1
|
He B, Wang Y, Li H, Huang Y. The role of integrin beta in schizophrenia: a preliminary exploration. CNS Spectr 2023; 28:561-570. [PMID: 36274632 DOI: 10.1017/s1092852922001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins are transmembrane heterodimeric (αβ) receptors that transduce mechanical signals between the extracellular milieu and the cell in a bidirectional manner. Extensive research has shown that the integrin beta (β) family is widely expressed in the brain and that they control various aspects of brain development and function. Schizophrenia is a relatively common neurological disorder of unknown etiology and has been found to be closely related to neurodevelopment and neurochemicals in neuropathological studies of schizophrenia. Here, we review literature from recent years that shows that schizophrenia involves multiple signaling pathways related to neuronal migration, axon guidance, cell adhesion, and actin cytoskeleton dynamics, and that dysregulation of these processes affects the normal function of neurons and synapses. In fact, alterations in integrin β structure, expression and signaling for neural circuits, cortex, and synapses are likely to be associated with schizophrenia. We explored several aspects of the possible association between integrin β and schizophrenia in an attempt to demonstrate the role of integrin β in schizophrenia, which may help to provide new insights into the study of the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Binshan He
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuhan Wang
- Department of Blood Transfusion, Ya'an People's Hospital, Ya'an, China
| | - Huang Li
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuanshuai Huang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
3
|
Tomaskovic-Crook E, Guerrieri-Cortesi K, Crook JM. Induced pluripotent stem cells for 2D and 3D modelling the biological basis of schizophrenia and screening possible therapeutics. Brain Res Bull 2021; 175:48-62. [PMID: 34273422 DOI: 10.1016/j.brainresbull.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells (iPSCs) are providing unprecedented insight into complex neuropsychiatric disorders such as schizophrenia (SZ). Here we review the use of iPSCs for investigating the etiopathology and treatment of SZ, beginning with conventional in vitro two-dimensional (2D; monolayer) cell modelling, through to more advanced 3D tissue studies. With the advent of 3D modelling, utilising advanced differentiation paradigms and additive manufacturing technologies, inclusive of patient-specific cerebral/neural organoids and bioprinted neural tissues, such live disease-relevant tissue systems better recapitulate "within-body" tissue function and pathobiology. We posit that by enabling better understanding of biological causality, these evolving strategies will yield novel therapeutic targets and accordingly, drug candidates.
Collapse
Affiliation(s)
- Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia.
| | - Kyle Guerrieri-Cortesi
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, 2500, Wollongong, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, 2500, Wollongong, Australia; Chris O'Brien Lifehouse Hospital, Camperdown, NSW, 2050, Australia; Department of Surgery, St Vincent's Hospital, The University of Melbourne, 3065, Fitzroy, Australia.
| |
Collapse
|
4
|
Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Nguyen DT, Heer CD, O'Meally D, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Hori O. Inhibition of CD38 and supplementation of nicotinamide riboside ameliorate lipopolysaccharide-induced microglial and astrocytic neuroinflammation by increasing NAD . J Neurochem 2021; 158:311-327. [PMID: 33871064 DOI: 10.1111/jnc.15367] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022]
Abstract
Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Dinh Thi Nguyen
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Collin D Heer
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, USA
| | - Denis O'Meally
- Center for Gene Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Charles Brenner
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Yu H, Guo Y, Chen J, Chen X, Jia P, Zhao Z. Rewired Pathways and Disrupted Pathway Crosstalk in Schizophrenia Transcriptomes by Multiple Differential Coexpression Methods. Genes (Basel) 2021; 12:665. [PMID: 33946654 PMCID: PMC8146818 DOI: 10.3390/genes12050665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
Transcriptomic studies of mental disorders using the human brain tissues have been limited, and gene expression signatures in schizophrenia (SCZ) remain elusive. In this study, we applied three differential co-expression methods to analyze five transcriptomic datasets (three RNA-Seq and two microarray datasets) derived from SCZ and matched normal postmortem brain samples. We aimed to uncover biological pathways where internal correlation structure was rewired or inter-coordination was disrupted in SCZ. In total, we identified 60 rewired pathways, many of which were related to neurotransmitter, synapse, immune, and cell adhesion. We found the hub genes, which were on the center of rewired pathways, were highly mutually consistent among the five datasets. The combinatory list of 92 hub genes was generally multi-functional, suggesting their complex and dynamic roles in SCZ pathophysiology. In our constructed pathway crosstalk network, we found "Clostridium neurotoxicity" and "signaling events mediated by focal adhesion kinase" had the highest interactions. We further identified disconnected gene links underlying the disrupted pathway crosstalk. Among them, four gene pairs (PAK1:SYT1, PAK1:RFC5, DCTN1:STX1A, and GRIA1:MAP2K4) were normally correlated in universal contexts. In summary, we systematically identified rewired pathways, disrupted pathway crosstalk circuits, and critical genes and gene links in schizophrenia transcriptomes.
Collapse
Affiliation(s)
- Hui Yu
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (Y.G.)
| | - Yan Guo
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; (H.Y.); (Y.G.)
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (J.C.); (X.C.)
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (J.C.); (X.C.)
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| |
Collapse
|
6
|
Functional brain defects in a mouse model of a chromosomal t(1;11) translocation that disrupts DISC1 and confers increased risk of psychiatric illness. Transl Psychiatry 2021; 11:135. [PMID: 33608504 PMCID: PMC7895946 DOI: 10.1038/s41398-021-01256-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.
Collapse
|
7
|
Dong F, Mao J, Chen M, Yoon J, Mao Y. Schizophrenia risk ZNF804A interacts with its associated proteins to modulate dendritic morphology and synaptic development. Mol Brain 2021; 14:12. [PMID: 33446247 PMCID: PMC7809827 DOI: 10.1186/s13041-021-00729-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/01/2021] [Indexed: 11/30/2022] Open
Abstract
Schizophrenia (SZ) is a devastating brain disease that affects about 1% of world population. Among the top genetic associations, zinc finger protein 804A (ZNF804A) gene encodes a zinc finger protein, associated with SZ and biolar disorder (BD). Copy number variants (CNVs) of ZNF804A have been observed in patients with autism spectrum disorders (ASDs), anxiety disorder, and BD, suggesting that ZNF804A is a dosage sensitive gene for brain development. However, its molecular functions have not been fully determined. Our previous interactomic study revealed that ZNF804A interacts with multiple proteins to control protein translation and neural development. ZNF804A is localized in the cytoplasm and neurites in the human cortex and is expressed in various types of neurons, including pyramidal, dopaminergic, GABAergic, and Purkinje neurons in mouse brain. To further examine the effect of gene dosage of ZNF804A on neurite morphology, both knockdown and overexpression of ZNF804A in primary neuronal cells significantly attenuate dendritic complex and spine formation. To determine the factors mediating these phenotypes, interestingly, three binding proteins of ZNF804A, galectin 1 (LGALS1), fasciculation and elongation protein zeta 1 (FEZ1) and ribosomal protein SA (RPSA), show different effects on reversing the deficits. LGALS1 and FEZ1 stimulate neurite outgrowth at basal level but RPSA shows no effect. Intriguingly, LGALS1 but not FEZ1, reverses the neurite outgrowth deficits induced by ZNF804A knockdown. However, FEZ1 and RPSA but not LGALS1, can ameliorate ZNF804A overexpression-mediated dendritic abnormalities. Thus, our results uncover a critical post-mitotic role of ZNF804A in neurite and synaptic development relevant to neurodevelopmental pathologies.
Collapse
Affiliation(s)
- Fengping Dong
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joseph Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, 214 Life Sciences Building, University Park, PA, 16802, USA.
| |
Collapse
|
8
|
Foroughi K, Jahanbani S, Khaksari M, Shayannia A. Obestatin attenuated methamphetamine-induced PC12 cells neurotoxicity via inhibiting autophagy and apoptosis. Hum Exp Toxicol 2019; 39:301-310. [PMID: 31726888 DOI: 10.1177/0960327119886036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Methamphetamine (METH) is an illicit dopaminergic neurotoxin and is an extremely addictive psychostimulant drug that influences monoamine neurotransmitter system of the brain and is responsible for enhancing energy and satisfaction and feelings of alertness. Long-lasting exposure to METH causes psychosis and increases the risk of Parkinson's disease. Studies have revealed that obestatin (OB) is a novel endogenous ligand, which may have neuroprotective effects. Hence, we hypothesized that OB might appropriately limit METH-induced neurotoxicity via the control of apoptotis and autophagy. In the current study, PC12 cells were exposed to both METH (0.5, 1, 2, 3, 4, and 6 mmol/L) and pretreatment OB (1, 10, 100, and 200 nmol/L) in vitro for 24 h to determine appropriate dose, and then downstream pathways were measured to investigate apoptosis and autophagy. The results have shown that OB reduced the apoptotic response post-METH exposure in PC12 cells by developing cell viability and diminishing apoptotic rates. Furthermore, the study has exhibited OB decreased gene expression of Beclin-1 by real-time polymerase chain reaction and LC3-II by Western blotting in METH-induced PC12 cells, which demonstrated that autophagy is reduced. The study is proposed that OB is useful in reducing oxidative stress, which may also play an essential role in the regulation of METH-triggered apoptotic response. So these data indicate that OB could potentially alleviate METH-induced neurotoxicity via the reduction of apoptotic and autophagy responses.
Collapse
Affiliation(s)
- K Foroughi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - S Jahanbani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - M Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - A Shayannia
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
9
|
Roboon J, Hattori T, Ishii H, Takarada-Iemata M, Le TM, Shiraishi Y, Ozaki N, Yamamoto Y, Sugawara A, Okamoto H, Higashida H, Kitao Y, Hori O. Deletion of CD38 Suppresses Glial Activation and Neuroinflammation in a Mouse Model of Demyelination. Front Cell Neurosci 2019; 13:258. [PMID: 31244614 PMCID: PMC6563778 DOI: 10.3389/fncel.2019.00258] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/23/2019] [Indexed: 01/09/2023] Open
Abstract
CD38 is an enzyme that catalyzes the synthesis of cyclic adenosine diphosphate-ribose from nicotinamide adenine dinucleotide (NAD+). We recently reported that this molecule regulates the maturation and differentiation of glial cells such as astrocytes and oligodendrocytes (OLs) in the developing brain. To analyze its role in the demyelinating situation, we employed cuprizone (CPZ)-induced demyelination model in mice, which is characterized by oligodendrocyte-specific apoptosis, followed by the strong glial activation, demyelination, and repopulation of OLs. By using this model, we found that CD38 was upregulated in both astrocytes and microglia after CPZ administration. Experiments using wild-type and CD38 knockout (KO) mice, together with those using cultured glial cells, revealed that CD38 deficiency did not affect the initial decrease of the number of OLs, while it attenuated CPZ-induced demyelination, and neurodegeneration. Importantly, the clearance of the degraded myelin and oligodendrocyte repopulation were also reduced in CD38 KO mice. Further experiments revealed that these observations were associated with reduced levels of glial activation and inflammatory responses including phagocytosis, most likely through the enhanced level of NAD+ in CD38-deleted condition. Our results suggest that CD38 and NAD+ in the glial cells play a critical role in the demyelination and subsequent oligodendrocyte remodeling through the modulation of glial activity and neuroinflammation.
Collapse
Affiliation(s)
- Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akira Sugawara
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yasuko Kitao
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Srikanth P, Lagomarsino VN, Pearse RV, Liao M, Ghosh S, Nehme R, Seyfried N, Eggan K, Young-Pearse TL. Convergence of independent DISC1 mutations on impaired neurite growth via decreased UNC5D expression. Transl Psychiatry 2018; 8:245. [PMID: 30410030 PMCID: PMC6224395 DOI: 10.1038/s41398-018-0281-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
The identification of convergent phenotypes in different models of psychiatric illness highlights robust phenotypes that are more likely to be implicated in disease pathophysiology. Here, we utilize human iPSCs harboring distinct mutations in DISC1 that have been found in families with major mental illness. One mutation was engineered to mimic the consequences on DISC1 protein of a balanced translocation linked to mental illness in a Scottish pedigree; the other mutation was identified in an American pedigree with a high incidence of mental illness. Directed differentiation of these iPSCs using NGN2 expression shows rapid conversion to a homogenous population of mature excitatory neurons. Both DISC1 mutations result in reduced DISC1 protein expression, and show subtle effects on certain presynaptic proteins. In addition, RNA sequencing and qPCR showed decreased expression of UNC5D, DPP10, PCDHA6, and ZNF506 in neurons with both DISC1 mutations. Longitudinal analysis of neurite outgrowth revealed decreased neurite outgrowth in neurons with each DISC1 mutation, which was mimicked by UNC5D knockdown and rescued by transient upregulation of endogenous UNC5D. This study shows a narrow range of convergent phenotypes of two mutations found in families with major mental illness, and implicates dysregulated netrin signaling in DISC1 biology.
Collapse
Affiliation(s)
- Priya Srikanth
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Valentina N. Lagomarsino
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Richard V. Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Meichen Liao
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Sulagna Ghosh
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Ralda Nehme
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Nicholas Seyfried
- 0000 0001 0941 6502grid.189967.8Department of Biochemistry, Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Kevin Eggan
- 000000041936754Xgrid.38142.3cHarvard Stem Cell Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 USA ,grid.66859.34Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142 USA
| | - Tracy L. Young-Pearse
- 0000 0004 0378 8294grid.62560.37Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| |
Collapse
|
11
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
12
|
Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry 2017; 22:944-953. [PMID: 28289284 DOI: 10.1038/mp.2017.19] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
ZNF804A (zinc-finger protein 804A) has been recognized as a schizophrenia risk gene across multiple world populations. Its intronic single-nucleotide polymorphism (SNP) rs1344706 is among one of the strongest susceptibility variants that have achieved genome-wide significance in genome-wide association studies (GWAS) for schizophrenia and has been widely and intensively studied. To elucidate the biological mechanisms underlying the genetic risk conferred by rs1344706, we retrospectively analyzed the progresses in brain gene expression quantitative trait loci (eQTL) analyses, ZNF804A-induced pathway alterations in neural cells and changes in synaptic phenotypes associated with ZNF804A expression. Based on these data, we hypothesize a potential biological mechanism for a genetic risk allele of ZNF804A in schizophrenia pathogenesis. We also review the efforts being made to characterize the affected intermediate phenotypes using neuroimaging and neuropsychological approaches. We then discuss additional common and rare ZNF804A variants in schizophrenia susceptibility and the potential genetic heterogeneity of these genomic loci between Europeans and Asians. This review for we believe the first time systematically presents the evidence for ZNF804A, describing its discovery and likely roles in brain development and schizophrenia pathogenesis. We believe that this work has summarized this information with a systemic and broad assessment of recent findings.
Collapse
Affiliation(s)
- H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
13
|
Hattori T, Kaji M, Ishii H, Jureepon R, Takarada-Iemata M, Minh Ta H, Manh Le T, Konno A, Hirai H, Shiraishi Y, Ozaki N, Yamamoto Y, Okamoto H, Yokoyama S, Higashida H, Kitao Y, Hori O. CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously. Glia 2017; 65:974-989. [PMID: 28295574 DOI: 10.1002/glia.23139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 12/11/2022]
Abstract
Glial development is critical for the function of the central nervous system. CD38 is a multifunctional molecule with ADP-ribosyl cyclase activity. While critical roles of CD38 in the adult brain such as oxytocin release and social behavior have been reported, those in the developing brain remain largely unknown. Here we demonstrate that deletion of Cd38 leads to impaired development of astrocytes and oligodendrocytes in mice. CD38 is highly expressed in the developing brains between postnatal day 14 (P14) and day 28 (P28). In situ hybridization and FACS analysis revealed that CD38 is expressed predominantly in astrocytes in these periods. Analyses of the cortex of Cd38 knockout (Cd38-/- ) mice revealed delayed development of astrocytes and subsequently delayed differentiation of oligodendrocytes (OLs) at postnatal stages. In vitro experiments using primary OL cultures, mixed glial cultures, and astrocytic conditioned medium showed that astrocytic CD38 regulates the development of astrocytes in a cell-autonomous manner and the differentiation of OLs in a non-cell-autonomous manner. Further experiments revealed that connexin43 (Cx43) in astrocytes plays a promotive role for CD38-mediated OL differentiation. Finally, increased levels of NAD+ , caused by CD38 deficiency, are likely to be responsible for the suppression of astrocytic Cx43 expression and OL differentiation. Our data indicate that CD38 is a positive regulator of astrocyte and OL development.
Collapse
Affiliation(s)
- Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Minoru Kaji
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Ishii
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Roboon Jureepon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mika Takarada-Iemata
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hieu Minh Ta
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Thuong Manh Le
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Ayumu Konno
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yoshitake Shiraishi
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.,Department of Biochemistry, Tohoku University, Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yasuko Kitao
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
14
|
Zhang Q, Esrafilzadeh D, Crook JM, Kapsa R, Stewart EM, Tomaskovic-Crook E, Wallace GG, Huang XF. Electrical Stimulation Using Conductive Polymer Polypyrrole Counters Reduced Neurite Outgrowth of Primary Prefrontal Cortical Neurons from NRG1-KO and DISC1-LI Mice. Sci Rep 2017; 7:42525. [PMID: 28198409 PMCID: PMC5309772 DOI: 10.1038/srep42525] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/11/2017] [Indexed: 01/07/2023] Open
Abstract
Deficits in neurite outgrowth, possibly involving dysregulation of risk genes neuregulin-1 (NRG1) and disrupted in schizophrenia 1 (DISC1) have been implicated in psychiatric disorders including schizophrenia. Electrical stimulation using conductive polymers has been shown to stimulate neurite outgrowth of differentiating human neural stem cells. This study investigated the use of the electroactive conductive polymer polypyrrole (Ppy) to counter impaired neurite outgrowth of primary pre-frontal cortical (PFC) neurons from NRG1-knock out (NRG1-KO) and DISC1-locus impairment (DISC1-LI) mice. Whereas NRG1-KO and DISC1-LI exhibited reduced neurite length and number of neurite branches compared to wild-type controls, this was not apparent for cultures on electroactive Ppy. Additionally, the use of the Ppy substrate normalised the synaptophysin and PSD95 protein and mRNA expression whereas both are usually reduced by NRG1-KO or DISC1-LI. Our findings support the utility of Ppy mediated electrical stimulation to prevent the reduction of neurite outgrowth and related synaptic protein expression in the primary PFC neurons from NRG1-KO and DISC1-LI mice, providing proof-of-concept for treating neurodevelopmental diseases including schizophrenia.
Collapse
Affiliation(s)
- Qingsheng Zhang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.,ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Dorna Esrafilzadeh
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Jeremy M Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Departments of Surgery, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Robert Kapsa
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Departments of Medicine, St Vincent's Hospital, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Elise M Stewart
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, NSW 2519, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,Schizophrenia Research Institute, 384 Victoria Street, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
15
|
Chen CY, Liu HY, Hsueh YP. TLR3 downregulates expression of schizophrenia gene Disc1 via MYD88 to control neuronal morphology. EMBO Rep 2016; 18:169-183. [PMID: 27979975 PMCID: PMC5210159 DOI: 10.15252/embr.201642586] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 01/28/2023] Open
Abstract
Viral infection during fetal or neonatal stages increases the risk of developing neuropsychiatric disorders such as schizophrenia and autism spectrum disorders. Although neurons express several key regulators of innate immunity, the role of neuronal innate immunity in psychiatric disorders is still unclear. Using cultured neurons and in vivo mouse brain studies, we show here that Toll‐like receptor 3 (TLR3) acts through myeloid differentiation primary response gene 88 (MYD88) to negatively control Disrupted in schizophrenia 1 (Disc1) expression, resulting in impairment of neuronal development. Cytokines are not involved in TLR3‐mediated inhibition of dendrite outgrowth. Instead, TLR3 signaling suppresses expression of several psychiatric disorder‐related genes, including Disc1. The impaired dendritic arborization caused by TLR3 activation is rescued by MYD88 deficiency or DISC1 overexpression. In addition, TLR3 activation at the neonatal stage increases dendritic spine density, but narrows spine heads at postnatal day 21 (P21), suggesting a long‐lasting effect of TLR3 activation on spinogenesis. Our study reveals a novel mechanism of TLR3 in regulation of dendritic morphology and provides an explanation for how environmental factors influence mental health.
Collapse
Affiliation(s)
- Chiung-Ya Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yu Liu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Brown JS. Cancer Immune Equilibrium and Schizophrenia Have Similar Interferon-γ, Tumor Necrosis Factor-α, and Interleukin Expression: A Tumor Model of Schizophrenia. Schizophr Bull 2016; 42:1407-1417. [PMID: 27169466 PMCID: PMC5049534 DOI: 10.1093/schbul/sbw064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For at least a century, a debate has continued as to whether cancer risk is reduced in schizophrenia. Genetic studies have also suggested the 2 conditions may share protein transcriptional pathways. The author predicted that if the pathophysiology of schizophrenia confers protection from cancer, then the immunology of schizophrenia should reflect a state of tumor suppression, ie, the opposite of tumor escape. To examine this possibility, the author performed a literature search for measurements of cytokines in drug-naïve first episode subjects with schizophrenia for comparison with cytokine expression in tumor escape vs tumor suppression. The comparison showed that instead of either tumor suppression or escape, schizophrenia appears to be in a state of tumor equilibrium. Based on this finding, the author hypothesized that the clinical presentation of schizophrenia may involve cell transformation similar to an early stage of cancer initiation or an attenuated tumorigenesis. While this condition could reflect the presence of an actual tumor such as an ovarian teratoma causing anti-NMDA receptor encephalitis, it would only explain a small percentage of cases. To find a more likely tumor model, the author then compared the cytokine profile of schizophrenia to individual cancers and found the best match was melanoma. To demonstrate the viability of the theory, the author compared the hallmarks, emerging hallmarks, and enabling characteristics of melanoma to schizophrenia and found that many findings in schizophrenia are understood if schizophrenia is a condition of attenuated tumorigenesis.
Collapse
Affiliation(s)
- James S Brown
- Department of Psychiatry, VCU School of Medicine, Richmond, VA
| |
Collapse
|
17
|
Interaction between DISC1 and CHL1 in regulation of neurite outgrowth. Brain Res 2016; 1648:290-297. [DOI: 10.1016/j.brainres.2016.06.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 01/31/2023]
|
18
|
Nath S, Christian L, Tan SY, Ki S, Ehrlich LIR, Poenie M. Dynein Separately Partners with NDE1 and Dynactin To Orchestrate T Cell Focused Secretion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:2090-101. [PMID: 27534551 PMCID: PMC5010990 DOI: 10.4049/jimmunol.1600180] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/14/2016] [Indexed: 11/19/2022]
Abstract
Helper and cytotoxic T cells accomplish focused secretion through the movement of vesicles toward the microtubule organizing center (MTOC) and translocation of the MTOC to the target contact site. In this study, using Jurkat cells and OT-I TCR transgenic primary murine CTLs, we show that the dynein-binding proteins nuclear distribution E homolog 1 (NDE1) and dynactin (as represented by p150(Glued)) form mutually exclusive complexes with dynein, exhibit nonoverlapping distributions in target-stimulated cells, and mediate different transport events. When Jurkat cells expressing a dominant negative form of NDE1 (NDE1-enhanced GFP fusion) were activated by Staphylococcus enterotoxin E-coated Raji cells, NDE1 and dynein failed to accumulate at the immunological synapse (IS) and MTOC translocation was inhibited. Knockdown of NDE1 in Jurkat cells or primary mouse CTLs also inhibited MTOC translocation and CTL-mediated killing. In contrast to NDE1, knockdown of p150(Glued), which depleted the alternative dynein/dynactin complex, resulted in impaired accumulation of CTLA4 and granzyme B-containing intracellular vesicles at the IS, whereas MTOC translocation was not affected. Depletion of p150(Glued) in CTLs also inhibited CTL-mediated lysis. We conclude that the NDE1/Lissencephaly 1 and dynactin complexes separately mediate two key components of T cell-focused secretion, namely translocation of the MTOC and lytic granules to the IS, respectively.
Collapse
Affiliation(s)
- Shubhankar Nath
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Laura Christian
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sarah Youngsun Tan
- Department of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712
| | - Sanghee Ki
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| | - Martin Poenie
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712; and
| |
Collapse
|
19
|
Norkett R, Modi S, Birsa N, Atkin TA, Ivankovic D, Pathania M, Trossbach SV, Korth C, Hirst WD, Kittler JT. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites. J Biol Chem 2015; 291:613-29. [PMID: 26553875 PMCID: PMC4705382 DOI: 10.1074/jbc.m115.699447] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/09/2023] Open
Abstract
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.
Collapse
Affiliation(s)
- Rosalind Norkett
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Souvik Modi
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Nicol Birsa
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Talia A Atkin
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Davor Ivankovic
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Manav Pathania
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Svenja V Trossbach
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Carsten Korth
- the Department of Neuropathology, Heinrich Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| | - Warren D Hirst
- the Neuroscience Research Unit, Pfizer, Cambridge, Massachusetts 02139, and
| | - Josef T Kittler
- From the Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom,
| |
Collapse
|
20
|
Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl Psychiatry 2015; 5:e588. [PMID: 26101851 PMCID: PMC4490286 DOI: 10.1038/tp.2015.76] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/27/2015] [Accepted: 05/04/2015] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.
Collapse
|
21
|
Zhao Z, Xu J, Chen J, Kim S, Reimers M, Bacanu SA, Yu H, Liu C, Sun J, Wang Q, Jia P, Xu F, Zhang Y, Kendler KS, Peng Z, Chen X. Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder. Mol Psychiatry 2015; 20:563-572. [PMID: 25113377 PMCID: PMC4326626 DOI: 10.1038/mp.2014.82] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 05/23/2014] [Accepted: 06/17/2014] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q⩽0.01, 53 genes; q⩽0.05, 213 genes; q⩽0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (P<10(-7)) and BPD (P=0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways. Functional analyses of these genes revealed an interconnected pathway network centered on lysosomal function and the regulation of actin cytoskeleton. These pathways and their interacting network were principally confirmed by an independent transcriptome sequencing data set of the hippocampus. Dysregulation of lysosomal function and cytoskeleton remodeling has direct impacts on endocytosis, phagocytosis, exocytosis, vesicle trafficking, neuronal maturation and migration, neurite outgrowth and synaptic density and plasticity, and different aspects of these processes have been implicated in SCZ and BPD.
Collapse
Affiliation(s)
- Zhongming Zhao
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jiabao Xu
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, 518083, China
| | - Jingchun Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sanghyeon Kim
- Stanley Laboratory of Brain Research, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Mark Reimers
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Hui Yu
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60637, USA
| | - Jingchun Sun
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Quan Wang
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Peilin Jia
- Departments of Biomedical Informatics and Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Fengping Xu
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, 518083, China
| | - Yong Zhang
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, 518083, China
| | - Kenneth S. Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhiyu Peng
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, 518083, China
| | - Xiangning Chen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
22
|
Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. BIOMED RESEARCH INTERNATIONAL 2015; 2015:492367. [PMID: 25705664 PMCID: PMC4332974 DOI: 10.1155/2015/492367] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 12/22/2022]
Abstract
The major psychiatric disorders such as schizophrenia (SZ) and major depressive disorder (MDD) are thought to be multifactorial diseases related to both genetic and environmental factors. However, the genes responsible and the molecular mechanisms underlying the pathogenesis of SZ and MDD remain unclear. We previously reported that abnormalities of disrupted-in-Schizophrenia-1 (DISC1) and DISC1 binding zinc finger (DBZ) might cause major psychiatric disorders such as SZ. Interestingly, both DISC and DBZ have been further detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 negatively regulates the differentiation of oligodendrocytes, whereas DBZ plays a positive regulatory role in oligodendrocyte differentiation. We have reported that repeated stressful events, one of the major risk factors of MDD, can induce sustained upregulation of plasma corticosterone levels and serum/glucocorticoid regulated kinase 1 (Sgk1) mRNA expression in oligodendrocytes. Repeated stressful events can also activate the SGK1 cascade and cause excess arborization of oligodendrocyte processes, which is thought to be related to depressive-like symptoms. In this review, we discuss the expression of DISC1, DBZ, and SGK1 in oligodendrocytes, their roles in the regulation of oligodendrocyte function, possible interactions of DISC1 and DBZ in relation to SZ, and the activation of the SGK1 signaling cascade in relation to MDD.
Collapse
|
23
|
Lee SA, Kim SM, Suh BK, Sun HY, Park YU, Hong JH, Park C, Nguyen MD, Nagata KI, Yoo JY, Park SK. Disrupted-in-schizophrenia 1 (DISC1) regulates dysbindin function by enhancing its stability. J Biol Chem 2015; 290:7087-96. [PMID: 25635053 DOI: 10.1074/jbc.m114.614750] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dysbindin and DISC1 are schizophrenia susceptibility factors playing roles in neuronal development. Here we show that the physical interaction between dysbindin and DISC1 is critical for the stability of dysbindin and for the process of neurite outgrowth. We found that DISC1 forms a complex with dysbindin and increases its stability in association with a reduction in ubiquitylation. Furthermore, knockdown of DISC1 or expression of a deletion mutant, DISC1 lacking amino acid residues 403-504 of DISC1 (DISC1(Δ403-504)), effectively decreased levels of endogenous dysbindin. Finally, the neurite outgrowth defect induced by knockdown of DISC1 was partially reversed by coexpression of dysbindin. Taken together, these results indicate that dysbindin and DISC1 form a physiologically functional complex that is essential for normal neurite outgrowth.
Collapse
Affiliation(s)
- Seol-Ae Lee
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seong-Mo Kim
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hwa-Young Sun
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Young-Un Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Ji-Ho Hong
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Minh Dang Nguyen
- the Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada, and
| | - Koh-Ichi Nagata
- the Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Human Service Center, 713-8 Kamiya, Kasugai 480-0392, Japan
| | - Joo-Yeon Yoo
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sang Ki Park
- From the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea,
| |
Collapse
|
24
|
Hu F, Xu L, Liu ZH, Ge MM, Ruan DY, Wang HL. Developmental lead exposure alters synaptogenesis through inhibiting canonical Wnt pathway in vivo and in vitro. PLoS One 2014; 9:e101894. [PMID: 24999626 PMCID: PMC4084981 DOI: 10.1371/journal.pone.0101894] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Lead (Pb) exposure has been implicated in the impairment of synaptic plasticity in the developing hippocampus, but the mechanism remains unclear. Here, we investigated whether developmental lead exposure affects the dendritic spine formation through Wnt signaling pathway in vivo and in vitro. Sprague–Dawley rats were exposed to lead throughout the lactation period and Golgi-Cox staining method was used to examine the spine density of pyramidal neurons in the hippocampal CA1 area of rats. We found that lead exposure significantly decreased the spine density in both 14 and 21 days-old pups, accompanied by a significant age-dependent decline of the Wnt7a expression and stability of its downstream protein (β-catenin). Furthermore, in cultured hippocampal neurons, lead (0.1 and 1 µM lead acetate) significantly decreased the spine density in a dose-dependent manner. Exogenous Wnt7a application attenuated the decrease of spine density and increased the stability of the downstream molecules in Wnt signaling pathway. Together, our results suggest that lead has a negative impact on spine outgrowth in the developing hippocampus through altering the canonical Wnt pathway.
Collapse
Affiliation(s)
- Fan Hu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Li Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Zhi-Hua Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Di-Yun Ruan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui, China
- * E-mail:
| |
Collapse
|
25
|
Lin M, Zhao D, Hrabovsky A, Pedrosa E, Zheng D, Lachman HM. Heat shock alters the expression of schizophrenia and autism candidate genes in an induced pluripotent stem cell model of the human telencephalon. PLoS One 2014; 9:e94968. [PMID: 24736721 PMCID: PMC3988108 DOI: 10.1371/journal.pone.0094968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/21/2014] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorders (ASD) are highly heritable neuropsychiatric disorders, although environmental factors, such as maternal immune activation (MIA), play a role as well. Cytokines mediate the effects of MIA on neurogenesis and behavior in animal models. However, MIA stimulators can also induce a febrile reaction, which could have independent effects on neurogenesis through heat shock (HS)-regulated cellular stress pathways. However, this has not been well-studied. To help understand the role of fever in MIA, we used a recently described model of human brain development in which induced pluripotent stem cells (iPSCs) differentiate into 3-dimensional neuronal aggregates that resemble a first trimester telencephalon. RNA-seq was carried out on aggregates that were heat shocked at 39°C for 24 hours, along with their control partners maintained at 37°C. 186 genes showed significant differences in expression following HS (p<0.05), including known HS-inducible genes, as expected, as well as those coding for NGFR and a number of SZ and ASD candidates, including SMARCA2, DPP10, ARNT2, AHI1 and ZNF804A. The degree to which the expression of these genes decrease or increase during HS is similar to that found in copy loss and copy gain copy number variants (CNVs), although the effects of HS are likely to be transient. The dramatic effect on the expression of some SZ and ASD genes places HS, and perhaps other cellular stressors, into a common conceptual framework with disease-causing genetic variants. The findings also suggest that some candidate genes that are assumed to have a relatively limited impact on SZ and ASD pathogenesis based on a small number of positive genetic findings, such as SMARCA2 and ARNT2, may in fact have a much more substantial role in these disorders - as targets of common environmental stressors.
Collapse
Affiliation(s)
- Mingyan Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dejian Zhao
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Anastasia Hrabovsky
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Erika Pedrosa
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: (HML); (D. Zheng)
| |
Collapse
|
26
|
Shimizu S, Koyama Y, Hattori T, Tachibana T, Yoshimi T, Emoto H, Matsumoto Y, Miyata S, Katayama T, Ito A, Tohyama M. DBZ, a CNS-specific DISC1 binding protein, positively regulates oligodendrocyte differentiation. Glia 2014; 62:709-24. [PMID: 24481677 DOI: 10.1002/glia.22636] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/21/2013] [Accepted: 01/13/2014] [Indexed: 12/19/2022]
Abstract
Recent studies have shown changes in myelin genes and alterations in white matter structure in a wide range of psychiatric disorders. Here we report that DBZ, a central nervous system (CNS)-specific member of the DISC1 interactome, positively regulates the oligodendrocyte (OL) differentiation in vivo and in vitro. In mouse corpus callosum (CC), DBZ mRNA is expressed in OL lineage cells and expression of DBZ protein peaked before MBP expression. In the CC of DBZ-KO mice, we observed delayed myelination during the early postnatal period. Although the myelination delay was mostly recovered by adulthood, OLs with immature structural features were more abundant in adult DBZ-KO mice than in control mice. DBZ was also transiently upregulated during rat OL differentiation in vitro before myelin marker expression. DBZ knockdown by RNA interference resulted in a decreased expression of myelin-related markers and a low number of cells with mature characteristics, but with no effect on the proliferation of oligodendrocyte precursor cells. We also show that the expression levels of transcription factors having a negative-regulatory role in OL differentiation were upregulated when endogenous DBZ was knocked down. These results strongly indicate that OL differentiation in rodents is regulated by DBZ.
Collapse
Affiliation(s)
- Shoko Shimizu
- Department of Molecular Neuropsychiatry, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki University, Osaka-Sayama, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
28
|
XLMR protein related to neurite extension (Xpn/KIAA2022) regulates cell-cell and cell-matrix adhesion and migration. Neurochem Int 2013; 63:561-9. [PMID: 24071057 DOI: 10.1016/j.neuint.2013.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/07/2013] [Accepted: 09/13/2013] [Indexed: 11/22/2022]
Abstract
X-linked mental retardation (XLMR) is a common cause of moderate to severe intellectual disability in males. XLMR protein related to neurite extension (Xpn, also known as KIAA2022) has been implicated as a gene responsible for XLMR in humans. Although Xpn is highly expressed in the developing brain and is involved in neurite outgrowth in PC12 cells and neurons, little is known about the functional role of Xpn. Here, we show that Xpn regulates cell-cell and cell-matrix adhesion and migration in PC12 cells. Xpn knockdown enhanced cell-cell and cell-matrix adhesion mediated by N-cadherin and β1-integrin, respectively. N-Cadherin and β1-integrin expression at the mRNA and protein levels was significantly increased in Xpn knockdown PC12 cells. Furthermore, overexpressed Xpn protein was strongly expressed in the nuclei of PC12 and 293T cells. Finally, depletion of Xpn perturbed cellular migration by enhancing N-cadherin and β1-integrin expression in a PC12 cell wound healing assay. We conclude that Xpn regulates cell-cell and cell-matrix adhesion and cellular migration by regulating the expression of adhesion molecules.
Collapse
|
29
|
Vadodaria KC, Jessberger S. Maturation and integration of adult born hippocampal neurons: signal convergence onto small Rho GTPases. Front Synaptic Neurosci 2013; 5:4. [PMID: 23986696 PMCID: PMC3752586 DOI: 10.3389/fnsyn.2013.00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/29/2013] [Indexed: 01/28/2023] Open
Abstract
Adult neurogenesis, restricted to specific regions in the mammalian brain, represents one of the most interesting forms of plasticity in the mature nervous system. Adult-born hippocampal neurons play important roles in certain forms of learning and memory, and altered hippocampal neurogenesis has been associated with a number of neuropsychiatric diseases such as major depression and epilepsy. Newborn neurons go through distinct developmental steps, from a dividing neurogenic precursor to a synaptically integrated mature neuron. Previous studies have uncovered several molecular signaling pathways involved in distinct steps of this maturational process. In this context, the small Rho GTPases, Cdc42, Rac1, and RhoA have recently been shown to regulate the morphological and synaptic maturation of adult-born dentate granule cells in vivo. Distinct upstream regulators, including growth factors that modulate maturation and integration of newborn neurons have been shown to also recruit the small Rho GTPases. Here we review recent findings and highlight the possibility that small Rho GTPases may act as central assimilators, downstream of critical input onto adult-born hippocampal neurons contributing to their maturation and integration into the existing dentate gyrus (DG) circuitry.
Collapse
Affiliation(s)
- Krishna C Vadodaria
- Brain Research Institute, University of Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | | |
Collapse
|
30
|
Koyama Y, Hattori T, Shimizu S, Taniguchi M, Yamada K, Takamura H, Kumamoto N, Matsuzaki S, Ito A, Katayama T, Tohyama M. DBZ (DISC1-binding zinc finger protein)-deficient mice display abnormalities in basket cells in the somatosensory cortices. J Chem Neuroanat 2013; 53:1-10. [PMID: 23912123 DOI: 10.1016/j.jchemneu.2013.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Disrupted-in-schizophrenia 1 (DISC1)-binding zinc finger protein (DBZ) is a DISC1-interacting molecule and the interaction between DBZ and DISC1 is involved in neurite outgrowth in vitro. DBZ is highly expressed in brain, especially in the cortex. However, the physiological roles of DBZ in vivo have not been clarified. Here, we show that development of basket cells, a morphologically defined class of parvalbumin (PV)-containing interneurons, is disturbed in DBZ knockout (KO) mice. DBZ mRNA was highly expressed in the ventral area of the subventricular zone of the medial ganglionic eminence, where PV-containing cortical interneurons were generated, at embryonic 14.5 days (E14.5). Although the expression level for PV and the number of PV-containing interneurons were not altered in the cortices of DBZ KO mice, basket cells were less branched and had shorter processes in the somatosensory cortices of DBZ KO mice compared with those in the cortices of WT mice. Furthermore, in the somatosensory cortices of DBZ KO mice, the level of mRNAs for the gamma-aminobutyric acid-synthesizing enzymes GAD67 was decreased. These findings show that DBZ is involved in the morphogenesis of basket cells.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Koyama Y, Tohyama M. A novel, Golgi-Cox-based fluorescent staining method for visualizing full-length processes in primary rat neurons. Neurochem Int 2013; 63:35-41. [DOI: 10.1016/j.neuint.2013.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/09/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
32
|
Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CSJ, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013; 8:e60099. [PMID: 23555897 PMCID: PMC3610748 DOI: 10.1371/journal.pone.0060099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Jie Chiou
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, United States of America
- Institute of Behavioral Genomics, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
33
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
34
|
Pandey A, Davis NA, White BC, Pajewski NM, Savitz J, Drevets WC, McKinney BA. Epistasis network centrality analysis yields pathway replication across two GWAS cohorts for bipolar disorder. Transl Psychiatry 2012; 2:e154. [PMID: 22892719 PMCID: PMC3432194 DOI: 10.1038/tp.2012.80] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Most pathway and gene-set enrichment methods prioritize genes by their main effect and do not account for variation due to interactions in the pathway. A portion of the presumed missing heritability in genome-wide association studies (GWAS) may be accounted for through gene-gene interactions and additive genetic variability. In this study, we prioritize genes for pathway enrichment in GWAS of bipolar disorder (BD) by aggregating gene-gene interaction information with main effect associations through a machine learning (evaporative cooling) feature selection and epistasis network centrality analysis. We validate this approach in a two-stage (discovery/replication) pathway analysis of GWAS of BD. The discovery cohort comes from the Wellcome Trust Case Control Consortium (WTCCC) GWAS of BD, and the replication cohort comes from the National Institute of Mental Health (NIMH) GWAS of BD in European Ancestry individuals. Epistasis network centrality yields replicated enrichment of Cadherin signaling pathway, whose genes have been hypothesized to have an important role in BD pathophysiology but have not demonstrated enrichment in previous analysis. Other enriched pathways include Wnt signaling, circadian rhythm pathway, axon guidance and neuroactive ligand-receptor interaction. In addition to pathway enrichment, the collective network approach elevates the importance of ANK3, DGKH and ODZ4 for BD susceptibility in the WTCCC GWAS, despite their weak single-locus effect in the data. These results provide evidence that numerous small interactions among common alleles may contribute to the diathesis for BD and demonstrate the importance of including information from the network of gene-gene interactions as well as main effects when prioritizing genes for pathway analysis.
Collapse
Affiliation(s)
- A Pandey
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA
| | - N A Davis
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA
| | - B C White
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA
| | - N M Pajewski
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J Savitz
- Laureate Institute for Brain Research, Tulsa, OK, USA,Department of Medicine, Tulsa School of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - W C Drevets
- Laureate Institute for Brain Research, Tulsa, OK, USA,Department of Psychiatry, University of Oklahoma College of Medicine Tulsa, Tulsa, OK, USA
| | - B A McKinney
- Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Tulsa, OK, USA,Laureate Institute for Brain Research, Tulsa, OK, USA,Tandy School of Computer Science, Department of Mathematics, University of Tulsa, Rayzor Hall, 800 South Tucker Drive, Tulsa, OK 74104, USA. E-mail:
| |
Collapse
|
35
|
Cadherins and neuropsychiatric disorders. Brain Res 2012; 1470:130-44. [PMID: 22765916 DOI: 10.1016/j.brainres.2012.06.020] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 01/29/2023]
Abstract
Cadherins mediate cell-cell adhesion but are also involved in intracellular signaling pathways associated with neuropsychiatric disease. Most of the ∼100 cadherins that are expressed in the brain exhibit characteristic spatiotemporal expression profiles. Cadherins have been shown to regulate neural tube regionalization, neuronal migration, gray matter differentiation, neural circuit formation, spine morphology, synapse formation and synaptic remodeling. The dysfunction of the cadherin-based adhesive system may alter functional connectivity and coherent information processing in the human brain in neuropsychiatric disease. Several neuropsychiatric disorders, such as epilepsy/mental retardation, autism, bipolar disease and schizophrenia, have been associated with cadherins, mostly by genome-wide association studies. For example, CDH15 and PCDH19 are associated with cognitive impairment; CDH5, CDH8, CDH9, CDH10, CDH13, CDH15, PCDH10, PCDH19 and PCDHb4 with autism; CDH7, CDH12, CDH18, PCDH12 and FAT with bipolar disease and schizophrenia; and CDH11, CDH12 and CDH13 with methamphetamine and alcohol dependency. To date, disease-causing mutations are established for PCDH19 in patients with epilepsy, cognitive impairment and/or autistic features. In conclusion, genes encoding members of the cadherin superfamily are of special interest in the pathogenesis of neuropsychiatric disease because cadherins play a pivotal role in the development of the neural circuitry as well as in mature synaptic function.
Collapse
|
36
|
Johnstone AL, Reierson GW, Smith RP, Goldberg JL, Lemmon VP, Bixby JL. A chemical genetic approach identifies piperazine antipsychotics as promoters of CNS neurite growth on inhibitory substrates. Mol Cell Neurosci 2012; 50:125-35. [PMID: 22561309 DOI: 10.1016/j.mcn.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 04/20/2012] [Indexed: 01/22/2023] Open
Abstract
Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.
Collapse
Affiliation(s)
- Andrea L Johnstone
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
37
|
Brandon NJ, Sawa A. Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 2011; 12:707-22. [PMID: 22095064 DOI: 10.1038/nrn3120] [Citation(s) in RCA: 331] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in our understanding of the underlying genetic architecture of psychiatric disorders has blown away the diagnostic boundaries that are defined by currently used diagnostic manuals. The disrupted in schizophrenia 1 (DISC1) gene was originally discovered at the breakpoint of an inherited chromosomal translocation, which segregates with major mental illnesses. In addition, many biological studies have indicated a role for DISC1 in early neurodevelopment and synaptic regulation. Given that DISC1 is thought to drive a range of endophenotypes that underlie major mental conditions, elucidating the biology of DISC1 may enable the construction of new diagnostic categories for mental illnesses with a more meaningful biological foundation.
Collapse
|
38
|
Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2011; 2:609-632. [PMID: 22116789 PMCID: PMC3222219 DOI: 10.1021/cn200062k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
![]()
Disrupted in schizophrenia 1 (DISC1) is well established
as a genetic risk factor across a spectrum of psychiatric disorders,
a role supported by a growing body of biological studies, making the
DISC1 protein interaction network an attractive therapeutic target.
By contrast, there is a relative deficit of structural information
to relate to the myriad biological functions of DISC1. Here, we critically
appraise the available bioinformatics and biochemical analyses on
DISC1 and key interacting proteins, and integrate this with the genetic
and biological data. We review, analyze, and make predictions regarding
the secondary structure and propensity for disordered regions within
DISC1, its protein-interaction domains, subcellular localization motifs,
and the structural and functional implications of common and ultrarare DISC1 variants associated with major mental illness. We
discuss signaling pathways of high pharmacological potential wherein
DISC1 participates, including those involving phosphodiesterase 4
(PDE4) and glycogen synthase kinase 3 (GSK3). These predictions and
priority areas can inform future research in the translational and
potentially guide the therapeutic processes.
Collapse
Affiliation(s)
- Dinesh C. Soares
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Becky C. Carlyle
- Department of Psychiatry, Yale University School of Medicine, 300 George Street,
Suite 901, New Haven, Connecticut 06511, United States
| | - Nicholas J. Bradshaw
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - David J. Porteous
- Medical Genetics Section, Molecular
Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital,
Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
39
|
Zheng F, Wang L, Jia M, Yue W, Ruan Y, Lu T, Liu J, Li J, Zhang D. Evidence for association between Disrupted-in-Schizophrenia 1 (DISC1) gene polymorphisms and autism in Chinese Han population: a family-based association study. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2011; 7:14. [PMID: 21569632 PMCID: PMC3113723 DOI: 10.1186/1744-9081-7-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/15/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Disrupted-in-Schizophrenia 1 (DISC1) gene is one of the most promising candidate genes for major mental disorders. In a previous study, a Finnish group demonstrated that DISC1 polymorphisms were associated with autism and Asperger syndrome. However, the results were not replicated in Korean population. To determine whether DISC1 is associated with autism in Chinese Han population, we performed a family-based association study between DISC1 polymorphisms and autism. METHODS We genotyped seven tag single nucleotide polymorphisms (SNPs) in DISC1, spanning 338 kb, in 367 autism trios (singleton and their biological parents) including 1,101 individuals. Single SNP association and haplotype association analysis were performed using the family-based association test (FBAT) and Haploview software. RESULTS We found three SNPs showed significant associations with autism (rs4366301: G>C, Z=2.872, p=0.004; rs11585959: T>C, Z=2.199, p=0.028; rs6668845: A>G, Z=2.326, p=0.02). After the Bonferroni correction, SNP rs4366301, which located in the first intron of DISC1, remained significant. When haplotype were constructed with two-markers, three haplotypes displayed significant association with autism. These results were still significant after using the permutation method to obtain empirical p values. CONCLUSIONS Our study provided evidence that the DISC1 may be the susceptibility gene of autism. It suggested DISC1 might play a role in the pathogenesis of autism.
Collapse
Affiliation(s)
- Fanfan Zheng
- Key Laboratory for Mental Health, Ministry of Health, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Balu DT, Coyle JT. Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neurosci Biobehav Rev 2011; 35:848-70. [PMID: 20951727 PMCID: PMC3005823 DOI: 10.1016/j.neubiorev.2010.10.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 10/06/2010] [Accepted: 10/10/2010] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe mental illness that afflicts nearly 1% of the world's population. One of the cardinal pathological features of schizophrenia is perturbation in synaptic connectivity. Although the etiology of schizophrenia is unknown, it appears to be a developmental disorder involving the interaction of a potentially large number of risk genes, with no one gene producing a strong effect except rare, highly penetrant copy number variants. The purpose of this review is to detail how putative schizophrenia risk genes (DISC-1, neuregulin/ErbB4, dysbindin, Akt1, BDNF, and the NMDA receptor) are involved in regulating neuroplasticity and how alterations in their expression may contribute to the disconnectivity observed in schizophrenia. Moreover, this review highlights how many of these risk genes converge to regulate common neurotransmitter systems and signaling pathways. Future studies aimed at elucidating the functions of these risk genes will provide new insights into the pathophysiology of schizophrenia and will likely lead to the nomination of novel therapeutic targets for restoring proper synaptic connectivity in the brain in schizophrenia and related disorders.
Collapse
Affiliation(s)
- Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA.
| | | |
Collapse
|