1
|
Goeteyn E, Taylor SL, Dicker A, Bollé L, Wauters M, Joossens M, Van Braeckel E, Simpson JL, Burr L, Chalmers JD, Rogers GB, Crabbé A. Aggregatibacter is inversely associated with inflammatory mediators in sputa of patients with chronic airway diseases and reduces inflammation in vitro. Respir Res 2024; 25:368. [PMID: 39395980 PMCID: PMC11471032 DOI: 10.1186/s12931-024-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/18/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Chronic airway disease (CAD) is characterized by chronic airway inflammation and colonization of the lungs by pro-inflammatory pathogens. However, while various other bacterial species are present in the lower airways, it is not fully understood how they influence inflammation. We aimed to identify novel anti-inflammatory species present in lower airway samples of patients with CAD. METHODS Paired sputum microbiome and inflammatory marker data of adults with CAD across three separate cohorts (Australian asthma and bronchiectasis, Scottish bronchiectasis) was analyzed using Linear discriminant analysis Effect Size (LEfSE) and Spearman correlation analysis to identify species associated with a low inflammatory profile in patients. RESULTS We identified the genus Aggregatibacter as more abundant in patients with lower levels of airway inflammatory markers in two CAD cohorts (Australian asthma and bronchiectasis). In addition, the relative abundance of Aggregatibacter was inversely correlated with sputum IL-8 (Australian bronchiectasis) and IL-1β levels (Australian asthma and bronchiectasis). Subsequent in vitro testing, using a physiologically relevant three-dimensional lung epithelial cell model, revealed that Aggregatibacter spp. (i.e. A. actinomycetemcomitans, A. aphrophilus) and their cell-free supernatant exerted anti-inflammatory activity without influencing host cell viability. CONCLUSIONS These findings suggest that Aggregatibacter spp. might act to reduce airway inflammation in CAD patients.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Steven L Taylor
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Alison Dicker
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Laura Bollé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Merel Wauters
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - Eva Van Braeckel
- Respiratory Infection and Defense Lab (RIDL), Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, University of Newcastle, Newcastle, NSW, Australia
| | - Lucy Burr
- Department of Respiratory Medicine, Mater Health Sciences, South Brisbane, QLD, Australia
- Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Geraint B Rogers
- Microbiome and Host Health Programme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Goeteyn E, Grassi L, Van den Bossche S, Rigauts C, Vande Weygaerde Y, Van Braeckel E, Maes T, Bracke KR, Crabbé A. Commensal bacteria of the lung microbiota synergistically inhibit inflammation in a three-dimensional epithelial cell model. Front Immunol 2023; 14:1176044. [PMID: 37168857 PMCID: PMC10164748 DOI: 10.3389/fimmu.2023.1176044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Patients with chronic lung disease suffer from persistent inflammation and are typically colonized by pro-inflammatory pathogenic bacteria. Besides these pathogens, a wide variety of commensal species is present in the lower airways but their role in inflammation is unclear. Here, we show that the lung microbiota contains several species able to inhibit activation of the pro-inflammatory NF-κB pathway and production of interleukin 8 (IL-8), triggered by lipopolysaccharide (LPS) or H2O2, in a physiologically relevant three-dimensional (3D) lung epithelial cell model. We demonstrate that the minimal dose needed for anti-inflammatory activity differs between species (with the lowest dose needed for Rothia mucilaginosa), and depends on the type of pro-inflammatory stimulus and read out. Furthermore, we evaluated synergistic activity between pairs of anti-inflammatory bacteria on the inhibition of the NF-κB pathway and IL-8 secretion. Synergistic anti-inflammatory activity was observed for 4/10 tested consortia. These findings indicate that various microbiota members can influence lung inflammation either alone or as a consortium. This information can contribute to a better understanding of the lung microbiota in chronic lung disease development and process, and could open up new avenues for treatment.
Collapse
Affiliation(s)
- Ellen Goeteyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Charlotte Rigauts
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Yannick Vande Weygaerde
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Eva Van Braeckel
- Cystic Fibrosis Reference Centre, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R. Bracke
- Lung Research Lab, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Aurélie Crabbé,
| |
Collapse
|
3
|
Wasserman MG, Graham RJ, Mansbach JM. Airway Bacterial Colonization, Biofilms and Blooms, and Acute Respiratory Infection. Pediatr Crit Care Med 2022; 23:e476-e482. [PMID: 35767569 PMCID: PMC9529803 DOI: 10.1097/pcc.0000000000003017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mollie G Wasserman
- Department of General Pediatrics, Boston Children's Hospital, Boston, MA
| | - Robert J Graham
- Department of Anesthesiology, Critical Care and Pain Medicine, Division of Critical Care Medicine, Boston Children's Hospital, Boston, MA
| | | |
Collapse
|
4
|
Exposure to antibiotics with anaerobic activity before respiratory viral infection is associated with respiratory disease progression after hematopoietic cell transplant. Bone Marrow Transplant 2022; 57:1765-1773. [PMID: 36064752 DOI: 10.1038/s41409-022-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
We examined associations between specific antibiotic exposures and progression to lower respiratory tract disease (LRTD) following individual respiratory viral infections (RVIs) after hematopoietic cell transplantation (HCT). We analyzed allogeneic HCT recipients of all ages with their first RVI during the first 100 days post-HCT. For the 21 days before RVI onset, we recorded any receipt of specific groups of antibiotics, and the cumulative sum of the number of antibiotics received for each day (antibiotic-days). We used Cox proportional hazards models to assess the relationship between antibiotic exposure and progression to LRTD. Among 469 patients with RVI, 124 progressed to LRTD. Compared to no antibiotics, use of antibiotics with broad anaerobic activity in the prior 21 days was associated with progression to LRTD after adjusting for age, virus type, hypoalbuminemia, neutropenia, steroid use, and monocytopenia (HR 2.2, 95% CI 1.1-4.1). Greater use of those antibiotics (≥7 antibiotic days) was also associated with LRTD in adjusted models (HR 2.2, 95% CI 1.1-4.3). Results were similar after adjusting for lymphopenia instead of monocytopenia. Antibiotic use is associated with LRTD after RVI across different viruses in HCT recipients. Prospective studies using anaerobe-sparing antibiotics should be explored to assess impact on LRTD in patients undergoing HCT.
Collapse
|
5
|
Tosta E. The seven constitutive respiratory defense barriers against SARS-CoV-2 infection. Rev Soc Bras Med Trop 2021; 54:e04612021. [PMID: 34932765 PMCID: PMC8687496 DOI: 10.1590/0037-8682-0461-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/17/2021] [Indexed: 12/18/2022] Open
Abstract
Before eliciting an adaptive immune response, SARS-CoV-2 must overcome seven constitutive respiratory defense barriers. The first is the mucus covering the respiratory tract's luminal surface, which entraps inhaled particles, including infectious agents, and eliminates them by mucociliary clearance. The second barrier comprises various components present in the airway lining fluid, the surfactants. Besides providing low surface tension that allows efficient gas exchange at the alveoli, surfactants inhibit the invasion of epithelial cells by respiratory viruses, enhance pathogen uptake by phagocytes, and regulate immune cells' functions. The respiratory tract microbiota constitutes the third defense barrier against SARS-CoV-2. It activates the innate and adaptive immune cells and elicits anti-infectious molecules such as secretory IgA antibodies, defensins, and interferons. The fourth defense barrier comprises the antimicrobial peptides defensins, and lactoferrin. They show direct antiviral activity, inhibit viral fusion, and modulate the innate and adaptive immune responses. Secretory IgA antibodies, the fifth defense barrier, besides protecting the local microbiota against noxious agents, also inhibit SARS-CoV-2 cell invasion. If the virus overcomes this barrier, it reaches its target, the respiratory epithelial cells. However, these cells also act as a defense barrier, the sixth one, since they hinder the virus' access to receptors and produce antiviral and immunomodulatory molecules such as interferons, lactoferrin, and defensins. Finally, the sensing of the virus by the cells of innate immunity, the last constitutive defense barrier, elicits a cascade of signals that activate adaptive immune cells and may inhibit the development of productive infection. The subject of the present essay is discussing these mechanisms.
Collapse
Affiliation(s)
- Eduardo Tosta
- Professor Emeritus, Faculdade de Medicina, Universidade de Brasília, Brasília, DF , Brasil
| |
Collapse
|
6
|
Xiang L, Meng X. Emerging cellular and molecular interactions between the lung microbiota and lung diseases. Crit Rev Microbiol 2021; 48:577-610. [PMID: 34693852 DOI: 10.1080/1040841x.2021.1992345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the discovery of the lung microbiota, its study in both pulmonary health and disease has become a vibrant area of emerging research interest. Thus far, most studies have described the lung microbiota composition in lung disease quite well, and some of these studies indicated alterations in lung microbial communities related to the onset and development of lung disease and vice versa. However, the underlying mechanisms, particularly the cellular and molecular links, are still largely unknown. In this review, we highlight the current progress in the complex cellular and molecular mechanisms by which the lung microbiome interacts with immune homeostasis and pulmonary disease pathogenesis to advance our understanding of the elaborate function of the lung microbiota in lung disease. We hope that this work can attract more attention to this still-young yet very promising field to facilitate the identification of new therapeutic targets and provide more innovative therapies. Additional accurate standard-based methodologies and technological breakthroughs are critical to propel the field forward to ultimately achieve the goal of maintaining respiratory health.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Boutin S, Hildebrand D, Boulant S, Kreuter M, Rüter J, Pallerla SR, Velavan TP, Nurjadi D. Host factors facilitating SARS-CoV-2 virus infection and replication in the lungs. Cell Mol Life Sci 2021; 78:5953-5976. [PMID: 34223911 PMCID: PMC8256233 DOI: 10.1007/s00018-021-03889-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2 is the virus causing the major pandemic facing the world today. Although, SARS-CoV-2 primarily causes lung infection, a variety of symptoms have proven a systemic impact on the body. SARS-CoV-2 has spread in the community quickly infecting humans from all age, ethnicities and gender. However, fatal outcomes have been linked to specific host factors and co-morbidities such as age, hypertension, immuno-deficiencies, chronic lung diseases or metabolic disorders. A major shift in the microbiome of patients suffering of the coronavirus disease 2019 (COVID-19) have also been observed and is linked to a worst outcome of the disease. As many co-morbidities are already known to be associated with a dysbiosis of the microbiome such as hypertension, diabetes and metabolic disorders. Host factors and microbiome changes are believed to be involved as a network in the acquisition of the infection and the development of the diseases. We will review in detail in this manuscript, the immune response toward SARS-CoV-2 infection as well as the host factors involved in the facilitation and worsening of the infection. We will also address the impact of COVID-19 on the host's microbiome and secondary infection which also worsen the disease.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany.
| | - Dagmar Hildebrand
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Steeve Boulant
- Division of Cellular Polarity and Viral Infection, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Kreuter
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Center for Interstitial and Rare Lung Diseases, Pneumology, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Jule Rüter
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Shah V. Letter to the Editor: Microbiota in the Respiratory System-A Possible Explanation to Age and Sex Variability in Susceptibility to SARS-CoV-2. Microbiol Insights 2021; 14:1178636120988604. [PMID: 33519207 PMCID: PMC7818001 DOI: 10.1177/1178636120988604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
The Human respiratory tract is colonized by a variety of microbes and the microbiota change as we age. In this perspective, literature support is presented for the hypothesis that the respiratory system microbiota could explain the differential age and sex breakdown amongst COVID-19 patients. The number of patients in the older and elderly adult group is higher than the other age groups. The perspective presents the possibility that certain genera of bacteria present in the respiratory system microbiota in children and young adults could be directly or through eliciting an immune response from the host, prevent full-fledged infection of SARS-CoV-2. The possibility also exists that the microbiota in older adults and the elderly population have bacteria that make it easier for the virus to cause infection. I call upon the scientific community to investigate the link between human microbiota and SARS-CoV-2 susceptibility to further understand the viral pathogenesis.
Collapse
Affiliation(s)
- Vishal Shah
- College of the Sciences and Mathematics, West Chester University, PA, USA
| |
Collapse
|
9
|
Gao K, Song YP, Du X, Chen H, Zhao LT. Exploring multiple mechanisms of Qingjie Fanggan prescription for prevention and treatment of influenza based on systems pharmacology. Comput Biol Chem 2020; 88:107307. [PMID: 32622176 DOI: 10.1016/j.compbiolchem.2020.107307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/24/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Influenza is a type of acute disease characterized by strong contagiousness and short incubation period, which have posed a large potential threat to public health. Traditional Chinese Medicine (TCM) advocates to the aim of combating complex diseases from a holistic view, which has shown effectiveness in anti-influenza. However, the mechanism of TCM prescription remains puzzling. Here, we applied a system pharmacology approach to reveal the underlying molecular mechanisms of Qingjie Fanggan prescription (QFP) in the prevention and treatment of influenza. In this study, we identified 228 potential active compounds by means of absorption, distribution, metabolism, and excretion (ADME) evaluation system and literature research. Then, the targets of the potential active compounds were predicted by using the WES (Weighted Ensemble Similarity) method, and the influenza-related targets were obtained according to some existing gene databases. Next, an herb-component-target network was constructed to further dissect the multi-directional therapeutic approach for QFP. Meanwhile, we also performed gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation analysis on 344 potential targets. Finally, a target-pathway network was constructed to further dissect the core pathways and targets in treatment of influenza for QFP. And the key components and targets were docked by AutoDock Vina to explore their binding mode. All of these demonstrated that QFP had multi-scale curative activity in regulating influenza-related biological processes, which facilitates the application of traditional medicine in modern medicine.
Collapse
Affiliation(s)
- Kai Gao
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yan-Ping Song
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China.
| | - Hao Chen
- Pharmacy College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Lin-Tao Zhao
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Viruses of Respiratory Tract: an Observational Retrospective Study on Hospitalized Patients in Rome, Italy. Microorganisms 2020; 8:microorganisms8040501. [PMID: 32244685 PMCID: PMC7232519 DOI: 10.3390/microorganisms8040501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Respiratory tract infections account for high morbidity and mortality around the world. Fragile patients are at high risk of developing complications such as pneumonia and may die from it. Limited information is available on the extent of the circulation of respiratory viruses in the hospital setting. Most knowledge relates to influenza viruses (FLU) but several other viruses produce flu-like illness. The study was conducted at the University Hospital Policlinico Tor Vergata, Rome, Italy. Clinical and laboratory data from hospitalized patients with respiratory tract infections during the period October 2016-March 2019 were analysed. The retrospective analysis included 17 viral agents detected by FilmArray test and clinical data from medical records and hospital discharge sheets. Models were adjusted for relevant confounders such as clinical severity and risk of death, socio-demographic characteristics and surgical procedures. From a total of 539 specimens analysed, 180 (33.39%) were positive for one or more respiratory viruses. Among them, 83 (46.1 %) were positive for influenza viruses (FLU), 36 (20%) rhino/enteroviruses (RHV/EV), 17 (9.44%) human coronaviruses (HCOV-229E, -HKU1, -NL63, and -OC43), 17 (9.44%) respiratory syncytial virus, 15 (8.33%) human metapneumovirus (HMPV), 8 (4.44%) parainfluenza viruses (PIV) and 4 (2.22%) adenoviruses (ADV). The distribution of viral agents varied across age groups and month of detection. The positive specimens were from 168 patients [102 M, 66 F; median age (range): 64 years (19-93)]. Overall, 40% of them had a high-grade clinical severity and a 27% risk of death; 27 patients died and 22 of them (81.5%) had received a clinical diagnosis of pneumonia. Respiratory viral infections may have a severe course and a poor prognosis in hospitalized patients, due to underlying comorbidities. Monitoring the circulation of respiratory viruses in hospital settings is important to improve diagnosis, prevention and treatment.
Collapse
|
11
|
Shi C, Zhang H, Wang X, Jin B, Jia Q, Li Y, Yang Y. Cinnamtannin D1 attenuates autoimmune arthritis by regulating the balance of Th17 and treg cells through inhibition of aryl hydrocarbon receptor expression. Pharmacol Res 2019; 151:104513. [PMID: 31706010 DOI: 10.1016/j.phrs.2019.104513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/20/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The suppression of the abnormal systemic immune response constitutes a primary strategy for treatment of rheumatoid arthritis (RA); toward this end, the identification of natural compounds with immunosuppressive activity represents a promising strategy for RA drug discovery. Cinnamtannin D1 (CTD-1), a polyphenolic compound isolated from Cinnamomum tamala, was previously reported to possess good immunosuppressive activity. However, the beneficial effect of CTD-1 on RA is currently unknown. The aim of this study was to evaluate the anti-arthritic effect of CTD-1 in collagen-induced arthritis (CIA) mice and clarify the underlying mechanisms. CTD-1 treatment significantly alleviated the severity of CIA mice, affording reduced clinical scores and paw swelling, along with reduced inflammatory cell infiltration and cartilage damage in the joints; in addition, the serum levels of IL-17, IL-6, and IL-1β were decreased whereas those of TGF-β and IL-10 were increased. CTD-1-treated mice exhibited lower frequency of Th17 cells and higher frequency of Treg cells compared to those in untreated mice, indicating that the balance of Th17/Treg cells may serve as the target for CTD-1. Consistent with this, in ex vivo assays, CTD-1 inhibited Th17 cell differentiation through the downregulation of phospho-STAT3/RORγt, whereas it promoted Treg differentiation by upregulating phospho-STAT5/Foxp3 in response to the stimulation of collagen type II. Moreover, in an in vitro naïve CD4+ T cell differentiation assay, CTD-1 directly inhibited Th17 cell differentiation and promoted Treg differentiation, suggesting that CTD-1 regulated the balance of Th17 and Treg cells to inhibit excessive immune response. Furthermore, the regulation effect of CTD-1 on Th17 and Treg cells was dependent on Ahr expression, as this effect was abolished when Ahr was knocked down and was impaired when Ahr was overexpressed. Together, our results indicated that CTD-1 treatment benefits CIA mice by regulating Th17 and Treg differentiation through the inhibition of AHR expression, and suggested a potential application of CTD-1 toward RA treatment.
Collapse
Affiliation(s)
- Chenchen Shi
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Haoyue Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Wang
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingliang Jin
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Jia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yifu Yang
- Experimental Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
12
|
Willis KA, Siefker DT, Aziz MM, White CT, Mussarat N, Gomes CK, Bajwa A, Pierre JF, Cormier SA, Talati AJ. Perinatal maternal antibiotic exposure augments lung injury in offspring in experimental bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 318:L407-L418. [PMID: 31644311 DOI: 10.1152/ajplung.00561.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth.
Collapse
Affiliation(s)
- Kent A Willis
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - David T Siefker
- Department of Biological Sciences, Louisiana State University and Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Michael M Aziz
- Department of Obstetrics and Gynecology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Catrina T White
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Naiha Mussarat
- Department of Obstetrics and Gynecology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Charles K Gomes
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph F Pierre
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana
| | - Ajay J Talati
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee.,Department of Obstetrics and Gynecology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
13
|
Teo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K, Holt BJ, Kusel M, Serralha M, Troy N, Bochkov YA, Grindle K, Lemanske RF, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. Airway Microbiota Dynamics Uncover a Critical Window for Interplay of Pathogenic Bacteria and Allergy in Childhood Respiratory Disease. Cell Host Microbe 2018; 24:341-352.e5. [PMID: 30212648 PMCID: PMC6291254 DOI: 10.1016/j.chom.2018.08.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/08/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022]
Abstract
Repeated cycles of infection-associated lower airway inflammation drive the pathogenesis of persistent wheezing disease in children. In this study, the occurrence of acute respiratory tract illnesses (ARIs) and the nasopharyngeal microbiome (NPM) were characterized in 244 infants through their first five years of life. Through this analysis, we demonstrate that >80% of infectious events involve viral pathogens, but are accompanied by a shift in the NPM toward dominance by a small range of pathogenic bacterial genera. Unexpectedly, this change frequently precedes the detection of viral pathogens and acute symptoms. Colonization of illness-associated bacteria coupled with early allergic sensitization is associated with persistent wheeze in school-aged children, which is the hallmark of the asthma phenotype. In contrast, these bacterial genera are associated with “transient wheeze” that resolves after age 3 years in non-sensitized children. Thus, to complement early allergic sensitization, monitoring NPM composition may enable early detection and intervention in high-risk children. Six genera dominate airway microbiota from birth to 2 years, but diversifies thereafter Acute respiratory illness associates with pathogenic bacteria in the airway microbiota Pathogenic airway bacteria may precede viral incursions and acute respiratory illness Colonization with pathogens predicts chronic wheeze in allergic-sensitized children
Collapse
Affiliation(s)
- Shu Mei Teo
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Howard H F Tang
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Louise M Judd
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen C Watts
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kym Pham
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Merci Kusel
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Niamh Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia
| | - Yury A Bochkov
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kristine Grindle
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Lemanske
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sebastian L Johnston
- Airway Disease Infection Section and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - James E Gern
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Peter D Sly
- Child Health Research Centre, The University of Queensland, Brisbane 4101, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; Child Health Research Centre, The University of Queensland, Brisbane 4101, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; The London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia; Telethon Kids Institute, The University of Western Australia, West Perth, WA, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; The Alan Turing Institute, London, UK.
| |
Collapse
|
14
|
Abstract
Respiratory syncytial virus (RSV) is the most common cause of infant hospitalization and causes a high burden of disease in the elderly, too. This enveloped negative-stranded RNA virus has been recently reclassified in the Pneumoviridae family. Infections of the respiratory cells happens when the two major surface glycoproteins, G and F, take contact with the cell receptor CX3CR1 and mediate entry by fusion, respectively. Viral mRNA transcription, genomic RNA synthesis and nucleocapsid formation occur in large cytoplasmic inclusion bodies to avoid recognition by the host innate immune response. Most progeny virions remain associated to the infected cell surface; fusion of infected with adjacent cells results in the formation of large multinucleated syncytia that eventually undergo apoptosis. Desquamated epithelial cells form the plugs that with mucus and fibrin may cause lower airway obstructions. Pathogenetic mechanism of severe RSV disease likely involve both the extent of viral replication and the host immune response. Regarding the latter, single nucleotide polymorphism analysis and genome-wide association studies showed that genetic susceptibility to severe RSV infection is likely a complex trait, in which many different host genetic variants contribute. Recent studies pointed to the fact that bronchiolitis severity depends more on the specific infecting RSV genotypes than on the amount of viral loads. A population-based surveillance system to better define RSV burden of disease would be of valuable help for implementing future vaccination programs.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy -
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Guido Antonelli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Abstract
BACKGROUND Nasal microbiota may influence asthma pathobiology. OBJECTIVE We sought to characterize the nasal microbiome of subjects with exacerbated asthma, nonexacerbated asthma, and healthy controls to identify nasal microbiota associated with asthma activity. METHODS We performed 16S ribosomal RNA sequencing on nasal swabs obtained from 72 primarily adult subjects with exacerbated asthma (n = 20), nonexacerbated asthma (n = 31), and healthy controls (n = 21). Analyses were performed using Quantitative Insights into Microbial (QIIME); linear discriminant analysis effect size (LEfSe); Phylogenetic Investigation of Communities by Reconstruction of Unobserved States; and Statistical Analysis of Metagenomic Profiles (PICRUSt); and Statistical Analysis of Metagenomic Profiles (STAMP). Species found to be associated with asthma activity were validated using quantitative PCR. Metabolic pathways associated with differentially abundant nasal taxa were inferred through metagenomic functional prediction. RESULTS Nasal bacterial composition significantly differed among subjects with exacerbated asthma, nonexacerbated asthma, and healthy controls (permutational multivariate ANOVA, P = 2.2 × 10-2). Relative to controls, the nasal microbiota of subjects with asthma were enriched with taxa from Bacteroidetes (Wilcoxon-Mann-Whitney, r = 0.33, P = 5.1 × 10-3) and Proteobacteria (r = 0.29, P = 1.4 × 10-2). Four species were differentially abundant based on asthma status after correction for multiple comparisons: Prevotella buccalis, Padj = 1.0 × 10-2; Dialister invisus, Padj = 9.1 × 10-3; Gardnerella vaginalis, Padj = 2.8 × 10-3; Alkanindiges hongkongensis, Padj = 2.6 × 10-3. These phyla and species were also differentially abundant based on asthma activity (exacerbated asthma vs nonexacerbated asthma vs controls). Quantitative PCR confirmed species overrepresentation in asthma relative to controls for Prevotella buccalis (fold change = 130, P = 2.1 × 10-4) and Gardnerella vaginalis (fold change = 160, P = 6.8 × 10-4). Metagenomic inference revealed differential glycerolipid metabolism (Kruskal-Wallis, P = 1.9 × 10-4) based on asthma activity. CONCLUSIONS Nasal microbiome composition differs in subjects with exacerbated asthma, nonexacerbated asthma, and healthy controls. The identified nasal taxa could be further investigated for potential mechanistic roles in asthma and as possible biomarkers of asthma activity.
Collapse
|
16
|
Park DE, Baggett HC, Howie SRC, Shi Q, Watson NL, Brooks WA, Deloria Knoll M, Hammitt LL, Kotloff KL, Levine OS, Madhi SA, Murdoch DR, O'Brien KL, Scott JAG, Thea DM, Ahmed D, Antonio M, Baillie VL, DeLuca AN, Driscoll AJ, Fu W, Gitahi CW, Olutunde E, Higdon MM, Hossain L, Karron RA, Maiga AA, Maloney SA, Moore DP, Morpeth SC, Mwaba J, Mwenechanya M, Prosperi C, Sylla M, Thamthitiwat S, Zeger SL, Feikin DR. Colonization Density of the Upper Respiratory Tract as a Predictor of Pneumonia-Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Clin Infect Dis 2018; 64:S328-S336. [PMID: 28575367 PMCID: PMC5612712 DOI: 10.1093/cid/cix104] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background. There is limited information on the association between colonization density of upper respiratory tract colonizers and pathogen-specific pneumonia. We assessed this association for Haemophilus influenzae, Moraxella catarrhalis, Staphylococcus aureus, and Pneumocystis jirovecii. Methods. In 7 low- and middle-income countries, nasopharyngeal/oropharyngeal swabs from children with severe pneumonia and age-frequency matched community controls were tested using quantitative polymerase chain reaction (PCR). Differences in median colonization density were evaluated using the Wilcoxon rank-sum test. Density cutoffs were determined using receiver operating characteristic curves. Cases with a pathogen identified from lung aspirate culture or PCR, pleural fluid culture or PCR, blood culture, and immunofluorescence for P. jirovecii defined microbiologically confirmed cases for the given pathogens. Results. Higher densities of H. influenzae were observed in both microbiologically confirmed cases and chest radiograph (CXR)–positive cases compared to controls. Staphylococcus aureus and P. jirovecii had higher densities in CXR-positive cases vs controls. A 5.9 log10 copies/mL density cutoff for H. influenzae yielded 86% sensitivity and 77% specificity for detecting microbiologically confirmed cases; however, densities overlapped between cases and controls and positive predictive values were poor (<3%). Informative density cutoffs were not found for S. aureus and M. catarrhalis, and a lack of confirmed case data limited the cutoff identification for P. jirovecii. Conclusions. There is evidence for an association between H. influenzae colonization density and H. influenzae–confirmed pneumonia in children; the association may be particularly informative in epidemiologic studies. Colonization densities of M. catarrhalis, S. aureus, and P. jirovecii are unlikely to be of diagnostic value in clinical settings.
Collapse
Affiliation(s)
- Daniel E Park
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Milken Institute School of Public Health, Department of Epidemiology and Biostatistics, George Washington University, Washington, District of Columbia
| | - Henry C Baggett
- Global Disease Detection Center, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi.,Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Stephen R C Howie
- Medical Research Council Unit, Basse, The Gambia.,Department of Paediatrics, University of Auckland, and.,Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Qiyuan Shi
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - W Abdullah Brooks
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab
| | - Maria Deloria Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Laura L Hammitt
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi
| | - Karen L Kotloff
- Division of Infectious Disease and Tropical Pediatrics, Department of Pediatrics, Center for Vaccine Development, Institute of Global Health, University of Maryland School of Medicine, Baltimore
| | - Orin S Levine
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Bill & Melinda Gates Foundation, Seattle, Washington
| | - Shabir A Madhi
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, and.,Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - David R Murdoch
- Department of Pathology, University of Otago, and.,Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| | - Katherine L O'Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - J Anthony G Scott
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom
| | - Donald M Thea
- Center for Global Health and Development, Boston University School of Public Health, Massachusetts
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab
| | - Martin Antonio
- Medical Research Council Unit, Basse, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, and.,Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vicky L Baillie
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, and.,Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea N DeLuca
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Amanda J Driscoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Wei Fu
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Rheumatology, Johns Hopkins School of Medicine, and
| | - Caroline W Gitahi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi
| | | | - Melissa M Higdon
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lokman Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka and Matlab
| | - Ruth A Karron
- Department of International Health, Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Susan A Maloney
- Global Disease Detection Center, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi.,Division of Global HIV and Tuberculosis, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - David P Moore
- Medical Research Council, Respiratory and Meningeal Pathogens Research Unit, and.,Department of Science and Technology/National Research Foundation, Vaccine Preventable Diseases Unit, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paediatrics and Child Health, Chris Hani Baragwanath Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| | - Susan C Morpeth
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi.,Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom.,Microbiology Laboratory, Middlemore Hospital, Counties Manukau District Health Board, Auckland, New Zealand
| | - John Mwaba
- Department of Pathology and Microbiology, University Teaching Hospital.,Zambia Center for Applied Health Research and Development, and
| | | | - Christine Prosperi
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mamadou Sylla
- Centre pour le Développement des Vaccins (CVD-Mali), Bamako
| | - Somsak Thamthitiwat
- Global Disease Detection Center, Thailand Ministry of Public Health-US Centers for Disease Control and Prevention Collaboration, Nonthaburi
| | - Scott L Zeger
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, and
| | - Daniel R Feikin
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Division of Viral Diseases, National Center for Immunizations and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | |
Collapse
|
17
|
Fonseca W, Lukacs NW, Ptaschinski C. Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome. Front Immunol 2018. [PMID: 29515570 PMCID: PMC5825926 DOI: 10.3389/fimmu.2018.00226] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common pathogen that infects virtually all children by 2 years of age and is the leading cause of hospitalization of infants worldwide. While most children experience mild symptoms, some children progress to severe lower respiratory tract infection. Those children with severe disease have a much higher risk of developing childhood wheezing later in life. Many risk factors are known to result in exacerbated disease, including premature birth and early age of RSV infection, when the immune system is relatively immature. The development of the immune system before and after birth may be altered by several extrinsic and intrinsic factors that could lead to severe disease predisposition in children who do not exhibit any currently known risk factors. Recently, the role of the microbiome and the resulting metabolite profile has been an area of intense study in the development of lung disease, including viral infection and asthma. This review explores both known risk factors that can lead to severe RSV-induced disease as well as emerging topics in the development of immunity to RSV and the long-term consequences of severe infection.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Shekhar S, Schenck K, Petersen FC. Exploring Host-Commensal Interactions in the Respiratory Tract. Front Immunol 2018; 8:1971. [PMID: 29387057 PMCID: PMC5776090 DOI: 10.3389/fimmu.2017.01971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/20/2017] [Indexed: 01/03/2023] Open
Abstract
Commensal microbes are currently in the limelight in biomedical research because they play an important role in health and disease. Humans harbor an enormous diversity of commensals in various parts of the body, including the gastrointestinal and respiratory tracts. Advancement in metagenomic and other omic approaches, and development of suitable animal models have provided an unprecedented appreciation into the diversity of commensals, and the intricacies of their intimate communication with the host immune system. Most studies have focused on the host–commensal interaction in the gut, while less is known on this relationship in other sites of the body, such as the respiratory tract. In this article, we review emerging data from human and animal studies on the host responses to respiratory commensals, immune cross-reactivity between commensals and pathogens, and use of commensals as a vaccine delivery system. A better understanding of the delicate interplay between commensals and host may aid in efforts to develop effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Karl Schenck
- Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | | |
Collapse
|
19
|
Ederveen THA, Ferwerda G, Ahout IM, Vissers M, de Groot R, Boekhorst J, Timmerman HM, Huynen MA, van Hijum SAFT, de Jonge MI. Haemophilus is overrepresented in the nasopharynx of infants hospitalized with RSV infection and associated with increased viral load and enhanced mucosal CXCL8 responses. MICROBIOME 2018; 6:10. [PMID: 29325581 PMCID: PMC5765694 DOI: 10.1186/s40168-017-0395-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 05/09/2023]
Abstract
BACKGROUND While almost all infants are infected with respiratory syncytial virus (RSV) before the age of 2 years, only a small percentage develops severe disease. Previous studies suggest that the nasopharyngeal microbiome affects disease development. We therefore studied the effect of the nasopharyngeal microbiome on viral load and mucosal cytokine responses, two important factors influencing the pathophysiology of RSV disease. To determine the relation between (i) the microbiome of the upper respiratory tract, (ii) viral load, and (iii) host mucosal inflammation during an RSV infection, nasopharyngeal microbiota profiles of RSV infected infants (< 6 months) with different levels of disease severity and age-matched healthy controls were determined by 16S rRNA marker gene sequencing. The viral load was measured using qPCR. Nasopharyngeal CCL5, CXCL10, MMP9, IL6, and CXCL8 levels were determined with ELISA. RESULTS Viral load in nasopharyngeal aspirates of patients associates significantly to total nasopharyngeal microbiota composition. Healthy infants (n = 21) and RSV patients (n = 54) display very distinct microbial patterns, primarily characterized by a loss in commensals like Veillonella and overrepresentation of opportunistic organisms like Haemophilus and Achromobacter in RSV-infected individuals. Furthermore, nasopharyngeal microbiota profiles are significantly different based on CXCL8 levels. CXCL8 is a chemokine that was previously found to be indicative for disease severity and for which we find Haemophilus abundance as the strongest predictor for CXCL8 levels. CONCLUSIONS The nasopharyngeal microbiota in young infants with RSV infection is marked by an overrepresentation of the genus Haemophilus. We present that this bacterium is associated with viral load and mucosal CXCL8 responses, both which are involved in RSV disease pathogenesis.
Collapse
Affiliation(s)
- Thomas H A Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands.
| | - Inge M Ahout
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Marloes Vissers
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| | - Jos Boekhorst
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | | | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sacha A F T van Hijum
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- NIZO, Ede, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein-Zuid 10 (Route 412), 6525, GA, Nijmegen, The Netherlands
| |
Collapse
|
20
|
Osman R, Malmuthuge N, Gonzalez-Cano P, Griebel P. Development and Function of the Mucosal Immune System in the Upper Respiratory Tract of Neonatal Calves. Annu Rev Anim Biosci 2017; 6:141-155. [PMID: 29106820 DOI: 10.1146/annurev-animal-030117-014611] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Respiratory infections remain the second most common cause of clinical disease and mortality in newborn calves, which has led to increased interest in using vaccines early in life to mitigate this risk. Intranasal vaccination of neonatal calves can be an effective strategy to circumvent vaccine interference by maternal antibody, but this raises questions regarding onset of immune competence in the upper respiratory tract (URT) following birth. Little is known, however, about the development and function of mucosa-associated lymphoid tissue (MALT) in the URT of newborn calves and what factors, including the commensal microbiome, contribute to this early development. We review the structure, development, and function of MALT in the bovine URT during the first six weeks of life and identify knowledge gaps regarding this early developmental time. This information is critical when designing vaccination programs for young calves, especially when targeting respiratory pathogens that may reside within the commensal microbiome.
Collapse
Affiliation(s)
- Rahwa Osman
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada; ,
| | - Nilusha Malmuthuge
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; ,
| | - Patricia Gonzalez-Cano
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; , .,Current affiliation: Universidad de la Cañada, 68540 Oaxaca, Mexico
| | - Philip Griebel
- School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan S7N5A8, Canada; , .,Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan S7N5E3, Canada; ,
| |
Collapse
|
21
|
The temporal dynamics of the tracheal microbiome in tracheostomised patients with and without lower respiratory infections. PLoS One 2017; 12:e0182520. [PMID: 28796800 PMCID: PMC5552036 DOI: 10.1371/journal.pone.0182520] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/19/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Airway microbiota dynamics during lower respiratory infection (LRI) are still poorly understood due, in part, to insufficient longitudinal studies and lack of uncontaminated lower airways samples. Furthermore, the similarity between upper and lower airway microbiomes is still under debate. Here we compare the diversity and temporal dynamics of microbiotas directly sampled from the trachea via tracheostomy in patients with (YLRI) and without (NLRI) lower respiratory infections. METHODS We prospectively collected 127 tracheal aspirates across four consecutive meteorological seasons (quarters) from 40 patients, of whom 20 developed LRIs and 20 remained healthy. All aspirates were collected when patients had no LRI. We generated 16S rRNA-based microbial profiles (~250 bp) in a MiSeq platform and analyzed them using Mothur and the SILVAv123 database. Differences in microbial diversity and taxon normalized (via negative binomial distribution) abundances were assessed using linear mixed effects models and multivariate analysis of variance. RESULTS AND DISCUSSION Alpha-diversity (ACE, Fisher and phylogenetic diversity) and beta-diversity (Bray-Curtis, Jaccard and Unifrac distances) indices varied significantly (P<0.05) between NLRI and YLRI microbiotas from tracheostomised patients. Additionally, Haemophilus was significantly (P = 0.009) more abundant in YLRI patients than in NLRI patients, while Acinetobacter, Corynebacterium and Pseudomonas (P<0.05) showed the inverse relationship. We did not detect significant differences in diversity and bacterial abundance among seasons. This result disagrees with previous evidence suggesting seasonal variation in airway microbiotas. Further study is needed to address the interaction between microbes and LRI during times of health and disease.
Collapse
|
22
|
Peralbo-Molina A, Calderón-Santiago M, Jurado-Gámez B, Luque de Castro MD, Priego-Capote F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci Rep 2017; 7:1421. [PMID: 28469199 PMCID: PMC5431160 DOI: 10.1038/s41598-017-01564-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Smoking is a crucial factor in respiratory diseases and lung inflammation, which are the reasons for high mortality worldwide. Despite the negative impact that tobacco consumption causes on health, few metabolomics studies have compared the composition of biofluids from smoker and non-smoker individuals. Exhaled breath condensate (EBC) is one of the biofluids less employed for clinical studies despite its non-invasive sampling and the foreseeable relationship between its composition and respiratory diseases. EBC was used in this research as clinical sample to compare three groups of individuals: current smokers (CS), former smokers (FS) and never smokers (NS). Special attention was paid to the cumulative consumption expressed as smoked pack-year. The levels of 12 metabolites found statistically significant among the three groups of individuals were discussed to find an explanation to their altered levels. Significant compounds included monoacylglycerol derivatives, terpenes and other compounds, the presence of which could be associated to the influence of smoking on the qualitative and quantitative composition of the microbiome.
Collapse
Affiliation(s)
- A Peralbo-Molina
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - B Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.,Department of Respiratory Medicine, Reina Sofia Hospital, E-14004, Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| |
Collapse
|
23
|
Taylor SL, Wesselingh S, Rogers GB. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 2016; 18:652-62. [PMID: 26972325 DOI: 10.1111/cmi.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
Respiratory infection is a leading cause of global morbidity and mortality. Understanding the factors that influence risk and outcome of these infections is essential to improving care. We increasingly understand that interactions between the microbial residents of our mucosal surfaces and host regulatory systems is fundamental to shaping local and systemic immunity. These mechanisms are most well defined in the gastrointestinal tract, however analogous systems also occur in the airways. Moreover, we now appreciate that the host-microbiota interactions at a given mucosal surface influence systemic host processes, in turn, affecting the course of infection at other anatomical sites. This review discusses the mechanisms by which the respiratory microbiome influences acute and chronic airway disease and examines the contribution of cross-talk between the gastrointestinal and respiratory compartments to microbe-mucosa interactions.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Steve Wesselingh
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Geraint B Rogers
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
24
|
Rebuli ME, Speen AM, Clapp PW, Jaspers I. Novel applications for a noninvasive sampling method of the nasal mucosa. Am J Physiol Lung Cell Mol Physiol 2016; 312:L288-L296. [PMID: 28011618 DOI: 10.1152/ajplung.00476.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022] Open
Abstract
Reliable methods for sampling the nasal mucosa provide clinical researchers with key information regarding respiratory biomarkers of exposure and disease. For quick and noninvasive sampling of the nasal mucosa, nasal lavage (NL) collection has been widely used as a clinical tool; however, limitations including volume variability, sample dilution, and storage prevent NL collection from being used in nonlaboratory settings and analysis of low abundance biomarkers. In this study, we optimize and validate a novel methodology using absorbent Leukosorb paper cut to fit the nasal passage to extract epithelial lining fluid (ELF) from the nasal mucosa. The ELF sampling method limits the dilution of soluble mediators, allowing quantification of both high- and low-abundance soluble biomarkers such as IL-1β, IL-8, IL-6, interferon gamma-induced protein 10 (IP-10), and neutrophil elastase. Additionally, we demonstrate that this method can successfully detect the presence of respiratory pathogens such as influenza virus and markers of antibiotic-resistant bacteria in the nasal mucosa. Efficacy of ELF collection by this method is not diminished in consecutive-day sampling, and percent recovery of both recombinant IL-8 and soluble mediators are not changed despite freezing or room temperature storage for 24 h. Our results indicate that ELF collection using Leukosorb paper sampling of ELF provides a sensitive, easy-to-use, and reproducible methodology to collect concentrated amounts of soluble biomarkers from the nasal mucosa. Moreover, the methodology described herein improves upon the standard NL collection method and provides researchers with a novel tool to assess changes in nasal mucosal host defense status.
Collapse
Affiliation(s)
- Meghan E Rebuli
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Adam M Speen
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; .,Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; and.,Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Mansbach JM, Hasegawa K, Henke DM, Ajami NJ, Petrosino JF, Shaw CA, Piedra PA, Sullivan AF, Espinola JA, Camargo CA. Respiratory syncytial virus and rhinovirus severe bronchiolitis are associated with distinct nasopharyngeal microbiota. J Allergy Clin Immunol 2016; 137:1909-1913.e4. [PMID: 27061249 PMCID: PMC4899255 DOI: 10.1016/j.jaci.2016.01.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 01/13/2016] [Indexed: 11/22/2022]
Affiliation(s)
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - David M Henke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Tex; Department of Molecular Virology and Microbiology and Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Ashley F Sullivan
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Janice A Espinola
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Mass; Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
26
|
Magrone T, Galantino M, Di Bitonto N, Borraccino L, Chiaromonte G, Jirillo E. Effects of thermal water inhalation in chronic upper respiratory tract infections in elderly and young patients. IMMUNITY & AGEING 2016; 13:18. [PMID: 27152115 PMCID: PMC4857412 DOI: 10.1186/s12979-016-0073-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/24/2016] [Indexed: 12/22/2022]
Abstract
Background Chronic upper respiratory tract infections (cURTI) are very frequent illnesses which occur at any age of life. In elderly, cURTI are complicated by immunosenescence, with involvement of lung immune responsiveness. Results In the present study, 51 elderly (age range: 66–86) and 51 young (age range 24–58) cURTI patients underwent a single cycle (two weeks) of inhalatory therapy with salt-bromide-iodine thermal water in the thermal station “Margherita di Savoia” (Margherita di Savoia, BAT, Italy). Peripheral blood serum cytokines and clinical assessment were performed before therapy (T0) and after six months (T1) and 12 months (T2) from inhalatory treatment. In both elderly and young patients, at baseline an increased release of T helper (h)1-related cytokines [interleukin (IL)-2 and interferon-γ] and of Th2-related cytokine (IL-4) was documented. Inhalatory treatment reduced the excessive secretion of all the above-cited cytokines. IL-10 values were above normality at all times considered in both groups of patients. In addition, an increase in IL-17 and IL-21 serum levels following therapy was observed in both groups of patients. Pro-inflammatory cytokine (IL-1β, IL-6, IL-8 and tumor necrosis factor-α) baseline values were lower than normal values at T0 in both elderly and young cURTI patients. Their levels increased following inhalatory treatment. Clinically, at T2 a dramatic reduction of frequency of upper respiratory tract infections was recorded in both groups of patients. Conclusion Thermal water inhalation is able to modulate systemic immune response in elderly and young cURTI patients, thus reducing excessive production of Th1 and Th2-related cytokines, on the one hand. On the other hand, increased levels of IL-21 (an inducer of Th17 cells) and of IL-17 may be interpreted as a protective mechanism, which likely leads to neutrophil recruitment in cURTI patients. Also restoration of pro-inflammatory cytokine release following inhalatory therapy may result in microbe eradication. Quite importantly, the maintenance of high levels of IL-10 during the follow-up would suggest a consistent regulatory role of this cytokine in attenuating the pro-inflammatory arm of the immune response.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Mauro Galantino
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Nunzio Di Bitonto
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Luisella Borraccino
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Gerardo Chiaromonte
- Thermal Water Station "Margherita di Savoia", Margherita di Savoia, BAT Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
27
|
A Study of the Infant Nasal Microbiome Development over the First Year of Life and in Relation to Their Primary Adult Caregivers Using cpn60 Universal Target (UT) as a Phylogenetic Marker. PLoS One 2016; 11:e0152493. [PMID: 27019455 PMCID: PMC4809513 DOI: 10.1371/journal.pone.0152493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/15/2016] [Indexed: 11/21/2022] Open
Abstract
Whereas the infant gut microbiome is the subject of intense study, relatively little is known regarding the nares microbiome in newborns and during early life. This study aimed to survey the typical composition and diversity of human anterior nare microflora for developing infants over time, and to explore how these correlate to their primary caregivers. Single nare swabs were collected at five time points over a one-year period for each subject from infant-caregiver pairs. Our study comprised of 50 infants (recruited at 2 weeks, post delivery) and their 50 primary caregivers. Applying the chaperonin-60 (cpn60) universal target (UT) amplicon as our molecular barcoding marker to census survey the microbial communities, we longitudinally surveyed infant nares microbiota at 5 time points over the course of the first year of life. The inter- and intra-subject diversity was catalogued and compared, both longitudinally and relative to their adult primary caregivers. Although within-subject variability over time and inter-subject variability were both observed, the assessment detected only one or two predominant genera for individual infant samples, belonging mainly to phyla Actinobacteria, Firmicutes, and Proteobacteria. Consistent with previously observed microbial population dynamics in other body sites, the diversity of nares microflora increased over the first year of life and infants showed differential operational taxonomic units (OTUs) relative to their matched primary caregiver. The collected evidence also support that both temporal and seasonal changes occur with respect to carriage of potentially pathogenic bacteria (PPBs), which may influence host predisposition to infection. This pilot study surveying paired infant/caregiver nare microbiomes provides novel longitudinal diversity information that is pertinent to better understanding nare microbiome development in infants.
Collapse
|
28
|
Vissers M, Ahout IM, van den Kieboom CH, van der Gaast-de Jongh CE, Groh L, Cremers AJ, de Groot R, de Jonge MI, Ferwerda G. High pneumococcal density correlates with more mucosal inflammation and reduced respiratory syncytial virus disease severity in infants. BMC Infect Dis 2016; 16:129. [PMID: 26983753 PMCID: PMC4794819 DOI: 10.1186/s12879-016-1454-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infections in infants. A small percentage of the infected infants develops a severe infection, while most of these severely ill patients were previously healthy. It remains unclear why these children develop severe RSV infections. In this study, we investigate whether pneumococcal nasopharyngeal carriage patterns correlate with mucosal inflammation and severity of disease. Methods In total, 105 infants hospitalized with RSV infection were included and recovery samples were taken from 42 patients. The presence and density of Streptococcus pneumoniae was determined by RT qPCR to study its relation to viral load, inflammation (MMP-9 and IL-6) and severity of RSV disease. Results We show that pneumococcal presence or absence in the nasopharynx does not correlate with viral load, inflammation or severity of disease. However, when pneumococcus is present in patients, a higher nasopharyngeal pneumococcal density was correlated with a higher RSV load, higher MMP-9 levels and a less severe course of disease. Conclusions Our results show correlations between S. pneumoniae density and viral load, inflammation and disease severity, suggesting that pneumococcal density may be an indicator for severity in paediatric RSV disease. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1454-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marloes Vissers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Inge M Ahout
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Corné H van den Kieboom
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Christa E van der Gaast-de Jongh
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Laszlo Groh
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Amelieke J Cremers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Ronald de Groot
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
29
|
Kishino E, Takemura N, Masaki H, Ito T, Nakazawa M. Dietary lactosucrose suppresses influenza A (H1N1) virus infection in mice. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2015; 34:67-76. [PMID: 26594606 PMCID: PMC4654070 DOI: 10.12938/bmfh.2015-005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/23/2015] [Indexed: 12/14/2022]
Abstract
This study examined the effects of lactosucrose
(4G-β-D-galactosylsucrose) on influenza A virus infections
in mice. First, the effects of lactosucrose on fermentation in the
cecum and on immune function were investigated. In female BALB/c mice,
lactosucrose supplementation for 6 weeks promoted cecal fermentation
and increased both secretory IgA (SIgA) levels in feces and total IgA
and IgG2a concentrations in serum. Both the percentage of
CD4+ T cells in Peyer’s patches and the cytotoxic
activity of splenic natural killer (NK) cells increased significantly
in response to lactosucrose. Next, we examined the effects of
lactosucrose on low-dose influenza A virus infection in mice. After 2
weeks of dietary supplementation with lactosucrose, the mice were
infected with low-dose influenza A virus. At 7 days post infection, a
comparison with control mice showed that weight loss was suppressed,
as were viral titers in the lungs. In the spleens of lactosucrose-fed
mice, there was an increase in the percentage of NK cells. Lastly,
mice fed lactosucrose were challenged with a lethal dose of influenza
A virus. The survival rate of these mice was significantly higher than
that of mice fed a control diet. These results suggested that
lactosucrose supplementation suppresses influenza A virus infection by
augmenting innate immune responses and enhancing cellular and mucosal
immunity.
Collapse
Affiliation(s)
- Eriko Kishino
- Carbohydrate Research Laboratory, Ensuiko Sugar Refining Co., Ltd., 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Naho Takemura
- Carbohydrate Research Laboratory, Ensuiko Sugar Refining Co., Ltd., 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hisaharu Masaki
- Carbohydrate Research Laboratory, Ensuiko Sugar Refining Co., Ltd., 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tetsuya Ito
- Carbohydrate Research Laboratory, Ensuiko Sugar Refining Co., Ltd., 1-1-1 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Masatoshi Nakazawa
- Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
30
|
Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 2015; 17:592-602. [PMID: 25974301 PMCID: PMC4443817 DOI: 10.1016/j.chom.2015.04.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asthma and atopy, classically associated with hyper-activation of the T helper 2 (Th2) arm of adaptive immunity, are among the most common chronic illnesses worldwide. Emerging evidence relates atopy and asthma to the composition and function of the human microbiome, the collection of microbes that reside in and on and interact with the human body. The ability to interrogate microbial ecology of the human host is due in large part to recent technological developments that permit identification of microbes and their products using culture-independent molecular detection techniques. In this review we explore the roles of respiratory, gut, and environmental microbiomes in asthma and allergic disease development, manifestation, and attenuation. Though still a relatively nascent field of research, evidence to date suggests that the airway and/or gut microbiome may represent fertile targets for prevention or management of allergic asthma and other diseases in which adaptive immune dysfunction is a prominent feature.
Collapse
Affiliation(s)
- Kei E Fujimura
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales BJ, Walker ML, Hollams E, Bochkov YA, Grindle K, Johnston SL, Gern JE, Sly PD, Holt PG, Holt KE, Inouye M. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17:704-15. [PMID: 25865368 PMCID: PMC4433433 DOI: 10.1016/j.chom.2015.03.008] [Citation(s) in RCA: 659] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/09/2015] [Accepted: 03/09/2015] [Indexed: 12/29/2022]
Abstract
The nasopharynx (NP) is a reservoir for microbes associated with acute respiratory infections (ARIs). Lung inflammation resulting from ARIs during infancy is linked to asthma development. We examined the NP microbiome during the critical first year of life in a prospective cohort of 234 children, capturing both the viral and bacterial communities and documenting all incidents of ARIs. Most infants were initially colonized with Staphylococcus or Corynebacterium before stable colonization with Alloiococcus or Moraxella. Transient incursions of Streptococcus, Moraxella, or Haemophilus marked virus-associated ARIs. Our data identify the NP microbiome as a determinant for infection spread to the lower airways, severity of accompanying inflammatory symptoms, and risk for future asthma development. Early asymptomatic colonization with Streptococcus was a strong asthma predictor, and antibiotic usage disrupted asymptomatic colonization patterns. In the absence of effective anti-viral therapies, targeting pathogenic bacteria within the NP microbiome could represent a prophylactic approach to asthma. The nasopharynx microbiome of infants has a simple structure dominated by six genera Microbiome composition affects infection severity and pathogen spread to lower airways Early asymptomatic colonization with Streptococcus increases risk of asthma Antibiotic usage disrupts asymptomatic colonization patterns
Collapse
Affiliation(s)
- Shu Mei Teo
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Kym Pham
- Melbourne Translational Genomics Platform, Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Merci Kusel
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Niamh Troy
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Belinda J Hales
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Michael L Walker
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elysia Hollams
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia
| | - Yury A Bochkov
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Kristine Grindle
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Sebastian L Johnston
- Airway Disease Infection Section and MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, National Heart and Lung Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - James E Gern
- Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Peter D Sly
- Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, West Perth, WA 6008, Australia; Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, QLD 4059, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Michael Inouye
- Medical Systems Biology, Department of Pathology and Department of Microbiology & Immunology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|