract (colon, mesenteric, and iliac LNs) of SIV-infected macaques had profoundly lower numbers of CD4+ T cells, but no significant difference in expression of activation marker (CD8+CD69+ and CD8+HLA-DR+) as compared with the peripheral lymphatic tissues (axillary and inguinal LNs). The CD4/CD8 ratios were negatively correlated with the activation of CD8+ T cells in the overall LNs, with further associations with CD8+HLA-DR+ in GI LNs while CD8+CD69+ in peripheral LNs. These observations demonstrate that the increase of CD8+ T cell activation is a contributing factor for the decline of CD4/CD8 ratios in GI system.
Collapse
Affiliation(s)
- Jinbiao Liu
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Qianhao Xiao
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Runhong Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Yong Wang
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Qiaoyang Xian
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Tongcui Ma
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Ke Zhuang
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Li Zhou
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences , Wuhan , China
| | - Deyin Guo
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| | - Wen-Zhe Ho
- Animal Biosafety Level III Laboratory, Center for Animal Experiment, Wuhan University School of Basic Medical Sciences, Wuhan, China; Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jieliang Li
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine , Philadelphia, PA , USA
| |
Collapse
|
33
|
Deleage C, Schuetz A, Alvord WG, Johnston L, Hao XP, Morcock DR, Rerknimitr R, Fletcher JL, Puttamaswin S, Phanuphak N, Dewar R, McCune JM, Sereti I, Robb M, Kim JH, Schacker TW, Hunt P, Lifson JD, Ananworanich J, Estes JD. Impact of early cART in the gut during acute HIV infection. JCI Insight 2016; 1:e87065. [PMID: 27446990 PMCID: PMC4951101 DOI: 10.1172/jci.insight.87065] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 01/03/2023] Open
Abstract
Early after HIV infection there is substantial depletion of CD4+ T cells in the gastrointestinal (GI) tract lamina propria (LP), with associated epithelial barrier damage, leading to microbial translocation and systemic inflammation and immune activation. In this study, we analyzed these early events in the GI tract in a cohort of Thai acute HIV-infected patients and determined the effect of early combination antiretroviral treatment (cART). HIV-uninfected and chronically and acutely HIV-infected patients at different Fiebig stages (I-V) underwent colonic biopsies and then received cART. Immunohistochemistry and quantitative image analysis were performed on cross-sectional and longitudinal colon biopsy specimens (day 0 to week 96) to measure GI tract damage (infiltration of polymorphonuclear cells), inflammation (M×1, TNF-α), immune activation (Ki-67), and the CD4+ T cell population in the LP. The magnitude of GI tract damage, immune activation, and inflammation was significantly increased, with significantly depleted CD4+ T cells in the LP in all acutely infected groups prior to cART compared with HIV-uninfected control participants. While most patients treated during acute infection resolved GI tract inflammation and immune activation back to baseline levels after 24 weeks of cART, most acutely infected participants did not restore their CD4+ T cells after 96 weeks of cART.
Collapse
Affiliation(s)
- Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - W. Gregory Alvord
- Statistical Consulting, Data Management Services Inc., Frederick, Maryland, USA
| | - Leslie Johnston
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Xing-Pei Hao
- Pathology and Histotechnology Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - David R. Morcock
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | | | - James L.K. Fletcher
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Suwanna Puttamaswin
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Nittaya Phanuphak
- SEARCH, Bangkok, Thailand
- Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Robin Dewar
- Virus Isolation and Serology Laboratory, Applied and Developmental Research Directorate, Science Applications International Corp., Frederick Inc. National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, Maryland, USA
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, UCSF, San Francisco, California, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Merlin Robb
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Jerome H. Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- SEARCH, Bangkok, Thailand
- International Vaccine Institute, Seoul, South Korea
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter Hunt
- Positive Health Program, Department of Medicine, UCSF, San Francisco, California, USA
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | - Jintanat Ananworanich
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- SEARCH, Bangkok, Thailand
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, USA
| | | |
Collapse
|
34
|
Depincé-Berger AE, Vergnon-Miszczycha D, Girard A, Frésard A, Botelho-Nevers E, Lambert C, Del Tedesco E, Genin C, Pozzetto B, Lucht F, Roblin X, Bourlet T, Paul S. Major influence of CD4 count at the initiation of cART on viral and immunological reservoir constitution in HIV-1 infected patients. Retrovirology 2016; 13:44. [PMID: 27363286 PMCID: PMC4929778 DOI: 10.1186/s12977-016-0278-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/20/2016] [Indexed: 02/01/2023] Open
Abstract
Background A persistent immune activation is observed in gut during HIV-1 infection, which is not completely reversed by a combined antiretroviral therapy (cART). The impact of the time of cART initiation may highly influence the size of the viral reservoir and the ratio of CD4+/CD8+ T cells in the gut. In this study, we analyzed the characteristics of HIV rectal reservoir of long-term treated patients, regarding their blood CD4+ T cells count at the time of cART initiation. Results Twenty-four consenting men were enrolled: 9 exhibiting a CD4+ T cells count >350/mm3 (“high-level CD4 group”) and 15 < 350/mm3 (“low-level CD4 group”) in blood, at the start of cART. An immunophenotypical analysis of T and B cells subpopulations was performed in blood and rectal biopsies. HIV cell-associated DNA loads and qualitative intra-cellular RNA were determined in both compartments. The ratio of CD4+/CD8+ T cells was significantly decreased in the blood but not in the rectum of the “low-level CD4 group” of patients. The alteration in β7+ CD4+ T cells homing was higher in this group and was correlated to a low ratio of CD4+/CD8+ T cells in blood. An initiation of cART in men exhibiting a low-level CD4 count was also associated with an alteration of B cells maturation. HIV blood and gut DNA reservoirs were significantly lower in the “high-level CD4 group” of men. A high HIV DNA level was associated to a detectable intracellular HIV RNA in rectum. Conclusions An early initiation of cART could significantly preserve gut immunity and limit the viral reservoir constitution. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0278-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Emmanuelle Depincé-Berger
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Delphine Vergnon-Miszczycha
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Alexandre Girard
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France
| | - Anne Frésard
- Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Elisabeth Botelho-Nevers
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Claude Lambert
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Emilie Del Tedesco
- Service d'Hépato-Gastroentérologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Christian Genin
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Bruno Pozzetto
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service des Agents Infectieux et d'Hygiène, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Frédéric Lucht
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service de Maladies Infectieuses et Tropicales, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Xavier Roblin
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Service d'Hépato-Gastroentérologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| | - Thomas Bourlet
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France. .,Service des Agents Infectieux et d'Hygiène, Centre Hospitalo-Universitaire, Saint-Étienne, France.
| | - Stéphane Paul
- Groupe Immunité des Muqueuses et Agents Pathogènes - GIMAP EA 3064, CIC 1408, Faculté de Médecine J. Lisfranc, Université de Saint-Etienne, Université de Lyon, 42023, Saint-Étienne Cedex 02, France.,Laboratoire d'Immunologie, Centre Hospitalo-Universitaire, Saint-Étienne, France
| |
Collapse
|
35
|
Pandiyan P, Younes SA, Ribeiro SP, Talla A, McDonald D, Bhaskaran N, Levine AD, Weinberg A, Sekaly RP. Mucosal Regulatory T Cells and T Helper 17 Cells in HIV-Associated Immune Activation. Front Immunol 2016; 7:228. [PMID: 27379092 PMCID: PMC4913236 DOI: 10.3389/fimmu.2016.00228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
Residual mucosal inflammation along with chronic systemic immune activation is an important feature in individuals infected with human immunodeficiency virus (HIV), and has been linked to a wide range of co-morbidities, including malignancy, opportunistic infections, immunopathology, and cardiovascular complications. Although combined antiretroviral therapy (cART) can reduce plasma viral loads to undetectable levels, reservoirs of virus persist, and increased mortality is associated with immune dysbiosis in mucosal lymphoid tissues. Immune-based therapies are pursued with the goal of improving CD4+ T-cell restoration, as well as reducing chronic immune activation in cART-treated patients. However, the majority of research on immune activation has been derived from analysis of circulating T cells. How immune cell alterations in mucosal tissues contribute to HIV immune dysregulation and the associated risk of non-infectious chronic complications is less studied. Given the significant differences between mucosal T cells and circulating T cells, and the immediate interactions of mucosal T cells with the microbiome, more attention should be devoted to mucosal immune cells and their contribution to systemic immune activation in HIV-infected individuals. Here, we will focus on mucosal immune cells with a specific emphasis on CD4+ T lymphocytes, such as T helper 17 cells and CD4+Foxp3+ regulatory T cells (Tregs), which play crucial roles in maintaining mucosal barrier integrity and preventing inflammation, respectively. We hypothesize that pro-inflammatory milieu in cART-treated patients with immune activation significantly contributes to enhanced loss of Th17 cells and increased frequency of dysregulated Tregs in the mucosa, which in turn may exacerbate immune dysfunction in HIV-infected patients. We also present initial evidence to support this hypothesis. A better comprehension of how pro-inflammatory milieu impacts these two types of cells in the mucosa will shed light on mucosal immune dysfunction and HIV reservoirs, and lead to novel ways to restore immune functions in HIV+ patients.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Souheil-Antoine Younes
- Department of Medicine, Division of Infectious Diseases, University Hospitals, Case Western Reserve University , Cleveland, OH , USA
| | | | - Aarthi Talla
- Department of Pathology, Case Western Reserve University , Cleveland, OH , USA
| | - David McDonald
- Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Alan D Levine
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University , Cleveland, OH , USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University , Cleveland, OH , USA
| |
Collapse
|
36
|
Ensoli B, Nchabeleng M, Ensoli F, Tripiciano A, Bellino S, Picconi O, Sgadari C, Longo O, Tavoschi L, Joffe D, Cafaro A, Francavilla V, Moretti S, Pavone Cossut MR, Collacchi B, Arancio A, Paniccia G, Casabianca A, Magnani M, Buttò S, Levendal E, Ndimande JV, Asia B, Pillay Y, Garaci E, Monini P. HIV-Tat immunization induces cross-clade neutralizing antibodies and CD4(+) T cell increases in antiretroviral-treated South African volunteers: a randomized phase II clinical trial. Retrovirology 2016; 13:34. [PMID: 27277839 PMCID: PMC4899930 DOI: 10.1186/s12977-016-0261-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/14/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although combined antiretroviral therapy (cART) has saved millions of lives, it is incapable of full immune reconstitution and virus eradication. The transactivator of transcription (Tat) protein is a key human immunodeficiency virus (HIV) virulence factor required for virus replication and transmission. Tat is expressed and released extracellularly by infected cells also under cART and in this form induces immune dysregulation, and promotes virus reactivation, entry and spreading. Of note, anti-Tat antibodies are rare in natural infection and, when present, correlate with asymptomatic state and reduced disease progression. This suggested that induction of anti-Tat antibodies represents a pathogenesis-driven intervention to block progression and to intensify cART. Indeed Tat-based vaccination was safe, immunogenic and capable of immune restoration in an open-label, randomized phase II clinical trial conducted in 168 cART-treated volunteers in Italy. To assess whether B-clade Tat immunization would be effective also in patients with different genetic background and infecting virus, a phase II trial was conducted in South Africa. METHODS The ISS T-003 was a 48-week randomised, double-blinded, placebo-controlled trial to evaluate immunogenicity (primary endpoint) and safety (secondary endpoint) of B-clade Tat (30 μg) given intradermally, three times at 4-week intervals, in 200 HIV-infected adults on effective cART (randomised 1:1) with CD4(+) T-cell counts ≥200 cells/µL. Study outcomes also included cross-clade anti-Tat antibodies, neutralization, CD4(+) T-cell counts and therapy compliance. RESULTS Immunization was safe and well-tolerated and induced durable, high titers anti-Tat B-clade antibodies in 97 % vaccinees. Anti-Tat antibodies were cross-clade (all vaccinees tested) and neutralized Tat-mediated entry of oligomeric B-clade and C-clade envelope in dendritic cells (24 participants tested). Anti-Tat antibody titers correlated positively with neutralization. Tat vaccination increased CD4(+) T-cell numbers (all participants tested), particularly when baseline levels were still low after years of therapy, and this had a positive correlation with HIV neutralization. Finally, in cART non-compliant patients (24 participants), vaccination contained viral load rebound and maintained CD4(+) T-cell numbers over study entry levels as compared to placebo. CONCLUSIONS The data indicate that Tat vaccination can restore the immune system and induces cross-clade neutralizing anti-Tat antibodies in patients with different genetic backgrounds and infecting viruses, supporting the conduct of phase III studies in South Africa. Trial registration ClinicalTrials.gov NCT01513135, 01/23/2012.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.
| | | | - Fabrizio Ensoli
- Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Antonella Tripiciano
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Stefania Bellino
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,National Center for Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Picconi
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Cecilia Sgadari
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Olimpia Longo
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Italian Medicines Agency, Rome, Italy
| | - Lara Tavoschi
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa.,European Center for Disease Prevention and Control, Stockholm, Sweden
| | - Daniel Joffe
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Vittorio Francavilla
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Sonia Moretti
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Angela Arancio
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Giovanni Paniccia
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy.,Laboratory of Clinical Pathology and Microbiology, San Gallicano Institute, Istituti Fisioterapici Ospitalieri, Rome, Italy
| | - Anna Casabianca
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Science, University of Urbino, Urbino, Italy
| | - Stefano Buttò
- National AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Elise Levendal
- South African Medical Research Council, Cape Town, South Africa.,Health Systems Trust, Cape Town, South Africa
| | | | - Bennett Asia
- National Department of Health, Pretoria, South Africa
| | - Yogan Pillay
- National Department of Health, Pretoria, South Africa
| | - Enrico Garaci
- Istituto Superiore di Sanità, Rome, Italy.,University of Tor Vergata, Rome, Italy
| | - Paolo Monini
- Head Office, National AIDS Center, Istituto Superiore di Sanità, Cape Town, South Africa
| | | |
Collapse
|
37
|
Tincati C, Douek DC, Marchetti G. Gut barrier structure, mucosal immunity and intestinal microbiota in the pathogenesis and treatment of HIV infection. AIDS Res Ther 2016; 13:19. [PMID: 27073405 PMCID: PMC4828806 DOI: 10.1186/s12981-016-0103-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/02/2016] [Indexed: 02/07/2023] Open
Abstract
Over the past 10 years, extensive work has been carried out in the field of microbial translocation in HIV infection, ranging from studies on its clinical significance to investigations on its pathogenic features. In the present work, we review the most recent findings on this phenomenon, focusing on the predictive role of microbial translocation in HIV-related morbidity and mortality, the mechanisms by which it arises and potential therapeutic approaches. From a clinical perspective, current work has shown that markers of microbial translocation may be useful in predicting clinical events in untreated HIV infection, while conflicting data exist on their role in cART-experienced subjects, possibly due to the inclusion of extremely varied patient populations in cohort studies. Results from studies addressing the pathogenesis of microbial translocation have improved our knowledge of the damage of the gastrointestinal epithelial barrier occurring in HIV infection. However, the extent to which mucosal impairment translates directly to increased gastrointestinal permeability remains an open issue. In this respect, novel work has established a role for IL-17 and IL-22-secreting T cell populations in limiting microbial translocation and systemic T-cell activation/inflammation, thus representing a possible target of immune-therapeutic interventions shown to be promising in the animal model. Further, recent reports have not only confirmed the presence of a dysbiotic intestinal community in the course of HIV infection but have also shown that it may be linked to mucosal damage, microbial translocation and peripheral immune activation. Importantly, technical advances have also shed light on the metabolic activity of gut microbes, highlighting the need for novel therapeutic approaches to correct the function, as well as the composition, of the gastrointestinal microbiota.
Collapse
|
38
|
Michelini Z, Baroncelli S, Fantauzzi A, Pasquale C, Galluzzo CM, Sanchez M, Gatto M, Amici R, Franco M, d'Ettorre G, Fimiani C, Mezzaroma I, Vullo V, Merli M, Palmisano L. Reduced Plasma Levels of sCD14 and I-FABP in HIV-infected Patients with Mesalazine-treated Ulcerative Colitis. HIV CLINICAL TRIALS 2016; 17:49-54. [PMID: 26739837 DOI: 10.1080/15284336.2015.1125077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Microbial translocation (MT) is a shared feature of HIV infection and inflammatory bowel disease (IBD). AIMS This study was conducted to assess the impact of IBD (and particularly ulcerative colitis, UC) on plasma markers of MT and immune activation in HIV+ subjects. METHODS A cross-sectional study was conducted in 3 groups of patients: HIV+/UC+(group HIV/UC); HIV+/UC- (group HIV); HIV-/UC+(group UC). Plasma levels of soluble CD14 (sCD14), intestinal fatty acid-binding protein (I-FABP), and endotoxin core antibodies (endoCAB) were measured as plasma markers of MT. Inflammation and immune activation were evaluated by measuring plasma levels of IL-6, IL-21, TNF-alpha, and high-sensitivity C-reactive protein (hs-CRP). T- and B-cells subpopulations were characterized by FACS analysis. RESULTS Seven patients were enrolled in group HIV/UC, 9 in HIV, and 10 in UC. All HIV-positive patients had plasma values of HIV-1 RNA<37 copies/mL for at least 12 months and good immunological recovery. All patients with UC were treated with oral mesalazine. Markers of MT, immune activation, and inflammation were not increased in subjects with HIV/UC. In fact, they had lower levels of I-FABP (p=0.001) and sCD14 (p=0.007) when compared to other patients groups. Positive correlations were found between I-FABP and sCD14 (r=.355, p=0.076). Frequency of T- and B-cell subsets did not differ among groups. CONCLUSIONS Our results suggest that UC does not worsen MT, inflammation, or immune activation in HIV-infected subjects. The anti-inflammatory activity of chronic mesalazine administration on intestinal mucosa may contribute to this finding.
Collapse
Affiliation(s)
- Zuleika Michelini
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Silvia Baroncelli
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | | | - Chiara Pasquale
- c Gastroenterology, Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Clementina Maria Galluzzo
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Massimo Sanchez
- d Department of Cell Biology and Neurosciences , Istituto Superiore di Sanità , Rome , Italy
| | - Manuela Gatto
- c Gastroenterology, Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Roberta Amici
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Marina Franco
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| | - Gabriella d'Ettorre
- e Department of Infectious and Tropical Diseases , Policlinico Umberto I , Rome , Italy
| | - Caterina Fimiani
- e Department of Infectious and Tropical Diseases , Policlinico Umberto I , Rome , Italy
| | - Ivano Mezzaroma
- c Gastroenterology, Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Vincenzo Vullo
- f Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | - Manuela Merli
- c Gastroenterology, Department of Clinical Medicine , Sapienza University of Rome , Rome , Italy
| | - Lucia Palmisano
- a Department of Therapeutic Research and Medicines Evaluation , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
39
|
Vergnon-Miszczycha D, Lucht F, Roblin X, Pozzetto B, Paul S, Bourlet T. [Key role played by the gut associated lymphoid tissue during human immunodeficiency virus infection]. Med Sci (Paris) 2015; 31:1092-101. [PMID: 26672662 DOI: 10.1051/medsci/20153112012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The gut associated lymphoid tissue (GALT) is the site of numerous immunological disturbances during HIV-1 infection. It constitutes the largest reservoir for HIV, not or very poorly susceptible to antiretroviral therapy (ART), making it a major obstacle to HIV cure. Moreover, the GALT is involved in systemic immune activation in HIV-infected individuals: intestinal damage due to viral replication and severe CD4(+) T cell depletion in the GALT leads to microbial translocation, a key driver of immune activation, and in turn, disease progression. In this review, we describe the role of the GALT in HIV infection and we discuss therapeutic options to decrease the intestinal viral reservoir and to preserve immune function in the gut of HIV-infected people. Achieving these goals is necessary for a long-term infection control after the interruption of ART.
Collapse
Affiliation(s)
- Delphine Vergnon-Miszczycha
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de maladies infectieuses et tropicales, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Frédéric Lucht
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de maladies infectieuses et tropicales, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Xavier Roblin
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Service de gastro-entérologie, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Bruno Pozzetto
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire des agents infectieux et d'hygiène, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Stéphane Paul
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire d'immunologie, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| | - Thomas Bourlet
- GIMAP/EA3064, Inserm CIC 1408 vaccinologie, université de Saint-Étienne, COMUE de Lyon, 42023 Saint-Étienne, France - Laboratoire des agents infectieux et d'hygiène, CHU de Saint-Étienne, 42055 Saint-Étienne Cedex 02, France
| |
Collapse
|
40
|
Zimmermann K, Bastidas S, Knecht L, Kuster H, Vavricka SR, Günthard HF, Oxenius A. Gut commensal microbes do not represent a dominant antigenic source for continuous CD4+ T-cell activation during HIV-1 infection. Eur J Immunol 2015; 45:3107-13. [PMID: 26345361 DOI: 10.1002/eji.201545940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/20/2015] [Accepted: 09/08/2015] [Indexed: 11/06/2022]
Abstract
Chronic immune activation is a hallmark of HIV-1 infection; specifically, the activation of T cells has predictive value for progression to AIDS. The majority of hyperactivated T cells are not HIV-specific and their antigenic specificities remain poorly understood. Translocation of gut luminal microbial products to systemic sites contributes to chronic immune activation during HIV-1 infection, but how it affects (TCR-dependent) immune activation remains elusive. We hypothesized that gut luminal antigens foster activation of CD4(+) T cells with specificities for commensal bacterial antigens, thereby contributing to the pool of activated CD4(+) T cells in the circulation of HIV-1 infected individuals. To test this hypothesis, we quantified the frequencies of gut microbe-specific CD4(+) T cells by cytokine production upon restimulation with selected gut commensal microbial antigens. Contrary to our hypothesis, we did not observe increased but rather decreased frequencies of gut microbe-specific CD4(+) T cells in HIV-1 infected individuals compared to healthy controls. We conclude that the increased activation status of circulating CD4(+) T cells in HIV-1 infected individuals is not driven by CD4(+) T cells with specificities for commensal bacterial antigens.
Collapse
Affiliation(s)
| | - Sonia Bastidas
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Leandra Knecht
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephan R Vavricka
- Division of Gastroenterology and Hepatology, Triemli Hospital, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
41
|
Damouche A, Lazure T, Avettand-Fènoël V, Huot N, Dejucq-Rainsford N, Satie AP, Mélard A, David L, Gommet C, Ghosn J, Noel N, Pourcher G, Martinez V, Benoist S, Béréziat V, Cosma A, Favier B, Vaslin B, Rouzioux C, Capeau J, Müller-Trutwin M, Dereuddre-Bosquet N, Le Grand R, Lambotte O, Bourgeois C. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection. PLoS Pathog 2015; 11:e1005153. [PMID: 26402858 PMCID: PMC4581628 DOI: 10.1371/journal.ppat.1005153] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/14/2015] [Indexed: 12/14/2022] Open
Abstract
Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic inflammation via the modulation of adipose tissue-related pathways.
Collapse
Affiliation(s)
- Abderaouf Damouche
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Thierry Lazure
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d’anatomo-pathologie, Le Kremlin-Bicêtre, France
| | - Véronique Avettand-Fènoël
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | | | - Anne-Pascale Satie
- INSERM, U1085-IRSET, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Adeline Mélard
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Ludivine David
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | | | - Jade Ghosn
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
| | - Nicolas Noel
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Guillaume Pourcher
- Assistance Publique—Hôpitaux de Paris, Hôpital Béclère, Service de Chirurgie Viscérale Minimale invasive, Clamart, France
- INSERM U972, Hôpital Paul Brousse, Villejuif, France
| | - Valérie Martinez
- Assistance Publique—Hôpitaux de Paris, Hôpital Antoine Béclère, Service de Médecine Interne et Immunologie clinique, Clamart, France
| | - Stéphane Benoist
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Chirurgie générale et digestive, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Antonio Cosma
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Bruno Vaslin
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Christine Rouzioux
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, EA 7327, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Necker-Enfants Malades, Laboratoire de Virologie, Paris, France
| | - Jacqueline Capeau
- INSERM UMR S938, CDR Saint-Antoine; Sorbonne Universités, UPMC Univ Paris 6, Paris, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Tenon, Service de Biochimie et Hormonologie; ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | | | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
| | - Olivier Lambotte
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- Assistance Publique—Hôpitaux de Paris, Hôpital Bicêtre, Service de Médecine Interne et Immunologie clinique, Le Kremlin-Bicêtre, France
| | - Christine Bourgeois
- Université Paris Sud, UMR 1184, Le Kremlin-Bicêtre, France
- CEA, DSV/iMETI, IDMIT, Fontenay-aux-Roses, France
- INSERM, U1184, Immunology of Viral Infections and Autoimmune Diseases, Le Kremlin-Bicêtre, France
- * E-mail:
| |
Collapse
|
42
|
Heinsbroek E, Tafatatha T, Phiri A, Ngwira B, Crampin AC, Read JM, French N. Persisting high prevalence of pneumococcal carriage among HIV-infected adults receiving antiretroviral therapy in Malawi: a cohort study. AIDS 2015; 29:1837-44. [PMID: 26218599 PMCID: PMC4568891 DOI: 10.1097/qad.0000000000000755] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/26/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVE HIV-infected adults have high rates of pneumococcal carriage and invasive disease. We investigated the effect of antiretroviral therapy (ART) on pneumococcal carriage in HIV-infected adults prior to infant pneumococcal conjugate vaccine (PCV) rollout. DESIGN Observational cohort study. METHODS We recruited HIV-infected adults newly attending a rural HIV clinic in northern Malawi between 2008 and 2010. Nasopharyngeal samples were taken at baseline and after 6, 12, 18 and 24 months. We compared pneumococcal carriage by ART status using generalized estimated equation models adjusted for CD4 cell count, sex, seasonality, and other potential confounders. RESULTS In total, 336 individuals were included, of which 223 individuals started ART during follow-up. Individuals receiving ART had higher pneumococcal carriage than individuals not receiving ART (25.9 vs. 19.8%, P = 0.03) particularly for serotypes not included in PCV13 (16.1 vs. 9.6% P = 0.003). Following adjustment, increased carriage of non-PCV13 serotypes was still observed for individuals on ART, but results for all serotypes were nonsignificant [all serotypes: adjusted risk ratio (aRR) 1.22 (0.95-1.56); non-PCV13 serotypes: aRR 1.72, 95% CI 1.13-2.62]. CONCLUSION Pneumococcal carriage in HIV-infected adults in Malawi remained high despite use of ART, consistent with failure of mucosal immune reconstitution in the upper respiratory tract. There was evidence of increased carriage of non-PCV13 serotypes. HIV-infected adults on ART could remain an important reservoir for pneumococcal diversity post infant pneumococcal vaccine introduction. Control of pneumococcal disease in African HIV remains a priority.
Collapse
Affiliation(s)
- Ellen Heinsbroek
- Department of Clinical Infection, Microbiology, Institute of Infection and Global Health, University of Liverpool, UK
| | | | | | - Bagrey Ngwira
- Karonga Prevention Study, Chilumba
- The Polytechnic, University of Malawi, Blantyre, Malawi
| | - Amelia C. Crampin
- Karonga Prevention Study, Chilumba
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London
| | - Jonathan M. Read
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, UK
| | - Neil French
- Department of Clinical Infection, Microbiology, Institute of Infection and Global Health, University of Liverpool, UK
| |
Collapse
|
43
|
Site-specific differences in T cell frequencies and phenotypes in the blood and gut of HIV-uninfected and ART-treated HIV+ adults. PLoS One 2015; 10:e0121290. [PMID: 25811360 PMCID: PMC4374729 DOI: 10.1371/journal.pone.0121290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/29/2015] [Indexed: 11/22/2022] Open
Abstract
Gastrointestinal T lymphocytes are critical for mucosal immunity and HIV pathogenesis, yet little is known about normal T cell numbers and phenotypes in different regions of the gut, or the degree to which ART can restore levels to those of HIV-uninfected individuals. To investigate these questions, we measured T cell frequencies and markers of memory, activation, anergy, and homing in the blood, ileum, and rectum of HIV- and ART-suppressed HIV+ adults. In HIV- individuals, T cell frequencies and phenotypes differed significantly between sites. Compared to HIV- adults, HIV+ adults had lower absolute CD4+T cell counts in the ileal lamina propria and lower relative CD4+T cell counts in the blood and ileum. In the gut, HIV+ adults had a higher proportion of CD38+ CD4+T cells, a lower proportion of terminally-differentiated effector cells, and, in the rectum, a higher proportion of CTLA-4+ CD4+T cells. In HIV+ individuals, relative CD4+T cell numbers in the ileum correlated with the proportion of CTLA-4+ CD4+T cells, whereas in the rectum, they tended to correlate with the proportion of circulating CD4+T cells expressing α4β7 or CCR6. Mechanisms of T cell reconstitution may differ throughout the gut, with homing contributing more in the rectum while ileal reconstitution is associated with mucosal CD4+T cell anergy.
Collapse
|
44
|
Garg A, Rawat P, Spector SA. Interleukin 23 produced by myeloid dendritic cells contributes to T-cell dysfunction in HIV type 1 infection by inducing SOCS1 expression. J Infect Dis 2015; 211:755-68. [PMID: 25234720 PMCID: PMC4402373 DOI: 10.1093/infdis/jiu523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
The mechanism of myeloid dendritic cell (mDC)-mediated impaired T-cell function was investigated during human immunodeficiency virus type 1 (HIV-1) infection. HIV or gp120 were found to inhibit lipopolysaccharide-induced mDC maturation and cause defects in allogeneic T-cell proliferation, interleukin 2 and interferon γ (IFN-γ) production, and phosphorylated STAT1 expression. gp120-treated mDCs downregulated autologous T-cell proliferation and IFN-γ production against a peptide pool consisting of cytomegalovirus, Epstein-Barr virus, and influenza virus (CEF). These T-cell defects were associated with a decrease in production of the T-helper type 1-polarizing cytokine interleukin 12p70 and an increase in interleukin 23 (IL-23) production by gp120-treated mDCs. gp120-induced IL-23 upregulated suppressor of cytokine signaling 1 (SOCS1) protein in T cells, which inhibited IFN-γ production and killing of CEF-pulsed monocytes. These effector functions were recovered by silencing SOCS1 in T cells. Furthermore, we observed IL-23-induced SOCS1 binding to the IFN-γ transcription complex. These results identify SOCS1 as a novel target to improve the immune function in HIV-infected persons.
Collapse
Affiliation(s)
- Ankita Garg
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
| | - Stephen A. Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California–San Diego, La Jolla
- Rady Children's Hospital, San Diego, California
| |
Collapse
|
45
|
Jenabian MA, El-Far M, Vyboh K, Kema I, Costiniuk CT, Thomas R, Baril JG, LeBlanc R, Kanagaratham C, Radzioch D, Allam O, Ahmad A, Lebouché B, Tremblay C, Ancuta P, Routy JP. Immunosuppressive Tryptophan Catabolism and Gut Mucosal Dysfunction Following Early HIV Infection. J Infect Dis 2015; 212:355-66. [PMID: 25616404 DOI: 10.1093/infdis/jiv037] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Tryptophan (Trp) catabolism into kynurenine (Kyn) contributes to immune dysfunction in chronic human immunodeficiency virus (HIV) infection. To better define the relationship between Trp catabolism, inflammation, gut mucosal dysfunction, and the role of early antiretroviral therapy (ART), we prospectively assessed patients early after they acquired HIV. METHODS Forty patients in the early phase of infection were longitudinally followed for 12 months after receiving a diagnosis of HIV infection; 24 were untreated, and 16 were receiving ART. Kyn/Trp ratio, regulatory T-cells (Tregs) frequency, T-cell activation, dendritic cell counts, and plasma levels of gut mucosal dysfunction markers intestinal-type fatty acid-binding protein, soluble suppression of tumorigenicity 2, and lipopolysaccharide were assessed. RESULTS Compared with healthy subjects, patients in the early phase of infection presented with elevated Kyn/Trp ratios, which further increased in untreated patients but normalized in ART recipients. Accordingly, in untreated subjects, the elevated Treg frequency observed at baseline continued to increase over time. The highest CD8(+) T-cell activation was observed during the early phase of infection and decreased in untreated patients, whereas activation normalized in ART recipients. The Kyn/Trp ratio was positively associated with CD8(+) T-cell activation and levels of inflammatory cytokines (interleukin 6, interferon γ-inducible protein 10, interleukin 18, and tumor necrosis factor α) and negatively associated with dendritic cell frequencies at baseline and in untreated patients. However, ART did not normalize plasma levels of gut mucosal dysfunction markers. CONCLUSIONS Early initiation of ART normalized enhanced Trp catabolism and immune activation but did not improve plasma levels of gut mucosal dysfunction markers.
Collapse
Affiliation(s)
| | | | | | - Ido Kema
- Department of Laboratory Medicine, University Medical Center, University of Groningen, The Netherlands
| | | | | | | | - Roger LeBlanc
- Chronic Viral Illnesses Service Clinique Médicale OPUS
| | | | | | - Ossama Allam
- Department of Microbiology and Immunology CHU Ste-Justine Research Center, University of Montreal, Quebec, Canada
| | - Ali Ahmad
- Department of Microbiology and Immunology CHU Ste-Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Cécile Tremblay
- CHUM Research Centre Department of Microbiology and Immunology
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service Research Institute Division of Hematology, McGill University Health Centre
| | | |
Collapse
|
46
|
|
47
|
Nausea, Vomiting, and Noninflammatory Diarrhea. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7173487 DOI: 10.1016/b978-1-4557-4801-3.00100-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Jacobs JP, Braun J. Immune and genetic gardening of the intestinal microbiome. FEBS Lett 2014; 588:4102-11. [PMID: 24613921 PMCID: PMC4156569 DOI: 10.1016/j.febslet.2014.02.052] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 12/19/2022]
Abstract
The mucosal immune system - consisting of adaptive and innate immune cells as well as the epithelium - is profoundly influenced by its microbial environment. There is now growing evidence that the converse is also true, that the immune system shapes the composition of the intestinal microbiome. During conditions of health, this bidirectional interaction achieves a homeostasis in which inappropriate immune responses to non-pathogenic microbes are averted and immune activity suppresses blooms of potentially pathogenic microbes (pathobionts). Genetic alteration in immune/epithelial function can affect host gardening of the intestinal microbiome, contributing to the diversity of intestinal microbiota within a population and in some cases allowing for unfavorable microbial ecologies (dysbiosis) that confer disease susceptibility.
Collapse
Affiliation(s)
- Jonathan P Jacobs
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jonathan Braun
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
49
|
d'Ettorre G, Baroncelli S, Micci L, Ceccarelli G, Andreotti M, Sharma P, Fanello G, Fiocca F, Cavallari EN, Giustini N, Mallano A, Galluzzo CM, Vella S, Mastroianni CM, Silvestri G, Paiardini M, Vullo V. Reconstitution of intestinal CD4 and Th17 T cells in antiretroviral therapy suppressed HIV-infected subjects: implication for residual immune activation from the results of a clinical trial. PLoS One 2014; 9:e109791. [PMID: 25340778 PMCID: PMC4207675 DOI: 10.1371/journal.pone.0109791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/04/2014] [Indexed: 12/04/2022] Open
Abstract
Introduction During HIV infection the severe depletion of intestinal CD4+ T-cells is associated with microbial translocation, systemic immune activation, and disease progression. This study examined intestinal and peripheral CD4+ T-cell subsets reconstitution under combined antiretroviral therapy (cART), and systemic immune activation markers. Methods This longitudinal single-arm pilot study evaluates CD4+ T cells, including Th1 and Th17, in gut and blood and soluble markers for inflammation in HIV-infected individuals before (M0) and after eight (M8) months of cART. From January 2010 to December 2011, 10 HIV-1 naïve patients were screened and 9 enrolled. Blood and gut CD4+ T-cells subsets and cellular immune activation were determined by flow-cytometry and plasma soluble CD14 by ELISA. CD4+ Th17 cells were detected in gut biopsies by immunohistochemistry. Microbial translocation was measured by limulus-amebocyte-lysate assay to detect bacterial lipopolysaccharide (LPS) and PCR Real Time to detect plasma bacterial 16S rDNA. Results Eight months of cART increased intestinal CD4+ and Th17 cells and reduced levels of T-cell activation and proliferation. The magnitude of intestinal CD4+ T-cell reconstitution correlated with the reduction of plasma LPS. Importantly, the magnitude of Th17 cells reconstitution correlated directly with blood CD4+ T-cell recovery. Conclusion Short-term antiretroviral therapy resulted in a significant increase in the levels of total and Th17 CD4+ T-cells in the gut mucosa and in decline of T-cell activation. The observation that pre-treatment levels of CD4+ and of CD8+ T-cell activation are predictors of the magnitude of Th17 cell reconstitution following cART provides further rationale for an early initiation of cART in HIV-infected individuals. Trial Registration ClinicalTrials.gov NCT02097381
Collapse
Affiliation(s)
- Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Istituto Pasteur – Fondazione Cenci-Bolognetti, University of Rome “Sapienza”, Rome, Italy
- * E-mail:
| | - Silvia Baroncelli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Istituto Pasteur – Fondazione Cenci-Bolognetti, University of Rome “Sapienza”, Rome, Italy
| | - Mauro Andreotti
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Prachi Sharma
- Division of Pathology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
| | - Gianfranco Fanello
- Department of Emergency Surgery- Emergency Endoscopic Unit, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Fausto Fiocca
- Department of Emergency Surgery- Emergency Endoscopic Unit, Policlinico Umberto I, University of Rome “Sapienza”, Rome, Italy
| | - Eugenio Nelson Cavallari
- Department of Public Health and Infectious Diseases, Istituto Pasteur – Fondazione Cenci-Bolognetti, University of Rome “Sapienza”, Rome, Italy
| | - Noemi Giustini
- Department of Public Health and Infectious Diseases, Istituto Pasteur – Fondazione Cenci-Bolognetti, University of Rome “Sapienza”, Rome, Italy
| | - Alessandra Mallano
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Clementina M. Galluzzo
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Stefano Vella
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Claudio M. Mastroianni
- Infectious Disease Unit, Fondazione Eleonora Lorillard Spencer Cenci, Sapienza University, Latina, Italy
| | - Guido Silvestri
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Istituto Pasteur – Fondazione Cenci-Bolognetti, University of Rome “Sapienza”, Rome, Italy
| |
Collapse
|
50
|
Noncommunicable diseases in HIV infection in low- and middle-income countries: gastrointestinal, hepatic, and nutritional aspects. J Acquir Immune Defic Syndr 2014; 67 Suppl 1:S79-86. [PMID: 25117963 DOI: 10.1097/qai.0000000000000260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this review was to outline the interaction between HIV and noncommunicable diseases affecting the gastrointestinal (GI) tract, liver, and nutritional disorders in low- and middle-income countries (LMICs), and to identify research priorities. Noncommunicable GI tract disorders are only moderately influenced by HIV, and peptic ulceration is actually less common. However, the impact of HIV on GI cancers needs further investigation. HIV interacts strongly with environmental enteropathy, exacerbating malabsorption of nutrients and drugs. HIV has 2 major effects on noncommunicable liver disease: drug-induced liver injury and nonalcoholic fatty liver disease (particularly in persons of African genetic descent). The effect of HIV on nutrition was one of the first markers of the epidemic in the 1980s, and HIV continues to have major nutritional consequences. Childhood malnutrition and HIV frequently coexist in some regions, for example, southern Africa, resulting in powerful negative interactions with poorer responses to standard nutritional rehabilitation. HIV and nutritional care need to be better integrated, but many questions on how best to do this remain unanswered. Across the spectrum of GI, hepatic, and nutritional disorders in HIV infection, there is increasing evidence that the microbiome may play an important role in disease pathogenesis, but work in this area, especially in low- and middle-income countries, is in its infancy.
Collapse
|