1
|
Nouari W, Aribi M. Innate lymphoid cells, immune functional dynamics, epithelial parallels, and therapeutic frontiers in infections. Int Rev Immunol 2025:1-28. [PMID: 40242974 DOI: 10.1080/08830185.2025.2490233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 02/19/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Innate lymphoid cells (ILCs) have emerged as pivotal players in the field of immunology, expanding our understanding of innate immunity beyond conventional paradigms. This comprehensive review delves into the multifaceted world of ILCs, beginning with their serendipitous discovery and traversing their ontogeny and heterogeneity. We explore the distinct subsets of ILCs unraveling their intriguing plasticity, which adds a layer of complexity to their functional repertoire. As we journey through the functional activities of ILCs, we address their role in immune responses against various infections, categorizing their interactions with helminthic parasites, bacterial pathogens, fungal infections, and viral invaders. Notably, this review offers a detailed examination of ILCs in the context of specific infections, such as Mycobacterium tuberculosis, Citrobacter rodentium, Clostridium difficile, Salmonella typhimurium, Helicobacter pylori, Listeria monocytogenes, Staphylococcus aureus, Pseudomonas aeruginosa, Influenza virus, Cytomegalovirus, Herpes simplex virus, and severe acute respiratory syndrome coronavirus 2. This selection aimed for a comprehensive exploration of ILCs in various infectious contexts, opting for microorganisms based on extensive research findings rather than considerations of virulence or emergence. Furthermore, we raise intriguing questions about the potential immune functional resemblances between ILCs and epithelial cells, shedding light on their interconnectedness within the mucosal microenvironment. The review culminates in a critical assessment of the therapeutic prospects of targeting ILCs during infection, emphasizing their promise as novel immunotherapeutic targets. Nevertheless, due to their recent discovery and evolving understanding, effectively manipulating ILCs is challenging. Ensuring specificity and safety while evaluating long-term effects in clinical settings will be crucial.
Collapse
Affiliation(s)
- Wafa Nouari
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
2
|
Walch P, Broz P. Viral-bacterial co-infections screen in vitro reveals molecular processes affecting pathogen proliferation and host cell viability. Nat Commun 2024; 15:8595. [PMID: 39366977 PMCID: PMC11452664 DOI: 10.1038/s41467-024-52905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The broadening of accessible methodologies has enabled mechanistic insights into single-pathogen infections, yet the molecular mechanisms underlying co-infections remain largely elusive, despite their clinical frequency and relevance, generally exacerbating symptom severity and fatality. Here, we describe an unbiased in vitro screening of pairwise co-infections in a murine macrophage model, quantifying pathogen proliferation and host cell death in parallel over time. The screen revealed that the majority of interactions are antagonistic for both metrics, highlighting general patterns depending on the pathogen virulence strategy. We subsequently decipher two distinct molecular interaction points: Firstly, murine Adenovirus 3 modifies ASC-dependent inflammasome responses in murine macrophages, altering host cell death and cytokine production, thereby impacting secondary Salmonella infection. Secondly, murine Adenovirus 2 infection triggers upregulation of Mprip, a crucial mediator of phagocytosis, which in turn causes increased Yersinia uptake, specifically in virus pre-infected bone-marrow-derived macrophages. This work therefore encompasses both a first-of-its-kind systematic assessment of host-pathogen-pathogen interactions, and mechanistic insight into molecular mediators during co-infection.
Collapse
Affiliation(s)
- Philipp Walch
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | - Petr Broz
- University of Lausanne, Department of Immunobiology, Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
3
|
Sanchez-Garrido J, Baghshomali YN, Kaushal P, Kozik Z, Perry RW, Williams HRT, Choudhary J, Frankel G. Impaired neutrophil migration underpins host susceptibility to infectious colitis. Mucosal Immunol 2024; 17:939-957. [PMID: 38936619 DOI: 10.1016/j.mucimm.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Citrobacter rodentium models infection with enteropathogenic Escherichia coli and ulcerative colitis (UC). While C57BL/6 (C57) mice recover, C3H/HeN (C3H) mice succumb to infection, partially due to increased colonic neutrophil elastase activity, also seen in UC patients; however, the underlying cause was unknown. Here, we found that bone marrow, blood, and colonic C57 neutrophils expressed (CD)11bHi and reached the infected colonic lumen, where they underwent productive NETosis. In contrast, while the number of C3H neutrophils increased in the bone marrow, blood, and colon, they remained CD11bLo and got trapped in the submucosa, away from C. rodentium, where they underwent harmful NETosis. CD11bLo neutrophils in C3H mice infected with CRi9, which triggers expression of neutrophil chemoattractants, reached the colonization site, resulting in host survival. UC patient neutrophils also displayed decreased levels of the activation/differentiation markers CD16/CXCR4. These results, suggesting that neutrophil malfunction contributes to exacerbated colitis, provide insight for future therapeutic prospects.
Collapse
Affiliation(s)
| | | | - Prashant Kaushal
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Zuza Kozik
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Robert W Perry
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Horace R T Williams
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Jyoti Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, United Kingdom
| | - Gad Frankel
- Department of Life Sciences, Imperial College, London, United Kingdom
| |
Collapse
|
4
|
Tsujii A, Takahashi K, Harada H, Kawashima S, Oikawa H, Fukushima H, Hayakawa Y, Koizumi J, Inoue N, Koshizuka T. Evaluation of the protective effect of the intranasal vaccines adjuvanted with bacterium-like particles against intestinal infection. Vaccine 2024; 42:125975. [PMID: 38763852 DOI: 10.1016/j.vaccine.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Mucosal vaccination presents a promising complement to parenteral vaccination. Bacterium-like particles (BLPs), peptidoglycan structures prepared from lactic acid bacteria, are explored as potential nasal vaccine adjuvants for respiratory infections. To date, studies on BLP-adjuvanted nasal vaccines against intestinal infections have remained limited. In this study, we demonstrated the efficacy of intranasal BLP-adjuvanted vaccination in controlling intestinal infections using the Citrobacter rodentium (C. rodentium) model in C57BL/6 mice. Intranasal vaccination of Intimin, an adhesin critical for intimate bacterial adhesion to colonic epithelial cells, combined with BLP (BLP+I) elicited robust Intimin-specific intestinal secretory IgA production, reduced bacterial load in feces and almost completely inhibited colonic hyperplasia, a characteristic symptom of C. rodentium infection in mice. Conversely, parenteral vaccination with Alhydrogel-adjuvanted Intimin failed to induce intestinal Intimin-specific IgA production, resulting in poor protection against C. rodentium infection. This underscores the pivotal role of mucosal IgA responses elicited by intranasal immunization in its protective efficacy. As this study did not delineate the precise protective mechanism conferred by BLP+I intranasal immunization against C. rodentium infection, further elucidation of the mechanisms underlying intranasal BLP+I immunization is required.
Collapse
MESH Headings
- Animals
- Administration, Intranasal
- Mice, Inbred C57BL
- Mice
- Citrobacter rodentium/immunology
- Citrobacter rodentium/pathogenicity
- Enterobacteriaceae Infections/prevention & control
- Enterobacteriaceae Infections/immunology
- Bacterial Vaccines/immunology
- Bacterial Vaccines/administration & dosage
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/blood
- Female
- Adjuvants, Immunologic/administration & dosage
- Adhesins, Bacterial/immunology
- Adjuvants, Vaccine/administration & dosage
- Immunity, Mucosal
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A/immunology
- Disease Models, Animal
- Intestinal Diseases/prevention & control
- Intestinal Diseases/immunology
Collapse
Affiliation(s)
- Ayato Tsujii
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan.
| | - Haruki Harada
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Sarana Kawashima
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hina Oikawa
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Fukushima
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Hayakawa
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Juri Koizumi
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Inoue
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Tetsuo Koshizuka
- Laboratory of Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
5
|
Sato K, Hara-Chikuma M, Yasui M, Inoue J, Kim YG. Sufficient water intake maintains the gut microbiota and immune homeostasis and promotes pathogen elimination. iScience 2024; 27:109903. [PMID: 38799550 PMCID: PMC11126815 DOI: 10.1016/j.isci.2024.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Water is the most abundant substance in the human body and plays a pivotal role in various bodily functions. While underhydration is associated with the incidence of certain diseases, the specific role of water in gut function remains largely unexplored. Here, we show that water restriction disrupts gut homeostasis, which is accompanied by a bloom of gut microbes and decreased numbers of immune cells, especially Th17 cells, within the colon. These microbial and immunological changes in the gut are associated with an impaired ability to eliminate the enteric pathogen Citrobacter rodentium. Moreover, aquaporin 3, a water channel protein, is required for the maintenance of Th17 cell function and differentiation. Taken together, adequate water intake is critical for maintaining bacterial and immunological homeostasis in the gut, thereby enhancing host defenses against enteric pathogens.
Collapse
Affiliation(s)
- Kensuke Sato
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0052, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Joe Inoue
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo 108-8641, Japan
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
6
|
Cao S, Fachi JL, Ma K, Ulezko Antonova A, Wang Q, Cai Z, Kaufman RJ, Ciorba MA, Deepak P, Colonna M. The IRE1α/XBP1 pathway sustains cytokine responses of group 3 innate lymphoid cells in inflammatory bowel disease. J Clin Invest 2024; 134:e174198. [PMID: 38722686 PMCID: PMC11214543 DOI: 10.1172/jci174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are key players in intestinal homeostasis. ER stress is linked to inflammatory bowel disease (IBD). Here, we used cell culture, mouse models, and human specimens to determine whether ER stress in ILC3s affects IBD pathophysiology. We show that mouse intestinal ILC3s exhibited a 24-hour rhythmic expression pattern of the master ER stress response regulator inositol-requiring kinase 1α/X-box-binding protein 1 (IRE1α/XBP1). Proinflammatory cytokine IL-23 selectively stimulated IRE1α/XBP1 in mouse ILC3s through mitochondrial ROS (mtROS). IRE1α/XBP1 was activated in ILC3s from mice exposed to experimental colitis and in inflamed human IBD specimens. Mice with Ire1α deletion in ILC3s (Ire1αΔRorc) showed reduced expression of the ER stress response and cytokine genes including Il22 in ILC3s and were highly vulnerable to infections and colitis. Administration of IL-22 counteracted their colitis susceptibility. In human ILC3s, IRE1 inhibitors suppressed cytokine production, which was upregulated by an IRE1 activator. Moreover, the frequencies of intestinal XBP1s+ ILC3s in patients with Crohn's disease before administration of ustekinumab, an anti-IL-12/IL-23 antibody, positively correlated with the response to treatment. We demonstrate that a noncanonical mtROS-IRE1α/XBP1 pathway augmented cytokine production by ILC3s and identify XBP1s+ ILC3s as a potential biomarker for predicting the response to anti-IL-23 therapies in IBD.
Collapse
Affiliation(s)
- Siyan Cao
- Division of Gastroenterology, Department of Medicine and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose L. Fachi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaiming Ma
- Division of Gastroenterology, Department of Medicine and
| | - Alina Ulezko Antonova
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qianli Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | | | | | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Bowser S, Melton-Celsa A, Chapartegui-González I, Torres AG. Further Evaluation of Enterohemorrhagic Escherichia coli Gold Nanoparticle Vaccines Utilizing Citrobacter rodentium as the Model Organism. Vaccines (Basel) 2024; 12:508. [PMID: 38793759 PMCID: PMC11125983 DOI: 10.3390/vaccines12050508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Enterohemorrhagic E. coli (EHEC) is a group of pathogenic bacteria that is associated with worldwide human foodborne diarrheal illnesses and the development of hemolytic uremic syndrome, a potentially deadly condition associated with Shiga toxins (Stxs). Currently, approved vaccines for human prophylaxis against infection do not exist, and one barrier preventing the successful creation of EHEC vaccines is the absence of dependable animal models, including mice, which are naturally resistant to EHEC infection and do not manifest the characteristic signs of the illness. Our lab previously developed gold nanoparticle (AuNP)-based EHEC vaccines, and assessed their efficacy using Citrobacter rodentium, which is the mouse pathogen counterpart of EHEC, along with an Stx2d-producing strain that leads to more consistent disease kinetics in mice, including lethality. The purpose of this study was to continue evaluating these vaccines to increase protection. Here, we demonstrated that subcutaneous immunization of mice with AuNPs linked to the EHEC antigens EscC and intimin (Eae), either alone or simultaneously, elicits functional robust systemic humoral responses. Additionally, vaccination with both antigens together showed some efficacy against Stx2d-producing C. rodentium while AuNP-EscC successfully limited infection with non-Stx2d-producing C. rodentium. Overall, the collected results indicate that our AuNP vaccines have promising potential for preventing disease with EHEC, and that evaluation of novel vaccines using an appropriate animal model, like C. rodentium described here, could be the key to finally developing an effective EHEC vaccine that can progress into human clinical trials.
Collapse
Affiliation(s)
- Sarah Bowser
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | - Alfredo G. Torres
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Zindl CL, Wilson CG, Chadha AS, Duck LW, Cai B, Harbour SN, Nagaoka-Kamata Y, Hatton RD, Gao M, Figge DA, Weaver CT. Distal colonocytes targeted by C. rodentium recruit T-cell help for barrier defence. Nature 2024; 629:669-678. [PMID: 38600382 PMCID: PMC11096101 DOI: 10.1038/s41586-024-07288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
Interleukin 22 (IL-22) has a non-redundant role in immune defence of the intestinal barrier1-3. T cells, but not innate lymphoid cells, have an indispensable role in sustaining the IL-22 signalling that is required for the protection of colonic crypts against invasion during infection by the enteropathogen Citrobacter rodentium4 (Cr). However, the intestinal epithelial cell (IEC) subsets targeted by T cell-derived IL-22, and how T cell-derived IL-22 sustains activation in IECs, remain undefined. Here we identify a subset of absorptive IECs in the mid-distal colon that are specifically targeted by Cr and are differentially responsive to IL-22 signalling. Major histocompatibility complex class II (MHCII) expression by these colonocytes was required to elicit sustained IL-22 signalling from Cr-specific T cells, which was required to restrain Cr invasion. Our findings explain the basis for the regionalization of the host response to Cr and demonstrate that epithelial cells must elicit MHCII-dependent help from IL-22-producing T cells to orchestrate immune protection in the intestine.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - C Garrett Wilson
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Awalpreet S Chadha
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lennard W Duck
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baiyi Cai
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacey N Harbour
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yoshiko Nagaoka-Kamata
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robin D Hatton
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Min Gao
- Department of Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David A Figge
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Casey T Weaver
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
9
|
Wu M, Zheng W, Song X, Bao B, Wang Y, Ramanan D, Yang D, Liu R, Macbeth JC, Do EA, Andrade WA, Yang T, Cho HS, Gazzaniga FS, Ilves M, Coronado D, Thompson C, Hang S, Chiu IM, Moffitt JR, Hsiao A, Mekalanos JJ, Benoist C, Kasper DL. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell 2024; 187:897-913.e18. [PMID: 38280374 PMCID: PMC10922926 DOI: 10.1016/j.cell.2023.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/25/2023] [Accepted: 12/30/2023] [Indexed: 01/29/2024]
Abstract
Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.
Collapse
Affiliation(s)
- Meng Wu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Zheng
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Xinyang Song
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Bin Bao
- Division of Gastroenterology, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepshika Ramanan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Daping Yang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521, USA
| | - John C Macbeth
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521, USA
| | - Elyza A Do
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521, USA
| | | | - Tiandi Yang
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hyoung-Soo Cho
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marit Ilves
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Coronado
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Saiyu Hang
- Genentech LLC, South San Francisco, CA 94080, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA 92521, USA
| | - John J Mekalanos
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dennis L Kasper
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Nandi I, Ramachandran RP, Shalev DE, Schneidman-Duhovny D, Shtuhin-Rahav R, Melamed-Book N, Zlotkin-Rivkin E, Rouvinski A, Rosenshine I, Aroeti B. EspH utilizes phosphoinositide and Rab binding domains to interact with plasma membrane infection sites and Rab GTPases. Gut Microbes 2024; 16:2400575. [PMID: 39312647 PMCID: PMC11421376 DOI: 10.1080/19490976.2024.2400575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.
Collapse
Affiliation(s)
- Ipsita Nandi
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Rachana Pattani Ramachandran
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Deborah E Shalev
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- The Department of Pharmaceutical Engineering, Azrieli College of Engineering, Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raisa Shtuhin-Rahav
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Naomi Melamed-Book
- Bioimaging Unit, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Zlotkin-Rivkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University-Hadassah Medical School, of Jerusalem, Jerusalem, Israel
| | - Benjamin Aroeti
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem, Israel
| |
Collapse
|
11
|
Jo M, Hwang S, Lee CG, Hong JE, Kang DH, Yoo SH, Kim WS, Yoo JY, Rhee KJ. Promotion of Colitis in B Cell-Deficient C57BL/6 Mice Infected with Enterotoxigenic Bacteroides fragilis. Int J Mol Sci 2023; 25:364. [PMID: 38203534 PMCID: PMC10778593 DOI: 10.3390/ijms25010364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) causes colitis and is implicated in inflammatory bowel diseases and colorectal cancer. The ETBF-secreted B. fragilis toxin (BFT) causes cleavage of the adherence junction, the E-cadherin, resulting in the large intestine showing IL-17A inflammation in wild-type (WT) mice. However, intestinal pathology by ETBF infection is not fully understood in B-cell-deficient mice. In this study, ETBF-mediated inflammation was characterized in B-cell-deficient mice (muMT). WT or muMT C57BL/6J mice were orally inoculated with ETBF and examined for intestinal inflammation. The indirect indicators for colitis (loss of body weight and cecum weight, as well as mortality) were increased in muMT mice compared to WT mice. Histopathology and inflammatory genes (Nos2, Il-1β, Tnf-α, and Cxcl1) were elevated and persisted in the large intestine of muMT mice compared with WT mice during chronic ETBF infection. However, intestinal IL-17A expression was comparable between WT and muMT mice during infection. Consistently, flow cytometry analysis applied to the mesenteric lymph nodes showed a similar Th17 immune response in both WT and muMT mice. Despite elevated ETBF colonization, the ETBF-infected muMT mice showed no histopathology or inflammation in the small intestine. In conclusion, B cells play a protective role in ETBF-induced colitis, and IL-17A inflammation is not attributed to prompted colitis in B-cell-deficient mice. Our data support the fact that B cells are required to ameliorate ETBF infection-induced colitis in the host.
Collapse
Affiliation(s)
- Minjeong Jo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Da-Hye Kang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Sang-Hyeon Yoo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Woo-Seung Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University Mirae Campus, Wonju 26493, Republic of Korea; (M.J.); (S.H.); (C.-G.L.); (J.-E.H.); (D.-H.K.); (S.-H.Y.); (W.-S.K.); (J.-Y.Y.)
| |
Collapse
|
12
|
Liang D, Liu H, Jin R, Feng R, Wang J, Qin C, Zhang R, Chen Y, Zhang J, Teng J, Tang B, Ding X, Wang X. Escherichia coli triggers α-synuclein pathology in the LRRK2 transgenic mouse model of PD. Gut Microbes 2023; 15:2276296. [PMID: 38010914 PMCID: PMC10730176 DOI: 10.1080/19490976.2023.2276296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
Alpha-synuclein (α-syn) pathology is the hallmark of Parkinson's disease (PD). The leucine-rich repeat kinase 2 (LRRK2) gene is a major-effect risk gene for sporadic PD (sPD). However, what environmental factors may trigger the formation of α-syn pathology in carriers of LRRK2 risk variants are still unknown. Here, we report that a markedly increased abundance of Escherichia coli (E. coli) in the intestinal microbiota was detected in LRRK2 risk variant(R1628P or G2385R) carriers with sPD compared with carriers without sPD. Animal experiments showed that E. coli administration triggered pathological α-syn accumulation in the colon and spread to the brain via the gut-brain axis in Lrrk2 R1628P mice, due to the co-occurrence of Lrrk2 variant-induced inhibition of α-syn autophagic degradation and increased phosphorylation of α-syn caused by curli in E. coli-derived extracellular vesicles. Fecal microbiota transplantation (FMT) effectively ameliorated motor deficits and α-syn pathology in Lrrk2 R1628P mice. Our findings elaborate on the mechanism that E. coli triggers α-syn pathology in Lrrk2 R1628P mice, and highlight a novel gene-environment interaction pattern in LRRK2 risk variants. Even more importantly, the findings reveal the interplay between the specific risk gene and the matched environmental factors triggers the initiation of α-syn pathology in sPD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Han Liu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Ruoqi Jin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Renyi Feng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jiuqi Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Chi Qin
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Rui Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Yongkang Chen
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Jingwen Zhang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Beisha Tang
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuebing Ding
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
| | - Xuejing Wang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, Henan, China
- Department of Neurology, Multi-Omics Research Center for Brain Disorders, the First Affiliated Hospital, University of South China, Hengyang, Hunan, China
| |
Collapse
|
13
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. Infect Immun 2023; 91:e0032223. [PMID: 37800916 PMCID: PMC10652940 DOI: 10.1128/iai.00322-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic or enterohemorrhagic forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report, we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against enteropathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
14
|
Vornewald PM, Forman R, Yao R, Parmar N, Lindholm HT, Lee LSK, Martín-Alonso M, Else KJ, Oudhoff MJ. Mmp17-deficient mice exhibit heightened goblet cell effector expression in the colon and increased resistance to chronic Trichuris muris infection. Front Immunol 2023; 14:1243528. [PMID: 37869014 PMCID: PMC10587605 DOI: 10.3389/fimmu.2023.1243528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal epithelial homeostasis is maintained by intrinsic and extrinsic signals. The extrinsic signals include those provided by mesenchymal cell populations that surround intestinal crypts and is further facilitated by the extracellular matrix (ECM), which is modulated by proteases such as matrix metalloproteinases (MMPs). Extrinsic signals ensure an appropriate balance between intestinal epithelial proliferation and differentiation. This study explores the role of MMP17, which is preferentially expressed by smooth muscle cells in the intestine, in intestinal homeostasis and during immunity to infection. Mice lacking MMP17 expressed high levels of goblet-cell associated genes and proteins, such as CLCA1 and RELM-β, which are normally associated with immune responses to infection. Nevertheless, Mmp17 KO mice did not have altered resistance during a bacterial Citrobacter rodentium infection. However, when challenged with a low dose of the helminth Trichuris muris, Mmp17 KO mice had increased resistance, without a clear role for an altered immune response during infection. Mechanistically, we did not find changes in traditional modulators of goblet cell effectors such as the NOTCH pathway or specific cytokines. We found MMP17 expression in smooth muscle cells as well as lamina propria cells such as macrophages. Together, our data suggest that MMP17 extrinsically alters goblet cell maturation which is sufficient to alter clearance in a helminth infection model.
Collapse
Affiliation(s)
- Pia M. Vornewald
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Ruth Forman
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Rouan Yao
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Naveen Parmar
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard T. Lindholm
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lilith S. K. Lee
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Mara Martín-Alonso
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology & Inflammation, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Menno J. Oudhoff
- CEMIR – Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
15
|
Xiong L, Helm EY, Dean JW, Sun N, Jimenez-Rondan FR, Zhou L. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nat Immunol 2023; 24:1671-1684. [PMID: 37709985 PMCID: PMC11256193 DOI: 10.1038/s41590-023-01612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Y Helm
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Singh AK, Kumar R, Yin J, Brooks Ii JF, Kathania M, Mukherjee S, Kumar J, Conlon KP, Basrur V, Chen Z, Han X, Hooper LV, Burstein E, Venuprasad K. RORγt-Raftlin1 complex regulates the pathogenicity of Th17 cells and colonic inflammation. Nat Commun 2023; 14:4972. [PMID: 37591835 PMCID: PMC10435467 DOI: 10.1038/s41467-023-40622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Th17 cells that produce Interleukin IL-17 are pathogenic in many human diseases, including inflammatory bowel disease, but are, paradoxically, essential for maintaining the integrity of the intestinal barrier in a non-inflammatory state. However, the intracellular mechanisms that regulate distinct transcriptional profiles and functional diversity of Th17 cells remain unclear. Here we show Raftlin1, a lipid raft protein, specifically upregulates and forms a complex with RORγt in pathogenic Th17 cells. Disruption of the RORγt-Raftlin1 complex results in the reduction of pathogenic Th17 cells in response to Citrobacter rodentium; however, there is no effect on nonpathogenic Th17 cells in response to commensal segmented filamentous bacteria. Mechanistically, we show that Raftlin1 recruits distinct phospholipids to RORγt and promotes the pathogenicity of Th17 cells. Thus, we have identified a mechanism that drives the pathogenic function of Th17 cells, which could provide a platform for advanced therapeutic strategies to dampen Th17-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Amir Kumar Singh
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ritesh Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jianyi Yin
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - John F Brooks Ii
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mahesh Kathania
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sandip Mukherjee
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jitendra Kumar
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kevin P Conlon
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhe Chen
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lora V Hooper
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
- The Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - K Venuprasad
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
17
|
Rizk J, Mörbe UM, Agerholm R, Baglioni MV, Catafal Tardos E, Fares da Silva MGF, Ulmert I, Kadekar D, Viñals MT, Bekiaris V. The cIAP ubiquitin ligases sustain type 3 γδ T cells and ILC during aging to promote barrier immunity. J Exp Med 2023; 220:e20221534. [PMID: 37440178 PMCID: PMC10345214 DOI: 10.1084/jem.20221534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Early-life cues shape the immune system during adulthood. However, early-life signaling pathways and their temporal functions are not well understood. Herein, we demonstrate that the cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2), which are E3 ubiquitin ligases, sustain interleukin (IL)-17-producing γ δ T cells (γδT17) and group 3 innate lymphoid cells (ILC3) during late neonatal and prepubescent life. We show that cell-intrinsic deficiency of cIAP1/2 at 3-4 wk of life leads to downregulation of the transcription factors cMAF and RORγt and failure to enter the cell cycle, followed by progressive loss of γδT17 cells and ILC3 during aging. Mice deficient in cIAP1/2 have severely reduced γδT17 cells and ILC3, present with suboptimal γδT17 responses in the skin, lack intestinal isolated lymphoid follicles, and cannot control intestinal bacterial infection. Mechanistically, these effects appear to be dependent on overt activation of the non-canonical NF-κB pathway. Our data identify cIAP1/2 as early-life molecular switches that establish effective type 3 immunity during aging.
Collapse
Affiliation(s)
- John Rizk
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Center, University of Copenhagen, Copenhagen, Denmark
| | - Urs M. Mörbe
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rasmus Agerholm
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Elisa Catafal Tardos
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Isabel Ulmert
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Darshana Kadekar
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
18
|
Shen X, Gao X, Luo Y, Xu Q, Fan Y, Hong S, Huang Z, Liu X, Wang Q, Chen Z, Wang D, Lu L, Wu C, Liang H, Wang L. Cxxc finger protein 1 maintains homeostasis and function of intestinal group 3 innate lymphoid cells with aging. NATURE AGING 2023; 3:965-981. [PMID: 37429951 DOI: 10.1038/s43587-023-00453-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
Aging is accompanied by homeostatic and functional dysregulation of multiple immune cell subsets. Group 3 innate lymphoid cells (ILC3s) constitute a heterogeneous cell population that plays pivotal roles in intestinal immunity. In this study, we found that ILC3s in aged mice exhibited dysregulated homeostasis and function, leading to bacterial and fungal infection susceptibility. Moreover, our data revealed that the enrichment of the H3K4me3 modification in effector genes of aged gut CCR6+ ILC3s was specifically decreased compared to young mice counterparts. Disruption of Cxxc finger protein 1 (Cxxc1) activity, a key subunit of H3K4 methyltransferase, in ILC3s led to similar aging-related phenotypes. An integrated analysis revealed Kruppel-like factor 4 (Klf4) as a potential Cxxc1 target. Klf4 overexpression partially restored the differentiation and functional defects seen in both aged and Cxxc1-deficient intestinal CCR6+ ILC3s. Therefore, these data suggest that targeting intestinal ILC3s may provide strategies to protect against age-related infections.
Collapse
Affiliation(s)
- Xin Shen
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Yikai Luo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Han Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Program of Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China.
- Laboratory Animal Center, Zhejiang University, Hangzhou, China.
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, China.
| |
Collapse
|
19
|
Sah P, Zenewicz LA. Modulation of innate lymphoid cells by enteric bacterial pathogens. Front Immunol 2023; 14:1219072. [PMID: 37483638 PMCID: PMC10358831 DOI: 10.3389/fimmu.2023.1219072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Innate lymphoid cells (ILCs) are key regulators of tissue homeostasis, inflammation, and immunity to infections. ILCs rapidly respond to environmental cues such as cytokines, microbiota and invading pathogens which regulate their function and phenotype. Even though ILCs are rare cells, they are enriched at barrier surfaces such as the gastrointestinal (GI) tract, and they are often critical to the host's immune response to eliminate pathogens. On the other side of host-pathogen interactions, pathogenic bacteria also have the means to modulate these immune responses. Manipulation or evasion of the immune cells is often to the pathogen's benefit and/or to the detriment of competing microbiota. In some instances, specific bacterial virulence factors or toxins have been implicated in how the pathogen modulates immunity. In this review, we discuss the recent progress made towards understanding the role of non-cytotoxic ILCs during enteric bacterial infections, how these pathogens can modulate the immune response, and the implications these have on developing new therapies to combat infection.
Collapse
Affiliation(s)
| | - Lauren A. Zenewicz
- Department of Microbiology and Immunology, College of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
20
|
Overcast GR, Meibers HE, Eshleman EM, Saha I, Waggoner L, Patel KN, Jain VG, Haslam DB, Alenghat T, VanDussen KL, Pasare C. IEC-intrinsic IL-1R signaling holds dual roles in regulating intestinal homeostasis and inflammation. J Exp Med 2023; 220:e20212523. [PMID: 36976181 PMCID: PMC10067527 DOI: 10.1084/jem.20212523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/20/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Intestinal epithelial cells (IECs) constitute a critical first line of defense against microbes. While IECs are known to respond to various microbial signals, the precise upstream cues regulating diverse IEC responses are not clear. Here, we discover a dual role for IEC-intrinsic interleukin-1 receptor (IL-1R) signaling in regulating intestinal homeostasis and inflammation. Absence of IL-1R in epithelial cells abrogates a homeostatic antimicrobial program including production of antimicrobial peptides (AMPs). Mice deficient for IEC-intrinsic IL-1R are unable to clear Citrobacter rodentium (C. rodentium) but are protected from DSS-induced colitis. Mechanistically, IL-1R signaling enhances IL-22R-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in IECs leading to elevated production of AMPs. IL-1R signaling in IECs also directly induces expression of chemokines as well as genes involved in the production of reactive oxygen species. Our findings establish a protective role for IEC-intrinsic IL-1R signaling in combating infections but a detrimental role during colitis induced by epithelial damage.
Collapse
Affiliation(s)
- Garrett R. Overcast
- Immunology Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hannah E. Meibers
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Emily M. Eshleman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Irene Saha
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lisa Waggoner
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Krupaben N. Patel
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Viral G. Jain
- Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David B. Haslam
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Theresa Alenghat
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelli L. VanDussen
- Divisions of Gastroenterology, Hepatology, and Nutrition and of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
21
|
Zhang Y, Mu T, Deng X, Guo R, Xia B, Jiang L, Wu Z, Liu M. New Insights of Biological Functions of Natural Polyphenols in Inflammatory Intestinal Diseases. Int J Mol Sci 2023; 24:ijms24119581. [PMID: 37298531 DOI: 10.3390/ijms24119581] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The intestine is critically crucial for nutrient absorption and host defense against exogenous stimuli. Inflammation-related intestinal diseases, including enteritis, inflammatory bowel disease (IBD), and colorectal cancer (CRC), are heavy burdens for human beings due to their high incidence and devastating clinical symptoms. Current studies have confirmed that inflammatory responses, along with oxidative stress and dysbiosis as critical pathogenesis, are involved in most intestinal diseases. Polyphenols are secondary metabolites derived from plants, which possess convincible anti-oxidative and anti-inflammatory properties, as well as regulation of intestinal microbiome, indicating the potential applications in enterocolitis and CRC. Actually, accumulating studies based on the biological functions of polyphenols have been performed to investigate the functional roles and underlying mechanisms over the last few decades. Based on the mounting evidence of literature, the objective of this review is to outline the current research progress regarding the category, biological functions, and metabolism of polyphenols within the intestine, as well as applications for the prevention and treatment of intestinal diseases, which might provide ever-expanding new insights for the utilization of natural polyphenols.
Collapse
Affiliation(s)
- Yunchang Zhang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Xiong Deng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Ruiting Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Bing Xia
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ming Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
22
|
Duan J, Matute JD, Unger LW, Hanley T, Schnell A, Lin X, Krupka N, Griebel P, Lambden C, Sit B, Grootjans J, Pyzik M, Sommer F, Kaiser S, Falk-Paulsen M, Grasberger H, Kao JY, Fuhrer T, Li H, Paik D, Lee Y, Refetoff S, Glickman JN, Paton AW, Bry L, Paton JC, Sauer U, Macpherson AJ, Rosenstiel P, Kuchroo VK, Waldor MK, Huh JR, Kaser A, Blumberg RS. Endoplasmic reticulum stress in the intestinal epithelium initiates purine metabolite synthesis and promotes Th17 cell differentiation in the gut. Immunity 2023; 56:1115-1131.e9. [PMID: 36917985 PMCID: PMC10175221 DOI: 10.1016/j.immuni.2023.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/12/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023]
Abstract
Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.
Collapse
Affiliation(s)
- Jinzhi Duan
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan D Matute
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lukas W Unger
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK; Division of Visceral Surgery, Department of General Surgery, Medical University of Vienna, Vienna, 10090, Austria
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Xi Lin
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Niklas Krupka
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Griebel
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Conner Lambden
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Joep Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Sina Kaiser
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Helmut Grasberger
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Y Kao
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Hai Li
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yunjin Lee
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel Refetoff
- Department of Medicine, Pediatrics and Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Adrienne W Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, the University of Adelaide, Adelaide, 5005, Australia
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur Kaser
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, and Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Hoek KL, McClanahan KG, Latour YL, Shealy N, Piazuelo MB, Vallance BA, Byndloss MX, Wilson KT, Olivares-Villagómez D. Turicibacterales protect mice from severe Citrobacter rodentium infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538270. [PMID: 37163036 PMCID: PMC10168287 DOI: 10.1101/2023.04.25.538270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
One of the major contributors to child mortality in the world is diarrheal diseases, with an estimated 800,000 deaths per year. Many pathogens are causative agents of these illnesses, including the enteropathogenic (EPEC) or enterohemorrhagic (EHEC) forms of Escherichia coli. These bacteria are characterized by their ability to cause attaching and effacing lesions in the gut mucosa. Although much has been learned about the pathogenicity of these organisms and the immune response against them, the role of the intestinal microbiota during these infections is not well characterized. Infection of mice with E. coli requires pre-treatment with antibiotics in most mouse models, which hinders the study of the microbiota in an undisturbed environment. Using Citrobacter rodentium as a murine model for attaching and effacing bacteria, we show that C57BL/6 mice deficient in granzyme B expression are highly susceptible to severe disease caused by C. rodentium infection. Although a previous publication from our group shows that granzyme B-deficient CD4+ T cells are partially responsible for this phenotype, in this report we present data demonstrating that the microbiota, in particular members of the order Turicibacterales, have an important role in conferring resistance. Mice deficient in Turicibacter sanguinis have increased susceptibility to severe disease. However, when these mice are co-housed with resistant mice, or colonized with T. sanguinis, susceptibility to severe infection is reduced. These results clearly suggest a critical role for this commensal in the protection against entero-pathogens.
Collapse
Affiliation(s)
- Kristen L. Hoek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kathleen G. McClanahan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicolas Shealy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Mariana X. Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Microbiome Innovation Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veternas Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Danyvid Olivares-Villagómez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
24
|
Pham D, Silberger DJ, Nguyen KN, Gao M, Weaver CT, Hatton RD. Batf stabilizes Th17 cell development via impaired Stat5 recruitment of Ets1-Runx1 complexes. EMBO J 2023; 42:e109803. [PMID: 36917143 PMCID: PMC10106990 DOI: 10.15252/embj.2021109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 03/16/2023] Open
Abstract
Although the activator protein-1 (AP-1) factor Batf is required for Th17 cell development, its mechanisms of action to underpin the Th17 program are incompletely understood. Here, we find that Batf ensures Th17 cell identity in part by restricting alternative gene programs through its actions to restrain IL-2 expression and IL-2-induced Stat5 activation. This, in turn, limits Stat5-dependent recruitment of Ets1-Runx1 factors to Th1- and Treg-cell-specific gene loci. Thus, in addition to pioneering regulatory elements in Th17-specific loci, Batf acts indirectly to inhibit the assembly of a Stat5-Ets1-Runx1 complex that enhances the transcription of Th1- and Treg-cell-specific genes. These findings unveil an important role for Stat5-Ets1-Runx1 interactions in transcriptional networks that define alternate T cell fates and indicate that Batf plays an indispensable role in both inducing and maintaining the Th17 program through its actions to regulate the competing actions of Stat5-assembled enhanceosomes that promote Th1- and Treg-cell developmental programs.
Collapse
Affiliation(s)
- Duy Pham
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Daniel J Silberger
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kim N Nguyen
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Min Gao
- Informatics InstituteUniversity of Alabama at BirminghamBirminghamALUSA
| | - Casey T Weaver
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Robin D Hatton
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
25
|
Wu M, Zheng W, Song X, Bao B, Wang Y, Ramanan D, Yang D, Liu R, Macbeth JC, Do EA, Andrade WA, Yang T, Cho HS, Gazzaniga FS, Ilves M, Coronado D, Thompson C, Hang S, Chiu IM, Moffitt JR, Hsiao A, Mekalanos JJ, Benoist C, Kasper DL. Microbiome induced complement synthesized in the gut protects against enteric infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.523770. [PMID: 36778396 PMCID: PMC9915568 DOI: 10.1101/2023.02.02.523770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.
Collapse
|
26
|
Herzog MKM, Cazzaniga M, Peters A, Shayya N, Beldi L, Hapfelmeier S, Heimesaat MM, Bereswill S, Frankel G, Gahan CG, Hardt WD. Mouse models for bacterial enteropathogen infections: insights into the role of colonization resistance. Gut Microbes 2023; 15:2172667. [PMID: 36794831 PMCID: PMC9980611 DOI: 10.1080/19490976.2023.2172667] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Globally, enteropathogenic bacteria are a major cause of morbidity and mortality.1-3 Campylobacter, Salmonella, Shiga-toxin-producing Escherichia coli, and Listeria are among the top five most commonly reported zoonotic pathogens in the European Union.4 However, not all individuals naturally exposed to enteropathogens go on to develop disease. This protection is attributable to colonization resistance (CR) conferred by the gut microbiota, as well as an array of physical, chemical, and immunological barriers that limit infection. Despite their importance for human health, a detailed understanding of gastrointestinal barriers to infection is lacking, and further research is required to investigate the mechanisms that underpin inter-individual differences in resistance to gastrointestinal infection. Here, we discuss the current mouse models available to study infections by non-typhoidal Salmonella strains, Citrobacter rodentium (as a model for enteropathogenic and enterohemorrhagic E. coli), Listeria monocytogenes, and Campylobacter jejuni. Clostridioides difficile is included as another important cause of enteric disease in which resistance is dependent upon CR. We outline which parameters of human infection are recapitulated in these mouse models, including the impact of CR, disease pathology, disease progression, and mucosal immune response. This will showcase common virulence strategies, highlight mechanistic differences, and help researchers from microbiology, infectiology, microbiome research, and mucosal immunology to select the optimal mouse model.
Collapse
Affiliation(s)
- Mathias K.-M. Herzog
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nizar Shayya
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Luca Beldi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Cormac G.M. Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Latour YL, Allaman MM, Barry DP, Smith TM, Williams KJ, McNamara KM, Jacobse J, Goettel JA, Delgado AG, Piazuelo MB, Zhao S, Gobert AP, Wilson KT. Epithelial talin-1 protects mice from citrobacter rodentium-induced colitis by restricting bacterial crypt intrusion and enhancing t cell immunity. Gut Microbes 2023; 15:2192623. [PMID: 36951501 PMCID: PMC10038039 DOI: 10.1080/19490976.2023.2192623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Pathogenic enteric Escherichia coli present a significant burden to global health. Food-borne enteropathogenic E. coli (EPEC) and Shiga toxin-producing E. coli (STEC) utilize attaching and effacing (A/E) lesions and actin-dense pedestal formation to colonize the gastrointestinal tract. Talin-1 is a large structural protein that links the actin cytoskeleton to the extracellular matrix though direct influence on integrins. Here we show that mice lacking talin-1 in intestinal epithelial cells (Tln1Δepi) have heightened susceptibility to colonic disease caused by the A/E murine pathogen Citrobacter rodentium. Tln1Δepi mice exhibit decreased survival, and increased colonization, colon weight, and histologic colitis compared to littermate Tln1fl/fl controls. These findings were associated with decreased actin polymerization and increased infiltration of innate myeloperoxidase-expressing immune cells, confirmed as neutrophils by flow cytometry, but more bacterial dissemination deep into colonic crypts. Further evaluation of the immune population recruited to the mucosa in response to C. rodentium revealed that loss of Tln1 in colonic epithelial cells (CECs) results in impaired recruitment and activation of T cells. C. rodentium infection-induced colonic mucosal hyperplasia was exacerbated in Tln1Δepi mice compared to littermate controls. We demonstrate that this is associated with decreased CEC apoptosis and crowding of proliferating cells in the base of the glands. Taken together, talin-1 expression by CECs is important in the regulation of both epithelial renewal and the inflammatory T cell response in the setting of colitis caused by C. rodentium, suggesting that this protein functions in CECs to limit, rather than contribute to the pathogenesis of this enteric infection.
Collapse
Affiliation(s)
- Yvonne L. Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M. Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thaddeus M. Smith
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kamery J. Williams
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M. McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Medical Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
28
|
Zhu L, Andersen-Civil AIS, Castro-Meija JL, Nielsen DS, Blanchard A, Olsen JE, Thamsborg SM, Williams AR. Garlic-Derived Metabolites Exert Antioxidant Activity, Modulate Gut Microbiota Composition and Limit Citrobacter rodentium Infection in Mice. Antioxidants (Basel) 2022; 11:2033. [PMID: 36290756 PMCID: PMC9598726 DOI: 10.3390/antiox11102033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
The garlic-derived compounds propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) are metabolites with putative health benefits against intestinal inflammation that may be related to their antioxidant activity. However, the underlying mechanisms remain unclear, and whether PTS-PTSO can promote gut health by altering the microbiota and exert protection against enteric pathogens needs further investigation. Here, we explored the antioxidant activity of PTS-PTSO in murine macrophages in vitro, and in an in vivo model of bacterial infection with the bacterial pathogen Citrobacter rodentium. PTS-PTSO attenuated reactive oxygen species in lipopolysaccharide-stimulated macrophages in a nuclear factor erythroid factor 2-related factor 2 (Nrf2)-dependent manner, decreased nitric oxide levels both in macrophages in vitro and in the sera of mice fed PTS-PTSO, and had putatively beneficial effects on the commensal gut microbiota. Importantly, PTS-PTSO decreased faecal C. rodentium counts, concomitant with upregulation of Nrf2-related genes in colon tissue. Thus, PTS-PTSO mediates Nrf2-mediated antioxidant activity and modulates gut microbiota, which may protect the host against C. rodentium colonization. Our results provide further insight into how PTS-PTSO and related bioactive dietary compounds may reduce enteric infections.
Collapse
Affiliation(s)
- Ling Zhu
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Audrey I. S. Andersen-Civil
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | | | - Dennis S. Nielsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| | | | - John E. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
29
|
Interferon regulatory factor 1 (IRF-1) promotes intestinal group 3 innate lymphoid responses during Citrobacter rodentium infection. Nat Commun 2022; 13:5730. [PMID: 36175404 PMCID: PMC9522774 DOI: 10.1038/s41467-022-33326-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) are crucial mediators of immunity and epithelial barrier function during immune responses against extracellular bacteria. Here, we identify Interferon regulatory factor 1 (IRF-1), a transcription factor previously associated with type 1 immunity, as an essential regulator of intestinal ILC3 accumulation and effector cytokine production. We demonstrate that IRF-1 is upregulated in the context of infection with the enteropathogen Citrobacter rodentium and that its presence is central for anatomical containment and prevention of pathogen dissemination. We furthermore show that IRF-1 is required in order for intestinal ILC3s to produce large amounts of the protective effector cytokine IL-22 early in the course of infection. On a molecular level, our data indicate that IRF-1 controls ILC3 numbers and their activation by direct transcriptional regulation of the IL-12Rβ1 chain, thereby allowing ILCs to physiologically respond to IL-23 stimulation. Innate lymphoid cells (ILC) are involved with different immune responses. Here the authors show that Interferon regulatory factor 1 (IRF1) is important for intestinal ILC3 accumulation during Citrobacter rodentium infection and promotes release of the protective cytokine IL-22 and response to IL-23.
Collapse
|
30
|
Gaignage M, Zhang X, Stockis J, Dedobbeleer O, Michiels C, Cochez P, Dumoutier L, Coulie PG, Lucas S. Blocking GARP-mediated activation of TGF-β1 did not alter innate or adaptive immune responses to bacterial infection or protein immunization in mice. Cancer Immunol Immunother 2022; 71:1851-1862. [PMID: 34973084 PMCID: PMC9294018 DOI: 10.1007/s00262-021-03119-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
Abstract Transmembrane protein GARP binds latent TGF-β1 to form GARP:(latent)TGF-β1 complexes on the surface of several cell types including Tregs, B-cells, and platelets. Upon stimulation, these cells release active TGF-β1. Blocking TGF-β1 activation by Tregs with anti-GARP:TGF-β1 mAbs overcomes resistance to PD1/PD-L1 blockade and induces immune-mediated regressions of murine tumors, indicating that Treg-derived TGF-β1 inhibits anti-tumor immunity. TGF-β1 exerts a vast array of effects on immune responses. For example, it favors differentiation of TH17 cells and B-cell switch to IgA production, two important processes for mucosal immunity. Here, we sought to determine whether treatment with anti-GARP:TGF-β1 mAbs would perturb immune responses to intestinal bacterial infection. We observed no aggravation of intestinal disease, no systemic dissemination, and no alteration of innate or adaptative immune responses upon oral gavage of C. rodentium in highly susceptible Il22r−/− mice treated with anti-GARP:TGF-β1 mAbs. To examine the effects of GARP:TGF-β1 blockade on Ig production, we compared B cell- and TH cell- responses to OVA or CTB protein immunization in mice carrying deletions of Garp in Tregs, B cells, or platelets. No alteration of adaptive immune responses to protein immunization was observed in the absence of GARP on any of these cells. Altogether, we show that antibody-mediated blockade of GARP:TGF-β1 or genetic deletion of Garp in Tregs, B cells or platelets, do not alter innate or adaptive immune responses to intestinal bacterial infection or protein immunization in mice. Anti-GARP:TGF-β1 mAbs, currently tested for cancer immunotherapy, may thus restore anti-tumor immunity without severely impairing other immune defenses. Précis Immunotherapy with GARP:TGF-β1 mAbs may restore anti-tumor immunity without impairing immune or inflammatory responses required to maintain homeostasis or host defense against infection, notably at mucosal barriers. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-03119-8.
Collapse
Affiliation(s)
- Mélanie Gaignage
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Xuhao Zhang
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Julie Stockis
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Olivier Dedobbeleer
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Camille Michiels
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Perrine Cochez
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
| | - Pierre G Coulie
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| | - Sophie Lucas
- de Duve Institute, Université Catholique de Louvain, avenue Hippocrate 74, B1.74.04, 1200, Brussels, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium.
| |
Collapse
|
31
|
Zhang Y, Si X, Yang L, Wang H, Sun Y, Liu N. Association between intestinal microbiota and inflammatory bowel disease. Animal Model Exp Med 2022; 5:311-322. [PMID: 35808814 PMCID: PMC9434590 DOI: 10.1002/ame2.12255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/21/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), has emerged as a global disease with high incidence, long duration, devastating clinical symptoms, and low curability (relapsing immune response and barrier function defects). Mounting studies have been performed to investigate its pathogenesis to provide an ever‐expanding arsenal of therapeutic options, while the precise etiology of IBD is not completely understood yet. Recent advances in high‐throughput sequencing methods and animal models have provided new insights into the association between intestinal microbiota and IBD. In general, dysbiosis characterized by an imbalanced microbiota has been widely recognized as a pathology of IBD. However, intestinal microbiota alterations represent the cause or result of IBD process remains unclear. Therefore, more evidences are needed to identify the precise role of intestinal microbiota in the pathogenesis of IBD. Herein, this review aims to outline the current knowledge of commonly used, chemically induced, and infectious mouse models, gut microbiota alteration and how it contributes to IBD, and dysregulated metabolite production links to IBD pathogenesis.
Collapse
Affiliation(s)
- Yunchang Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ling Yang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Hui Wang
- Department of Food and Bioengineering, Beijing Vocational College of Agriculture, Beijing, China
| | - Ye Sun
- Institute of Medical Laboratory Animal Science, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, China
| | - Ning Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Transcriptional Profiling of the Small Intestine and the Colon Reveals Modulation of Gut Infection with Citrobacter rodentium According to the Vitamin A Status. Nutrients 2022; 14:nu14081563. [PMID: 35458125 PMCID: PMC9026425 DOI: 10.3390/nu14081563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host’s VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl− secretion and disrupted HCO3− metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA.
Collapse
|
33
|
The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metab 2022; 34:516-532.e11. [PMID: 35316657 PMCID: PMC9019065 DOI: 10.1016/j.cmet.2022.02.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/04/2022] [Accepted: 02/23/2022] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a hallmark of activated T cells. The switch from oxidative phosphorylation to aerobic glycolysis provides energy and intermediary metabolites for the biosynthesis of macromolecules to support clonal expansion and effector function. Here, we show that glycolytic reprogramming additionally controls inflammatory gene expression via epigenetic remodeling. We found that the glucose transporter GLUT3 is essential for the effector functions of Th17 cells in models of autoimmune colitis and encephalomyelitis. At the molecular level, we show that GLUT3-dependent glucose uptake controls a metabolic-transcriptional circuit that regulates the pathogenicity of Th17 cells. Metabolomic, epigenetic, and transcriptomic analyses linked GLUT3 to mitochondrial glucose oxidation and ACLY-dependent acetyl-CoA generation as a rate-limiting step in the epigenetic regulation of inflammatory gene expression. Our findings are also important from a translational perspective because inhibiting GLUT3-dependent acetyl-CoA generation is a promising metabolic checkpoint to mitigate Th17-cell-mediated inflammatory diseases.
Collapse
|
34
|
Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23073464. [PMID: 35408838 PMCID: PMC8998182 DOI: 10.3390/ijms23073464] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbe-host communication is essential to maintain vital functions of a healthy host, and its disruption has been associated with several diseases, including Crohn's disease and ulcerative colitis, the two major forms of inflammatory bowel disease (IBD). Although individual members of the intestinal microbiota have been associated with experimental IBD, identifying microorganisms that affect disease susceptibility and phenotypes in humans remains a considerable challenge. Currently, the lack of a definition between what is healthy and what is a dysbiotic gut microbiome limits research. Nevertheless, although clear proof-of-concept of causality is still lacking, there is an increasingly evident need to understand the microbial basis of IBD at the microbial strain, genomic, epigenomic, and functional levels and in specific clinical contexts. Recent information on the role of diet and novel environmental risk factors affecting the gut microbiome has direct implications for the immune response that impacts the development of IBD. The complexity of IBD pathogenesis, involving multiple distinct elements, suggests the need for an integrative approach, likely utilizing computational modeling of molecular datasets to identify more specific therapeutic targets.
Collapse
|
35
|
Zindl CL, Witte SJ, Laufer VA, Gao M, Yue Z, Janowski KM, Cai B, Frey BF, Silberger DJ, Harbour SN, Singer JR, Turner H, Lund FE, Vallance BA, Rosenberg AF, Schoeb TR, Chen JY, Hatton RD, Weaver CT. A nonredundant role for T cell-derived interleukin 22 in antibacterial defense of colonic crypts. Immunity 2022; 55:494-511.e11. [PMID: 35263568 PMCID: PMC9126440 DOI: 10.1016/j.immuni.2022.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-22 is central to immune defense at barrier sites. We examined the contributions of innate lymphoid cell (ILC) and T cell-derived IL-22 during Citrobacter rodentium (C.r) infection using mice that both report Il22 expression and allow lineage-specific deletion. ILC-derived IL-22 activated STAT3 in C.r-colonized surface intestinal epithelial cells (IECs) but only temporally restrained bacterial growth. T cell-derived IL-22 induced a more robust and extensive activation of STAT3 in IECs, including IECs lining colonic crypts, and T cell-specific deficiency of IL-22 led to pathogen invasion of the crypts and increased mortality. This reflected a requirement for T cell-derived IL-22 for the expression of a host-protective transcriptomic program that included AMPs, neutrophil-recruiting chemokines, and mucin-related molecules, and it restricted IFNγ-induced proinflammatory genes. Our findings demonstrate spatiotemporal differences in the production and action of IL-22 by ILCs and T cells during infection and reveal an indispensable role for IL-22-producing T cells in the protection of the intestinal crypts.
Collapse
Affiliation(s)
- Carlene L Zindl
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Steven J Witte
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vincent A Laufer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Min Gao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zongliang Yue
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen M Janowski
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Baiyi Cai
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Blake F Frey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel J Silberger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stacey N Harbour
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey R Singer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Henrietta Turner
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bruce A Vallance
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 3V4, Canada
| | - Alexander F Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jake Y Chen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robin D Hatton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Casey T Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
36
|
Kim E, Paik D, Ramirez RN, Biggs DG, Park Y, Kwon HK, Choi GB, Huh JR. Maternal gut bacteria drive intestinal inflammation in offspring with neurodevelopmental disorders by altering the chromatin landscape of CD4 + T cells. Immunity 2022; 55:145-158.e7. [PMID: 34879222 PMCID: PMC8755621 DOI: 10.1016/j.immuni.2021.11.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/29/2021] [Accepted: 11/10/2021] [Indexed: 01/13/2023]
Abstract
Children with autism spectrum disorders often display dysregulated immune responses and related gastrointestinal symptoms. However, the underlying mechanisms leading to the development of both phenotypes have not been elucidated. Here, we show that mouse offspring exhibiting autism-like phenotypes due to prenatal exposure to maternal inflammation were more susceptible to developing intestinal inflammation following challenges later in life. In contrast to its prenatal role in neurodevelopmental phenotypes, interleukin-17A (IL-17A) generated immune-primed phenotypes in offspring through changes in the maternal gut microbiota that led to postnatal alterations in the chromatin landscape of naive CD4+ T cells. The transfer of stool samples from pregnant mice with enhanced IL-17A responses into germ-free dams produced immune-primed phenotypes in offspring. Our study provides mechanistic insights into why children exposed to heightened inflammation in the womb might have an increased risk of developing inflammatory diseases in addition to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Eunha Kim
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo N Ramirez
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Delaney G Biggs
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Youngjun Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ho-Keun Kwon
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gloria B Choi
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
37
|
TGF-β production by eosinophils drives the expansion of peripherally induced neuropilin - RORγt + regulatory T-cells during bacterial and allergen challenge. Mucosal Immunol 2022; 15:504-514. [PMID: 35169233 PMCID: PMC9038533 DOI: 10.1038/s41385-022-00484-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
|
38
|
Yu HB, Yang H, Allaire JM, Ma C, Graef FA, Mortha A, Liang Q, Bosman ES, Reid GS, Waschek JA, Osborne LC, Sokol H, Vallance BA, Jacobson K. Vasoactive intestinal peptide promotes host defense against enteric pathogens by modulating the recruitment of group 3 innate lymphoid cells. Proc Natl Acad Sci U S A 2021; 118:e2106634118. [PMID: 34625492 PMCID: PMC8521691 DOI: 10.1073/pnas.2106634118] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Group 3 innate lymphoid cells (ILC3s) control the formation of intestinal lymphoid tissues and play key roles in intestinal defense. They express neuropeptide vasoactive intestinal peptide (VIP) receptor 2 (VPAC2), through which VIP modulates their function, but whether VIP exerts other effects on ILC3 remains unclear. We show that VIP promotes ILC3 recruitment to the intestine through VPAC1 independent of the microbiota or adaptive immunity. VIP is also required for postnatal formation of lymphoid tissues as well as the maintenance of local populations of retinoic acid (RA)-producing dendritic cells, with RA up-regulating gut-homing receptor CCR9 expression by ILC3s. Correspondingly, mice deficient in VIP or VPAC1 suffer a paucity of intestinal ILC3s along with impaired production of the cytokine IL-22, rendering them highly susceptible to the enteric pathogen Citrobacter rodentium This heightened susceptibility to C. rodentium infection was ameliorated by RA supplementation, adoptive transfer of ILC3s, or by recombinant IL-22. Thus, VIP regulates the recruitment of intestinal ILC3s and formation of postnatal intestinal lymphoid tissues, offering protection against enteric pathogens.
Collapse
Affiliation(s)
- Hong Bing Yu
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Hyungjun Yang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Joannie M Allaire
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Caixia Ma
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Franziska A Graef
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Qiaochu Liang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Else S Bosman
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Gregor S Reid
- Division of Oncology, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - James A Waschek
- The Semel Institute and Department of Psychiatry, The David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Lisa C Osborne
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Harry Sokol
- Gastroenterology Department, INSERM, Centre de Recherche Saint Antoine, Sorbonne Université, Paris, F-75012, France
- Institut national de la recherche agronomique, Micalis Institute and AgroParisTech, Jouy en Josas, F-78350, France
- Paris Center for Microbiome Medicine, Fédérations Hospitalo-universitaires, Paris, F-75012, France
| | - Bruce A Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| | - Kevan Jacobson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The University of British Columbia, Vancouver, BC, V5Z 4H4, Canada;
| |
Collapse
|
39
|
Neonatal Enteropathogenic Escherichia coli Infection Disrupts Microbiota-Gut-Brain Axis Signaling. Infect Immun 2021; 89:e0005921. [PMID: 33820817 DOI: 10.1128/iai.00059-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diarrheal diseases are a leading cause of death in children under the age of 5 years worldwide. Repeated early-life exposures to diarrheal pathogens can result in comorbidities including stunted growth and cognitive deficits, suggesting an impairment in the microbiota-gut-brain (MGB) axis. Neonatal C57BL/6 mice were infected with enteropathogenic Escherichia coli (EPEC) (strain e2348/69; ΔescV [type III secretion system {T3SS} mutant]) or the vehicle (Luria-Bertani [LB] broth) via orogastric gavage at postnatal day 7 (P7). Behavior (novel-object recognition [NOR] task, light/dark [L/D] box, and open-field test [OFT]), intestinal physiology (Ussing chambers), and the gut microbiota (16S Illumina sequencing) were assessed in adulthood (6 to 8 weeks of age). Neonatal infection of mice with EPEC, but not the T3SS mutant, caused ileal inflammation in neonates and impaired recognition memory (NOR task) in adulthood. Cognitive impairments were coupled with increased neurogenesis (Ki67 and doublecortin immunostaining) and neuroinflammation (increased microglia activation [Iba1]) in adulthood. Intestinal pathophysiology in adult mice was characterized by increased secretory state (short-circuit current [Isc]) and permeability (conductance) (fluorescein isothiocyanate [FITC]-dextran flux) in the ileum and colon of neonatally EPEC-infected mice, along with increased expression of proinflammatory cytokines (Tnfα, Il12, and Il6) and pattern recognition receptors (Nod1/2 and Tlr2/4). Finally, neonatal EPEC infection caused significant dysbiosis of the gut microbiota, including decreased Firmicutes, in adulthood. Together, these findings demonstrate that infection in early life can significantly impair the MGB axis in adulthood.
Collapse
|
40
|
Caballero-Flores G, Pickard JM, Núñez G. Regulation of Citrobacter rodentium colonization: virulence, immune response and microbiota interactions. Curr Opin Microbiol 2021; 63:142-149. [PMID: 34352594 DOI: 10.1016/j.mib.2021.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
Citrobacter rodentium is a mouse-specific pathogen commonly used to model infection by human Enteropathogenic Escherichia coli, an important cause of infant diarrhea and mortality worldwide. In the early phase of infection, C. rodentium overcomes competition by the gut microbiota for successful replication. Then, the pathogen uses a type three secretion system (T3SS) to inject effector proteins into intestinal epithelial cells and induce metabolic and inflammatory conditions that promote colonization of the intestinal epithelium. C. rodentium also elicits highly coordinated innate and adaptive immune responses in the gut that regulate pathogen colonization and eradication. In this review, we highlight recent work on the regulation and function of the C. rodentium T3SS, the mechanisms employed by the pathogen to evade competition by the microbiota, and the function of the host immune response against infection.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Joseph M Pickard
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
41
|
Porras AM, Shi Q, Zhou H, Callahan R, Montenegro-Bethancourt G, Solomons N, Brito IL. Geographic differences in gut microbiota composition impact susceptibility to enteric infection. Cell Rep 2021; 36:109457. [PMID: 34320343 PMCID: PMC8333197 DOI: 10.1016/j.celrep.2021.109457] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/26/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Large-scale studies of human gut microbiomes have revealed broad differences in composition across geographically distinct populations. Yet, studies examining impacts of microbiome composition on various health outcomes typically focus on single populations, posing the question of whether compositional differences between populations translate into differences in susceptibility. Using germ-free mice humanized with microbiome samples from 30 donors representing three countries, we observe robust differences in susceptibility to Citrobacter rodentium, a model for enteropathogenic Escherichia coli infections, according to geographic origin. We do not see similar responses to Listeria monocytogenes infections. We further find that cohousing the most susceptible and most resistant mice confers protection from C. rodentium infection. This work underscores the importance of increasing global participation in microbiome studies related to health outcomes. Diverse cohorts are needed to identify both population-specific responses to specific microbiome interventions and to achieve broader-reaching biological conclusions that generalize across populations.
Collapse
Affiliation(s)
- Ana Maria Porras
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Qiaojuan Shi
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Rowan Callahan
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Noel Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Ilana Lauren Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
42
|
Stockinger B. T cell subsets and environmental factors in Citrobacter rodentium infection. Curr Opin Microbiol 2021; 63:92-97. [PMID: 34298480 DOI: 10.1016/j.mib.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/20/2022]
Abstract
Infection with Citrobacter rodentium constitutes an attack on the intestinal barrier and results in concerted action by innate and adaptive immune responses to limit bacterial translocation and destroy those bacteria that have breached the intestinal barrier. Among the many immune cell types that are involved in the defence against this infection, Th17 cells as the major producers of the barrier protective cytokine IL-22 during the adaptive phase of the response are most numerous. Their extensive plasticity furthermore results in the production of additional cytokines that previously were ascribed to Th1 cells, such as IFNγ. The timely and coordinated repair of damaged epithelium requires input from environmental factors derived from diet and microbiota metabolism of tryptophan which are transmitted through the aryl hydrocarbon receptor (AHR). Thus, the combination of a robust immune response, coupled with intestinal stem cell differentiation guided by environmental factors, ensures resistance to barrier destruction by intestinal infection.
Collapse
|
43
|
Evaluation of the Effects of Different Bacteroides vulgatus Strains against DSS-Induced Colitis. J Immunol Res 2021; 2021:9117805. [PMID: 34195297 PMCID: PMC8181088 DOI: 10.1155/2021/9117805] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Although the strain-dependent effects of Bacteroides vulgatus on alleviating intestinal inflammatory diseases have been demonstrated, the literature has rarely focused on the underlying causes of this effect. In this study, we selected four B. vulgatus strains (FTJS5K1, FTJS7K1, FSDTA11B14, and FSDLZ51K1) with different genomic characteristics and evaluated their protective roles against dextran sulfate sodium- (DSS-) induced colitis. Compared to the other three tested strains, B. vulgatus 7K1 more strongly ameliorated the DSS-induced weight loss, shortening of the colon length, increased disease activity index scores, colonic tissue injury, and immunomodulatory disorder. In contrast, B. vulgatus 51K1 significantly worsened the DSS-induced alterations in the tumor necrosis factor-alpha (TNF-α) concentration and colonic histopathology. A comparative genomic analysis of B. vulgatus 7K1 and 51K1 showed that the beneficial effects of B. vulgatus 7K1 may be associated with some of its specific genes involved in the production of short-chain fatty acids or capsular polysaccharides and enhancement of its survivability in the gut. In conclusion, these findings indicate that the supplementation of B. vulgatus 7K1 is a potentially efficacious intervention for alleviating colitis and provides scientific support for the screening of probiotics with anticolitis effect.
Collapse
|
44
|
Flowers LJ, Hu S, Shrestha A, Martinot AJ, Leong JM, Osburne MS. Citrobacter rodentium Lysogenized with a Shiga Toxin-Producing Phage: A Murine Model for Shiga Toxin-Producing E. coli Infection. Methods Mol Biol 2021; 2291:381-397. [PMID: 33704765 DOI: 10.1007/978-1-0716-1339-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Shiga toxin-producing E. coli (STEC) is a common foodborne pathogen in developed countries. STEC generates "attaching and effacing" (AE) lesions on colonic epithelium, characterized by effacement of microvilli and the formation of actin "pedestals" beneath intimately attached bacteria. In addition, STEC are lysogenized with a phage that, upon induction, can produce potent Shiga toxins (Stx), potentially leading to both hemorrhagic colitis and hemolytic uremic syndrome. Investigation of the pathogenesis of this disease has been challenging because STEC does not readily colonize conventional mice.Citrobacter rodentium (CR) is a related mouse pathogen that also generates AE lesions. Whereas CR does not produce Stx, a murine model for STEC utilizes CR lysogenized with an E. coli-derived Stx phage, generating CR(Φstx), which both colonizes conventional mice and readily gives rise to systemic disease. We present here key methods for the use of CR(Φstx) infection as a highly predictable murine model for infection and disease by STEC. Importantly, we detail CR(Φstx) inoculation by feeding, determination of pathogen colonization, production of phage and toxin, and assessment of intestinal and renal pathology. These methods provide a framework for studying STEC-mediated systemic disease that may aid in the development of efficacious therapeutics.
Collapse
Affiliation(s)
- Laurice J Flowers
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Tufts University Graduate School in Biomedical Sciences, Boston, MA, USA.,Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shenglan Hu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.,Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding, Guangzhou, China
| | - Anishma Shrestha
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Amanda J Martinot
- Department of Infectious Diseases and Global Health, Tufts Cummings School of Veterinary Medicine, North Grafton, MA, USA
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Marcia S Osburne
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
45
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
46
|
Matsunaga Y, Clark T, Wanek AG, Bitoun JP, Gong Q, Good M, Kolls JK. Intestinal IL-17R Signaling Controls Secretory IgA and Oxidase Balance in Citrobacter rodentium Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:766-775. [PMID: 33431657 DOI: 10.4049/jimmunol.2000591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/07/2020] [Indexed: 01/21/2023]
Abstract
Type 17 cytokines have been strongly implicated in mucosal immunity, in part by regulating the production of antimicrobial peptides. Using a mouse model of Citrobacter rodentium infection, which causes colitis, we found that intestinal IL-17RA and IL-17RC were partially required for control of infection in the colon and IL-17 regulates the production of luminal hydrogen peroxide as well as expression of Tnsf13 Reduced Tnfsf13 expression was associated with a profound defect in generating C. rodentium-specific IgA+ Ab-secreting cells. Taken together, intestinal IL-17R signaling plays key roles in controlling invading pathogens, in part by regulating luminal hydrogen peroxide as well as regulating the generation of pathogen-specific IgA+ Ab-secreting cells.
Collapse
Affiliation(s)
- Yasuka Matsunaga
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Trevon Clark
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Alanna G Wanek
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112
| | - Jacob P Bitoun
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112; and
| | - Qingqing Gong
- Department of Pediatrics, Washington University, St Louis, MO 63110
| | - Misty Good
- Department of Pediatrics, Washington University, St Louis, MO 63110
| | - Jay K Kolls
- Center for Translational Research in Infection and Inflammation, Tulane School of Medicine, New Orleans, LA 70112;
| |
Collapse
|
47
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
48
|
Robust microbe immune recognition in the intestinal mucosa. Genes Immun 2021; 22:268-275. [PMID: 33958733 PMCID: PMC8497264 DOI: 10.1038/s41435-021-00131-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 02/01/2023]
Abstract
The mammalian mucosal immune system acts as a multitasking mediator between bodily function and a vast diversity of microbial colonists. Depending on host-microbial interaction type, mucosal immune responses have distinct functions. Immunity to pathogen infection functions to limit tissue damage, clear or contain primary infection, and prevent or lower the severity of a secondary infection by conferring specific long-term adaptive immunity. Responses to nonpathogenic commensal or mutualistic microbes instead function to tolerate continuous colonization. Mucosal innate immune and epithelial cells employ a limited repertoire of innate receptors to program the adaptive immune response accordingly. Pathogen versus nonpathogen immune discrimination appears to be very robust, as most individuals successfully maintain life-long mutualism with their nonpathogenic microbiota, while mounting immune defense to pathogenic microbe infection specifically. However, the process is imperfect, which can have immunopathological consequences, but may also be exploited medically. Normally innocuous intestinal commensals in some individuals may drive serious inflammatory autoimmunity, whereas harmless vaccines can be used to fool the immune system into mounting a protective anti-pathogen immune response. In this article, we review the current knowledge on mucosal intestinal bacterial immune recognition focusing on TH17 responses and identify commonalities between intestinal pathobiont and vaccine-induced TH17 responses.
Collapse
|
49
|
Ngo VL, Abo H, Kuczma M, Szurek E, Moore N, Medina-Contreras O, Nusrat A, Merlin D, Gewirtz AT, Ignatowicz L, Denning TL. IL-36R signaling integrates innate and adaptive immune-mediated protection against enteropathogenic bacteria. Proc Natl Acad Sci U S A 2020; 117:27540-27548. [PMID: 33087566 PMCID: PMC7959549 DOI: 10.1073/pnas.2004484117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic bacterial infections are a global health issue associated with high mortality, particularly in developing countries. Efficient host protection against enteropathogenic bacterial infection is characterized by coordinated responses between immune and nonimmune cells. In response to infection in mice, innate immune cells are activated to produce interleukin (IL)-23 and IL-22, which promote antimicrobial peptide (AMP) production and bacterial clearance. IL-36 cytokines are proinflammatory IL-1 superfamily members, yet their role in enteropathogenic bacterial infection remains poorly defined. Using the enteric mouse pathogen, C.rodentium, we demonstrate that signaling via IL-36 receptor (IL-36R) orchestrates a crucial innate-adaptive immune link to control bacterial infection. IL-36R-deficient mice (Il1rl2-/- ) exhibited significant impairment in expression of IL-22 and AMPs, increased intestinal damage, and failed to contain C. rodentium compared to controls. These defects were associated with failure to induce IL-23 and IL-6, two key IL-22 inducers in the early and late phases of infection, respectively. Treatment of Il1rl2-/- mice with IL-23 during the early phase of C. rodentium infection rescued IL-22 production from group 3 innate lymphoid cells (ILCs), whereas IL-6 administration during the late phase rescued IL-22-mediated production from CD4+ T cell, and both treatments protected Il1rl2-/- mice from uncontained infection. Furthermore, IL-36R-mediated IL-22 production by CD4+ T cells was dependent upon NFκB-p65 and IL-6 expression in dendritic cells (DCs), as well as aryl hydrocarbon receptor (AhR) expression by CD4+ T cells. Collectively, these data demonstrate that the IL-36 signaling pathway integrates innate and adaptive immunity leading to host defense against enteropathogenic bacterial infection.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Hirohito Abo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Nora Moore
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | | | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
50
|
Rainard P, Cunha P, Martins RP, Gilbert FB, Germon P, Foucras G. Type 3 immunity: a perspective for the defense of the mammary gland against infections. Vet Res 2020; 51:129. [PMID: 33059767 PMCID: PMC7559147 DOI: 10.1186/s13567-020-00852-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.
Collapse
Affiliation(s)
- Pascal Rainard
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France.
| | - Patricia Cunha
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | | | | | - Pierre Germon
- ISP, INRAE, Université de Tours, UMR1282, Tours, Nouzilly, France
| | - Gilles Foucras
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|