1
|
Livingstone EJ, Cartwright JA, Campana L, Lewis PJS, Dwyer BJ, Aird R, Man TY, Vermeren M, Rossi AG, Boulter L, Forbes SJ. Semaphorin 7a is protective through immune modulation during acetaminophen-induced liver injury. J Inflamm (Lond) 2025; 22:13. [PMID: 40114253 PMCID: PMC11927371 DOI: 10.1186/s12950-025-00429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND AND AIM Acetaminophen (APAP) induced acute liver injury (ALI), the leading cause acute liver failure in the western world, has limited treatment options. APAP toxicity results in massive hepatic necrosis and secondary infiltrating monocytes and neutrophils, which contribute to pathogenesis. Semaphorin 7a (Sema7a), a chemoattractant and modulator of monocytes and neutrophils, is a potential therapeutic target in other conditions, but its role in APAP-ALI is unexplored. METHODS Wild-type (WT) and Sema7a knockout (KO) mice were examined during APAP-ALI. Serum liver function tests, histological analysis and cellular localisation of Sema7a and its receptors, Plexin C1 and Integrin β1, were examined. Serum cytokines were quantified, tissue macrophages and neutrophils were localised, and in vivo phenotype, including phagocytosis, was assessed by immunohistochemistry and flow cytometry. RESULTS Sema7a was expressed by HNF4α + peri-necrotic hepatocytes circumferentially during APAP-ALI injury phases, and serum concentrations were increased, and correlated with hepatic injury. Sema7a KO mice had increased circulating inflammatory cytokines and significantly less hepatic F4/80 + macrophages, a cell type required for hepatic repair. Sema7a KO mice had higher necrotic area neutrophils, and increased neutrophil chemoattractant CXCL1. Without Sema7a expression, mice displayed increased necrosis and liver injury markers compared to Sema7a WT mice. Without peri-necrotic hepatocyte Sema7a expression, we also identified increased cell death and hepatic cellular stress outside of necrosis. CONCLUSION We have identified a novel protective role of Sema7a during injury phases of APAP-ALI. Without peri-necrotic hepatocyte Sema7a expression and secretion, there is increased inflammation, time specific worsened hepatic necrosis and increased hepatic cell stress and death outside of the necrotic zone.
Collapse
Affiliation(s)
- Eilidh J Livingstone
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Jennifer A Cartwright
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
- The Royal (Dick) School of Veterinary Studiesand Theaq , Roslin Institute, University of Edinburgh, Edinburgh, UK.
| | - Lara Campana
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Philip J Starkey Lewis
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Benjamin J Dwyer
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Rhona Aird
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Tak Yung Man
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Matthieu Vermeren
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Adriano Giorgio Rossi
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stuart John Forbes
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Bernard A, Eggstein C, Tang L, Keller M, Körner A, Mirakaj V, Rosenberger P. Plexin C1 influences immune response to intracellular LPS and survival in murine sepsis. J Biomed Sci 2024; 31:82. [PMID: 39169397 PMCID: PMC11337750 DOI: 10.1186/s12929-024-01074-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Intracellular sensing of lipopolysaccharide (LPS) is essential for the immune response against gram-negative bacteria and results in activation of caspase-11 and pyroptotic cell death with fatal consequences in sepsis. We found the neuronal guidance receptor plexin C1 (PLXNC1) influences the intracellular response to LPS. METHODS We employed a murine model of sepsis via cecal ligation and binding (CLP), using PLXNC1-/- mice and littermate controls, and additionally transfected murine bone-marrow-derived macrophages (BMDMs) from both genotypes with LPS to achieve activation of the noncanonical inflammasome ex vivo. Additionally, we transfected the PLXNC1 ligand SL4c-d in vivo and ex vivo to examine its effect on intracellular LPS response. RESULTS We found the neuronal guidance receptor PLXNC1 dampens the intracellular response to LPS by interacting with adenylate cyclase 4 (ADCY4) and protein kinase A activity, which in turn diminishes caspase-11 expression. The absence of PLXNC1 results in excessive inflammation marked by increased cytokine release, increased secondary organ injury and reduced sepsis survival in a murine sepsis model induced by CLP. Notably, administration of SL4c-d-peptide ligand of PLXNC1-reduces the inflammatory response during CLP-induced sepsis and improves survival. CONCLUSIONS These results elucidate a previously unknown mechanism for PLXNC1 suppressing excessive noncanonical inflammasome activity and offer a new potential target for treatment of sepsis with its detrimental effects.
Collapse
Affiliation(s)
- Alice Bernard
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Linyan Tang
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Marius Keller
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Andreas Körner
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Valbona Mirakaj
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anaesthesiology and Intensive Care Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany.
| |
Collapse
|
3
|
Liu-Smith F, Lin J. Unsupervised Analysis Reveals the Involvement of Key Immune Response Genes and the Matrisome in Resistance to BRAF and MEK Inhibitors in Melanoma. Cancers (Basel) 2024; 16:2313. [PMID: 39001376 PMCID: PMC11240363 DOI: 10.3390/cancers16132313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Melanoma tumors exhibit a wide range of heterogeneity in genomics even with shared mutations in the MAPK pathway, including BRAF mutations. Consistently, adaptive drug resistance to BRAF inhibitors and/or BRAF plus MEK inhibitors also exhibits a wide range of heterogeneous responses, which poses an obstacle for discovering common genes and pathways that can be used in clinic for overcoming drug resistance. This study objectively analyzed two sets of previously published tumor genomics data comparing pre-treated melanoma tumors and BRAFi- and/or MEKi-resistant tumors. Heterogeneity in response to BRAFi and BRAFi/MEKi was evident because the pre-treated tumors and resistant tumors did not exhibit a tendency of clustering together. Differentially expressed gene (DEG) analysis revealed eight genes and two related enriched signature gene sets (matrisome and matrisome-associated signature gene sets) shared by both sets of data. The matrisome was closely related to the tumor microenvironment and immune response, and five out of the eight shared genes were also related to immune response. The PLXNC1 gene links the shared gene set and the enriched signature gene sets as it presented in all analysis results. As the PLXNC1 gene was up-regulated in the resistant tumors, we validated the up-regulation of this gene in a laboratory using vemurafenib-resistant cell lines. Given its role in promoting inflammation, this study suggests that resistant tumors exhibit an inflammatory tumor microenvironment. The involvement of the matrisome and the specific set of immune genes identified in this study may provide new opportunities for developing future therapeutic methods.
Collapse
Affiliation(s)
- Feng Liu-Smith
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38105, USA;
- Department of Dermatology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38105, USA
| | - Jianjian Lin
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38105, USA;
| |
Collapse
|
4
|
Granja T, Köhler D, Tang L, Burkard P, Eggstein C, Hemmen K, Heinze KG, Heck-Swain KL, Koeppen M, Günther S, Blaha M, Magunia H, Bamberg M, Konrad F, Ngamsri KC, Fuhr A, Keller M, Bernard AM, Haeberle HA, Bakchoul T, Zarbock A, Nieswandt B, Rosenberger P. Semaphorin 7A coordinates neutrophil response during pulmonary inflammation and sepsis. Blood Adv 2024; 8:2660-2674. [PMID: 38489236 PMCID: PMC11157222 DOI: 10.1182/bloodadvances.2023011778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/17/2024] Open
Abstract
ABSTRACT Pulmonary defense mechanisms are critical for host integrity during pneumonia and sepsis. This defense is fundamentally dependent on the activation of neutrophils during the innate immune response. Recent work has shown that semaphorin 7A (Sema7A) holds significant impact on platelet function, yet its role on neutrophil function within the lung is not well understood. This study aimed to identify the role of Sema7A during pulmonary inflammation and sepsis. In patients with acute respiratory distress syndrome (ARDS), we were able to show a correlation between Sema7A and oxygenation levels. During subsequent workup, we found that Sema7A binds to the neutrophil PlexinC1 receptor, increasing integrins, and L-selectin on neutrophils. Sema7A prompted neutrophil chemotaxis in vitro and the formation of platelet-neutrophil complexes in vivo. We also observed altered adhesion and transmigration of neutrophils in Sema7A-/-animals in the lung during pulmonary inflammation. This effect resulted in increased number of neutrophils in the interstitial space of Sema7A-/- animals but reduced numbers of neutrophils in the alveolar space during pulmonary sepsis. This finding was associated with significantly worse outcome of Sema7A-/- animals in a model of pulmonary sepsis. Sema7A has an immunomodulatory effect in the lung, affecting pulmonary sepsis and ARDS. This effect influences the response of neutrophils to external aggression and might influence patient outcome. This trial was registered at www.ClinicalTrials.gov as #NCT02692118.
Collapse
Affiliation(s)
- Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Lusofona's Research Center for Biosciences & Health Technologies, CBIOS-Universidade, Lisboa, Portugal
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Linyan Tang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
- Department of Intensive Care Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Sven Günther
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Maximilian Blaha
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Harry Magunia
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Maximilian Bamberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Franziska Konrad
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | | | - Anika Fuhr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Marius Keller
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Alice M. Bernard
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Helene A. Haeberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Tamam Bakchoul
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Alexander Zarbock
- Department of Anesthesiology and Intensive Care Medicine and Pain Medicine, University Hospital, Münster, Germany
| | - Bernhard Nieswandt
- Department of Intensive Care Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| |
Collapse
|
5
|
Meng N, Mao L, Jiang Q, Yuan J, Liu L, Wang L. PLXNC1 interference alleviates the inflammatory injury, apoptosis and extracellular matrix degradation of IL-1β-exposed chondrocytes via suppressing GRP78 expression. J Orthop Surg Res 2023; 18:784. [PMID: 37853395 PMCID: PMC10585743 DOI: 10.1186/s13018-023-04207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a frequently encountered debilitating joint disorder. Whether plexin C1 (PLXNC1) is implicated in OA is far from being investigated despite its well-documented pro-inflammatory property in human diseases. The goal of this study is to expound the specific role of PLXNC1 in OA and elaborate the probable action mechanism. METHODS Firstly, PLXNC1 expression in the cartilage tissues of patients with OA was examined with GEO database. In interleukin-1beta (IL-1β)-induced OA cell model, RT-qPCR and western blotting tested the expression of PLXNC1, glucose-regulating protein 78 (GRP78) and extracellular matrix (ECM) degradation-related factors. Cell viability and inflammation were respectively judged by CCK-8 assay and RT-qPCR. TUNEL and western blotting estimated cell apoptosis. The potential binding between PLXNC1 and GRP78 was corroborated by Co-IP assay. Western blotting also tested the expression of endoplasmic reticulum stress (ERS)-associated proteins. RESULTS As it turned out, PLXNC1 expression was elevated in the cartilage tissues of patients with OA and IL-1β-treated chondrocytes. When PLXNC1 was depleted, the viability injury, inflammation, apoptosis and ECM degradation of chondrocytes exposed to IL-1β were obstructed. Besides, GRP78 bond to PLXNC1 in IL-1β-treated chondrocytes. The ascending GRP78 expression in the chondrocytes exposed to IL-1β was depleted after PLXNC1 was silenced. Meanwhile, the impacts of PLXNC1 deficiency on the viability, inflammatory response, apoptosis, ECM degradation as well as ERS in IL-1β-exposed chondrocytes were abolished by GRP78 up-regulation. CONCLUSION In summary, PLXNC1 silencing might interact with and down-regulate GRP78 to mitigate the apoptosis, inflammation, and ECM degradation of IL-1β-insulted chondrocytes in OA.
Collapse
Affiliation(s)
- Nan Meng
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, 8 Dianli Road, Runzhou District, Zhenjiang City, 212002, Jiangsu Province, China
| | - Lingwei Mao
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, 8 Dianli Road, Runzhou District, Zhenjiang City, 212002, Jiangsu Province, China
| | - Qinyi Jiang
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, 8 Dianli Road, Runzhou District, Zhenjiang City, 212002, Jiangsu Province, China
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, 8 Dianli Road, Runzhou District, Zhenjiang City, 212002, Jiangsu Province, China
| | - Linjuan Liu
- Department of Stomatology, The Affiliated Hospital with Jiangsu University, 8 Jiefang Road, Jingkou District, Zhenjiang City, 212002, Jiangsu Province, China.
| | - Lei Wang
- Department of Orthopedics, The Affiliated People's Hospital with Jiangsu University, 8 Dianli Road, Runzhou District, Zhenjiang City, 212002, Jiangsu Province, China.
| |
Collapse
|
6
|
Schreib CC, Jarvis MI, Terlier T, Goell J, Mukherjee S, Doerfert MD, Wilson TA, Beauregard M, Martins KN, Lee J, Solis LS, Vazquez E, Oberli MA, Hanak BW, Diehl M, Hilton I, Veiseh O. Lipid Deposition Profiles Influence Foreign Body Responses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205709. [PMID: 36871193 PMCID: PMC10309593 DOI: 10.1002/adma.202205709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/09/2022] [Indexed: 05/26/2023]
Abstract
Fibrosis remains a significant cause of failure in implanted biomedical devices and early absorption of proteins on implant surfaces has been shown to be a key instigating factor. However, lipids can also regulate immune activity and their presence may also contribute to biomaterial-induced foreign body responses (FBR) and fibrosis. Here it is demonstrated that the surface presentation of lipids on implant affects FBR by influencing reactions of immune cells to materials as well as their resultant inflammatory/suppressive polarization. Time-of-flight secondary ion mass spectroscopy (ToF-SIMS) is employed to characterize lipid deposition on implants that are surface-modified chemically with immunomodulatory small molecules. Multiple immunosuppressive phospholipids (phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin) are all found to deposit preferentially on implants with anti-FBR surface modifications in mice. Significantly, a set of 11 fatty acids is enriched on unmodified implanted devices that failed in both mice and humans, highlighting relevance across species. Phospholipid deposition is also found to upregulate the transcription of anti-inflammatory genes in murine macrophages, while fatty acid deposition stimulated the expression of pro-inflammatory genes. These results provide further insights into how to improve the design of biomaterials and medical devices to mitigate biomaterial material-induced FBR and fibrosis.
Collapse
Affiliation(s)
- Christian C. Schreib
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Maria I. Jarvis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: Lonza Inc. 14905 Kirby Drive, Houston, TX 77047
| | - Tanguy Terlier
- SIMS laboratory, Shared Equipment Authority, Rice University, 6500 Main Street, Houston, TX 77030
| | - Jacob Goell
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Present address: School of Biomedial Engineering, ITT (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Michael D. Doerfert
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Taylor Anne Wilson
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Beauregard
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Kevin N. Martins
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Jared Lee
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005
| | - Leo Sanchez Solis
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Esperanza Vazquez
- Department of Biomedical Engineering, University of Houston, 3517 Cullen Blvd, Houston, TX 77204
| | - Matthias A. Oberli
- Sigilon Therapeutics, 200 Dexter Avenue, Watertown, MA 02472
- Present address: Xibus systems Inc. 200 Dexter Avenue, Watertown, MA 02472
| | - Brian W. Hanak
- Department of Neurosurgery, Loma Linda University Health, 11234 Anderson St, Loma Linda, CA 92354
| | - Michael Diehl
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
| | - Isaac Hilton
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| | - Omid Veiseh
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030
- Program of Synthetic, Systems and Physical Biology, Rice University, 6500 Main Street, Houston, TX 77030
| |
Collapse
|
7
|
Targeting the Semaphorin3E-plexinD1 complex in allergic asthma. Pharmacol Ther 2023; 242:108351. [PMID: 36706796 DOI: 10.1016/j.pharmthera.2023.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Asthma is a heterogenous airway disease characterized by airway inflammation and remodeling. It affects more than 300 million people worldwide and poses a significant burden on society. Semaphorins, discovered initially as neural guidance molecules, are ubiquitously expressed in various organs and regulate multiple signaling pathways. Interestingly, Semaphorin3E is a critical molecule in lung pathophysiology through its role in both lung development and homeostasis. Semaphorin3E binds to plexinD1, mediating regulatory effects on cell migration, proliferation, and angiogenesis. Recent in vitro and in vivo studies have demonstrated that the Semaphorin3E-plexinD1 axis is implicated in asthma, impacting inflammatory and structural cells associated with airway inflammation, tissue remodeling, and airway hyperresponsiveness. This review details the Semaphorin3E-plexinD1 axis in various aspects of asthma and highlights future directions in research including its potential role as a therapeutic target in airway allergic diseases.
Collapse
|
8
|
Identifying potential novel insights for COVID-19 pathogenesis and therapeutics using an integrated bioinformatics analysis of host transcriptome. Int J Biol Macromol 2022; 194:770-780. [PMID: 34826456 PMCID: PMC8610562 DOI: 10.1016/j.ijbiomac.2021.11.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023]
Abstract
The molecular mechanisms underlying the pathogenesis of COVID-19 have not been fully discovered. This study aims to decipher potentially hidden parts of the pathogenesis of COVID-19, potential novel drug targets, and identify potential drug candidates. Two gene expression profiles were analyzed, and overlapping differentially expressed genes (DEGs) were selected for which top enriched transcription factors and kinases were identified, and pathway analysis was performed. Protein-protein interaction (PPI) of DEGs was constructed, hub genes were identified, and module analysis was also performed. DGIdb database was used to identify drugs for the potential targets (hub genes and the most enriched transcription factors and kinases for DEGs). A drug-potential target network was constructed, and drugs were ranked according to the degree. L1000FDW was used to identify drugs that can reverse transcriptional profiles of COVID-19. We identified drugs currently in clinical trials, others predicted by different methods, and novel potential drug candidates Entrectinib, Omeprazole, and Exemestane for combating COVID-19. Besides the well-known pathogenic pathways, it was found that axon guidance is a potential pathogenic pathway. Sema7A, which may exacerbate hypercytokinemia, is considered a potential novel drug target. Another potential novel pathway is related to TINF2 overexpression, which may induce potential telomere dysfunction and damage DNA that may exacerbate lung fibrosis. This study identified new potential insights regarding COVID-19 pathogenesis and treatment, which might help us improve our understanding of the mechanisms of COVID-19.
Collapse
|
9
|
Berg NK, Li J, Kim B, Mills T, Pei G, Zhao Z, Li X, Zhang X, Ruan W, Eltzschig HK, Yuan X. Hypoxia-inducible factor-dependent induction of myeloid-derived netrin-1 attenuates natural killer cell infiltration during endotoxin-induced lung injury. FASEB J 2021; 35:e21334. [PMID: 33715200 PMCID: PMC8251729 DOI: 10.1096/fj.202002407r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Sepsis and sepsis‐associated lung inflammation significantly contribute to the morbidity and mortality of critical illness. Here, we examined the hypothesis that neuronal guidance proteins could orchestrate inflammatory events during endotoxin‐induced lung injury. Through a targeted array, we identified netrin‐1 as the top upregulated neuronal guidance protein in macrophages treated with lipopolysaccharide (LPS). Furthermore, we found that netrin‐1 is highly enriched in infiltrating myeloid cells, particularly in macrophages during LPS‐induced lung injury. Transcriptional studies implicate hypoxia‐inducible factor HIF‐1α in the transcriptional induction of netrin‐1 during LPS treatment. Subsequently, the deletion of netrin‐1 in the myeloid compartment (Ntn1loxp/loxp LysM Cre) resulted in exaggerated mortality and lung inflammation. Surprisingly, further studies revealed enhanced natural killer cells (NK cells) infiltration in Ntn1loxp/loxp LysM Cre mice, and neutralization of NK cell chemoattractant chemokine (C‐C motif) ligand 2 (CCL2) reversed the exaggerated lung inflammation. Together, these studies provide functional insight into myeloid cell‐derived netrin‐1 in controlling lung inflammation through the modulation of CCL2‐dependent infiltration of NK cells.
Collapse
Affiliation(s)
- Nathaniel K Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Jiwen Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Boyun Kim
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Tingting Mills
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Internal Medicine, The University of Texas Health Science Center, Houston, TX, USA.,Center for Clinical and Translational Sciences, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Ruan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.,Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
10
|
Kanth SM, Gairhe S, Torabi-Parizi P. The Role of Semaphorins and Their Receptors in Innate Immune Responses and Clinical Diseases of Acute Inflammation. Front Immunol 2021; 12:672441. [PMID: 34012455 PMCID: PMC8126651 DOI: 10.3389/fimmu.2021.672441] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Semaphorins are a group of proteins that have been studied extensively for their critical function in neuronal development. They have been shown to regulate airway development, tumorigenesis, autoimmune diseases, and the adaptive immune response. Notably, emerging literature describes the role of immunoregulatory semaphorins and their receptors, plexins and neuropilins, as modulators of innate immunity and diseases defined by acute injury to the kidneys, abdomen, heart and lungs. In this review we discuss the pathogenic functions of semaphorins in clinical conditions of acute inflammation, including sepsis and acute lung injury, with a focus on regulation of the innate immune response as well as potential future therapeutic targeting.
Collapse
Affiliation(s)
- Shreya M Kanth
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Salina Gairhe
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Tu YJ, Tan B, Jiang L, Wu ZH, Yu HJ, Li XQ, Yang AD. Emodin Inhibits Lipopolysaccharide-Induced Inflammation by Activating Autophagy in RAW 264.7 Cells. Chin J Integr Med 2020; 27:345-352. [PMID: 32840732 DOI: 10.1007/s11655-020-3477-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the effects of emodin on inflammation and autophagy in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages and reveal its underlying mechanism. METHODS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was conducted to find the appropriate dose for emodin. RAW264.7 cells pretreated with different concentrations (0-50 μmol/L) of emodin or vehicle for 2 h prior to exposure to LPS for 16 h. Cell morphology was examined and propidium iodide staining was used to examine cell cycle. Expressions of inflammation-related proteins [nuclear factor-kappaB (NF-κ B) and I-kappaB (I κ B)α] and autophagy-related proteins [light chain (LC)3, P62/sequestosome 1, mammalian target of rapamycin (mTOR), and p-mTOR] were examined using Western blot analysis. Expression of inflammation-related cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were detected by enzyme-linked immunosorbent assay. Autophagy was examined with LC3B fluorescence intensity and aggregation. The effect of emodin on autophagy was conducted with an autophagy inhibitor, 3-methyladenine (3-MA). RESULTS The expression of NF-κ B in LPS-induced cells was significantly increased (P<0.01) and simultaneously I κ B α decreased compared with the normal cell (P<0.05). The expressions of TNF-α, IL-β, and IL-6 proteins in the LPS-induced RAW264.7 cells were significantly higher than in the normal cell (P<0.05 or P<0.01). LPS increased the percentage of cells in the G0/G1 phase, which was recovered by emodin at different doses (12.5, 25, and 50μ mol/L, P<0.05 or P<0.01). The medium-dose (25 μ ml/L) emodin decreased the expressions of NF-κ B, P62 and p-mTOR (P<0.01) and increased I κ B α expression, LC3B II/I ratio as well as LC3B fluorescence intensity (P<0.05 or P<0.01). Meanwhile, the enhanced autophagic effects of emodin, such as the increment of LC3B II/ratio and the decrement of P62 expression, were suppressed by autophagy inhibitor 3-MA. CONCLUSION Emodin could inhibit inflammation of mice RAW264.7 macrophages induced by LPS, possibly through activating autophagy.
Collapse
Affiliation(s)
- Yan-Jie Tu
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Tan
- Clinical Pharmacokinetic Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Jiang
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhong-Hua Wu
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Ji Yu
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Qian Li
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ai-Dong Yang
- Research Centre on Application of Classical Prescriptions, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. .,Department of Febrile Disease, Basic Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Movassagh H, Koussih L, Shan L, Gounni AS. The regulatory role of semaphorin 3E in allergic asthma. Int J Biochem Cell Biol 2018; 106:68-73. [PMID: 30447428 DOI: 10.1016/j.biocel.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Semaphorins were originally discovered as essential mediators involved in regulation of axonal growth during development of the nervous system. Ubiquitously expressed on various organs, they control several cellular functions by regulating essential signaling pathways. Among them, semaphorin3E binds plexinD1 as the primary receptor and mediates regulatory effects on cell migration, proliferation, and angiogenesis considered major physiological and pathological features in health and disease. Recent in vitro and in vivo experimental evidence demonstrate a key regulator role of semaphorin3E on airway inflammation, hyperresponsivenss and remodeling in allergic asthma. Herein, we aim to provide a broad overview of the biology of semaphorin family and review the recently discovered regulatory role of semaphorin3E in modulating immune cells and structural cells function in the airways. These findings support the concept of semaphorin3E/plexinD1 axis as a therapeutic target in allergic asthma.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Latifa Koussih
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
13
|
Movassagh H, Khadem F, Gounni AS. Semaphorins and Their Roles in Airway Biology: Potential as Therapeutic Targets. Am J Respir Cell Mol Biol 2018; 58:21-27. [PMID: 28817310 DOI: 10.1165/rcmb.2017-0171tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Semaphorins are a large family of proteins originally identified as axon guidance cues that play a crucial role in neural development. They are also ubiquitously expressed beyond the nervous system and contribute to regulation of essential cell functions, such as cell migration, proliferation, and adhesion. Binding of semaphorins to their receptors, including plexins and neuropilins, triggers diverse signaling pathways, which are involved in the pathogenesis of various diseases, from cancer to autoimmune and allergic disorders. Despite emerging evidence suggestive of nonredundant roles of semaphorins in cellular and molecular mechanisms of the airway biology, their precise expression and function have not been fully addressed. Here, we first provide an overview about the semaphorin family, their receptors, signaling pathways, and their cellular functions. Then, we highlight the novel findings on the role of semaphorins in airway biology under developmental, homeostatic, and pathological conditions. In particular, we discuss the dual roles of semaphorins in respiratory disorders where they can up- or downregulate processes underlying the pathophysiology of the airway diseases. Next, our recent findings on the expression and function of semaphorin 3E in allergic asthma are further emphasized, and its potential mechanism of action in allergic airway inflammation and remodeling is discussed. Finally, we raise some unanswered questions aiming to develop future research directions.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Forough Khadem
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Mirakaj V, Rosenberger P. Immunomodulatory Functions of Neuronal Guidance Proteins. Trends Immunol 2017; 38:444-456. [PMID: 28438491 DOI: 10.1016/j.it.2017.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Neuronal guidance proteins (NGPs) were originally identified for their role during the embryonic development of the nervous system. Recent years have seen the discovery of NGP functions during immune responses. In this context, NGPs were demonstrated to control leukocyte migration and the release of cytokines during conditions of acute inflammation, such as lung injury or sepsis. However, NGPs also display potent actions in the resolution of inflammation, chronic inflammatory conditions, the development of atherosclerosis, and during ischemia followed by reperfusion. Here, we provide an overview of the current state of knowledge about the role of NGPs in the immune system and describe their immunomodulatory function.
Collapse
Affiliation(s)
- Valbona Mirakaj
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Peter Rosenberger
- Department of Anesthesia and Intensive Care Medicine, Tübingen University Hospital, Faculty of Medicine, Eberhard-Karls University Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Esnault S, Torr EE, Bernau K, Johansson MW, Kelly EA, Sandbo N, Jarjour NN. Endogenous Semaphorin-7A Impedes Human Lung Fibroblast Differentiation. PLoS One 2017; 12:e0170207. [PMID: 28095470 PMCID: PMC5240965 DOI: 10.1371/journal.pone.0170207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/31/2016] [Indexed: 12/20/2022] Open
Abstract
Semaphorin-7A is a glycosylphosphatidylinositol-anchored protein, initially characterized as an axon guidance protein. Semaphorin-7A also contributes to immune cell regulation and may be an essential pro-fibrotic factor when expressed by non-fibroblast cell types (exogenous). In mouse models, semaphorin-7A was shown to be important for TGF-ß1-induced pulmonary fibrosis characterized by myofibroblast accumulation and extracellular matrix deposition, but the cell-specific role of semaphorin-7A was not examined in fibroblasts. The purpose of this study is to determine semaphorin-7A expression by fibroblasts and to investigate the function of endogenously expressed semaphorin-7A in primary human lung fibroblasts (HLF). Herein, we show that non-fibrotic HLF expressed high levels of cell surface semaphorin-7A with little dependence on the percentage of serum or recombinant TGF-ß1. Semaphorin-7A siRNA strongly decreased semaphorin-7A mRNA expression and reduced cell surface semaphorin-7A. Reduction of semaphorin-7A induced increased proliferation and migration of non-fibrotic HLF. Also, independent of the presence of TGF-ß1, the decline of semaphorin-7A by siRNA was associated with increased α-smooth muscle actin production and gene expression of periostin, fibronectin, laminin, and serum response factor (SRF), indicating differentiation into a myofibroblast. Conversely, overexpression of semaphorin-7A in the NIH3T3 fibroblast cell line reduced the production of pro-fibrotic markers. The inverse association between semaphorin-7A and pro-fibrotic fibroblast markers was further analyzed using HLF from idiopathic pulmonary fibrosis (IPF) (n = 6) and non-fibrotic (n = 7) lungs. Using these 13 fibroblast lines, we observed that semaphorin-7A and periostin expression were inversely correlated. In conclusion, our study indicates that endogenous semaphorin-7A in HLF plays a role in maintaining fibroblast homeostasis by preventing up-regulation of pro-fibrotic genes. Therefore, endogenous and exogenous semaphorin-7A may have opposite effects on the fibroblast phenotype.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| | - Elizabeth E. Torr
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mats W. Johansson
- Department of Biomolecular Chemistry, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Elizabeth A. Kelly
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nizar N. Jarjour
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, the University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Movassagh H, Saati A, Nandagopal S, Mohammed A, Tatari N, Shan L, Duke-Cohan JS, Fowke KR, Lin F, Gounni AS. Chemorepellent Semaphorin 3E Negatively Regulates Neutrophil Migration In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2016; 198:1023-1033. [PMID: 27913633 DOI: 10.4049/jimmunol.1601093] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/11/2016] [Indexed: 11/19/2022]
Abstract
Neutrophil migration is an essential step in leukocyte trafficking during inflammatory responses. Semaphorins, originally discovered as axon guidance cues in neural development, have been shown to regulate cell migration beyond the nervous system. However, the potential contribution of semaphorins in the regulation of neutrophil migration is not well understood. This study examines the possible role of a secreted chemorepellent, Semaphorin 3E (Sema3E), in neutrophil migration. In this study, we demonstrated that human neutrophils constitutively express Sema3E high-affinity receptor, PlexinD1. Sema3E displayed a potent ability to inhibit CXCL8/IL-8-induced neutrophil migration as determined using a microfluidic device coupled to real-time microscopy and a transwell system in vitro. The antimigratory effect of Sema3E on human neutrophil migration was associated with suppression of CXCL8/IL-8-mediated Ras-related C3 botulinum toxin substrate 1 GTPase activity and actin polymerization. We further addressed the regulatory role of Sema3E in the regulation of neutrophil migration in vivo. Allergen airway exposure induced higher neutrophil recruitment into the lungs of Sema3e-/- mice compared with wild-type controls. Administration of exogenous recombinant Sema3E markedly reduced allergen-induced neutrophil recruitment into the lungs, which was associated with alleviation of allergic airway inflammation and improvement of lung function. Our data suggest that Sema3E could be considered an essential regulatory mediator involved in modulation of neutrophil migration throughout the course of neutrophilic inflammation.
Collapse
Affiliation(s)
- Hesam Movassagh
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abeer Saati
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Saravanan Nandagopal
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ashfaque Mohammed
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Nazanin Tatari
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jonathan S Duke-Cohan
- Department of Medical Oncology, Laboratory of Immunobiology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215; and
| | - Keith R Fowke
- Department of Medical Microbiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Francis Lin
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada.,Department of Physics and Astronomy, Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
17
|
Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo-Maya JD, Kaminski N, Hu X, Pan H, Ryu C, Osafo-Addo A, Homer RJ, Feghali-Bostwick C, Fares WH, Gulati M, Hu B, Lee CG, Elias JA, Herzog EL. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis. FASEB J 2016; 30:4056-4070. [PMID: 27609773 DOI: 10.1096/fj.201600373r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is a progressive and often fatal condition that is believed to be partially orchestrated by macrophages. Mechanisms that control migration of these cells into and within the lung remain undefined. We evaluated the contributions of the semaphorin receptor, plexin C1 (PLXNC1), and the exocytic calcium sensor, synaptotagmin 7 (Syt7), in these processes. We evaluated the role of PLXNC1 in macrophage migration by using Boyden chambers and scratch tests, characterized its contribution to experimentally induced lung fibrosis in mice, and defined the mechanism for our observations. Our findings reveal that relative to control participants, patients with idiopathic pulmonary fibrosis demonstrate excessive monocyte migration and underexpression of PLXNC1 in the lungs and circulation, a finding that is recapitulated in the setting of scleroderma-related interstitial lung disease. Relative to wild type, PLXNC1-/- mouse macrophages are excessively migratory, and PLXNC1-/- mice show exacerbated collagen accumulation in response to either inhaled bleomycin or inducible lung targeted TGF-β1 overexpression. These findings are ameliorated by replacement of PLXNC1 on bone marrow-derived cells or by genetic deletion of Syt7. These data demonstrate the previously unrecognized observation that PLXNC1 deficiency permits Syt7-mediated macrophage migration and enhances mammalian lung fibrosis.-Peng, X., Moore, M., Mathur, A., Zhou, Y., Sun, H., Gan, Y., Herazo-Maya, J. D., Kaminski, N., Hu, X., Pan, H., Ryu, C., Osafo-Addo, A., Homer, R. J., Feghali-Bostwick, C., Fares, W. H., Gulati, M., Hu, B., Lee, C.-G., Elias, J. A., Herzog, E. L. Plexin C1 deficiency permits synaptotagmin 7-mediated macrophage migration and enhances mammalian lung fibrosis.
Collapse
Affiliation(s)
- Xueyan Peng
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Meagan Moore
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aditi Mathur
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Huanxing Sun
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ye Gan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose D Herazo-Maya
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xinyuan Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hongyi Pan
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Awo Osafo-Addo
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; and
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina School of Medicine, Charleston, South Carolina, USA
| | - Wassim H Fares
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Buqu Hu
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chun-Geun Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA
| | - Erica L Herzog
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
18
|
|
19
|
New "Guidance" for the Treatment of Hepatic Ischemia Reperfusion Injury Through Semaphorins and Plexins. Crit Care Med 2016; 44:1623-4. [PMID: 27428130 DOI: 10.1097/ccm.0000000000001699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Roth JM, Köhler D, Schneider M, Granja TF, Rosenberger P. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury. PLoS One 2016; 11:e0146930. [PMID: 26752048 PMCID: PMC4720127 DOI: 10.1371/journal.pone.0146930] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/17/2015] [Indexed: 01/11/2023] Open
Abstract
The extent of pulmonary inflammation during lung injury ultimately determines patient outcome. Pulmonary inflammation is initiated by the migration of neutrophils into the alveolar space. Recent work has demonstrated that the guidance protein semaphorin 7A (SEMA7A) influences the migration of neutrophils into hypoxic tissue sites, yet, its role during lung injury is not well understood. Here, we report that the expression of SEMA7A is induced in vitro through pro-inflammatory cytokines. SEMA7A itself induces the production of pro-inflammatory cytokines in endothelial and epithelial cells, enhancing pulmonary inflammation. The induction of SEMA7A facilitates the transendothelial migration of neutrophils. In vivo, animals with deletion of SEMA7A expression showed reduced signs of pulmonary inflammatory changes following lipopolysaccharide challenge. We define here the role of SEMA7A in the development of lung injury and identify a potential pathway to interfere with these detrimental changes. Future anti-inflammatory strategies for the treatment of lung injury might be based on this finding.
Collapse
Affiliation(s)
- Judith Marlene Roth
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Mariella Schneider
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Tiago Folgosa Granja
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Tübingen University Hospital, Tübingen, Germany
- * E-mail:
| |
Collapse
|
21
|
Esnault S, Kelly EAB, Shen ZJ, Johansson MW, Malter JS, Jarjour NN. IL-3 Maintains Activation of the p90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils. THE JOURNAL OF IMMUNOLOGY 2015; 195:2529-39. [PMID: 26276876 DOI: 10.4049/jimmunol.1500871] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
IL-5 is a major therapeutic target to reduce eosinophilia. However, all of the eosinophil-activating cytokines, such as IL-5, IL-3, and GM-CSF, are typically present in atopic diseases, including allergic asthma. As a result of the functional redundancy of these three cytokines on eosinophils and the loss of IL-5R on airway eosinophils, it is important to take IL-3 and GM-CSF into account to efficiently reduce tissue eosinophil functions. Moreover, these three cytokines signal through a common β-chain receptor but yet differentially affect protein production in eosinophils. Notably, the increased ability of IL-3 to induce the production of proteins, such as semaphorin-7A, without affecting mRNA levels suggests a unique influence of IL-3 on translation. The purpose of this study was to identify the mechanisms by which IL-3 distinctively affects eosinophil function compared with IL-5 and GM-CSF, with a focus on protein translation. Peripheral blood eosinophils were used to study intracellular signaling and protein translation in cells activated with IL-3, GM-CSF, or IL-5. We establish that, unlike GM-CSF or IL-5, IL-3 triggers prolonged signaling through activation of ribosomal protein S6 (RPS6) and the upstream kinase 90-kDa ribosomal S6 kinase (p90S6K). Blockade of p90S6K activation inhibited phosphorylation of RPS6 and IL-3-enhanced semaphorin-7A translation. Furthermore, in an allergen-challenged environment, in vivo phosphorylation of RPS6 and p90S6K was enhanced in human airway compared with circulating eosinophils. Our findings provide new insights into the mechanisms underlying differential activation of eosinophils by IL-3, GM-CSF, and IL-5. These observations identify IL-3 and its downstream intracellular signals as novel targets that should be considered to modulate eosinophil functions.
Collapse
Affiliation(s)
- Stephane Esnault
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792;
| | - Elizabeth A B Kelly
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
22
|
Mizutani N, Nabe T, Yoshino S. Semaphorin 7A plays a critical role in IgE-mediated airway inflammation in mice. Eur J Pharmacol 2015; 764:149-156. [PMID: 26144372 DOI: 10.1016/j.ejphar.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Elevated allergen-specific IgE levels are a hallmark of allergic asthma, a disease involving chronic airway inflammation characterized by airway hyperresponsiveness (AHR); neutrophilic airway inflammation is found in patients with severe asthma. Furthermore, we have reported that interleukin (IL)-33 and IL-17A contribute to IgE-mediated AHR through neutrophilic inflammation in mice. Meanwhile, semaphorins regulating neuronal and immune function have been focused on in several diseases. Here, we investigated whether semaphorin 7A (SEMA7A) is related to IgE-mediated neutrophilic inflammation in mice. BALB/c mice sensitized with antigen-specific IgE monoclonal antibody were repeatedly challenged by the antigen. When anti-SEMA7A antibody was administered during the fourth to seventh challenges, the infiltration by macrophages, lymphocytes, neutrophils, and eosinophils in the lungs was reduced at the seventh challenge (P<0.05, 0.05, 0.01, and 0.05, respectively). However, the increased production of IL-4, IL-5, IL-13, IL-33, IL-17A, IL-6, and CXCL1 in the lungs was not suppressed. In histological analysis, the epithelial cells, blood vessels, and inflammatory cells in the lungs of IgE-sensitized mice showed SEMA7A expression; plexin C1 for the receptor was expressed in the inflammatory cells. Meanwhile, we examined the effect of anti-SEMA7A antibody on AHR and neutrophilic inflammation enhanced by the collaborative action of IL-33 and IL-17A in normal mice, resulting in the suppression of these responses (P<0.05 and 0.01, respectively). Collectively, we demonstrated that SEMA7A plays a critical role in IgE-mediated neutrophilic airway inflammation. Therefore, SEMA7A may be a potential therapeutic target for severe allergic asthma showing neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Nobuaki Mizutani
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| | - Takeshi Nabe
- Department of Pharmacology, Kyoto Pharmaceutical University, 5 Nakauchi, Misasagi, Yamashina, Kyoto 607-8414, Japan; Department of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Shin Yoshino
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita, Higashinada, Kobe 658-8558, Japan
| |
Collapse
|
23
|
|
24
|
|