1
|
Letchumanan P, Theva Das K. The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review. Epigenetics Chromatin 2025; 18:1. [PMID: 39754177 PMCID: PMC11697457 DOI: 10.1186/s13072-024-00564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors. Growing evidence indicates that intricate epigenetic modifications play a major role in the persistence of HIV latency, presenting a significant barrier to eradication efforts and causing viral rebound after ART discontinuation. Current strategies to purge the latent reservoir involve LRAs that reactivate latent proviruses. However, their clinical success is hindered by the heterogeneity of HIV reservoirs and the virus's diverse pathways. Additionally, RNA modifications like N6-methyladenosine (m^6 A) methylation influence HIV biology beyond transcriptional control, affect RNA stability, splicing, and translation, which could enhance therapeutic efficacy. The regulatory framework of chromatin dynamics is also key to understanding viral latency and reactivation, such as Vpr's role in reactivating latent HIV by targeting HDACs. Sex-specific factors were also shown to play an important role with females, showing stronger early immune responses and higher representation among elite controllers. This review addresses the multifaceted challenges of HIV cure research, focusing on genetic diversity, epigenetic regulation, RNA modifications, chromatin remodeling, and sex-specific factors. By integrating insights into these aspects, this paper aims to advance our understanding of HIV cure strategies and highlight directions for future research.
Collapse
Affiliation(s)
- Punitha Letchumanan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
2
|
Tatematsu BK, Sojka DK. Tissue-resident natural killer cells derived from conventional natural killer cells are regulated by progesterone in the uterus. Mucosal Immunol 2024:S1933-0219(24)00132-6. [PMID: 39708955 DOI: 10.1016/j.mucimm.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
The murine uterus contains three subsets of innate lymphoid cells (ILCs). Innate lymphoid cell type 1 (ILC1) and conventional natural killer (cNK) cells seed the uterus before puberty. Tissue-resident NK (trNK) cells emerge at puberty and vary in number during the estrous cycle. Here, we addressed the origin of uterine trNK cells and the influence of ovarian hormones on their local activation and differentiation in vivo. We used parabiosed mice in combination with intravascular fluorescent antibody labeling and flow cytometry to distinguish tissue-resident from circulating immune cells. Additionally, we used C57BL/6J ovariectomized (OVX) and non-OVX mice supplemented with ovarian hormones to assess their effects on uterine trNK cell function. Strikingly, mice OVX at three weeks of age and analyzed as adults lacked uterine trNK cells unless progesterone was administered. Our parabiosis studies confirmed that the progesterone-responsive trNK cells are derived from peripheral cNK cells. Moreover, medroxyprogesterone 17-acetate-induced expansion of cNK-derived trNK cells was abolished by a progesterone receptor antagonist. These data reveal a novel, uterine-specific differentiation pathway of trNK cells that is tightly regulated by progesterone.
Collapse
Affiliation(s)
- Bruna K Tatematsu
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153
| | - Dorothy K Sojka
- Microbiology and Immunology Department, Loyola University Health Science Campus, Maywood, IL, United States 60153.
| |
Collapse
|
3
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
4
|
Govindaraj S, Tyree S, Herring GB, Rahman SJ, Babu H, Ibegbu C, Young MR, Mehta CC, Haddad LB, Smith AK, Velu V. Differential expression of HIV target cells CCR5 and α4β7 in tissue resident memory CD4 T cells in endocervix during the menstrual cycle of HIV seronegative women. Front Immunol 2024; 15:1456652. [PMID: 39386203 PMCID: PMC11461385 DOI: 10.3389/fimmu.2024.1456652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ovarian hormones are known to modulate the immune system in the female genital tract (FGT). We sought to define the impact of the menstrual cycle on the mucosal HIV target cell levels, and tissue-resident CD4 T cells. Materials and methods Here, we characterized the distribution, phenotype, and function of CD4 T cells with special emphasis on HIV target cells (CCR5+ and α4β7+) as well as tissue-resident memory (TRM; CD69+ and CD103+) CD4 T cells in FGT of cycling women. Peripheral blood and Endocervical cells (EC-collected from cytobrush) were collected from 105 healthy women and performed multicolor flow cytometry to characterize the various subsets of CD4 T cells. Cervicovaginal lavage (CVL) were collected for cytokine analysis and plasma were collected for hormonal analysis. All parameters were compared between follicular and luteal phase of menstrual cycle. Results Our findings revealed no significant difference in the blood CD4 T cell subsets between the follicular and luteal phase. However, in EC, the proportion of several cell types was higher in the follicular phase compared to the luteal phase of menstrual cycle, including CCR5+α4β7-cells (p=0.01), CD69+CD103+ TRM (p=0.02), CCR5+CD69+CD103+ TRM (p=0.001) and FoxP3+ CD4 T cells (p=0.0005). In contrast, α4β7+ CCR5- cells were higher in the luteal phase (p=0.0004) compared to the follicular phase. In addition, we also found that hormonal levels (P4/E2 ratio) and cytokines (IL-5 and IL-6) were correlated with CCR5+ CD4 T cells subsets during the follicular phase of the menstrual cycle. Conclusion Overall, these findings suggest the difference in the expression of CCR5 and α4β7 in TRM CD4 T cell subsets in endocervix of HIV seronegative women between the follicular and luteal phase. Increase in the CCR5+ expression on TRM subsets could increase susceptibility to HIV infection during follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Sakthivel Govindaraj
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Staple Tyree
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Gina Bailey Herring
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
- Grady Ponce de Leon Center, Grady Health System, Atlanta, GA, United States
| | - Sadia J. Rahman
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Hemalatha Babu
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marisa R. Young
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - C. Christina Mehta
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Lisa B. Haddad
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Vijayakumar Velu
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory National Primate Research Center (ENPRC), Emory University, Atlanta, GA, United States
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
5
|
Chupp DP, Rivera CE, Zhou Y, Xu Y, Ramsey PS, Xu Z, Zan H, Casali P. A humanized mouse that mounts mature class-switched, hypermutated and neutralizing antibody responses. Nat Immunol 2024; 25:1489-1506. [PMID: 38918608 PMCID: PMC11291283 DOI: 10.1038/s41590-024-01880-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Humanized mice are limited in terms of modeling human immunity, particularly with regards to antibody responses. Here we constructed a humanized (THX) mouse by grafting non-γ-irradiated, genetically myeloablated KitW-41J mutant immunodeficient pups with human cord blood CD34+ cells, followed by 17β-estradiol conditioning to promote immune cell differentiation. THX mice reconstitute a human lymphoid and myeloid immune system, including marginal zone B cells, germinal center B cells, follicular helper T cells and neutrophils, and develop well-formed lymph nodes and intestinal lymphoid tissue, including Peyer's patches, and human thymic epithelial cells. These mice have diverse human B cell and T cell antigen receptor repertoires and can mount mature T cell-dependent and T cell-independent antibody responses, entailing somatic hypermutation, class-switch recombination, and plasma cell and memory B cell differentiation. Upon flagellin or a Pfizer-BioNTech coronavirus disease 2019 (COVID-19) mRNA vaccination, THX mice mount neutralizing antibody responses to Salmonella or severe acute respiratory syndrome coronavirus 2 Spike S1 receptor-binding domain, with blood incretion of human cytokines, including APRIL, BAFF, TGF-β, IL-4 and IFN-γ, all at physiological levels. These mice can also develop lupus autoimmunity after pristane injection. By leveraging estrogen activity to support human immune cell differentiation and maturation of antibody responses, THX mice provide a platform to study the human immune system and to develop human vaccines and therapeutics.
Collapse
Affiliation(s)
- Daniel P Chupp
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Invivyd, Waltham, MA, USA
| | - Carlos E Rivera
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yulai Zhou
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Yijiang Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Patrick S Ramsey
- Department of Obstetrics & Gynecology, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Zhenming Xu
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
| | - Hong Zan
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA
- Prellis Biologics, Berkeley, CA, USA
| | - Paolo Casali
- The Antibody Laboratory, Department of Microbiology, Immunology & Molecular Genetics, The University of Texas Long School of Medicine, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Long School of Medicine, San Antonio, TX, USA.
| |
Collapse
|
6
|
Fabunmi OA, Dludla PV, Nkambule BB. High-dose oral contraceptives induce hyperinsulinemia without altering immune activation in diet-induced obesity which persists even following a dietary low-fat diet intervention. J Reprod Immunol 2024; 163:104234. [PMID: 38479054 DOI: 10.1016/j.jri.2024.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 06/03/2024]
Abstract
Combined oral contraceptives (COCs) are known to cause weight gain and alter metabolic and immunological pathways. However, modifications in arterial or venous thrombotic risk profiles of women of reproductive ages on COC remain unclear. The study aimed at assessing the impact of COC on immune activation in diet-induced obesity. We further established whether the dietary intervention of switching from a high-fat diet (HFD) to a low-fat diet (LFD) attenuates immunological responses. Twenty (n=20) five-week-old female Sprague Dawley rats were randomly divided into two diet groups of HFD (n=15) and LFD (n=5) and were monitored for eight weeks. After eight weeks, animals in the HFD group switched diets to LFD and were randomly assigned to receive high-dose COC (HCOC) or low-dose COC (LCOC) for six weeks. Animals on HFD significantly gained weight and had a higher lee index when compared to the LFD group (p < 0.05). Moreover, the triglyceride-glucose index, insulin, and other metabolic parameters also increased in the HFD group compared to the LFD group (p < 0.001). Consistently, the levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α), were elevated in the HFD group when compared to the LFD group (p < 0.05). Upon switching from a high-fat to a low-fat diet, insulin levels persistently increased in animals receiving HCOC treatment compared to the LFD and HFD/LFD groups (p < 0.05). Thus, in a rat model of HFD-feeding, short-term HCOC treatment induces long-term metabolic dysregulation, which persists despite dietary intervention. However, further studies are recommended to confirm these findings.
Collapse
Affiliation(s)
- Oyesanmi A Fabunmi
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria.
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
7
|
Estarreja J, Caldeira G, Silva I, Mendes P, Mateus V. The Pharmacological Effect of Hemin in Inflammatory-Related Diseases: A Systematic Review. Biomedicines 2024; 12:898. [PMID: 38672251 PMCID: PMC11048114 DOI: 10.3390/biomedicines12040898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Hemin is clinically used in acute attacks of porphyria; however, recent evidence has also highlighted its capability to stimulate the heme oxygenase enzyme, being associated with cytoprotective, antioxidant, and anti-inflammatory effects. Indeed, current preclinical evidence emphasizes the potential anti-inflammatory role of hemin through its use in animal models of disease. Nevertheless, there is no consensus about the underlying mechanism(s) and the most optimal therapeutic regimens. Therefore, this review aims to summarize, analyze, and discuss the current preclinical evidence concerning the pharmacological effect of hemin. METHODS Following the application of the search expression and the retrieval of the articles, only nonclinical studies in vivo written in English were considered, where the potential anti-inflammatory effect of hemin was evaluated. RESULTS Forty-nine articles were included according to the eligibility criteria established. The results obtained show the preference of using 30 to 50 mg/kg of hemin, administered intraperitoneally, in both acute and chronic contexts. This drug demonstrates significant anti-inflammatory and antioxidant activities considering its capacity for reducing the expression of proinflammatory and oxidative markers. CONCLUSIONS This review highlighted the significant anti-inflammatory and antioxidant effects of hemin, providing a clearer vision for the medical community about the use of this drug in several human diseases.
Collapse
Affiliation(s)
- João Estarreja
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Gonçalo Caldeira
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Inês Silva
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Priscila Mendes
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
| | - Vanessa Mateus
- H&TRC—Health and Technology Research Center, ESTeSL—Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal; (J.E.); (G.C.); (I.S.); (P.M.)
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
8
|
Keller JK, Diekhof EK. Influence of female sex hormones on proactive behavioral and physiological immune parameters. Reprod Biol 2024; 24:100880. [PMID: 38581902 DOI: 10.1016/j.repbio.2024.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/08/2024]
Abstract
Women may be more susceptible to infections in the luteal phase, supposedly as a consequence of the hormone progesterone and its immunosuppressive action. While immunosuppression may be important for successful oocyte implantation and pregnancy, it makes women more vulnerable to pathogens. According to theory, to compensate for reduced immunocompetence, women in the luteal phase exhibit proactive behavioral responses, such as disgust and avoidance of disease-associated stimuli, to minimize contagion risk. However, previous studies yielded inconsistent results, and did not account for accompanying proactive immune responses, like the increase of secretory immunoglobin A (sIgA). Here, we assessed the proactive immune response and feelings of disgust associated with disease cues in the comparison of 61 woman with a natural menstrual cycle (31 in the follicular and 30 in the luteal phase) and 20 women taking hormonal contraception (HC). Women rated disease vulnerability and disgust propensity, watched a video displaying people with respiratory symptoms, which was evaluated for its disgust-evoking potential and contagiousness, and provided saliva samples for hormone and sIgA analysis. Women with HC reported a heightened vulnerability to disease compared to naturally cycling women, whereas both the feeling of disgust and the sIgA increase elicited by the disease video were similar across groups, regardless of progesterone. We found a u-shaped relationship between progesterone and baseline sIgA in naturally cycling women, with its nadir during ovulation. Overall, our data do not support a compensatory relationship between the proposed progesterone-induced immunosuppression and heightened disgust or a proactive sIgA response.
Collapse
Affiliation(s)
- Judith K Keller
- Neuroendocrinology and Human Biology Unit, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell- and Systems Biology, Universität Hamburg, Hamburg, Germany.
| | - Esther K Diekhof
- Neuroendocrinology and Human Biology Unit, Department of Biology, Faculty of Mathematics, Informatics and Natural Sciences, Institute for Animal Cell- and Systems Biology, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
9
|
Bränn E, Chen Y, Song H, László KD, D'Onofrio BM, Hysaj E, Almqvist C, Larsson H, Lichtenstein P, Valdimarsdottir UA, Lu D. Bidirectional association between autoimmune disease and perinatal depression: a nationwide study with sibling comparison. Mol Psychiatry 2024; 29:602-610. [PMID: 38191927 PMCID: PMC11153129 DOI: 10.1038/s41380-023-02351-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Although major depression, characterized by a pro-inflammatory profile, genetically overlap with autoimmune disease (AD) and the perinatal period involve immune system adaptations and AD symptom alterations, the bidirectional link between perinatal depression (PND) and AD is largely unexplored. Hence, the objective of this study was to investigate the bidirectional association between PND and AD. Using nationwide Swedish population and health registers, we conducted a nested case-control study and a matched cohort study. From 1,347,901 pregnancies during 2001-2013, we included 55,299 incident PND, their unaffected full sisters, and 10 unaffected matched women per PND case. We identified 41 subtypes of AD diagnoses recorded in the registers and compared PND with unaffected population-matched women and full sisters, using multivariable regressions. Women with an AD had a 30% higher risk of subsequent PND (95% CI 1.2-1.5) and women exposed to PND had a 30% higher risk of a subsequent AD (95% CI 1.3-1.4). Comparable associations were found when comparing exposed women with their unaffected sisters (nested case-control OR: 1.3, 95% CI 1.2-1.5, matched cohort HR: 1.3, 95% CI 1.1-1.6), and when studying antepartum and postpartum depression. The bidirectional association was more pronounced among women without psychiatric comorbidities (nested case-control OR: 1.5, 95% CI 1.4-1.6, matched cohort HR: 1.4, 95% CI 1.4-1.5) and strongest for multiple sclerosis (nested case-control OR: 2.0, 95% CI 1.6-2.3, matched cohort HR: 1.8, 95% CI 1.0-3.1). These findings demonstrate a bidirectional association between AD and PND independent of psychiatric comorbidities, suggesting possibly shared biological mechanisms. If future translational science confirms the underlying mechanisms, healthcare providers need to be aware of the increased risk of PND among women with ADs and vice versa.
Collapse
Affiliation(s)
- Emma Bränn
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Yufeng Chen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Huan Song
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Krisztina D László
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Brian M D'Onofrio
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Elgeta Hysaj
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Unnur A Valdimarsdottir
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Donghao Lu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Kowsar R, Sadeghi K, Hashemzadeh F, Miyamoto A. Ovarian sex steroid and epithelial control of immune responses in the uterus and oviduct: human and animal models†. Biol Reprod 2024; 110:230-245. [PMID: 38038990 PMCID: PMC10873282 DOI: 10.1093/biolre/ioad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023] Open
Abstract
The female reproductive tract (FRT), including the uterus and oviduct (Fallopian tube), is responsible for maintaining an optimal microenvironment for reproductive processes, such as gamete activation and transportation, sperm capacitation, fertilization, and early embryonic and fetal development. The mucosal surface of the FRT may be exposed to pathogens and sexually transmitted microorganisms due to the opening of the cervix during mating. Pathogens and endotoxins may also reach the oviduct through the peritoneal fluid. To maintain an optimum reproductive environment while recognizing and killing pathogenic bacterial and viral agents, the oviduct and uterus should be equipped with an efficient and rigorously controlled immune system. Ovarian sex steroids can affect epithelial cells and underlying stromal cells, which have been shown to mediate innate and adaptive immune responses. This, in turn, protects against potential infections while maintaining an optimal milieu for reproductive events, highlighting the homeostatic involvement of ovarian sex steroids and reproductive epithelial cells. This article will discuss how ovarian sex steroids affect the immune reactions elicited by the epithelial cells of the non-pregnant uterus and oviduct in the bovine, murine, and human species. Finally, we propose that there are regional and species-specific differences in the immune responses in FRT.
Collapse
Affiliation(s)
- Rasoul Kowsar
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Farzad Hashemzadeh
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Akio Miyamoto
- Global Agromedicine Research Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
11
|
Sandru F, Dumitrascu MC, Petca A, Petca RC, Roman AM. Progesterone Hypersensitivity in Assisted Reproductive Technologies: Implications for Safety and Efficacy. J Pers Med 2024; 14:79. [PMID: 38248780 PMCID: PMC10817690 DOI: 10.3390/jpm14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The global rise in the age of childbirth, influenced by changing sociodemographic patterns, has had a notable impact on fertility rates. Simultaneously, assisted reproductive techniques (ARTs) have become increasingly prevalent due to advancements in reproductive medicine. The paper explores the intersection between the surge in ARTs and the rising number of iatrogenic autoimmune progesterone dermatitis (APD). Autoimmune progesterone dermatitis, commonly known as progesterone hypersensitivity, manifests itself as a mucocutaneous hypersensitivity syndrome. It is characterized by a wide range of dermatological symptoms, with urticaria and maculopapular rashes being the most prominent signs. Concurrently, systemic symptoms, such as fever, angioedema, and, in severe instances, anaphylaxis, may ensue. This dermatologic condition poses a significant challenge to women of childbearing age. This intricate syndrome frequently manifests itself in conjunction with menstruation or pregnancy as a reaction to physiological fluctuations in endogenous progesterone. However, given that exposure to exogenous progesterone is an integral component of various modern therapies, secondary APD has also been described. Our findings unveil a heightened likelihood of developing secondary progesterone hypersensitivity in ART patients that is attributed to the administration of exogenous progesterone through intramuscular, intravaginal, and oral routes. The study also explores available therapeutic interventions for facilitating viable pregnancies in individuals grappling with autoimmune progesterone dermatitis within the context of ARTs. This comprehensive analysis contributes valuable insights into the intricate relationship between reproductive technologies, dermatological challenges, and successful pregnancy outcomes.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatovenerology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania;
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
| | - Alexandra-Maria Roman
- Dermatology Department, “Elias” University Emergency Hospital, 011461 Bucharest, Romania;
| |
Collapse
|
12
|
Moss CF, Wang R, Sao S, Chou B, Perin J, Lander ME, Thaker SM, Mann M, Coleman JS. Immunogenicity of 2-Dose HPV Vaccine Series for Postpartum Women: An Open-Label, Nonrandomized, Noninferiority Trial. JAMA Netw Open 2024; 7:e2352996. [PMID: 38285445 PMCID: PMC10825724 DOI: 10.1001/jamanetworkopen.2023.52996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/03/2023] [Indexed: 01/30/2024] Open
Abstract
Importance Postpartum human papillomavirus (HPV) vaccination is a promising strategy to increase HPV vaccination uptake in the US, particularly for reaching vaccine-naive women and those who lack health insurance beyond the pregnancy period. However, completion of the 3-dose vaccine regimen is challenging. Objective To evaluate the immunogenicity of a 2-dose postpartum HPV vaccination regimen (0 and 6 months) and assess whether it is noninferior to a 3-dose postpartum HPV vaccination regimen (0, 1-2, and 6 months) administered to historical controls. Design, Setting, and Participants A noninferiority, open-label, nonrandomized immunogenicity trial was conducted from August 4, 2020, to June 23, 2022, of postpartum patients aged 15 to 45 years who delivered at 2 hospitals in Baltimore, Maryland. Historical controls were adolescents and young women aged 16 to 26 years. Intervention Two doses of the nonavalent HPV vaccine administered 6 months apart. Main Outcomes and Measures The primary outcome was noninferiority (90% CI, lower bound >0.67) of the geometric mean titer (GMT) ratio for HPV-16 among postpartum women compared with historical controls. Secondary outcomes were noninferiority of GMT ratios for the other 8 HPV types and percentage seroconversion for each HPV type. As a noninferiority trial, the primary analysis used the per-protocol analysis. Results Of 225 enrolled participants, the mean (SD) age at baseline was 29.9 (6.8) years, and 171 (76.0%) were HPV-16 seronegative at baseline. Of these 171 participants, 129 (75.4%) received a second vaccine dose and completed the subsequent 4-week serologic measurements. Relative to historical controls, the HPV-16 GMT ratio was 2.29 (90% CI, 2.03-2.58). At month 7, HPV-16 GMT was higher after the 2-dose regimen (7213.1 mMU/mL [90% CI, 6245.0-8331.4 mMU/mL]) than among historic controls after the 3-dose regimen (3154.0 mMU/mL [90% CI, 2860.2-3478.0 mMU/mL]). Similarly, the lower bound of the 90% CI of the GMT ratio was above 1 for the 8 HPV types 6, 11, 18, 31, 33, 45, 52, and 58. A total of 118 of 134 women (88.1%) seroconverted for HPV-16 after the first dose; 4 weeks after the second dose, the seroconversion rate was 99% or greater for all HPV types. Conclusions and Relevance This study suggests that immunogenicity of a 2-dose HPV vaccination regimen given 6 months apart among postpartum women was noninferior to a 3-dose regimen among young historical controls. Most women seroconverted after the first dose of the 2-dose regimen. These results demonstrate that postpartum vaccination using a reduced schedule may be a promising strategy to increase HPV vaccine series completion. Trial Registration ClinicalTrials.gov Identifier: NCT04274153.
Collapse
Affiliation(s)
- Chailee F. Moss
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Runzhi Wang
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saumya Sao
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Betty Chou
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jamie Perin
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Megan E. Lander
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sejal M. Thaker
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melindia Mann
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jenell S. Coleman
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Al‐Kuraishy HM, Al‐Maiahy TJ, Al‐Gareeb AI, Alexiou A, Papadakis M, Elhussieny O, Saad HM, Batiha GE. New insights on the potential effect of progesterone in Covid-19: Anti-inflammatory and immunosuppressive effects. Immun Inflamm Dis 2023; 11:e1100. [PMID: 38018575 PMCID: PMC10683562 DOI: 10.1002/iid3.1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by severe acute respiratory syndrome CoV type 2 (SARS-CoV-2). COVID-19 is higher in men than women and sex hormones have immune-modulator effects during different viral infections, including SARS-CoV-2 infection. One of the essential sex hormones is progesterone (P4). AIMS This review aimed to reveal the association between P4 and Covid-19. RESULTS AND DISCUSSION The possible role of P4 in COVID-19 could be beneficial through the modulation of inflammatory signaling pathways, induction of the release of anti-inflammatory cytokines, and inhibition release of pro-inflammatory cytokines. P4 stimulates skew of naïve T cells from inflammatory Th1 toward anti-inflammatory Th2 with activation release of anti-inflammatory cytokines, and activation of regulatory T cells (Treg) with decreased interferon-gamma production that increased during SARS-CoV-2 infection. In addition, P4 is regarded as a potent antagonist of mineralocorticoid receptor (MR), it could reduce MRs that were activated by stimulated aldosterone from high AngII during SARS-CoV-2. P4 active metabolite allopregnanolone is regarded as a neurosteroid that acts as a positive modulator of γ-aminobutyric acid (GABAA ) so it may reduce neuropsychiatric manifestations and dysautonomia in COVID-19 patients. CONCLUSION Taken together, the anti-inflammatory and immunomodulatory properties of P4 may improve central and peripheral complications in COVID-19.
Collapse
Affiliation(s)
- Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Thabat J. Al‐Maiahy
- Department of Gynecology and Obstetrics, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- University Centre for Research & DevelopmentChandigarh UniversityMohaliPunjabIndia
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research & DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsa MatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour University, DamanhourAlBeheiraEgypt
| |
Collapse
|
14
|
Bojalil R, Ruíz-Hernández A, Villanueva-Arias A, Amezcua-Guerra LM, Cásarez-Alvarado S, Hernández-Dueñas AM, Rodríguez-Galicia V, Pavón L, Marquina B, Becerril-Villanueva E, Hernández-Pando R, Márquez-Velasco R. Two murine models of sepsis: immunopathological differences between the sexes-possible role of TGFβ1 in female resistance to endotoxemia. Biol Res 2023; 56:54. [PMID: 37875957 PMCID: PMC10594922 DOI: 10.1186/s40659-023-00469-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Endotoxic shock (ExSh) and cecal ligature and puncture (CLP) are models that induce sepsis. In this work, we investigated early immunologic and histopathologic changes induced by ExSh or CLP models in female and male mice. Remarkable results showed that females supported twice the LD100 of LPS for males, CLP survival and CFU counts were similar between genders, high circulating LPS levels in ExSh mice and low levels of IgM anti-LPS in males. In the serum of ExSh males, TNF and IL-6 increased in the first 6 h, in CLP males at 12 h. In the liver of ExSh mice, TNF increased at 1.5 and 12 h, IL-1 at 6 h. TGFβ1 increased in females throughout the study and at 12 h in males. In CLP mice, IL-6 decreased at 12 h, TGFβ1 increased at 6-12 h in males and at 12 h in females. In the lungs of ExSh males, IL-1β increased at 1.5-6 h and TGFβ1 at 12 h; in females, TNF decrease at 6 h and TGFβ1 increased from 6 h; in CLP females, TNF and IL-1β decreased at 12 h and 1.5 h, respectively, and TGFβ1 increased from 6 h; in males, TGFβ1 increased at 12 h. In the livers of ExSh mice, signs of inflammation were more common in males; in the CLP groups, inflammation was similar but less pronounced. ExSh females had leucocytes with TGFβ1. The lungs of ExSh males showed patches of hyaline membranes and some areas of inflammatory cells, similar but fewer and smaller lesions were seen in male mice with CLP. In ExSh females, injuries were less extent than in males, similar pulmonary lesions were seen in female mice with CLP. ExSh males had lower levels of TGFβ1 than females, and even lower levels were seen in CLP males. We conclude that the ExSh was the most lethal model in males, associated with high levels of free LPS, low IgM anti-LPS, exacerbated inflammation and target organ injury, while females showed early TGFβ1 production in the lungs and less tissue damage. We didn't see any differences between CLP mice.
Collapse
Affiliation(s)
- Rafael Bojalil
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Armando Ruíz-Hernández
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Mexico
| | - Arturo Villanueva-Arias
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Manuel Amezcua-Guerra
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Sergio Cásarez-Alvarado
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente, Mexico City, Mexico
| | - Brenda Marquina
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico.
| |
Collapse
|
15
|
Nayyar S, Archibong A, Nayyar T. Testosterone and Prolactin Perturbations Possibly Associated with Reduced Levels of β-Arrestin1 in Mononuclear Leukocytes of Women with Premenstrual Dysphoric Disorder. Int J Mol Sci 2023; 24:15449. [PMID: 37895130 PMCID: PMC10607656 DOI: 10.3390/ijms242015449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, we reported that a reduction in β-Arrestin1 protein levels in peripheral blood mononuclear leukocytes (PBMC) significantly correlated with the severity of depression symptoms in women with premenstrual dysphoric disorder (PMDD). This study aimed to determine whether the reduced premenstrual β-Arrestin1 protein levels were associated with changes in the regulator for late luteal phase progesterone secretion. The study participants (n = 25) were non-pregnant women between 18 and 42 years of age not taking any antidepressants or receiving therapy and experiencing the luteal phase of menstruation. ELISA determined the β-Arrestin1 protein in PBMC; testosterone and prolactin levels from the plasma were determined by radioimmunoassay. Reduced levels of β-Arrestin1 protein in women with Hamilton Rating Scale for Depression (HAM-D) scores above 19 were observed alongside significantly higher plasma testosterone and prolactin concentrations. Understanding the mechanism underlying the initiation of PMDD will allow for identification of a key perturbed metabolic enzyme that can serve as a target for drug development to ensure the alleviation of PMDD, which has been suggested earlier as a risk factor for developing major depressive disorders.
Collapse
Affiliation(s)
| | | | - Tultul Nayyar
- Meharry Medical College, 1005 Dr. D. B. Todd Jr. Blvd, Nashville, TN 37208, USA; (S.N.); (A.A.)
| |
Collapse
|
16
|
Su F, Xue Y, Ye S, Yu B, Li J, Xu L, Yuan X. Integrative transcriptomic and metabolomic analysis in mice reveals the mechanism by which ginseng stem-leaf saponins enhance mucosal immunity induced by a porcine epidemic diarrhea virus vaccination. Vaccine 2023; 41:6379-6390. [PMID: 37704497 DOI: 10.1016/j.vaccine.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a main cause of severe enteric disease in piglets, leading to millions of dollars lost annually in the global pig industry. Parenteral vaccination is limited in generating sufficient mucosal immunity, which is crucial for early defense against PEDV. Here, we orally administered ginseng stem-leaf saponins (GSLS) to mice before parenteral vaccination and found that GSLS significantly enhanced the phagocytosis of dendritic cells, promoted the activities of CD4+ T cells and increased PEDV-specific IgA antibodies in the intestinal mucosa. Transcriptomic results showed that the altered genes following GSLS treatment were mostly related to the immune response and metabolism. In addition, integrated analysis of the transcriptome and metabolome revealed that the mechanism by which GSLS enhances mucosal immunity may be associated with progesterone-related pathways. Further studies are needed to explore the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Fei Su
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Yin Xue
- Zhejiang Center of Animal Disease Control, Hangzhou, Zhejiang 310020, China
| | - Shiyi Ye
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Lihua Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China
| | - Xiufang Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310002, China.
| |
Collapse
|
17
|
Abramicheva PA, Semenovich DS, Zorova LD, Pevzner IB, Sokolov IA, Popkov VA, Kazakov EP, Zorov DB, Plotnikov EY. Decreased renal expression of PAQR5 is associated with the absence of a nephroprotective effect of progesterone in a rat UUO model. Sci Rep 2023; 13:12871. [PMID: 37553369 PMCID: PMC10409855 DOI: 10.1038/s41598-023-39848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Fibrosis is a severe complication of chronic kidney disease (CKD). Progesterone, like other sex hormones, plays an important role in renal physiology, but its role in CKD is poorly understood. We investigated progesterone effect on renal fibrosis progression in the rat model of unilateral ureteral obstruction (UUO). Female rats were exposed to UUO, ovariectomy and progesterone administration after UUO with ovariectomy. Expression of key fibrosis markers, proinflammatory cytokines, levels of membrane-bound (PAQR5) and nuclear (PGR) progesterone receptors, and matrix metalloproteinase (MMP) activity were analyzed in the obstructed and intact rat kidney. In all groups exposed to UUO, decreased PAQR5 expression was observed in the obstructed kidney while in the contralateral kidney, it remained unaffected. We found increased mRNA levels for profibrotic COL1A1, FN1, MMP2, TIMP1, TIMP2, proinflammatory IL1α, IL1β, and IL18, as well as elevated α-SMA and MMP9 proteins, collagen deposition, and MMP2 activity in all UUO kidneys. Progesterone had slight or no effect on the change in these markers. Thus, we demonstrate for the first time diminished sensitivity of the kidney to progesterone associated with renal fibrosis due to a severe decrease in PAQR5 expression that was accompanied by the lack of nephroprotection in a rat UUO model.
Collapse
Affiliation(s)
- P A Abramicheva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
| | - D S Semenovich
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - L D Zorova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia, 117997
| | - I B Pevzner
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia, 117997
| | - I A Sokolov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- Mendeleev University of Chemical Technology of Russia, Moscow, Russia, 125047
| | - V A Popkov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia, 117997
- MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - E P Kazakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - D B Zorov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia, 117997
| | - E Y Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Moscow, Russia, 117997.
| |
Collapse
|
18
|
Messas T, Lim RK, Burns L, Yumeen S, Kroumpouzos G. A critical review of COVID-19 course and vaccination in dermatology patients on immunomodulatory/biologic therapy: recommendations should not differ between non-pregnant and pregnant individuals. Front Med (Lausanne) 2023; 10:1121025. [PMID: 37332768 PMCID: PMC10272467 DOI: 10.3389/fmed.2023.1121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/24/2023] [Indexed: 06/20/2023] Open
Abstract
COVID-19 can have detrimental effects on immunosuppressed patients. Here, we evaluate the evidence regarding continuing immunomodulatory/biologic (IMBI) therapy in pregnant dermatology patients during the COVID-19 pandemic. Also, we discuss the risks of COVID-19 vaccination in pregnant dermatology patients on IMBI therapy. As indicated in this review, regarding continuing IMBI therapy in pregnant dermatology patients during the pandemic, there is no compelling reason for treating them differently than non-pregnant. The body of evidence indicates that mRNA COVID-19 vaccines are safe during pregnancy. Studies on rheumatology patients, a group that overlaps significantly with the dermatology group, provided essential findings. IMBI in a non-pregnant rheumatology patient was not associated with COVID-19 mortality (except for rituximab), and vaccination of the rheumatology patient during pregnancy improved the obstetric outcomes compared to the unvaccinated patient. Based on this data, it can be stated that after weighing the benefit-risk profile of the available COVID-19 vaccines, the recommendation for the pregnant dermatology patient speaks in favor of the COVID-19 vaccination. COVID-19 vaccine recommendations in pregnant dermatology patients on IMBI should not differ from those for their non-pregnant counterparts.
Collapse
Affiliation(s)
- Tassahil Messas
- Department of Dermatology, University Hospital Centre, University of Constantine III, Constantine, Algeria
| | - Rachel K. Lim
- Alpert Medical School, Brown University, Providence, RI, United States
| | - Laura Burns
- Department of Dermatology, Alpert Medical School, Brown University, Providence, RI, United States
| | - Sara Yumeen
- Department of Dermatology, Alpert Medical School, Brown University, Providence, RI, United States
| | - George Kroumpouzos
- Department of Dermatology, Alpert Medical School, Brown University, Providence, RI, United States
- GK Dermatology, PC, South Weymouth, MA, United States
| |
Collapse
|
19
|
Lin J, Harahsheh AS, Raghuveer G, Jain S, Choueiter NF, Garrido-Garcia LM, Dahdah N, Portman MA, Misra N, Khoury M, Fabi M, Elias MD, Dionne A, Lee S, Tierney ESS, Ballweg JA, Manlhiot C, McCrindle BW. Emerging Insights Into the Pathophysiology of Multisystem Inflammatory Syndrome Associated With COVID-19 in Children. Can J Cardiol 2023; 39:793-802. [PMID: 36626979 PMCID: PMC9824951 DOI: 10.1016/j.cjca.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) has emerged as a rare delayed hyperinflammatory response to SARS-CoV-2 infection and causes severe morbidity in the pediatric age group. Although MIS-C shares many clinical similarities to Kawasaki disease (KD), important differences in epidemiologic, clinical, immunologic, and potentially genetic factors exist and suggest potential differences in pathophysiology and points to be explored and explained. Epidemiologic features include male predominance, peak age of 6 to12 years, and specific racial or ethnicity predilections. MIS-C is characterized by fever, prominent gastrointestinal symptoms, mucocutaneous manifestations, respiratory symptoms, and neurologic complaints, and patients often present with shock. Cardiac complications are frequent and include ventricular dysfunction, valvular regurgitation, pericardial effusion, coronary artery dilation and aneurysms, conduction abnormalities, and arrhythmias. Emerging evidence regarding potential immunologic mechanisms suggest that an exaggerated T-cell response to a superantigen on the SARS-CoV-2 spike glycoprotein-as well as the formation of autoantibodies against cardiovascular, gastrointestinal, and endothelial antigens-are major contributors to the inflammatory milieu of MIS-C. Further studies are needed to determine both shared and distinct immunologic pathway(s) that underlie the pathogenesis of MIS-C vs both acute SARS-CoV-2 infection and KD. There is evidence to suggest that the rare risk of more benign mRNA vaccine-associated myopericarditis is outweighed by a reduced risk of more severe MIS-C. In the current review, we synthesize the published literature to describe associated factors and potential mechanisms regarding an increased risk of MIS-C and cardiac complications, provide insights into the underlying immunologic pathophysiology, and define similarities and differences with KD.
Collapse
Affiliation(s)
- Justin Lin
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ashraf S Harahsheh
- Children's National Hospital, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Supriya Jain
- Division of Pediatric Cardiology, Maria Fareri Children's Hospital of Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Nadine F Choueiter
- Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Nagib Dahdah
- Division of Pediatric Cardiology, Sainte Justine University Hospital Center, University of Montreal, Montréal, Québec, Canada
| | | | - Nilanjana Misra
- Cohen Children's Medical Center of New York, Northwell Health, New York, New York, USA
| | - Michael Khoury
- Stollery Children's Hospital, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Marianna Fabi
- Pediatric Emergency Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matthew D Elias
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Audrey Dionne
- Department of Cardiology, Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon Lee
- Children's Nationwide Hospital, Columbus, Ohio, USA
| | - Elif Seda Selamet Tierney
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jean A Ballweg
- Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Cedric Manlhiot
- Johns Hopkins University School of Medicine, Division of Cardiology, Department of Pediatrics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Brian W McCrindle
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Pavlik TI, Shimanovsky NL, Zemlyanaya OA, Fedotcheva TA. The Effect of Progestins on Cytokine Production in the Peripheral Blood Mononuclear Cells of Menopausal Women and Their Luminol-Dependent Chemiluminescence. Molecules 2023; 28:molecules28114354. [PMID: 37298830 DOI: 10.3390/molecules28114354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Steroid hormones are the key regulators of inflammatory and autoimmune processes. The role of steroid hormones is mostly inhibitory in these processes. The expression of IL-6, TNFα, and IL-1β, as markers of inflammation, and TGFβ, as a marker of fibrosis, could be useful tools to predict the response of an individual's immune system to the different progestins suitable for the treatment of menopausal inflammatory disorders, including endometriosis. In this study, the progestins P4 and MPA, as well as the novel progestin gestobutanoyl (GB), which possess potent anti-inflammatory properties towards endometriosis, were studied at a fixed concentration of 10 µM. Their influence on the production of the above cytokines in PHA-stimulated peripheral blood mononuclear cells (PBMCs) during 24 h incubation was evaluated by ELISA. It was found that synthetic progestins stimulated the production of IL-1β, IL-6, and TNFα and inhibited TGFβ production, while P4 inhibited IL-6 (33% inhibition) and did not influence TGFβ production. In the MTT-viability test, P4 also decreased PHA-stimulated PBMC viability by 28% during 24 h incubation, but MPA and GB did not have any inhibitory or stimulatory effects. The luminol-dependent chemiluminescence (LDC) assay revealed the anti-inflammatory and antioxidant properties of all the tested progestins, as well as some other steroid hormones and their antagonists: cortisol, dexamethasone, testosterone, estradiol, cyproterone, and tamoxifen. Of these, tamoxifen showed the most pronounced effect on the oxidation capacity of PBMC but not on that of dexamethasone, as was expected. Collectively, these data demonstrate that PBMCs from menopausal women respond differently to P4 and synthetic progestins, most likely due to distinct actions via various steroid receptors. It is not only the progestin affinity to nuclear progesterone receptors (PR), androgen receptors, glucocorticoid receptors, or estrogen receptors that is important for the immune response, but also the membrane PR or other nongenomic structures in immune cells.
Collapse
Affiliation(s)
- Tatiana I Pavlik
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia
| | - Nikolay L Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia
| | - Olga A Zemlyanaya
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia
| | - Tatiana A Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, 117997 Moscow, Russia
| |
Collapse
|
21
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
22
|
Khashchenko EP, Uvarova EV, Chuprynin VD, Pustynnikova MY, Fatkhudinov TK, Elchaninov AV, Gardanova ZR, Ivanets TY, Vysokikh MY, Sukhikh GT. Pelvic Pain, Mental Health and Quality of Life in Adolescents with Endometriosis after Surgery and Dienogest Treatment. J Clin Med 2023; 12:jcm12062400. [PMID: 36983400 PMCID: PMC10052887 DOI: 10.3390/jcm12062400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Diagnostic and treatment delays have caused significant impacts on the physical and emotional well-being of adolescents with endometriosis, though such research is limited. This study aimed to assess the effects of one-year dienogest therapy on the clinical picture, pain patterns, psycho-emotional status, and quality-of-life indicators in adolescents with endometriosis after surgical treatment. METHODS The study enrolled 32 girls aged 13-17 with peritoneal endometriosis to analyze one-year dynamics of the Visual Analog Scale (VAS), McGill Pain Questionnaire, Beck Depression Scale (BDI), Hospital Anxiety and Depression Scale (HADS), Spielberger State-Trait Anxiety Inventory (STAI) and SF-36 quality-of-life survey scores along with clinical and laboratory indicators before surgery and after one-year dienogest therapy. RESULTS The therapy provided a significant alleviation of endometriosis-associated clinical symptoms, including dysmenorrhea, pelvic pain, gastrointestinal/dysuria symptoms, decreased everyday activity (<0.001), a decrease in anxiety/depression scores (BDI, HADS, STAI), and quality-of-life improvement (<0.001). These effects were accompanied by beneficial dynamics in hormone and inflammatory markers (prolactin, cortisol, testosterone, estradiol, CA-125, neutrophil/lymphocyte ratio; <0.005) within reference ranges. A low body mass index and high C-reactive protein levels were associated with higher VAS scores; a high estradiol level was a factor for anxiety/depression aggravation (<0.05). CONCLUSIONS Dienogest, after surgical treatment, significantly improved quality of life and reduced pain symptoms while showing good tolerability and compliance, and reasoning with timely hormonal therapy in adolescents with endometriosis.
Collapse
Affiliation(s)
- Elena P Khashchenko
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Elena V Uvarova
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department for Obstetrics, Gynecology, Perinatology and Reproduction, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| | - Vladimir D Chuprynin
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Margarita Yu Pustynnikova
- Faculty of Fundamental Medicine, Moscow State University Named after M.V. Lomonosov, 119991 Moscow, Russia
| | - Timur Kh Fatkhudinov
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, 117997 Moscow, Russia
| | - Andrey V Elchaninov
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department of Histology, Cytology and Embryology, Peoples' Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, 117997 Moscow, Russia
| | - Zhanna R Gardanova
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Tatyana Yu Ivanets
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
| | - Mikhail Yu Vysokikh
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology MSU, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Gennady T Sukhikh
- FSBI "National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov" Ministry of Healthcare of the Russian Federation, 4, Oparina Street, 117997 Moscow, Russia
- Department for Obstetrics, Gynecology, Perinatology and Reproduction, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, Bld. 2, 119991 Moscow, Russia
| |
Collapse
|
23
|
Gardinassi LG, Servian CDP, Lima GDS, dos Anjos DCC, Gomes Junior AR, Guilarde AO, Borges MASB, dos Santos GF, Moraes BGN, Silva JMM, Masson LC, de Souza FP, da Silva RR, de Araújo GL, Rodrigues MF, da Silva LC, Meira S, Fiaccadori FS, Souza M, Romão PRT, Spadafora Ferreira M, Coelho V, Chaves AR, Simas RC, Vaz BG, Fonseca SG. Integrated Metabolic and Inflammatory Signatures Associated with Severity of, Fatality of, and Recovery from COVID-19. Microbiol Spectr 2023; 11:e0219422. [PMID: 36852984 PMCID: PMC10100880 DOI: 10.1128/spectrum.02194-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.
Collapse
Affiliation(s)
- Luiz Gustavo Gardinassi
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Carolina do Prado Servian
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Gesiane da Silva Lima
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Déborah Carolina Carvalho dos Anjos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Antonio Roberto Gomes Junior
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Adriana Oliveira Guilarde
- Departamento de Medicina Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Moara Alves Santa Bárbara Borges
- Departamento de Medicina Tropical e Dermatologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Gabriel Franco dos Santos
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - João Marcos Maia Silva
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Letícia Carrijo Masson
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Flávia Pereira de Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rodolfo Rodrigues da Silva
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Giovanna Lopes de Araújo
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Marcella Ferreira Rodrigues
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lidya Cardozo da Silva
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sueli Meira
- Laboratório Prof Margarida Dobler Komma, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fabiola Souza Fiaccadori
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Menira Souza
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Verônica Coelho
- Laboratório de Imunologia, Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Laboratório de Histocompatibilidade e Imunidade Celular, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia, São Paulo, São Paulo, Brazil
| | - Andréa Rodrigues Chaves
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Rosineide Costa Simas
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Boniek Gontijo Vaz
- Laboratório de Cromatografia e Espectrometria de Massas, Instituto de Química, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Simone Gonçalves Fonseca
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Instituto de Investigação em Imunologia, Instituto Nacional de Ciências e Tecnologia, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Influence of Hormonal Contraceptive Use and HIV on Cervicovaginal Cytokines and Microbiota in Malawi. mSphere 2023; 8:e0058522. [PMID: 36622252 PMCID: PMC9942570 DOI: 10.1128/msphere.00585-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Important questions remain on how hormonal contraceptives alter the local immune environment and the microbiota in the female genital tract and how such effects may impact susceptibility to HIV infection. We leveraged samples from a previously conducted clinical trial of Malawian women with (n = 73) and without (n = 24) HIV infection randomized to depot medroxyprogesterone acetate (DMPA) or the levonogestrel implant in equal numbers within each group and determined the effects of these hormonal contraceptives (HCs) on the vaginal immune milieu and the composition of the vaginal microbiota. Longitudinal data for soluble immune mediators, measured by multiplex bead arrays and enzyme-linked immunosorbent assays (ELISAs), and vaginal microbiota, assessed by 16S rRNA gene amplicon, were collected prior to and over a period of 180 days post-HC initiation. DMPA and levonogestrel had only minimal effects on the vaginal immune milieu and microbiota. In women with HIV, with the caveat of a small sample size, there was an association between the median log10 change in the interleukin-12 (IL-12)/IL-10 ratio in vaginal fluid at day 180 post-HC compared to baseline when these women were classified as having a community state type (CST) IV vaginal microbiota and were randomized to DMPA. Long-lasting alterations in soluble immune markers or shifts in microbiota composition were not observed. Furthermore, women with HIV did not exhibit increased viral shedding in the genital tract after HC initiation. Consistent with the results of the ECHO (Evidence for Contraceptive Options and HIV Outcomes) trial, our data imply that the progestin-based HC DMPA and levonorgestrel are associated with minimal risk for women with HIV. (This study has been registered at ClinicalTrials.gov under registration no. NCT02103660). IMPORTANCE The results of the Evidence for Contraceptive Options and HIV Outcomes (ECHO) trial, the first large randomized controlled clinical trial comparing the HIV acquisition risk of women receiving DMPA, the levonorgestrel (LNG) implant, or the copper intrauterine device (IUD), did not reveal an increased risk of HIV acquisition for women on any of these three contraceptives. Our study results confirm that the two different progestin-based hormonal contraceptives DMPA and levonogestrel will not increase the risk for HIV infection. Furthermore, DMPA and levonogestrel have only minimal effects on the immune milieu and the microbiota in the vaginal tract, attesting to the safety of these hormonal contraceptives.
Collapse
|
25
|
Saleh S, Liu BD, Trujillo S, Thomas C, Fass R. The effect of combined oral contraceptives and Nexplanon on gastroesophageal reflux disease in premenopausal women: A nationwide database analysis. Neurogastroenterol Motil 2023; 35:e14542. [PMID: 36740824 DOI: 10.1111/nmo.14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pregnancy, combined oral contraceptives (COC), and hormone replacement therapy have been reported to increase the risk of gastroesophageal reflux disease (GERD). To date, no study has evaluated the effect of Nexplanon, a commonly used progesterone-based contraceptive, on GERD. We aimed to determine the effect of Nexplanon and COC on GERD. METHODS We performed a population-based analysis using the IBM Explorys national database (1999-2021). The study group included premenopausal women, defined as women less than 50 years of age while excluding the diagnosis of menopause. The effect of Nexplanon and COC on GERD (at least 30 days after Nexplanon/COC was initiated) was assessed by comparing it to premenopausal women who were not on contraceptives. Foregut surgery, esophageal dysmotility disorders, hiatal hernia, and delayed gastric emptying were excluded. Odds ratios (OR) with 95% confidence intervals (CI) were calculated. A multivariate logistic regression analysis was conducted. KEY RESULTS A total of 23,299,470 patients were identified as being premenopausal, of which 47,260 were on Nexplanon and 5480 on COCs. As compared to premenopausal women with GERD on no contraceptives (n = 565,880), 690 patients developed GERD at least 30 days after being on Nexplanon (OR = 0.55, 95% CI [0.51-0.59], p < 0.001) and 280 developed GERD after COC (1.93, [1.71-2.18], p < 0.001). A multivariate analysis accounting for Caucasian race, obesity, smoking, alcohol use, and NSAIDs revealed that COC is an independent risk factor for GERD (1.16, [1.12-1.20], p < 0.001), and Nexplanon was protective against GERD (0.90, [0.89-0.92], p < 0.001). Hydralazine was used as a control medication for data reliability. A total of 8420 patients developed GERD after initiating hydralazine, which was not statistically nor clinically significant (OR = 1.02, 95% CI [0.99-1.04], p = 0.08) when compared to those not on contraceptives. CONCLUSIONS & INFERENCES Combined oral contraceptives is an independent risk factor for GERD, while Nexplanon has a limited protective effect. Further studies are needed to confirm the different effects on GERD of these two contraceptives.
Collapse
Affiliation(s)
- Sherif Saleh
- Department of Internal Medicine, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Benjamin D Liu
- Department of Internal Medicine, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Sophie Trujillo
- Department of Internal Medicine, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Charles Thomas
- Center for Health Care Research and Policy, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| | - Ronnie Fass
- Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center and Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
26
|
Rezayat F, Esmaeil N, Rezaei A. Potential Therapeutic Effects of Human Amniotic Epithelial Cells on Gynecological Disorders Leading to Infertility or Abortion. Stem Cell Rev Rep 2023; 19:368-381. [PMID: 36331801 DOI: 10.1007/s12015-022-10464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
The induction of feto-maternal tolerance, fetal non-immunogenicity, and the regulation of mother's immune system are essential variables in a successful pregnancy. Fetal membranes have been used as a source of stem cells and biological components in recent decades. Human amniotic epithelial cells (hAEC) have stem/progenitor characteristics like those found in the amniotic membrane. Based on their immunomodulatory capabilities, recent studies have focused on the experimental and therapeutic applications of hAECs in allograft transplantation, autoimmune disorders, and gynecological problems such as recurrent spontaneous abortion (RSA), recurrent implantation failure (RIF), and premature ovarian failure (POF). This review discusses some of the immunomodulatory features and therapeutic potential of hAECs in preventing infertility, miscarriage, and implantation failure by controlling the maternal immune system.
Collapse
Affiliation(s)
- Fatemeh Rezayat
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Department of Immunology, School of Medicine, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, 81744-176, Isfahan, Iran.
| | - Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Zamparini J, Saggers R, Buga CE. A Review of Coronavirus Disease 2019 in Pregnancy. Semin Respir Crit Care Med 2023; 44:50-65. [PMID: 36646085 DOI: 10.1055/s-0042-1758853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pregnancy is an independent risk factor for morbidity and mortality in coronavirus disease 2019 (COVID-19) with increased rates of operative delivery, intensive care unit admission, and mechanical ventilation as well as a possible increased risk of death, independent of other risk factors, compared with nonpregnant women with COVID-19. Furthermore, pregnancy outcomes are worse in those with COVID-19 with increased risk for preeclampsia, venous thromboembolism, preterm birth, miscarriage, and stillbirth compared with pregnant women without COVID-19. Importantly, pregnant women of nonwhite ethnicity appear to be at greater risk of severe COVID-19, necessitating improved access to care and closer monitoring in these women. The management of COVID-19 in pregnancy is largely similar to that in nonpregnant people; however, there is an important emphasis on multidisciplinary team involvement to ensure favorable outcomes in both mother and baby. Similarly, vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is safe in pregnancy and improves maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Jarrod Zamparini
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Robin Saggers
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Paediatrics and Child Health, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Chandia Edward Buga
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Obstetrics and Gynaecology, Thelle Mogoerane Regional Hospital, Vosloorus, South Africa
| |
Collapse
|
28
|
Dong M, Dong Y, Bai J, Li H, Ma X, Li B, Wang C, Li H, Qi W, Wang Y, Fan A, Han C, Xue F. Interactions between microbiota and cervical epithelial, immune, and mucus barrier. Front Cell Infect Microbiol 2023; 13:1124591. [PMID: 36909729 PMCID: PMC9998931 DOI: 10.3389/fcimb.2023.1124591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023] Open
Abstract
The female reproductive tract harbours hundreds of bacterial species and produces numerous metabolites. The uterine cervix is located between the upper and lower parts of the female genital tract. It allows sperm and birth passage and hinders the upward movement of microorganisms into a relatively sterile uterus. It is also the predicted site for sexually transmitted infection (STI), such as Chlamydia, human papilloma virus (HPV), and human immunodeficiency virus (HIV). The healthy cervicovaginal microbiota maintains cervical epithelial barrier integrity and modulates the mucosal immune system. Perturbations of the microbiota composition accompany changes in microbial metabolites that induce local inflammation, damage the cervical epithelial and immune barrier, and increase susceptibility to STI infection and relative disease progression. This review examined the intimate interactions between the cervicovaginal microbiota, relative metabolites, and the cervical epithelial-, immune-, and mucus barrier, and the potent effect of the host-microbiota interaction on specific STI infection. An improved understanding of cervicovaginal microbiota regulation on cervical microenvironment homeostasis might promote advances in diagnostic and therapeutic approaches for various STI diseases.
Collapse
Affiliation(s)
- Mengting Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yalan Dong
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Junyi Bai
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huanrong Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaotong Ma
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Bijun Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiyang Li
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenhui Qi
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Aiping Fan
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cha Han
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| | - Fengxia Xue
- Department of Obstetrics and Gynaecology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenic, Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Cha Han, ; Fengxia Xue,
| |
Collapse
|
29
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
30
|
Okunaka M, Kano D, Uesawa Y. Nuclear Receptor and Stress Response Pathways Associated with Antineoplastic Agent-Induced Diarrhea. Int J Mol Sci 2022; 23:12407. [PMID: 36293277 PMCID: PMC9604027 DOI: 10.3390/ijms232012407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/06/2023] Open
Abstract
In severe cases, antineoplastic agent-induced diarrhea may be life-threatening; therefore, it is necessary to determine the mechanism of toxicity and identify the optimal management. The mechanism of antineoplastic agent-induced diarrhea is still unclear but is often considered to be multifactorial. The aim of this study was to determine the molecular initiating event (MIE), which is the initial interaction between molecules and biomolecules or biosystems, and to evaluate the MIE specific to antineoplastic agents that induce diarrhea. We detected diarrhea-inducing drug signals based on adjusted odds ratios using the Food and Drug Administration Adverse Event Reporting System. We then used the quantitative structure-activity relationship platform of Toxicity Predictor to identify potential MIEs that are specific to diarrhea-inducing antineoplastic agents. We found that progesterone receptor antagonists were potential MIEs associated with diarrhea. The findings of this study may help improve the prediction and management of antineoplastic agent-induced diarrhea.
Collapse
Affiliation(s)
- Mashiro Okunaka
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Daisuke Kano
- Department of Pharmacy, National Cancer Center Hospital East, Kashiwa 277-8577, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| |
Collapse
|
31
|
Margiana R, Sharma SK, Khan BI, Alameri AA, Opulencia MJC, Hammid AT, Hamza TA, Babakulov SK, Abdelbasset WK, Jawhar ZH. RETRACTED: The pathogenicity of COVID-19 and the role of pentraxin-3: An updated review study. Pathol Res Pract 2022; 238:154128. [PMID: 36137396 PMCID: PMC9476367 DOI: 10.1016/j.prp.2022.154128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. In investigating concerns regarding the contributions of the authors to this article, the editors reached out to the authors for an explanation. In addition to the concerns regarding the contribution of each author, the editors discovered suspicious changes in authorship between the original submission and the revised version of this paper. The names of the authors Ameer A Alameri and Zanko Hassan Jawhar were added to the revised version of the article without explanation and without the exceptional approval by the handling Editor, which is contrary to the journal policy on changes to authorship. The authors were unable to provide a reasonable explanation for either of the issues raised. The editor therefore feels that the findings of the manuscript cannot be relied upon and that the article needs to be retracted.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India.
| | | | | | | | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical laboratory techniques department, Al-Mustaqbal University College, Babylon, Iraq
| | - Sharaf Khamrakulovich Babakulov
- Tashkent State Dental Institute, Makhtumkuli Street 103, Tashkent, 100047, Uzbekistan; Research scholar, Department of Scientific affairs, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| |
Collapse
|
32
|
Fedotcheva TA, Fedotcheva NI, Shimanovsky NL. Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation. Biomolecules 2022; 12:biom12091299. [PMID: 36139138 PMCID: PMC9496164 DOI: 10.3390/biom12091299] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022] Open
Abstract
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P4 can be defined as nonspecific, associated with the inhibition of NF-κB and COX, as well as the inhibition of prostaglandin synthesis, or as specific, associated with the regulation of T-cell activation, the regulation of the production of pro- and anti-inflammatory cytokines, and the phenomenon of immune tolerance. The specific anti-inflammatory effects of P4 and its derivatives (progestins) can also include the inhibition of proliferative signaling pathways and the antagonistic action against estrogen receptor beta-mediated signaling as a proinflammatory and mitogenic factor. The anti-inflammatory action of P4 is accomplished through the participation of progesterone receptor (PR) chaperones HSP90, as well as immunophilins FKBP51 and FKBP52, which are the validated targets of clinically approved immunosuppressive drugs. The immunomodulatory and anti-inflammatory effects of HSP90 inhibitors, tacrolimus and cyclosporine, are manifested, among other factors, due to their participation in the formation of an active ligand–receptor complex of P4 and their interaction with its constituent immunophilins. Pharmacological agents such as HSP90 inhibitors can restore the lost anti-inflammatory effect of glucocorticoids and P4 in chronic inflammatory and autoimmune diseases. By regulating the activity of FKBP51 and FKBP52, it is possible to increase or decrease hormonal signaling, as well as restore it during the development of hormone resistance. The combined action of immunophilin suppressors with steroid hormones may be a promising strategy in the treatment of chronic inflammatory and autoimmune diseases, including endometriosis, stress-related disorders, rheumatoid arthritis, and miscarriages. Presumably, the hormone receptor- and immunophilin-targeted drugs may act synergistically, allowing for a lower dose of each.
Collapse
Affiliation(s)
- Tatiana A. Fedotcheva
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
- Correspondence: ; Tel.: +7-9169353196
| | - Nadezhda I. Fedotcheva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, Pushchino 142290, Russia
| | - Nikolai L. Shimanovsky
- Science Research Laboratory of Molecular Pharmacology, Medical Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Ostrovityanova St. 1, Moscow 117997, Russia
| |
Collapse
|
33
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
34
|
Adachi A, Honda T. Regulatory Roles of Estrogens in Psoriasis. J Clin Med 2022; 11:jcm11164890. [PMID: 36013129 PMCID: PMC9409683 DOI: 10.3390/jcm11164890] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a common chronic inflammatory skin disease of the interleukin (IL)-23/IL-17 axis. The severity of psoriasis has been reported as higher in men than in women. The immunoregulatory role of female sex hormones has been proposed to be one of the factors responsible for sex differences. Among female sex hormones, estrogens have been suggested to be significantly involved in the development of psoriasis by various epidemiological and in vitro studies. For example, the severity of psoriasis is inversely correlated with serum estrogen levels. In vitro, estrogens suppress the production of psoriasis-related cytokines such as IL-1β and IL-23 from neutrophils and dendritic cells, respectively. Furthermore, a recent study using a mouse psoriasis model indicated the inhibitory role of estrogens in psoriatic dermatitis by suppressing IL-1β production from neutrophils and macrophages. Understanding the role and molecular mechanisms of female sex hormones in psoriasis may lead to better control of the disease.
Collapse
Affiliation(s)
- Akimasa Adachi
- Department of Dermatology, Tokyo Metropolitan Bokutoh Hospital, Tokyo 130-8575, Japan
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tetsuya Honda
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Correspondence:
| |
Collapse
|
35
|
Peters BA, Santoro N, Kaplan RC, Qi Q. Spotlight on the Gut Microbiome in Menopause: Current Insights. Int J Womens Health 2022; 14:1059-1072. [PMID: 35983178 PMCID: PMC9379122 DOI: 10.2147/ijwh.s340491] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbiome is an important contributor to human health, shaped by many endogenous and exogenous factors. The gut microbiome displays sexual dimorphism, suggesting influence of sex hormones, and also has been shown to change with aging. Yet, little is known regarding the influence of menopause - a pivotal event of reproductive aging in women - on the gut microbiome. Here, we summarize what is known regarding the interrelationships of female sex hormones and the gut microbiome, and review the available literature on menopause, female sex hormones, and the gut microbiome in humans. Taken together, research suggests that menopause is associated with lower gut microbiome diversity and a shift toward greater similarity to the male gut microbiome, however more research is needed in large study populations to identify replicable patterns in taxa impacted by menopause. Many gaps in knowledge remain, including the role the gut microbiome may play in menopause-related disease risks, and whether menopausal hormone therapy modifies menopause-related change in the gut microbiome. Given the modifiable nature of the gut microbiome, better understanding of its role in menopause-related health will be critical to identify novel opportunities for improvement of peri- and post-menopausal health and well-being.
Collapse
Affiliation(s)
- Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
36
|
Don EE, Landman AJEMC, Vissers G, Jordanova ES, Post Uiterweer ED, de Groot CJM, de Boer MA, Huirne JAF. Uterine Fibroids Causing Preterm Birth: A New Pathophysiological Hypothesis on the Role of Fibroid Necrosis and Inflammation. Int J Mol Sci 2022; 23:ijms23158064. [PMID: 35897637 PMCID: PMC9331897 DOI: 10.3390/ijms23158064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 02/04/2023] Open
Abstract
According to recent studies and observations in clinical practice, uterine fibroids increase the risk of preterm birth. There are several theories on the pathogenesis of preterm birth in the presence of fibroids. One theory proclaims that fibroid necrosis leads to preterm birth, though pathophysiological mechanisms have not been described. Necrotic tissue secretes specific cytokines and proteins and we suggest these to be comparable to the inflammatory response leading to spontaneous preterm birth. We hypothesize that fibroid necrosis could induce preterm parturition through a similar inflammatory response. This new hypothesis generates novel perspectives for future research and the development of preventative strategies for preterm birth. Moreover, we emphasize the importance of the recognition of fibroids and especially fibroid necrosis by clinicians during pregnancy.
Collapse
Affiliation(s)
- Emma E. Don
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-444-4444
| | - Anadeijda J. E. M. C. Landman
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Guus Vissers
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
| | - Ekaterina S. Jordanova
- Center for Gynecologic Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
- Department of Urology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Emiel D. Post Uiterweer
- Department of Obstetrics and Gynaecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Obstetrics and Gynaecology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Christianne J. M. de Groot
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Marjon A. de Boer
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Judith A. F. Huirne
- Department of Obstetrics and Gynaecology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands; (A.J.E.M.C.L.); (G.V.); (C.J.M.d.G.); (M.A.d.B.); (J.A.F.H.)
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Menopause Is Associated with an Altered Gut Microbiome and Estrobolome, with Implications for Adverse Cardiometabolic Risk in the Hispanic Community Health Study/Study of Latinos. mSystems 2022; 7:e0027322. [PMID: 35675542 PMCID: PMC9239235 DOI: 10.1128/msystems.00273-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Menopause is a pivotal period during which loss of ovarian hormones increases cardiometabolic risk and may also influence the gut microbiome. However, the menopause-microbiome relationship has not been examined in a large study, and its implications for cardiometabolic disease are unknown. In the Hispanic Community Health Study/Study of Latinos, a population with high burden of cardiometabolic risk factors, shotgun metagenomic sequencing was performed on stool from 2,300 participants (295 premenopausal women, 1,027 postmenopausal women, and 978 men), and serum metabolomics was available on a subset. Postmenopausal women trended toward lower gut microbiome diversity and altered overall composition compared to premenopausal women, while differing less from men, in models adjusted for age and other demographic/behavioral covariates. Differentially abundant taxa for post- versus premenopausal women included Bacteroides sp. strain Ga6A1, Prevotella marshii, and Sutterella wadsworthensis (enriched in postmenopause) and Escherichia coli-Shigella spp., Oscillibacter sp. strain KLE1745, Akkermansia muciniphila, Clostridium lactatifermentans, Parabacteroides johnsonii, and Veillonella seminalis (depleted in postmenopause); these taxa similarly differed between men and women. Postmenopausal women had higher abundance of the microbial sulfate transport system and decreased abundance of microbial β-glucuronidase; these functions correlated with serum progestin metabolites, suggesting involvement of postmenopausal gut microbes in sex hormone retention. In postmenopausal women, menopause-related microbiome alterations were associated with adverse cardiometabolic profiles. In summary, in a large U.S. Hispanic/Latino population, menopause is associated with a gut microbiome more similar to that of men, perhaps related to the common condition of a low estrogen/progesterone state. Future work should examine similarity of results in other racial/ethnic groups. IMPORTANCE The menopausal transition, marked by declining ovarian hormones, is recognized as a pivotal period of cardiometabolic risk. Gut microbiota metabolically interact with sex hormones, but large population studies associating menopause with the gut microbiome are lacking. Our results from a large study of Hispanic/Latino women and men suggest that the postmenopausal gut microbiome in women is slightly more similar to the gut microbiome in men and that menopause depletes specific gut pathogens and decreases the hormone-related metabolic potential of the gut microbiome. At the same time, gut microbes may participate in sex hormone reactivation and retention in postmenopausal women. Menopause-related gut microbiome changes were associated with adverse cardiometabolic risk in postmenopausal women, indicating that the gut microbiome contributes to changes in cardiometabolic health during menopause.
Collapse
|
38
|
Gene expression of the endocannabinoid system in endometrium through menstrual cycle. Sci Rep 2022; 12:9400. [PMID: 35672435 PMCID: PMC9174470 DOI: 10.1038/s41598-022-13488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
Endocannabinoids mediate cellular functions and their activity is controlled by a complex system of enzymes, membrane receptors and transport molecules. Endocannabinoids are present in endometrium, a cyclical regenerative tissue requiring tightly regulated cellular mechanisms for maturation. The objective of this study was to investigate the gene expression of key elements involved in the endocannabinoid system across the menstrual cycle. RNA was isolated from endometrial tissue and genome-wide gene expression datasets were generated using RNA-sequencing. An a priori set of 70 genes associated with endocannabinoid system were selected from published literature. Gene expression across the menstrual cycle was analyzed using a moderated t test, corrected for multiple testing with Bonferroni’s method. A total of 40 of the 70 genes were present in > 90% of the samples, and significant differential gene expression identified for 29 genes. We identified 4 distinct regulation patterns for synthesizing enzymes, as well as a distinct regulation pattern for degradations and transporting enzymes. This study charts the expression of endometrial endocannabinoid system genes across the menstrual cycle. Altered expression of genes that control endocannabinoid may allow fine control over endocannabinoid concentrations and their influence on cellular function, maturation and differentiation as the endometrium matures through the menstrual cycle.
Collapse
|
39
|
Hu J, Brendle SA, Li JJ, Walter V, Cladel NM, Cooper T, Shearer DA, Balogh KK, Christensen ND. Depo Medroxyprogesterone (DMPA) Promotes Papillomavirus Infections but Does Not Accelerate Disease Progression in the Anogenital Tract of a Mouse Model. Viruses 2022; 14:v14050980. [PMID: 35632722 PMCID: PMC9147738 DOI: 10.3390/v14050980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Contraceptives such as Depo-medroxyprogesterone (DMPA) are used by an estimated 34 million women worldwide. DMPA has been associated with increased risk of several viral infections including Herpes simplex virus-2 (HSV-2) and Human immunodeficiency virus (HIV). In the current study, we used the mouse papillomavirus (MmuPV1) anogenital infection model to test two hypotheses: (1) contraceptives such as DMPA increase the susceptibility of the anogenital tract to viral infection and (2) long-term contraceptive administration induces more advanced disease at the anogenital tract. DMPA treatments of both athymic nude mice and heterozygous NU/J (Foxn1nu/+) but ovariectomized mice led to a significantly increased viral load at the anogenital tract, suggesting that endogenous sex hormones were involved in increased viral susceptibility by DMPA treatment. Consistent with previous reports, DMPA treatment suppressed host anti-viral activities at the lower genital tract. To test the impact of long-term contraceptive treatment on the MmuPV1-infected lower genital tract, we included two other treatments in addition to DMPA: 17β-estradiol and a non-hormone based contraceptive Cilostazol (CLZ, Pletal). Viral infections were monitored monthly up to nine months post infection by qPCR. The infected vaginal and anal tissues were harvested and further examined by histological, virological, and immunological analyses. Surprisingly, we did not detect a significantly higher grade of histology in animals in the long-term DMPA and 17β-estradiol treated groups when compared to the control groups in the athymic mice we tested. Therefore, although DMPA promotes initial papillomavirus infections in the lower genital tract, the chronic administration of DMPA does not promote cancer development in the infected tissues in our mouse model.
Collapse
Affiliation(s)
- Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence:
| | - Sarah A. Brendle
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jingwei J. Li
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Vonn Walter
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA;
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Nancy M. Cladel
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Timothy Cooper
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, NIH, Fort Detrick, Frederick, MD 21702, USA;
| | - Debra A. Shearer
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Karla K. Balogh
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Neil D. Christensen
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA; (S.A.B.); (J.J.L.); (N.M.C.); (D.A.S.); (K.K.B.); (N.D.C.)
- Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
40
|
Sessa R, Anastasi E, Brandolino G, Brunelli R, Di Pietro M, Filardo S, Masciullo L, Terrin G, Viscardi MF, Porpora MG. What is the Hidden Biological Mechanism Underlying the Possible SARS-CoV-2 Vertical Transmission? A Mini Review. Front Physiol 2022; 13:875806. [PMID: 35600312 PMCID: PMC9117645 DOI: 10.3389/fphys.2022.875806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) represents an emerging infection that is spreading around the world. Among susceptible patients, pregnant women are more likely to develop serious complications and negative obstetric outcomes. Vertical transmission constitutes a debating issue which has not been completely understood. This review aims at describing the currently available evidence on SARS-CoV2 vertical transmission. We carried out a computerized literature search in the Cochrane Library, PubMed, Scopus and Web of Science, selecting the most relevant studies on vertical transmission from the outbreak onset until February 2022. The analysis of the available literature identifies the presence of SARS-CoV2 genome in different biological specimens, confirming the hypothesis that a transplacental infection can occur. In spite of the high number of infected people around the world, mother-to-child infections have been infrequently reported but it can be observed under certain biologic conditions. A deep knowledge of the underlying mechanisms of SARS-CoV2 vertical transmission is of paramount importance for planning an adequate management for the affected mothers and newborns.
Collapse
Affiliation(s)
- Rosa Sessa
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, Rome, Italy
| | - Emanuela Anastasi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Gabriella Brandolino
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
| | - Roberto Brunelli
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, Rome, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, Rome, Italy
| | - Luisa Masciullo
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
| | - Gianluca Terrin
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
| | - Maria Federica Viscardi
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
| | - Maria Grazia Porpora
- Department of Maternal and Child Health and Urology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Maria Grazia Porpora,
| |
Collapse
|
41
|
Santa S, Doku DA, Olwal CO, Brown CA, Tagoe EA, Quaye O. Paradox of COVID-19 in pregnancy: are pregnant women more protected against or at elevated risk of severe COVID-19? Future Microbiol 2022; 17:803-812. [PMID: 35510478 PMCID: PMC9070559 DOI: 10.2217/fmb-2021-0233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many underlying medical conditions have been linked to worse COVID-19 prognosis. Based on reports on SARS-CoV-1 and Middle East respiratory syndrome infections, pregnancy has been considered a predisposing factor to severe COVID-19, with pregnant women being a high-risk group for several physiological reasons. Specifically, pregnant women undergo physiological adaptations that predispose them to severe respiratory viral diseases, including SARS-CoV-2. However, a significant amount of evidence suggests that the clinical outcome of COVID-19 among pregnant women is not different from the general population. In view of this, this report discusses the physiological conditions in pregnant women that adversely affect their immunity, cardiovascular homeostasis, and their endothelial and coagulopathic functions, thereby making them more prone to severe viral infections. We also discuss how these physiological adaptations appear to paradoxically offer protection against severe COVID-19 among pregnant women.
Collapse
Affiliation(s)
- Sheila Santa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Derek A Doku
- Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana.,West African Genetic Medicine Center, University of Ghana, Accra, Ghana
| | - Charles O Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Charles A Brown
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel A Tagoe
- Department of Medical Laboratory Sciences, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana.,Department of Biochemistry, Cell & Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
42
|
Priyadarshini S, Rath SK, Verma C, Das A. Poorer Obstetrics Outcomes During the Second Wave of COVID-19 in India. J Obstet Gynaecol India 2022; 72:402-408. [PMID: 35528222 PMCID: PMC9065234 DOI: 10.1007/s13224-022-01641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/20/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Outcomes of pregnancy in COVID 19-infected mothers are worse than in the general population. Due to immunological changes, antenatal women are more vulnerable to severe complications. The India has experienced two waves of the disease. We analysed whether the second wave of the disease had affected pregnancy outcomes differently by comparing pregnancy outcomes with those of the first wave.
Materials and Method The study population included all the women delivered in the same tertiary centre during both the waves. Maternal outcome parameters include maternal oxygen requirement, maternal ICU admission and maternal death. Foetal outcome parameters include APGAR scores, preterm deliveries and NICU admissions, maternal and foetal outcome parameters between the first and the second waves were compared. Results Demographic parameters were similar in both the waves of COVID 19. No significant differences were found in pre-pregnancy comorbidities, high-risk pregnancies and mode of deliveries between the two waves. Maternal oxygen requirement increased in the second wave [first wave 6(4.7%) vs second wave 25(40.3%) (p-value < 0.001)]. There was also a significant increase in ICU admission [4(3.1%) vs 8(12.9%)], which was in positive correlation with maternal oxygen requirement during the second wave (r = 0.81, p < 0.001). However, there was no significant difference in maternal death [2(1.6%) vs 2(3.2%)]. No significant change noted in neonatal outcomes except for an increase in neonatal sepsis [0 vs 5(8.1%)]. Conclusion Mothers had more severe diseases during the second wave. But this did not translate into significant increase in maternal mortality and poor neonatal outcomes, possibly due to better preparedness.
Collapse
Affiliation(s)
- Subhadra Priyadarshini
- Research and Development, Kalinga Institute of Medical Science, KIIT Deemed to Be University, Bhubaneswar, Odisha India
| | - Sudhanshu Kumar Rath
- Department of Obstetrics and Gynecology, Kalinga Institute of Medical Science, KIIT Deemed to Be University, Bhubaneswar, Odisha India
| | - Chandini Verma
- Department of Obstetrics and Gynecology, Kalinga Institute of Medical Science, KIIT Deemed to Be University, Bhubaneswar, Odisha India
| | - Asima Das
- Department of Obstetrics and Gynecology, Kalinga Institute of Medical Science, KIIT Deemed to Be University, Bhubaneswar, Odisha India
| |
Collapse
|
43
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
44
|
Ottarsdottir K, Tivesten Å, Li Y, Lindblad U, Hellgren M, Ohlsson C, Daka B. Cardiometabolic risk factors and endogenous sex hormones in postmenopausal women: a cross-sectional study. J Endocr Soc 2022; 6:bvac050. [PMID: 35480632 PMCID: PMC9037133 DOI: 10.1210/jendso/bvac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 11/19/2022] Open
Abstract
Context It is uncertain which cardiovascular risk factors are associated with sex hormone levels in postmenopausal women. Objective This work aimed to investigate the association between cardiometabolic risk factors and sex hormones in a cross-sectional, observational population study. Methods In this Swedish population study, participants were physically examined from 2002 to 2004, and endogenous sex hormones were analyzed by liquid chromatography–tandem mass spectrometry. Women aged 55 years or older with estradiol levels below 20 pg/mL and not using any hormonal therapy were eligible for inclusion in the study (N = 146). Variable selection and bootstrap stability analyses were performed and linear regression models presented, with each of the 8 hormones as outcome variables. Results Body mass index (BMI) was positively associated with estradiol (β = 0.054, P < .001), but negatively associated with 17-α-hydroxyprogesterone (β = –0.023, P = .028). Waist-to-hip ratio (WHR) was negatively associated with dihydrotestosterone (β = –2.195, P = .002) and testosterone (β = –1.541, P = .004). The homeostatic model assessment of insulin resistance was positively associated with androstenedione (β = 0.071, P = .032), estradiol (β = 0.091, P = .009), estrone (β = 0.075, P = 0.009), and 17-α-hydroxyprogesterone (β = 0.157, P = .001). Age was positively associated with testosterone (β = 0.017, P = .042). C-reactive protein showed an inverse association with progesterone (β = –0.028, P = .037). Lower low-density lipoprotein cholesterol was associated with higher estradiol levels (β = –0.093, P = .049), whereas lower triglycerides were associated with higher concentrations of dihydrotestosterone (β = –0.208, P = .016). Conclusion In postmenopausal women, WHR was strongly inversely associated with androgens, while BMI was positively associated with estrogens.
Collapse
Affiliation(s)
- Kristin Ottarsdottir
- General practice - Family medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Local Research and Development Council Södra Älvsborg, Sweden
| | - Åsa Tivesten
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Ying Li
- Biostatistics, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Lindblad
- General practice - Family medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Margareta Hellgren
- General practice - Family medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Bledar Daka
- General practice - Family medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
45
|
Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells 2022; 11:cells11071075. [PMID: 35406639 PMCID: PMC8997425 DOI: 10.3390/cells11071075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Progesterone has been shown to be a potent suppressor of several inflammatory pathways. During pregnancy, progesterone levels increase, allowing for normal pregnancy establishment and maintenance. The dysregulation of progesterone, as well as inflammation, leads to poor pregnancy outcomes. However, it is unclear how progesterone imbalance could impact inflammatory responses in the oviduct and subsequently result in early pregnancy loss. Therefore, in this review, we describe the role of progesterone signaling in regulating the inflammatory response, with a focus on the oviduct and pathological conditions in the Fallopian tubes.
Collapse
|
46
|
Pereira G, Guo Y, Silva E, Bevilacqua C, Charpigny G, Lopes-da-Costa L, Humblot P. Progesterone differentially affects the transcriptomic profiles of cow endometrial cell types. BMC Genomics 2022; 23:82. [PMID: 35086476 PMCID: PMC8793221 DOI: 10.1186/s12864-022-08323-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
Background The endometrium is a heterogeneous tissue composed of luminal epithelial (LE), glandular epithelial (GE), and stromal cells (ST), experiencing progesterone regulated dynamic changes during the estrous cycle. In the cow, this regulation at the transcriptomic level was only evaluated in the whole tissue. This study describes specific gene expression in the three types of cells isolated from endometrial biopsies following laser capture microdissection and the transcriptome changes induced by progesterone in GE and ST cells. Results Endometrial LE, GE, and ST cells show specific transcriptomic profiles. Most of the differentially expressed genes (DEGs) in response to progesterone are cell type-specific (96%). Genes involved in cell cycle and nuclear division are under-expressed in the presence of progesterone in GE, highlighting the anti-proliferative action of progesterone in epithelial cells. Elevated progesterone concentrations are also associated with the under-expression of estrogen receptor 1 (ESR1) in GE and oxytocin receptor (OXTR) in GE and ST cells. In ST cells, transcription factors such as SOX17 and FOXA2, known to regulate uterine epithelial-stromal cross-talk conveying to endometrial receptivity, are over-expressed under progesterone influence. Conclusions The results from this study show that progesterone regulates endometrial function in a cell type-specific way, which is independent of the expression of its main receptor PGR. These novel insights into uterine physiology present the cell compartment as the physiological unit rather than the whole tissue. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08323-z.
Collapse
Affiliation(s)
- Gonçalo Pereira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| | - Elisabete Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gilles Charpigny
- Université Paris-Saclay, INRAE, ENVA, BREED, 78350, Jouy-en-Josas, France
| | - Luís Lopes-da-Costa
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
| | - Patrice Humblot
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU, PO Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
47
|
Gowda P, Reddy PH, Kumar S. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Ageing Res Rev 2022; 73:101529. [PMID: 34813976 PMCID: PMC8692431 DOI: 10.1016/j.arr.2021.101529] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/17/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is currently one of the biggest public health concerns in the world. Mitochondrial dysfunction in neurons is one of the major hallmarks of AD. Emerging evidence suggests that mitochondrial miRNAs potentially play important roles in the mitochondrial dysfunctions, focusing on synapse in AD progression. In this meta-analysis paper, a comprehensive literature review was conducted to identify and discuss the (1) role of mitochondrial miRNAs that regulate mitochondrial and synaptic functions; (2) the role of various factors such as mitochondrial dynamics, biogenesis, calcium signaling, biological sex, and aging on synapse and mitochondrial function; (3) how synapse damage and mitochondrial dysfunctions contribute to AD; (4) the structure and function of synapse and mitochondria in the disease process; (5) latest research developments in synapse and mitochondria in healthy and disease states; and (6) therapeutic strategies that improve synaptic and mitochondrial functions in AD. Specifically, we discussed how differences in the expression of mitochondrial miRNAs affect ATP production, oxidative stress, mitophagy, bioenergetics, mitochondrial dynamics, synaptic activity, synaptic plasticity, neurotransmission, and synaptotoxicity in neurons observed during AD. However, more research is needed to confirm the locations and roles of individual mitochondrial miRNAs in the development of AD.
Collapse
Affiliation(s)
- Prashanth Gowda
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
48
|
Leach DA, Brooke GN, Bevan CL. Roles of steroid receptors in the lung and COVID-19. Essays Biochem 2021; 65:1025-1038. [PMID: 34328182 PMCID: PMC8628186 DOI: 10.1042/ebc20210005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.
Collapse
Affiliation(s)
- Damien A. Leach
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| | - Greg N. Brooke
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| |
Collapse
|
49
|
Dabee S, Tanko RF, Brown BP, Bunjun R, Balle C, Feng C, Konstantinus IN, Jaumdally SZ, Onono M, Nair G, Palanee-Phillips T, Gill K, Baeten JM, Bekker LG, Passmore JAS, Heffron R, Jaspan HB, Happel AU. Comparison of Female Genital Tract Cytokine and Microbiota Signatures Induced by Initiation of Intramuscular DMPA and NET-EN Hormonal Contraceptives - a Prospective Cohort Analysis. Front Immunol 2021; 12:760504. [PMID: 34956191 PMCID: PMC8696178 DOI: 10.3389/fimmu.2021.760504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background Cervicovaginal inflammation, bacterial microbiota and hormonal contraceptives all influence sexual and reproductive health. To date, the effects of intramuscular depo-medroxyprogesterone acetate (DMPA-IM) versus injectable norethisterone enanthate (NET-EN) on vaginal microbiota or cytokines have not been compared back-to-back, although in-vitro data suggest that DMPA-IM and NET-EN have different pharmacokinetic and biologic activities. This study aimed at comparing the effects of DMPA-IM versus NET-EN initiation on cervicovaginal cytokines and microbiota in women at high risk for sexually transmitted infections (STIs) assigned to the respective contraceptives. Methods We collected socio-demographic characteristics and vaginal samples from women initiating DMPA-IM (ECHO Trial; n = 53) and NET-EN (UChoose Trial; n = 44) at baseline and after two consecutive injections to assess cytokine concentrations by Luminex, vaginal microbiota by 16S rRNA gene sequencing, STIs, bacterial vaginosis (BV) and candidiasis. Results Cytokine concentrations did not change significantly after initiating DMPA-IM or NET-EN, although NET-EN versus DMPA-IM-associated profiles were distinct. While the abundance of bacterial taxa associated with optimal and non-optimal microbiota fluctuated with DMPA-IM use, overall community composition did not significantly change with either contraceptive. HSV-2 serology, chlamydial infection, gonorrhoea and candidiasis did not influence the associations between contraceptive type and cervicovaginal cytokines or microbiota. Conclusions Both DMPA-IM and NET-EN use did not lead to broad inflammatory or microbiota changes in the female genital tract of sub-Saharan African women. This suggests that NET-EN is likely a viable option for contraception in African women at high risk of BV and STIs.
Collapse
Affiliation(s)
- Smritee Dabee
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Ramla F. Tanko
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa,Centre for the AIDS Programme of Research in South Africa (CAPRISA) Centre of Excellence in HIV Prevention, University of Cape Town, Cape Town, South Africa,The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Bryan P. Brown
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Christina Balle
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Colin Feng
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle, WA, United States
| | | | - Shameem Z. Jaumdally
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | | | | | - Thesla Palanee-Phillips
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Jared M. Baeten
- Department of Global Health, University of Washington, Seattle, WA, United States,Gilead Sciences, Foster City, CA, United States
| | | | - Jo-Ann S. Passmore
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa,Centre for the AIDS Programme of Research in South Africa (CAPRISA) Centre of Excellence in HIV Prevention, University of Cape Town, Cape Town, South Africa,National Health Laboratory Service, Cape Town, South Africa
| | - Renee Heffron
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Heather B. Jaspan
- Center for Global Infectious Disease, Seattle Children’s Research Institute, Seattle, WA, United States,Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa,Department of Global Health, University of Washington, Seattle, WA, United States,*Correspondence: Heather B. Jaspan,
| | - Anna-Ursula Happel
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Cicalini I, Rossi C, Natale L, Cufaro MC, Catitti G, Vespa S, De Bellis D, Iannetti G, Lanuti P, Bucci I, Stuppia L, De Laurenzi V, Pieragostino D. Passive Immunity to SARS-CoV-2 at Birth Induced by Vaccination in the First Trimester of Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312789. [PMID: 34886515 PMCID: PMC8657259 DOI: 10.3390/ijerph182312789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
As is well known, the COVID-19 infection is affecting the whole world, causing a serious health, social and economic crisis. The viral infection can cause a mild or severe illness, depending on how effectively the virus is countered by the immune system. In this context, the position of pregnant women remains rather unknown. The case described here reports the immune response in a woman in good health and in her newborn son, having undergone complete vaccination during the first trimester of her pregnancy. We performed a serological assay, measuring IgG antibodies to SARS-CoV-2, by a fully automated solid phase DELFIA (time-resolved fluorescence) immunoassay in a few drops of blood, collected by a finger-prick and spotted on filter paper. The dried blood spot (DBS) sample we used is the same type of sample routinely used in a newborn screening program test. Such a simple and minimally invasive approach allowed us to monitor both the mother and the newborn soon after birth for their anti-SARS-CoV-2 IgG levels. The serological test on the DBS carried out on both mother and newborn revealed the presence of anti-SARS-CoV-2 IgG antibodies up to 7 months after vaccination in the mother, and already at 48 h of life in the newborn.
Collapse
Affiliation(s)
- Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: ; Tel.: +39-0871-541333
| | - Claudia Rossi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Natale
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Domenico De Bellis
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Iannetti
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Medicine and Aging Science, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Psychological, Health and Territory Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (C.R.); (L.N.); (M.C.C.); (G.C.); (S.V.); (D.D.B.); (G.I.); (P.L.); (I.B.); (L.S.); (V.D.L.); (D.P.)
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|