1
|
Gunasekaran TI, Meena D, Lee AJ, Wu S, Dumitrescu L, Sperling R, Hohman TJ, Huang J, Dehghan A, Tzoulaki I, Mayeux R, Vardarajan B. Genome-wide scan of Flortaucipir PET levels finds JARID2 associated with cerebral tau deposition. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.04.24314853. [PMID: 39417126 PMCID: PMC11482994 DOI: 10.1101/2024.10.04.24314853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Genetic research on Alzheimer's disease (AD) has primarily focused on amyloid-β (Aβ) pathogenesis, with fewer studies exploring tau pathology. Elucidating the genetic basis of tau pathology could identify novel pathways in AD. METHODS We conducted a genome-wide association study of tau standard uptake value ratios (SUVRs) from [18]F-flortaucipir positron emission tomography (PET) images to identify genetic variants underlying Tau pathology. Genetic data and tau-SUVRs from [18]F-flortaucipir PET images were acquired from the A4 (311 with preclinical AD) and ADNI (280 cognitively normal, 76 with mild cognitive impairment, and 19 AD patients) studies. Circulating plasma proteins in UK Biobank Pharma Proteomics Project (UKBPPP, N=54,129) were used to validate genetic findings. SNP genotypes were tested for association with Tau-SUVR levels adjusting for age, sex and population substructure variables. AD association of polygenic risk scores (PRS) of tau and amyloid-SUVRs were assessed. Causal effect of plasma protein levels on Tau pathology were tested using Mendelian randomization analyses. RESULTS GWAS of tau-SUVR revealed two significant loci: rs78636169 (P=5.76×10-10) in JARID2 and rs7292124 (P=2.20×10-8) near ISX. Gene-based analysis of tau deposition highlighted APOE (P=2.55×10-6), CTNNA3 (P=2.86×10-6) and JARID2 (P=1.23×10-4), a component of the PRC2 multi-protein complex which regulates gene expression. Mendelian randomization analysis of available circulating plasma proteins in the UK Biobank Pharma Proteomics Project (UKBPPP) identified LRRFIP1, a protein that binds with PRC2 multi-protein complex, as potentially causally linked to tau pathology. Genes associated with both amyloid and tau pathologies were enriched in endocytosis and signal transduction pathways. AD polygenic risk score (PRS) was associated with amyloid-SUVR but not with tau-SUVR. Amyloid-SUVR PRS had a notable association with AD clinical status, particularly in younger APOE-ε4 carriers, whereas tau-SUVR PRS showed a stronger association in older carriers. CONCLUSION We identified a novel potential therapeutic target, JARID2 in the PRC2 multi-protein complex, for tau pathology. Furthermore, gene pathway analysis clarified the distinct roles of Aβ and tau in AD progression, underscoring the complexity of genetic influences across different stages of the disease.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Devendra Meena
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Annie J Lee
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Department of Neurology, The New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Siwei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Boston, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jingxian Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- BHF Centre of Excellence, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Richard Mayeux
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Badri Vardarajan
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, USA
| |
Collapse
|
2
|
Nho K, Risacher SL, Apostolova LG, Bice PJ, Brosch JR, Deardorff R, Faber K, Farlow MR, Foroud T, Gao S, Rosewood T, Kim JP, Nudelman K, Yu M, Aisen P, Sperling R, Hooli B, Shcherbinin S, Svaldi D, Jack CR, Jagust WJ, Landau S, Vasanthakumar A, Waring JF, Doré V, Laws SM, Masters CL, Porter T, Rowe CC, Villemagne VL, Dumitrescu L, Hohman TJ, Libby JB, Mormino E, Buckley RF, Johnson K, Yang HS, Petersen RC, Ramanan VK, Ertekin-Taner N, Vemuri P, Cohen AD, Fan KH, Kamboh MI, Lopez OL, Bennett DA, Ali M, Benzinger T, Cruchaga C, Hobbs D, De Jager PL, Fujita M, Jadhav V, Lamb BT, Tsai AP, Castanho I, Mill J, Weiner MW, Saykin AJ. CYP1B1-RMDN2 Alzheimer's disease endophenotype locus identified for cerebral tau PET. Nat Commun 2024; 15:8251. [PMID: 39304655 PMCID: PMC11415491 DOI: 10.1038/s41467-024-52298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Determining the genetic architecture of Alzheimer's disease pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we perform a genome-wide association study of cortical tau quantified by positron emission tomography in 3046 participants from 12 independent studies. The CYP1B1-RMDN2 locus is associated with tau deposition. The most significant signal is at rs2113389, explaining 4.3% of the variation in cortical tau, while APOE4 rs429358 accounts for 3.6%. rs2113389 is associated with higher tau and faster cognitive decline. Additive effects, but no interactions, are observed between rs2113389 and diagnosis, APOE4, and amyloid beta positivity. CYP1B1 expression is upregulated in AD. rs2113389 is associated with higher CYP1B1 expression and methylation levels. Mouse model studies provide additional functional evidence for a relationship between CYP1B1 and tau deposition but not amyloid beta. These results provide insight into the genetic basis of cerebral tau deposition and support novel pathways for therapeutic development in AD.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of BioHealth Informatics, Indiana University, Indianapolis, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Paula J Bice
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Jared R Brosch
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Rachael Deardorff
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Kelley Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Martin R Farlow
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA
| | - Tatiana Foroud
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Sujuan Gao
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, USA
| | - Thea Rosewood
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Jun Pyo Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Kelly Nudelman
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, USA
| | - Meichen Yu
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
| | - Paul Aisen
- Department of Neurology, Keck School of Medicine, University of Southern California, San Diego, USA
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | | | | | | | - William J Jagust
- UC Berkeley Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, USA
| | - Susan Landau
- UC Berkeley Helen Wills Neuroscience Institute, University of California - Berkeley, Berkeley, USA
| | | | | | - Vincent Doré
- CSIRO Health and Biosecurity, Melbourne, Australia
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
| | - Simon M Laws
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Colin L Masters
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Australia
| | - Tenielle Porter
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- Florey Institute of Neuroscience and Mental Health and The University of Melbourne, Parkville, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging & Therapy, Austin Health, Heidelberg, Australia
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Logan Dumitrescu
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, USA
| | - Julia B Libby
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA
| | - Elizabeth Mormino
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, USA
| | - Rachel F Buckley
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Keith Johnson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Center for Alzheimer's Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | | | - Nilüfer Ertekin-Taner
- Department of Neurology, Mayo Clinic, Jacksonville, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, USA
| | | | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, USA
| | - Oscar L Lopez
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - David A Bennett
- Department of Neurological Sciences, Rush Medical College, Rush University, Chicago, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University, St. Louis, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, USA
| | - Diana Hobbs
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology, Department of Neurology and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, USA
| | - Vaishnavi Jadhav
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Bruce T Lamb
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
| | - Andy P Tsai
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, USA
- Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, USA
| | - Isabel Castanho
- Department for Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Jonathan Mill
- Department for Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, USA
- Department of Veterans Affairs Medical Center, San Francisco, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, USA.
- Department of Neurology, Indiana University School of Medicine, Indianapolis, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
3
|
Vilkaite G, Vogel J, Mattsson-Carlgren N. Integrating amyloid and tau imaging with proteomics and genomics in Alzheimer's disease. Cell Rep Med 2024; 5:101735. [PMID: 39293391 PMCID: PMC11525023 DOI: 10.1016/j.xcrm.2024.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 09/20/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the aggregation of β-amyloid (Aβ) and tau in the brain. Breakthroughs in disease-modifying treatments targeting Aβ bring new hope for the management of AD. But to effectively modify and someday even prevent AD, a better understanding is needed of the biological mechanisms that underlie and link Aβ and tau in AD. Developments of high-throughput omics, including genomics, proteomics, and transcriptomics, together with molecular imaging of Aβ and tau with positron emission tomography (PET), allow us to discover and understand the biological pathways that regulate the aggregation and spread of Aβ and tau in living humans. The field of integrated omics and PET studies of Aβ and tau in AD is growing rapidly. We here provide an update of this field, both in terms of biological insights and in terms of future clinical implications of integrated omics-molecular imaging studies.
Collapse
Affiliation(s)
- Gabriele Vilkaite
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Jacob Vogel
- Department of Clinical Sciences Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden; Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden; Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Yaghoobi A, Malekpour SA. Unraveling the genetic architecture of blood unfolded p-53 among non-demented elderlies: novel candidate genes for early Alzheimer's disease. BMC Genomics 2024; 25:440. [PMID: 38702606 PMCID: PMC11067101 DOI: 10.1186/s12864-024-10363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a heritable neurodegenerative disease whose long asymptomatic phase makes the early diagnosis of it pivotal. Blood U-p53 has recently emerged as a superior predictive biomarker for AD in the early stages. We hypothesized that genetic variants associated with blood U-p53 could reveal novel loci and pathways involved in the early stages of AD. RESULTS We performed a blood U-p53 Genome-wide association study (GWAS) on 484 healthy and mild cognitively impaired subjects from the ADNI cohort using 612,843 Single nucleotide polymorphisms (SNPs). We performed a pathway analysis and prioritized candidate genes using an AD single-cell gene program. We fine-mapped the intergenic SNPs by leveraging a cell-type-specific enhancer-to-gene linking strategy using a brain single-cell multimodal dataset. We validated the candidate genes in an independent brain single-cell RNA-seq and the ADNI blood transcriptome datasets. The rs279686 between AASS and FEZF1 genes was the most significant SNP (p-value = 4.82 × 10-7). Suggestive pathways were related to the immune and nervous systems. Twenty-three candidate genes were prioritized at 27 suggestive loci. Fine-mapping of 5 intergenic loci yielded nine cell-specific candidate genes. Finally, 15 genes were validated in the independent single-cell RNA-seq dataset, and five were validated in the ADNI blood transcriptome dataset. CONCLUSIONS We underlined the importance of performing a GWAS on an early-stage biomarker of AD and leveraging functional omics datasets for pinpointing causal genes in AD. Our study prioritized nine genes (SORCS1, KIF5C, TMEFF2, TMEM63C, HLA-E, ATAT1, TUBB, ARID1B, and RUNX1) strongly implicated in the early stages of AD.
Collapse
Affiliation(s)
- Arash Yaghoobi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran
| | - Seyed Amir Malekpour
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
| |
Collapse
|
5
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
6
|
Gunter NB, Gebre RK, Graff-Radford J, Heckman MG, Jack CR, Lowe VJ, Knopman DS, Petersen RC, Ross OA, Vemuri P, Ramanan VK. Machine Learning Models of Polygenic Risk for Enhanced Prediction of Alzheimer Disease Endophenotypes. Neurol Genet 2024; 10:e200120. [PMID: 38250184 PMCID: PMC10798228 DOI: 10.1212/nxg.0000000000200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
Background and Objectives Alzheimer disease (AD) has a polygenic architecture, for which genome-wide association studies (GWAS) have helped elucidate sequence variants (SVs) influencing susceptibility. Polygenic risk score (PRS) approaches show promise for generating summary measures of inherited risk for clinical AD based on the effects of APOE and other GWAS hits. However, existing PRS approaches, based on traditional regression models, explain only modest variation in AD dementia risk and AD-related endophenotypes. We hypothesized that machine learning (ML) models of polygenic risk (ML-PRS) could outperform standard regression-based PRS methods and therefore have the potential for greater clinical utility. Methods We analyzed combined data from the Mayo Clinic Study of Aging (n = 1,791) and the Alzheimer's Disease Neuroimaging Initiative (n = 864). An AD PRS was computed for each participant using the top common SVs obtained from a large AD dementia GWAS. In parallel, ML models were trained using those SV genotypes, with amyloid PET burden as the primary outcome. Secondary outcomes included amyloid PET positivity and clinical diagnosis (cognitively unimpaired vs impaired). We compared performance between ML-PRS and standard PRS across 100 training sessions with different data splits. In each session, data were split into 80% training and 20% testing, and then five-fold cross-validation was used within the training set to ensure the best model was produced for testing. We also applied permutation importance techniques to assess which genetic factors contributed most to outcome prediction. Results ML-PRS models outperformed the AD PRS (r2 = 0.28 vs r2 = 0.24 in test set) in explaining variation in amyloid PET burden. Among ML approaches, methods accounting for nonlinear genetic influences were superior to linear methods. ML-PRS models were also more accurate when predicting amyloid PET positivity (area under the curve [AUC] = 0.80 vs AUC = 0.63) and the presence of cognitive impairment (AUC = 0.75 vs AUC = 0.54) compared with the standard PRS. Discussion We found that ML-PRS approaches improved upon standard PRS for prediction of AD endophenotypes, partly related to improved accounting for nonlinear effects of genetic susceptibility alleles. Further adaptations of the ML-PRS framework could help to close the gap of remaining unexplained heritability for AD and therefore facilitate more accurate presymptomatic and early-stage risk stratification for clinical decision-making.
Collapse
Affiliation(s)
- Nathaniel B Gunter
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Robel K Gebre
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Jonathan Graff-Radford
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Michael G Heckman
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Clifford R Jack
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Val J Lowe
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - David S Knopman
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Ronald C Petersen
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Owen A Ross
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Prashanthi Vemuri
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| | - Vijay K Ramanan
- From the Departments of Radiology (N.B.G., R.K.G., C.R.J., V.J.L., P.V.), Neurology (J.G.-R., D.S.K., R.C.P., V.K.R.), and Quantitative Health Sciences (R.C.P.), Mayo Clinic Rochester, MN; and Departments of Quantitative Health Sciences (M.G.H.), Neuroscience (O.A.R.), and Clinical Genomics (O.A.R.), Mayo Clinic Florida, Jacksonville
| |
Collapse
|
7
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serkov IV, Proshin AN, Soldatova YV, Poletaeva DA, Faingold II, Mumyatova VA, Terentiev AA, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease. Molecules 2024; 29:321. [PMID: 38257233 PMCID: PMC10820264 DOI: 10.3390/molecules29020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced β-amyloid (Aβ) aggregation. Hybrids also exhibited the inhibition of Aβ self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Alexey A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Zhou M, Jiao Q, Wu Z, Li W, Liu G, Wang R, Tang Y. Uncovering the Oxidative Stress Mechanisms and Targets in Alzheimer's Disease by Integrating Phenotypic Screening Data and Polypharmacology Networks. J Alzheimers Dis 2024; 99:S139-S156. [PMID: 36744334 DOI: 10.3233/jad-220727] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background The oxidative stress hypothesis is challenging the dominant position of amyloid-β (Aβ) in the field of understanding the mechanisms of Alzheimer's disease (AD), a complicated and untreatable neurodegenerative disease. Objective The goal of the present study was to uncover the oxidative stress mechanisms causing AD, as well as the potential therapeutic targets and neuroprotective drugs against oxidative stress mechanisms. Methods In this study, a systematic workflow combining pharmacological experiments and computational prediction was proposed. 222 drugs and natural products were collected first and then tested on SH-SY5Y cells to obtain phenotypic screening data on neuroprotection. The preliminary screening data were integrated with drug-target interactions (DTIs) and multi-scale biomedical data, which were analyzed with statistical tests and gene set enrichment analysis. A polypharmacology network was further constructed for investigation. Results 340 DTIs were matched in multiple databases, and 222 cell viability ratios were calculated for experimental compounds. We identified significant potential therapeutic targets based on oxidative stress mechanisms for AD, including NR3C1, SHBG, ESR1, PGR, and AVPR1A, which might be closely related to neuroprotective effects and pathogenesis. 50% of the top 14 enriched pathways were found to correlate with AD, such as arachidonic acid metabolism and neuroactive ligand-receptor interaction. Several approved drugs in this research were also found to exert neuroprotective effects against oxidative stress mechanisms, including beclometasone, methylprednisolone, and conivaptan. Conclusion Our results indicated that NR3C1, SHBG, ESR1, PGR, and AVPR1A were promising therapeutic targets and several drugs may be repurposed from the perspective of oxidative stress and AD.
Collapse
Affiliation(s)
- Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Qian Jiao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Rui Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Zhang J, Wang Y, Zhang Y, Yao J. Genome-wide association study in Alzheimer's disease: a bibliometric and visualization analysis. Front Aging Neurosci 2023; 15:1290657. [PMID: 38094504 PMCID: PMC10716290 DOI: 10.3389/fnagi.2023.1290657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/08/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Thousands of research studies concerning genome-wide association studies (GWAS) in Alzheimer's disease (AD) have been published in the last decades. However, a comprehensive understanding of the current research status and future development trends of GWAS in AD have not been clearly shown. In this study, we tried to gain a systematic overview of GWAS in AD by bibliometric and visualization analysis. METHODS The literature search terms are: ("genome-wide analysis" or "genome-wide association study" or "whole-genome analysis") AND ("Alzheimer's Disease" or "Alzheimer Disease"). Relevant publications were extracted from the Web of Science Core Collection (WoSCC) database. Collected data were further analyzed using VOSviewer, CiteSpace and R package Bibliometrix. The countries, institutions, authors and scholar collaborations were investigated. The co-citation analysis of publications was visualized. In addition, research hotspots and fronts were examined. RESULTS A total of 1,350 publications with 59,818 citations were identified. The number of publications and citations presented a significant rising trend since 2013. The United States was the leading country with an overwhelming number of publications (775) and citations (42,237). The University of Washington and Harvard University were the most prolific institutions with 101 publications each. Bennett DA was the most influential researcher with the highest local H-index. Neurobiology of Aging was the journal with the highest number of publications. Aβ, tau, immunity, microglia and DNA methylation were research hotspots. Disease and causal variants were research fronts. CONCLUSION The most frequently studied AD pathogenesis and research hotspots are (1) Aβ and tau, (2) immunity and microglia, with TREM2 as a potential immunotherapy target, and (3) DNA methylation. The research fronts are (1) looking for genetic similarities between AD and other neurological diseases and syndromes, and (2) searching for causal variants of AD. These hotspots suggest noteworthy directions for future studies on AD pathogenesis and genetics, in which basic research regarding immunity is promising for clinical conversion. The current under-researched directions are (1) GWAS in AD biomarkers based on large sample sizes, (2) studies of causal variants of AD, and (3) GWAS in AD based on non-European populations, which need to be strengthened in the future.
Collapse
Affiliation(s)
- Junyao Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinuo Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyan Yao
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Kim BH, Lee H, Ham H, Kim HJ, Jang H, Kim JP, Park YH, Kim M, Seo SW. Clinical effects of novel susceptibility genes for beta-amyloid: a gene-based association study in the Korean population. Front Aging Neurosci 2023; 15:1278998. [PMID: 37901794 PMCID: PMC10602697 DOI: 10.3389/fnagi.2023.1278998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Amyloid-beta (Aβ) is a pathological hallmark of Alzheimer's disease (AD). We aimed to identify genes related to Aβ uptake in the Korean population and investigate the effects of these novel genes on clinical outcomes, including neurodegeneration and cognitive impairments. We recruited a total of 759 Korean participants who underwent neuropsychological tests, brain magnetic resonance imaging, 18F-flutemetamol positron emission tomography, and microarray genotyping data. We performed gene-based association analysis, and also performed expression quantitative trait loci and network analysis. In genome-wide association studies, no single nucleotide polymorphism (SNP) passed the genome-wide significance threshold. In gene-based association analysis, six genes (LCMT1, SCRN2, LRRC46, MRPL10, SP6, and OSBPL7) were significantly associated with Aβ standardised uptake value ratio in the brain. The three most significant SNPs (rs4787307, rs9903904, and rs11079797) on these genes are associated with the regulation of the LCMT1, OSBPL7, and SCRN2 genes, respectively. These SNPs are involved in decreasing hippocampal volume and cognitive scores by mediating Aβ uptake. The 19 enriched gene sets identified by pathway analysis included axon and chemokine activity. Our findings suggest novel susceptibility genes associated with the uptake of Aβ, which in turn leads to worse clinical outcomes. Our findings might lead to the discovery of new AD treatment targets.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - HyunWoo Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hongki Ham
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Hee Jin Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyemin Jang
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Neurology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yu Hyun Park
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Mansu Kim
- Artificial Intelligence Graduate School, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Sang Won Seo
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North K, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM. Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.555215. [PMID: 37745480 PMCID: PMC10515765 DOI: 10.1101/2023.09.10.555215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sheila M. Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Adrienne Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Erin Buth
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Antwerp, BE
| | | | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Linda M. Polfus
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lisa R. Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD, 21287, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Joshua P. Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA, 98101, USA
| | - Katherine A. Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Edwin K. Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rasika A. Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD, 21287, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Arnita F. Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Emelia J. Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, 01702, USA
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Russell P. Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Paul L. Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
12
|
Watanabe H, Murakami R, Tsumagari K, Morimoto S, Hashimoto T, Imaizumi K, Sonn I, Yamada K, Saito Y, Murayama S, Iwatsubo T, Okano H. Astrocytic APOE4 genotype-mediated negative impacts on synaptic architecture in human pluripotent stem cell model. Stem Cell Reports 2023; 18:1854-1869. [PMID: 37657448 PMCID: PMC10545487 DOI: 10.1016/j.stemcr.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023] Open
Abstract
The APOE4 genotype is the strongest risk factor for the pathogenesis of sporadic Alzheimer's disease (AD), but the detailed molecular mechanism of APOE4-mediated synaptic impairment remains to be determined. In this study, we generated a human astrocyte model carrying the APOE3 or APOE4 genotype using human induced pluripotent stem cells (iPSCs) in which isogenic APOE4 iPSCs were genome edited from healthy control APOE3 iPSCs. Next, we demonstrated that the astrocytic APOE4 genotype negatively affects dendritic spine dynamics in a co-culture system with primary neurons. Transcriptome analysis revealed an increase of EDIL3, an extracellular matrix glycoprotein, in human APOE4 astrocytes, which could underlie dendritic spine reduction in neuronal cultures. Accordingly, postmortem AD brains carrying the APOE4 allele have elevated levels of EDIL3 protein deposits within amyloid plaques. Together, these results demonstrate the novel deleterious effect of human APOE4 astrocytes on synaptic architecture and may help to elucidate the mechanism of APOE4-linked AD pathogenesis.
Collapse
Affiliation(s)
- Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Rei Murakami
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kazuya Tsumagari
- Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tadafumi Hashimoto
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Kent Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Iki Sonn
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 102-0083, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Saito
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Shigeo Murayama
- Department of Neuropathology (the Brain Bank for Aging Research), Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan; Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
13
|
Chen T, Sang S, Wei Y, Ge Y, Jin J, Bian Y, Pei Y, Li N, Sun H, Chen Y. The structural modification and biological evaluation of tetrahydrothienopyridine derivatives as selective BChE inhibitors. Bioorg Med Chem Lett 2023; 93:129436. [PMID: 37549853 DOI: 10.1016/j.bmcl.2023.129436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
A series of tetrahydrothienopyridine derivatives have been designed, synthesized, and evaluated as selective BChE inhibitors. Compounds were analyzed via HRMS, 1H NMR, and 13C NMR. The inhibitory effects were evaluated according to the method of Ellman et al. 6n was the most potent and selective inhibitor against BChE (eeAChE IC50 = 686.4 ± 478.6 μM, eqBChE IC50 = 10.5 ± 5.0 nM, SI = 6.5*104, hBChE IC50 = 32.5 ± 6.5 nM). Cell-based assays have confirmed the low neurotoxicity of 6a and 6n and their moderate neuroprotective effects. Compounds 6a and 6n provide novel chemical entities for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Tingkai Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Shenghu Sang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqing Wei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujie Ge
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jisheng Jin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nianguang Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. The Association of Selected GWAS Reported AD Risk Loci with CSF Biomarker Levels and Cognitive Decline in Slovenian Patients. Int J Mol Sci 2023; 24:12966. [PMID: 37629144 PMCID: PMC10455613 DOI: 10.3390/ijms241612966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with a complex genetic background. Apart from rare, familial cases, a combination of multiple risk loci contributes to the susceptibility of the disease. Genome-wide association studies (GWAS) have identified numerous AD risk loci. Changes in cerebrospinal fluid (CSF) biomarkers and imaging techniques can detect AD-related brain changes before the onset of clinical symptoms, even in the presence of preclinical mild cognitive impairment. In this study, we aimed to assess the associations between SNPs in well-established GWAS AD risk loci and CSF biomarker levels or cognitive test results in Slovenian patients with cognitive decline. The study included 82 AD patients, 28 MCI patients with pathological CSF biomarker levels and 35 MCI patients with normal CSF biomarker levels. Carriers of at least one polymorphic TOMM40 rs157581 C allele had lower Aβ42 (p = 0.033) and higher total tau (p = 0.032) and p-tau181 levels (p = 0.034). Carriers of at least one polymorphic T allele in SORCS1 rs1358030 had lower total tau (p = 0.019), while polymorphic SORCS1 rs1416406 allele was associated with lower total tau (p = 0.013) and p-tau181 (p = 0.036). In addition, carriers of at least one polymorphic T allele in BCHE rs1803274 had lower cognitive test scores (p = 0.029). The study findings may contribute to the identification of genetic markers associated with AD and MCI and provide insights into early disease diagnostics.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institutet, 14152 Huddinge, Sweden
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (M.G.K.); (A.E.); (S.Č.)
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (D.V.); (K.G.)
| |
Collapse
|
15
|
Logue MW, Dasgupta S, Farrer LA. Genetics of Alzheimer's Disease in the African American Population. J Clin Med 2023; 12:5189. [PMID: 37629231 PMCID: PMC10455208 DOI: 10.3390/jcm12165189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/02/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.
Collapse
Affiliation(s)
- Mark W. Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Shoumita Dasgupta
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Medical Sciences and Education, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Alzheimer’s Disease Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
16
|
Nho K, Risacher SL, Apostolova L, Bice PJ, Brosch J, Deardorff R, Faber K, Farlow MR, Foroud T, Gao S, Rosewood T, Kim JP, Nudelman K, Yu M, Aisen P, Sperling R, Hooli B, Shcherbinin S, Svaldi D, Jack CR, Jagust WJ, Landau S, Vasanthakumar A, Waring JF, Doré V, Laws SM, Masters CL, Porter T, Rowe CC, Villemagne VL, Dumitrescu L, Hohman TJ, Libby JB, Mormino E, Buckley RF, Johnson K, Yang HS, Petersen RC, Ramanan VK, Vemuri P, Cohen AD, Fan KH, Kamboh MI, Lopez OL, Bennett DA, Ali M, Benzinger T, Cruchaga C, Hobbs D, De Jager PL, Fujita M, Jadhav V, Lamb BT, Tsai AP, Castanho I, Mill J, Weiner MW, Saykin AJ. Novel CYP1B1-RMDN2 Alzheimer's disease locus identified by genome-wide association analysis of cerebral tau deposition on PET. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.27.23286048. [PMID: 36993271 PMCID: PMC10055458 DOI: 10.1101/2023.02.27.23286048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aβ positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aβ. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.
Collapse
|
17
|
Zhao Y, Chang C, Zhang J, Zhang Z. Genetic underpinnings of brain structural connectome for young adults. J Am Stat Assoc 2023; 118:1473-1487. [PMID: 37982009 PMCID: PMC10655950 DOI: 10.1080/01621459.2022.2156349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
With distinct advantages in power over behavioral phenotypes, brain imaging traits have become emerging endophenotypes to dissect molecular contributions to behaviors and neuropsychiatric illnesses. Among different imaging features, brain structural connectivity (i.e., structural connectome) which summarizes the anatomical connections between different brain regions is one of the most cutting edge while under-investigated traits; and the genetic influence on the structural connectome variation remains highly elusive. Relying on a landmark imaging genetics study for young adults, we develop a biologically plausible brain network response shrinkage model to comprehensively characterize the relationship between high dimensional genetic variants and the structural connectome phenotype. Under a unified Bayesian framework, we accommodate the topology of brain network and biological architecture within the genome; and eventually establish a mechanistic mapping between genetic biomarkers and the associated brain sub-network units. An efficient expectation-maximization algorithm is developed to estimate the model and ensure computing feasibility. In the application to the Human Connectome Project Young Adult (HCP-YA) data, we establish the genetic underpinnings which are highly interpretable under functional annotation and brain tissue eQTL analysis, for the brain white matter tracts connecting the hippocampus and two cerebral hemispheres. We also show the superiority of our method in extensive simulations.
Collapse
Affiliation(s)
- Yize Zhao
- Department of Biostatistics, Yale University
| | - Changgee Chang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania
| | - Jingwen Zhang
- Department of Biostatistics, Boston University, Boston, MA
| | - Zhengwu Zhang
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill
| |
Collapse
|
18
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
19
|
Oatman SR, Reddy JS, Quicksall Z, Carrasquillo MM, Wang X, Liu CC, Yamazaki Y, Nguyen TT, Malphrus K, Heckman M, Biswas K, Nho K, Baker M, Martens YA, Zhao N, Kim JP, Risacher SL, Rademakers R, Saykin AJ, DeTure M, Murray ME, Kanekiyo T, Dickson DW, Bu G, Allen M, Ertekin-Taner N. Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer's disease related proteins. Mol Neurodegener 2023; 18:2. [PMID: 36609403 PMCID: PMC9825010 DOI: 10.1186/s13024-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.
Collapse
Affiliation(s)
- Stephanie R. Oatman
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | | | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Thuy T. Nguyen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kimberly Malphrus
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Michael Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Kristi Biswas
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
| | - Matthew Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jun Pyo Kim
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Shannon L. Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| |
Collapse
|
20
|
Tian J, Du E, Jia K, Wang T, Guo L, Zigman JM, Du H. Elevated Ghrelin Promotes Hippocampal Ghrelin Receptor Defects in Humanized Amyloid-β Knockin Mice During Aging. J Alzheimers Dis 2023; 96:1579-1592. [PMID: 38007666 PMCID: PMC10841720 DOI: 10.3233/jad-231002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
BACKGROUND Emerging evidence has revealed that dysregulation of the hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHSR), contributes to the pathogenesis of Alzheimer's disease (AD). Specifically, defective GHSR function and resultant hippocampal ghrelin resistance are linked to hippocampal synaptic injury in AD paradigms. Also, AD patients exhibit elevated ghrelin activation. However, the detailed molecular mechanisms of hippocampal GHSR dysfunction and the relevance of ghrelin elevation to hippocampal ghrelin resistance in AD-relevant pathological settings are not fully understood. OBJECTIVE In the current study, we employed a recently established mouse line of AD risk [humanized amyloid beta knockin (hAβ KI mice), also referred to as a mouse model of late-onset AD in previous literature] to further define the role of ghrelin system dysregulation in the development of AD. METHODS We employed multidisciplinary techniques to determine the change of plasma ghrelin and the functional status of GHSR in hAβ KI mice as well as primary neuron cultures. RESULTS We observed concurrent plasma ghrelin elevation and hippocampal GHSR desensitization with disease progression. Further examination excluded the possibility that ghrelin elevation is a compensatory change in response to GHSR dysfunction. In contrast, further in vitro and in vivo results show that agonist-mediated overstimulation potentiates GHSR desensitization through enhanced GHSR internalization. CONCLUSIONS These findings suggest that circulating ghrelin elevation is a pathological event underlying hippocampal GHSR dysfunction, culminating in hippocampal ghrelin resistance and resultant synaptic injury in late-onset AD-related settings.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Eric Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Blue Valley West High School, Overland Park, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, Center for Hypothalamic Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, The University of Kansas, Lawrence, KS, USA
- Alzheimer’s disease Research Center (ADRC), Department of Neurology, The University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
21
|
Guo Y, Yang YX, Zhang YR, Huang YY, Chen KL, Chen SD, Dong PQ, Yu JT. Genome-wide association study of brain tau deposition as measured by 18F-flortaucipir positron emission tomography imaging. Neurobiol Aging 2022; 120:128-136. [DOI: 10.1016/j.neurobiolaging.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
22
|
Real R, Martinez-Carrasco A, Reynolds RH, Lawton MA, Tan MMX, Shoai M, Corvol JC, Ryten M, Bresner C, Hubbard L, Brice A, Lesage S, Faouzi J, Elbaz A, Artaud F, Williams N, Hu MTM, Ben-Shlomo Y, Grosset DG, Hardy J, Morris HR. Association between the LRP1B and APOE loci in the development of Parkinson's disease dementia. Brain 2022; 146:1873-1887. [PMID: 36348503 PMCID: PMC10151192 DOI: 10.1093/brain/awac414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3,923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazards ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazards ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazards ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid β42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Collapse
Affiliation(s)
- Raquel Real
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Alejandro Martinez-Carrasco
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Regina H Reynolds
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Michael A Lawton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Manuela M X Tan
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
| | - Maryam Shoai
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Jean-Christophe Corvol
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Mina Ryten
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London WC1N 1EH, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Leon Hubbard
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Suzanne Lesage
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Assistance Publique Hôpitaux de Paris, Department of Neurology, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Johann Faouzi
- Sorbonne Université, Institut du Cerveau et de la Moelle épinière - Paris Brain Institute - ICM, INSERM, CNRS, 75013 Paris, France
- Centre Inria de Paris, 75012 Paris, France
| | - Alexis Elbaz
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Fanny Artaud
- Centre for Research in Epidemiology and Population Health, INSERM U1018, Team "Exposome, heredity, cancer, and health", 94807 Villejuif, France
| | - Nigel Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Michele T M Hu
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, University of Oxford, Oxford OX3 9DU, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford OX1 3QU, UK
| | - Yoav Ben-Shlomo
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Donald G Grosset
- School of Neuroscience and Psychology, University of Glasgow, Glasgow G51 4TF, UK
| | - John Hardy
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- National Institute for Health Research (NIHR) University College London Hospitals Biomedical Research Centre, London W1T 7DN, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- UCL Movement Disorders Centre, University College London, London WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
23
|
Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ. New Multifunctional Agents for Potential Alzheimer's Disease Treatment Based on Tacrine Conjugates with 2-Arylhydrazinylidene-1,3-Diketones. Biomolecules 2022; 12:1551. [PMID: 36358901 PMCID: PMC9687805 DOI: 10.3390/biom12111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2023] Open
Abstract
Alzheimer's disease (AD) is considered a modern epidemic because of its increasing prevalence worldwide and serious medico-social consequences, including the economic burden of treatment and patient care. The development of new effective therapeutic agents for AD is one of the most urgent and challenging tasks. To address this need, we used an aminoalkylene linker to combine the well-known anticholinesterase drug tacrine with antioxidant 2-tolylhydrazinylidene-1,3-diketones to create 3 groups of hybrid compounds as new multifunctional agents with the potential for AD treatment. Lead compounds of the new conjugates effectively inhibited acetylcholinesterase (AChE, IC50 0.24-0.34 µM) and butyrylcholinesterase (BChE, IC50 0.036-0.0745 µM), with weak inhibition of off-target carboxylesterase. Anti-AChE activity increased with elongation of the alkylene spacer, in agreement with molecular docking, which showed compounds binding to both the catalytic active site and peripheral anionic site (PAS) of AChE, consistent with mixed type reversible inhibition. PAS binding along with effective propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. All of the conjugates demonstrated metal chelating ability for Cu2+, Fe2+, and Zn2+, as well as high antiradical activity in the ABTS test. Non-fluorinated hybrid compounds 6 and 7 also showed Fe3+ reducing activity in the FRAP test. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Natalia A. Elkina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Maria V. Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Evgeny V. Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina F. Zhilina
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Anastasiya N. Perminova
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Luka S. Lapshin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Yanina V. Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Victor I. Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Li L, Yu X, Sheng C, Jiang X, Zhang Q, Han Y, Jiang J. A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives. Transl Neurodegener 2022; 11:42. [PMID: 36109823 PMCID: PMC9476275 DOI: 10.1186/s40035-022-00315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease with phenotypic changes closely associated with both genetic variants and imaging pathology. Brain imaging biomarker genomics has been developed in recent years to reveal potential AD pathological mechanisms and provide early diagnoses. This technique integrates multimodal imaging phenotypes with genetic data in a noninvasive and high-throughput manner. In this review, we summarize the basic analytical framework of brain imaging biomarker genomics and elucidate two main implementation scenarios of this technique in AD studies: (1) exploring novel biomarkers and seeking mutual interpretability and (2) providing a diagnosis and prognosis for AD with combined use of machine learning methods and brain imaging biomarker genomics. Importantly, we highlight the necessity of brain imaging biomarker genomics, discuss the strengths and limitations of current methods, and propose directions for development of this research field.
Collapse
|
25
|
Ruffini N, Klingenberg S, Heese R, Schweiger S, Gerber S. The Big Picture of Neurodegeneration: A Meta Study to Extract the Essential Evidence on Neurodegenerative Diseases in a Network-Based Approach. Front Aging Neurosci 2022; 14:866886. [PMID: 35832065 PMCID: PMC9271745 DOI: 10.3389/fnagi.2022.866886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022] Open
Abstract
The common features of all neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), and Huntington's disease, are the accumulation of aggregated and misfolded proteins and the progressive loss of neurons, leading to cognitive decline and locomotive dysfunction. Still, they differ in their ultimate manifestation, the affected brain region, and the kind of proteinopathy. In the last decades, a vast number of processes have been described as associated with neurodegenerative diseases, making it increasingly harder to keep an overview of the big picture forming from all those data. In this meta-study, we analyzed genomic, transcriptomic, proteomic, and epigenomic data of the aforementioned diseases using the data of 234 studies in a network-based approach to study significant general coherences but also specific processes in individual diseases or omics levels. In the analysis part, we focus on only some of the emerging findings, but trust that the meta-study provided here will be a valuable resource for various other researchers focusing on specific processes or genes contributing to the development of neurodegeneration.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research, Leibniz Association, Mainz, Germany
| | - Susanne Klingenberg
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Raoul Heese
- Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
| | - Susann Schweiger
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
26
|
Young Adults with a Parent with Dementia Show Early Abnormalities in Brain Activity and Brain Volume in the Hippocampus: A Matched Case-Control Study. Brain Sci 2022; 12:brainsci12040496. [PMID: 35448026 PMCID: PMC9028426 DOI: 10.3390/brainsci12040496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Having a parent with Alzheimer’s disease (AD) and related dementias confers a risk for developing these types of neurocognitive disorders in old age, but the mechanisms underlying this risk are understudied. Although the hippocampus is often one of the earliest brain regions to undergo change in the AD process, we do not know how early in the lifespan such changes might occur or whether they differ early in the lifespan as a function of family history of AD. Using a rare sample, young adults with a parent with late-onset dementia, we investigated whether brain abnormalities could already be detected compared with a matched sample. Moreover, we employed simple yet novel techniques to characterize resting brain activity (mean and standard deviation) and brain volume in the hippocampus. Young adults with a parent with dementia showed greater resting mean activity and smaller volumes in the left hippocampus compared to young adults without a parent with dementia. Having a parent with AD or a related dementia was associated with early aberrations in brain function and structure. This early hippocampal dysfunction may be due to aberrant neural firing, which may increase the risk for a diagnosis of dementia in old age.
Collapse
|
27
|
de Oliveira FF, Bertolucci PHF, Chen ES, Smith MC. Pharmacogenetic Analyses of Therapeutic Effects of Lipophilic Statins on Cognitive and Functional Changes in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:359-372. [DOI: 10.3233/jad-215735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Pharmacogenetic effects of statins on clinical changes in Alzheimer’s disease (AD) could be mediated by epistatic interactions among relevant genetic variants involved in cholesterol metabolism. Objective: To investigate associations of HMGCR (rs3846662), NR1H2 (rs2695121), or CETP (rs5882&rs708272) with cognitive and functional changes in AD, with stratification according to APOE ɛ4 carrier status and lipid-lowering treatment with lipophilic statins. Methods: Consecutive outpatients with late-onset AD were screened with cognitive tests, while caregivers scored functionality and global ratings, with prospective neurotranslational associations documented for one year. Results: Considering n = 190:142 had hypercholesterolemia, 139 used lipophilic statins; minor allele frequencies were 0.379 (rs2695121-T:46.3% heterozygotes), 0.368 (rs5882-G:49.5% heterozygotes), and 0.371 (rs708272-A:53.2% heterozygotes), all in Hardy-Weinberg equilibrium. For APOE ɛ4 carriers: rs5882-GG protected from cognitive decline; rs5882-AA caused faster cognitive decline; carriers of rs2695121-CC or rs5882-AA were more susceptible to harmful cognitive effects of lipophilic statins; carriers of rs5882-GG or rs708272-AG had functional benefits when using lipophilic statins. APOE ɛ4 non-carriers resisted any cognitive or functional effects of lipophilic statins, while invariability of rs3846662 (all AA) prevented the assessment of HMGCR effects. When assessing CETP haplotypes only: rs5882-GG protected from cognitive and functional decline, regardless of lipophilic statin therapy; lipophilic statins usually caused cognitive and functional harm to carriers of rs5882-A and/or rs708272-A; lipophilic statins benefitted cognition and functionality of carriers of rs5882-G and/or rs708272-G. Conclusion: Reportedly protective variants of CETP and NR1H2 also slowed cognitive and functional decline particularly for APOE ɛ4 carriers, and regardless of cholesterol variations, while therapy with lipophilic statins might affect carriers of specific genetic variants.
Collapse
Affiliation(s)
- Fabricio Ferreira de Oliveira
- Department of Morphology and Genetics and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Elizabeth Suchi Chen
- Department of Morphology and Genetics and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Marilia Cardoso Smith
- Department of Morphology and Genetics and Neurosurgery, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| |
Collapse
|
28
|
Koncz R, Thalamuthu A, Wen W, Catts VS, Dore V, Lee T, Mather KA, Slavin MJ, Wegner EA, Jiang J, Trollor JN, Ames D, Villemagne VL, Rowe CC, Sachdev PS. The heritability of amyloid burden in older adults: the Older Australian Twins Study. J Neurol Neurosurg Psychiatry 2022; 93:303-308. [PMID: 34921119 DOI: 10.1136/jnnp-2021-326677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine the proportional genetic contribution to the variability of cerebral β-amyloid load in older adults using the classic twin design. METHODS Participants (n=206) comprising 61 monozygotic (MZ) twin pairs (68 (55.74%) females; mean age (SD): 71.98 (6.43) years), and 42 dizygotic (DZ) twin pairs (56 (66.67%) females; mean age: 71.14 (5.15) years) were drawn from the Older Australian Twins Study. Participants underwent detailed clinical and neuropsychological evaluations, as well as MRI, diffusion tensor imaging (DTI) and amyloid PET scans. Fifty-eight participants (17 MZ pairs, 12 DZ pairs) had PET scans with 11Carbon-Pittsburgh Compound B, and 148 participants (44 MZ pairs, 30 DZ pairs) with 18Fluorine-NAV4694. Cortical amyloid burden was quantified using the centiloid scale globally, as well as the standardised uptake value ratio (SUVR) globally and in specific brain regions. Small vessel disease (SVD) was quantified using total white matter hyperintensity volume on MRI, and peak width of skeletonised mean diffusivity on DTI. Heritability (h2) and genetic correlations were measured with structural equation modelling under the best fit model, controlling for age, sex, tracer and scanner. RESULTS The heritability of global amyloid burden was moderate (0.41 using SUVR; 0.52 using the centiloid scale) and ranged from 0.20 to 0.54 across different brain regions. There were no significant genetic or environmental correlations between global amyloid burden and markers of SVD. CONCLUSION Amyloid deposition, the hallmark early feature of Alzheimer's disease, is under moderate genetic influence, suggesting a major environmental contribution that may be amenable to intervention.
Collapse
Affiliation(s)
- Rebecca Koncz
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia .,Specialty of Psychiatry, Faculty of Medicine and Health, The University of Sydney, Concord, New South Wales, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,The Australian e-Health Research Centre, CSIRO Health and Biosecurity, Parkville, Victoria, Australia
| | - Teresa Lee
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Melissa J Slavin
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Eva A Wegner
- Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, New South Wales, Australia.,Prince of Wales Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Department of Developmental Disability Neuropsychiatry, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, University of Melbourne, Kew, Victoria, Australia.,National Ageing Research Institute, Parkville, Victoria, Australia
| | - Victor L Villemagne
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, UNSW Sydney, Sydney, New South Wales, Australia.,Neuropsychiatric Institute, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | | |
Collapse
|
29
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
30
|
Lee B, Yao X, Shen L. Genome-Wide association study of quantitative biomarkers identifies a novel locus for alzheimer's disease at 12p12.1. BMC Genomics 2022; 23:85. [PMID: 35086473 PMCID: PMC8796646 DOI: 10.1186/s12864-021-08269-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic study of quantitative biomarkers in Alzheimer's Disease (AD) is a promising method to identify novel genetic factors and relevant endophenotypes, which provides valuable information to deconvolute mechanistic complexity and better understand disease subtypes. RESULTS Using the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we performed a genome-wide association study (GWAS) between 565,373 single nucleotide polymorphisms (SNPs) and 16 key AD biomarkers from 1,576 subjects at four visits. We identified a novel locus rs5011804 at 12p12.1 significantly associated with several AD biomarkers, including three cognitive traits (CDRSB, FAQ, ADAS13) and one imaging trait (fusiform volume). Additional mediation and interaction analyses investigated the relationships among this SNP, relevant biomarkers, and clinical diagnosis, confirming and further elaborating the genetic effects seen in the GWAS. CONCLUSION Our GWAS not only affirms key AD genes but also suggests the promising role of the SNP rs5011804 due to its associations with several AD cognitive and imaging outcomes. The SNP rs5011804 has a reported association with adult asthma and slightly affects intracranial volume but has not been associated with AD before. Our novel findings contribute to a more comprehensive view of the molecular mechanism behind AD.
Collapse
Affiliation(s)
- Brian Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Xiaohui Yao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
31
|
Ramanan VK, Heckman MG, Przybelski SA, Lesnick TG, Lowe VJ, Graff-Radford J, Mielke MM, Jack CR, Knopman DS, Petersen RC, Ross OA, Vemuri P. Polygenic Scores of Alzheimer's Disease Risk Genes Add Only Modestly to APOE in Explaining Variation in Amyloid PET Burden. J Alzheimers Dis 2022; 88:1615-1625. [PMID: 35811524 PMCID: PMC9534315 DOI: 10.3233/jad-220164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Brain accumulation of amyloid-β is a hallmark event in Alzheimer's disease (AD) whose underlying mechanisms are incompletely understood. Case-control genome-wide association studies have implicated numerous genetic variants in risk of clinically diagnosed AD dementia. OBJECTIVE To test for associations between case-control AD risk variants and amyloid PET burden in older adults, and to assess whether a polygenic measure encompassing these factors would account for a large proportion of the unexplained variance in amyloid PET levels in the wider population. METHODS We analyzed data from the Mayo Clinic Study of Aging (MCSA) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Global cortical amyloid PET burden was the primary outcome. The 38 gene variants from Wightman et al. (2021) were analyzed as predictors, with PRSice-2 used to assess the collective phenotypic variance explained. RESULTS Known AD risk variants in APOE, PICALM, CR1, and CLU were associated with amyloid PET levels. In aggregate, the AD risk variants were strongly associated with amyloid PET levels in the MCSA (p = 1.51×10-50) and ADNI (p = 3.21×10-64). However, in both cohorts the non-APOE variants uniquely contributed only modestly (MCSA = 2.1%, ADNI = 4.4%) to explaining variation in amyloid PET levels. CONCLUSION Additional case-control AD risk variants added only modestly to APOE in accounting for individual variation in amyloid PET burden, results which were consistent across independent cohorts with distinct recruitment strategies and subject characteristics. Our findings suggest that advancing precision medicine for dementia may require integration of strategies complementing case-control approaches, including biomarker-specific genetic associations, gene-by-environment interactions, and markers of disease progression and heterogeneity.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Michael G. Heckman
- Department of Quantitative Health Sciences, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | | | - Michelle M. Mielke
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville, Florida, 32224, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, Minnesota, 55905, USA
| |
Collapse
|
32
|
Damotte V, van der Lee SJ, Chouraki V, Grenier‐Boley B, Simino J, Adams H, Tosto G, White C, Terzikhan N, Cruchaga C, Knol MJ, Li S, Schraen S, Grove ML, Satizabal C, Amin N, Berr C, Younkin S, Gottesman RF, Buée L, Beiser A, Knopman DS, Uitterlinden A, DeCarli C, Bressler J, DeStefano A, Dartigues J, Yang Q, Boerwinkle E, Tzourio C, Fornage M, Ikram MA, Amouyel P, de Jager P, Reitz C, Mosley TH, Lambert J, Seshadri S, van Duijn CM. Plasma amyloid β levels are driven by genetic variants near APOE, BACE1, APP, PSEN2: A genome-wide association study in over 12,000 non-demented participants. Alzheimers Dement 2021; 17:1663-1674. [PMID: 34002480 PMCID: PMC8597077 DOI: 10.1002/alz.12333] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 12/17/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023]
Abstract
INTRODUCTION There is increasing interest in plasma amyloid beta (Aβ) as an endophenotype of Alzheimer's disease (AD). Identifying the genetic determinants of plasma Aβ levels may elucidate important biological processes that determine plasma Aβ measures. METHODS We included 12,369 non-demented participants from eight population-based studies. Imputed genetic data and measured plasma Aβ1-40, Aβ1-42 levels and Aβ1-42/Aβ1-40 ratio were used to perform genome-wide association studies, and gene-based and pathway analyses. Significant variants and genes were followed up for their association with brain positron emission tomography Aβ deposition and AD risk. RESULTS Single-variant analysis identified associations with apolipoprotein E (APOE) for Aβ1-42 and Aβ1-42/Aβ1-40 ratio, and BACE1 for Aβ1-40. Gene-based analysis of Aβ1-40 additionally identified associations for APP, PSEN2, CCK, and ZNF397. There was suggestive evidence for interaction between a BACE1 variant and APOE ε4 on brain Aβ deposition. DISCUSSION Identification of variants near/in known major Aβ-processing genes strengthens the relevance of plasma-Aβ levels as an endophenotype of AD.
Collapse
Affiliation(s)
- Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
| | - Sven J. van der Lee
- Alzheimer Center Amsterdam, Department of NeurologyAmsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMCAmsterdamthe Netherlands
- Department of EpidemiologyErasmus Medical CenterRotterdamthe Netherlands
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
| | | | - Jeannette Simino
- Gertrude C. Ford MIND CenterDepartment of Data ScienceJohn D. Bower School of Population HealthUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Hieab Adams
- Departments of EpidemiologyNeurologyand Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | - Charles White
- Program in Translational NeuroPsychiatric GenomicsInstitute for the NeurosciencesDepartments of Neurology and PsychiatryBrigham and Women's HospitalBostonMassachusettsUSA
- Program in Medical and Population GeneticsBroad InstituteCambridgeMassachusettsUSA
| | - Natalie Terzikhan
- Department of EpidemiologyErasmus Medical CenterRotterdamthe Netherlands
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
| | - Carlos Cruchaga
- Department of PsychiatryWashington University in St. LouisSaint LouisMissouriUSA
| | - Maria J. Knol
- Department of EpidemiologyErasmus Medical CenterRotterdamthe Netherlands
| | - Shuo Li
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Susanna Schraen
- Université Lille, CHU‐Lille, InsermUF de Neurobiologie, CBPGLilleFrance
| | - Megan L. Grove
- Human Genetics Center, Department of EpidemiologyHuman Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Claudia Satizabal
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Najaf Amin
- Department of EpidemiologyErasmus Medical CenterRotterdamthe Netherlands
| | - Claudine Berr
- INSERM U1061University of MontpellierMontpellierFrance
| | - Steven Younkin
- Department of NeuroscienceMayo Clinic, JacksonvilleFloridaUSA
| | | | - Rebecca F. Gottesman
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
- Institut National de la Santé et de la Recherche Medicale (INSERMUniversité de LilleLilleFrance
| | - Alexa Beiser
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - David S. Knopman
- Department of NeurologyMayo Clinic College of MedicineRochesterMinnesotaUSA
| | - Andre Uitterlinden
- Department of Internal MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Charles DeCarli
- Department of NeurologyUniversity of California at DavisDavisCaliforniaUSA
| | - Jan Bressler
- Human Genetics Center, Department of EpidemiologyHuman Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Anita DeStefano
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | | | - Qiong Yang
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
| | - Eric Boerwinkle
- Human Genetics Center, Department of EpidemiologyHuman Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at HoustonHoustonTexasUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexasUSA
| | - Christophe Tzourio
- Bordeaux Population Health Research CenterINSERM, UMR1219Bordeaux UniversityBordeauxFrance
| | - Myriam Fornage
- Human Genetics Center, Department of EpidemiologyHuman Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at HoustonHoustonTexasUSA
- Brown Foundation Institute of Molecular MedicineMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - M. Arfan Ikram
- Departments of EpidemiologyNeurologyand Radiology and Nuclear MedicineErasmus Medical CenterRotterdamthe Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de LilleLilleFrance
| | - Phil de Jager
- Program in Translational NeuroPsychiatric GenomicsInstitute for the NeurosciencesDepartments of Neurology and PsychiatryBrigham and Women's HospitalBostonMassachusettsUSA
- Program in Medical and Population GeneticsBroad InstituteCambridgeMassachusettsUSA
- Center for Translational & Systems NeuroimmunologyDepartment of NeurologyColumbia University Medical Center, New YorkNew YorkNew YorkUSA
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- Department of EpidemiologyColumbia UniversityNew YorkNew YorkUSA
| | - Thomas H. Mosley
- Department of MedicineGertrude C. Ford MIND CenterUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | | | - Sudha Seshadri
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- The Framingham Heart StudyFraminghamMassachusettsUSA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative DiseasesUT Health San AntonioSan AntonioTexasUSA
| | - Cornelia M. van Duijn
- Department of EpidemiologyErasmus Medical CenterRotterdamthe Netherlands
- Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Reid GA, Darvesh S. Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain. Curr Alzheimer Res 2021; 18:470-481. [PMID: 34455970 DOI: 10.2174/1567205018666210827122704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In Alzheimer's disease (AD), and amyloid models such as the 5XFAD mouse, butyrylcholinesterase (BChE) is associated with β-amyloid (Aβ) plaques and has unique biochemical features which distinguish it from that found in neurons. It has been suggested that BChE associated with Aβ plaques may be involved in the maturation of this structure and thus disease progression. OBJECTIVE Currently, it is unknown whether BChE bound to Aβ plaques has altered biochemical properties due to a different primary structure or because of the association of this enzyme with Aβ plaques. Also, the source and binding mechanism of this BChE remains unknown. METHODS Brain tissue sections from the 5XFAD/BChE-KO mouse were incubated with exogenous sources of BChE and stained for this enzyme's activity. Efforts were made to determine what region of BChE or Aβ may be involved in this association. RESULTS We found that incubation of 5XFAD/BChE-KO brain tissues with exogenous BChE led to this enzyme becoming associated with Aβ plaques and neurons. In contrast to neuronal BChE, the BChE bound to Aβ plaques had similar biochemical properties to those seen in AD. Mutations to BChE and efforts to block Aβ epitomes failed to prevent this association. CONCLUSION The association of BChE with Aβ plaques, and the resultant biochemical changes, suggests that BChE may undergo a conformational change when bound to Aβ plaques but not neurons. The 5XFAD/BChE-KO model is ideally suited to explore the binding mechanism of BChE to Aβ plaques as well as the involvement of BChE in AD pathogenesis.
Collapse
Affiliation(s)
- G A Reid
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - S Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
34
|
Li M, Zhong D, Li G. Regulatory role of local tissue signal Del-1 in cancer and inflammation: a review. Cell Mol Biol Lett 2021; 26:31. [PMID: 34217213 PMCID: PMC8254313 DOI: 10.1186/s11658-021-00274-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
Developmental endothelial locus-1 (Del-1) is a secretory, multifunctional domain protein. It can bind to integrins and phosphatidylserine. As a local tissue signal, it plays a regulatory role in the cancer microenvironment and inflammation. Del-1 has destructive effects in most cancers and is associated with the progression and invasion of some cancers. In contrast, Del-1 also plays a protective role in inflammation. Del-1 regulates inflammation by regulating the generation of neutrophils in bone marrow, inhibiting the recruitment and migration of neutrophils and accelerating the clearance of neutrophils by macrophages. Del-1 and IL-17 are reciprocally regulated, and their balance maintains immune system homeostasis. Del-1 is expected to become a new therapeutic target for inflammatory disorders such as multiple sclerosis.
Collapse
Affiliation(s)
- Meng Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Harbin, 150001, Heilongjiang, China
| | - Di Zhong
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Harbin, 150001, Heilongjiang, China.
| | - Guozhong Li
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Road, Harbin, 150001, Heilongjiang, China
| |
Collapse
|
35
|
Wang M, Shao W, Hao X, Shen L, Zhang D. Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1549-1561. [PMID: 31581090 DOI: 10.1109/tcbb.2019.2944825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sparse canonical correlation analysis (SCCA) is a bi-multivariate technique used in imaging genetics to identify complex multi-SNP-multi-QT associations. However, the traditional SCCA algorithm has been designed to seek a linear correlation between the SNP genotype and brain imaging phenotype, ignoring the discriminant similarity information between within-class subjects in brain imaging genetics association analysis. In addition, multi-modality brain imaging phenotypes are extracted from different perspectives and imaging markers from the same region consistently showing up in multimodalities may provide more insights for the mechanistic understanding of diseases. In this paper, a novel multi-modality discriminant SCCA algorithm (MD-SCCA) is proposed to overcome these limitations as well as to improve learning results by incorporating valuable discriminant similarity information into the SCCA algorithm. Specifically, we first extract the discriminant similarity information between within-class subjects by the sparse representation. Second, the discriminant similarity information is enforced within SCCA to construct a discriminant SCCA algorithm (D-SCCA). At last, the MD-SCCA algorithm is adopted to fully explore the relationships among different modalities of different subjects. In experiments, both synthetic dataset and real data from the Alzheimer's Disease Neuroimaging Initiative database are used to test the performance of our algorithm. The empirical results have demonstrated that the proposed algorithm not only produces improved cross-validation performances but also identifies consistent cross-modality imaging genetic biomarkers.
Collapse
|
36
|
Kim HR, Jung SH, Kim J, Jang H, Kang SH, Hwangbo S, Kim JP, Kim SY, Kim B, Kim S, Jeong JH, Yoon SJ, Park KW, Kim EJ, Yoon B, Jang JW, Hong JY, Choi SH, Noh Y, Kim KW, Kim SE, Lee JS, Jung NY, Lee J, Kim BC, Son SJ, Hong CH, Na DL, Seo SW, Won HH, Kim HJ. Identifying novel genetic variants for brain amyloid deposition: a genome-wide association study in the Korean population. Alzheimers Res Ther 2021; 13:117. [PMID: 34154648 PMCID: PMC8215820 DOI: 10.1186/s13195-021-00854-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified a number of genetic variants for Alzheimer's disease (AD). However, most GWAS were conducted in individuals of European ancestry, and non-European populations are still underrepresented in genetic discovery efforts. Here, we performed GWAS to identify single nucleotide polymorphisms (SNPs) associated with amyloid β (Aβ) positivity using a large sample of Korean population. METHODS One thousand four hundred seventy-four participants of Korean ancestry were recruited from multicenters in South Korea. Discovery dataset consisted of 1190 participants (383 with cognitively unimpaired [CU], 330 with amnestic mild cognitive impairment [aMCI], and 477 with AD dementia [ADD]) and replication dataset consisted of 284 participants (46 with CU, 167 with aMCI, and 71 with ADD). GWAS was conducted to identify SNPs associated with Aβ positivity (measured by amyloid positron emission tomography). Aβ prediction models were developed using the identified SNPs. Furthermore, bioinformatics analysis was conducted for the identified SNPs. RESULTS In addition to APOE, we identified nine SNPs on chromosome 7, which were associated with a decreased risk of Aβ positivity at a genome-wide suggestive level. Of these nine SNPs, four novel SNPs (rs73375428, rs2903923, rs3828947, and rs11983537) were associated with a decreased risk of Aβ positivity (p < 0.05) in the replication dataset. In a meta-analysis, two SNPs (rs7337542 and rs2903923) reached a genome-wide significant level (p < 5.0 × 10-8). Prediction performance for Aβ positivity increased when rs73375428 were incorporated (area under curve = 0.75; 95% CI = 0.74-0.76) in addition to clinical factors and APOE genotype. Cis-eQTL analysis demonstrated that the rs73375428 was associated with decreased expression levels of FGL2 in the brain. CONCLUSION The novel genetic variants associated with FGL2 decreased risk of Aβ positivity in the Korean population. This finding may provide a candidate therapeutic target for AD, highlighting the importance of genetic studies in diverse populations.
Collapse
Affiliation(s)
- Hang-Rai Kim
- Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jaeho Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - So Yeon Kim
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Beomsu Kim
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Soyeon Kim
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Soo Jin Yoon
- Department of Neurology, Eulji University Hospital, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Kyung Won Park
- Department of Neurology, Dong-A University College of Medicine, Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Bora Yoon
- Department of Neurology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jae-Won Jang
- Department of Neurology, Kangwon National University Hospital, Kangwon National University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Yong Hong
- Department of Neurology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon, Republic of Korea
| | - Young Noh
- Department of Neurology, Gachon University College of Medicine, Gil Medical Center, Incheon, Republic of Korea
| | - Ko Woon Kim
- Department of Neurology, School of Medicine, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Si Eun Kim
- Department of Neurology, Inje University College of Medicine, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Jin San Lee
- Department of Neurology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Na-Yeon Jung
- Department of Neurology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Medical Research Institute, Busan, Republic of Korea
| | - Juyoun Lee
- Department of Neurology, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Byeong C Kim
- Departmet of Neurology, Chonnam National University School of Medicine, Gwangju, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hong-Hee Won
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Vogrinc D, Goričar K, Dolžan V. Genetic Variability in Molecular Pathways Implicated in Alzheimer's Disease: A Comprehensive Review. Front Aging Neurosci 2021; 13:646901. [PMID: 33815092 PMCID: PMC8012500 DOI: 10.3389/fnagi.2021.646901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease, affecting a significant part of the population. The majority of AD cases occur in the elderly with a typical age of onset of the disease above 65 years. AD presents a major burden for the healthcare system and since population is rapidly aging, the burden of the disease will increase in the future. However, no effective drug treatment for a full-blown disease has been developed to date. The genetic background of AD is extensively studied; numerous genome-wide association studies (GWAS) identified significant genes associated with increased risk of AD development. This review summarizes more than 100 risk loci. Many of them may serve as biomarkers of AD progression, even in the preclinical stage of the disease. Furthermore, we used GWAS data to identify key pathways of AD pathogenesis: cellular processes, metabolic processes, biological regulation, localization, transport, regulation of cellular processes, and neurological system processes. Gene clustering into molecular pathways can provide background for identification of novel molecular targets and may support the development of tailored and personalized treatment of AD.
Collapse
Affiliation(s)
| | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
38
|
Cash MK, Rockwood K, Fisk JD, Darvesh S. Clinicopathological correlations and cholinesterase expression in early-onset familial Alzheimer's disease with the presenilin 1 mutation, Leu235Pro. Neurobiol Aging 2021; 103:31-41. [PMID: 33789210 DOI: 10.1016/j.neurobiolaging.2021.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/28/2022]
Abstract
In sporadic Alzheimer's disease (SpAD), acetylcholinesterase and butyrylcholinesterase, co-regulators of acetylcholine, are associated with β-amyloid plaques and tau neurofibrillary tangles in patterns suggesting a contribution to neurotoxicity. This association has not been explored in early-onset familial Alzheimer's disease (FAD). We investigated whether cholinesterases are observed in the neuropathological hallmarks in FAD expressing the presenilin 1 Leu235Pro mutation. Brain tissues from three FAD cases and one early-onset SpAD case were stained and analyzed for β-amyloid, tau, α-synuclein, acetylcholinesterase and butyrylcholinesterase. AD pathology was prominent throughout the rostrocaudal extent of all 4 brains but α-synuclein-positive neurites were present in only one familial case. In FAD and SpAD cases, cholinergic activity was associated with plaques and tangles but not with α-synuclein pathology. Both cholinesterases showed similar or decreased plaque staining than detected with β-amyloid immunostaining but greater plaque deposition than observed with thioflavin-S histofluorescence. Acetylcholinesterase and butyrylcholinesterase are highly associated with AD pathology in inherited disease and both may represent specific diagnostic and therapeutic targets for all AD forms.
Collapse
Affiliation(s)
- Meghan K Cash
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kenneth Rockwood
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - John D Fisk
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada; Department of Medicine (Neurology), Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
39
|
Macedo A, Gómez C, Rebelo MÂ, Poza J, Gomes I, Martins S, Maturana-Candelas A, Pablo VGD, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Lopes AM, Pinto N. Risk Variants in Three Alzheimer's Disease Genes Show Association with EEG Endophenotypes. J Alzheimers Dis 2021; 80:209-223. [PMID: 33522999 PMCID: PMC8075394 DOI: 10.3233/jad-200963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Dementia due to Alzheimer’s disease (AD) is a complex neurodegenerative disorder, which much of heritability remains unexplained. At the clinical level, one of the most common physiological alterations is the slowing of oscillatory brain activity, measurable by electroencephalography (EEG). Relative power (RP) at the conventional frequency bands (i.e., delta, theta, alpha, beta-1, and beta-2) can be considered as AD endophenotypes. Objective: The aim of this work is to analyze the association between sixteen genes previously related with AD: APOE, PICALM, CLU, BCHE, CETP, CR1, SLC6A3, GRIN2
β, SORL1, TOMM40, GSK3
β, UNC5C, OPRD1, NAV2, HOMER2, and IL1RAP, and the slowing of the brain activity, assessed by means of RP at the aforementioned frequency bands. Methods: An Iberian cohort of 45 elderly controls, 45 individuals with mild cognitive impairment, and 109 AD patients in the three stages of the disease was considered. Genomic information and brain activity of each subject were analyzed. Results: The slowing of brain activity was observed in carriers of risk alleles in IL1RAP (rs10212109, rs9823517, rs4687150), UNC5C (rs17024131), and NAV2 (rs1425227, rs862785) genes, regardless of the disease status and situation towards the strongest risk factors: age, sex, and APOE ɛ4 presence. Conclusion: Endophenotypes reduce the complexity of the general phenotype and genetic variants with a major effect on those specific traits may be then identified. The found associations in this work are novel and may contribute to the comprehension of AD pathogenesis, each with a different biological role, and influencing multiple factors involved in brain physiology.
Collapse
Affiliation(s)
- Ana Macedo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,JTA: The Data Scientists, Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Miguel Ângelo Rebelo
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Iva Gomes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | | | | | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Lavra, Portugal
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, Zamora, Spain
| | - Miguel Arenas
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,CINBIO (Biomedical Research Center), University of Vigo, Vigo, Spain.,Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain
| | - Luis Álvarez
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Adeneas, Valencia, Spain
| | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, Valladolid, Spain
| | - Alexandra M Lopes
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nádia Pinto
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Centro de Matemática da Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Chen Y, Li TR, Hao SW, Wang XN, Cai YN, Han Y. Blood NCAPH2 Methylation Is Associated With Hippocampal Volume in Subjective Cognitive Decline With Apolipoprotein E ε4 Non-carriers. Front Aging Neurosci 2021; 13:632382. [PMID: 33603659 PMCID: PMC7884760 DOI: 10.3389/fnagi.2021.632382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study assessed the methylation of peripheral NCAPH2 in individuals with subjective cognitive decline (SCD), identified its correlation with the hippocampal volume, and explored whether the correlation is influenced by apolipoprotein E ε4 (APOE ε4) status. Methods: Cognitively normal controls (NCs, n = 56), individuals with SCD (n = 81), and patients with objective cognitive impairment (OCI, n = 51) were included from the Sino Longitudinal Study on Cognitive Decline (NCT03370744). All participants completed neuropsychological assessments, blood tests, and structural MRI. NCAPH2 methylation was compared according to the diagnostic and APOE ε4 status. Partial correlation analysis was conducted to assess the correlations between the hippocampal volume, cognitive tests, and the NCAPH2 methylation levels. Results: Individuals with SCD and patients with OCI showed significantly lower levels of NCAPH2 methylation than NCs, which were independent of the APOE ε4 status. The NCAPH2 methylation levels and the hippocampal volumes were positively correlated in the SCD APOE ε4 non-carriers but not in the OCI group. No association was found between the NCAPH2 methylation levels and the cognitive function. Conclusion: Abnormal changes in blood NCAPH2 methylation were found to occur in SCD, indicating its potential to be used as a useful peripheral biomarker in the early stage of Alzheimer's disease screening.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Zhejiang Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Tao-Ran Li
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Shu-Wen Hao
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xiao-Ni Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yan-Ning Cai
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
41
|
Farias FHG, Benitez BA, Cruchaga C. Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiol Dis 2021; 151:105247. [PMID: 33429041 DOI: 10.1016/j.nbd.2020.105247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Endophenotypes, as measurable intermediate features of human diseases, reflect underlying molecular mechanisms. The use of quantitative endophenotypes in genetic studies has improved our understanding of pathophysiological changes associated with diseases. The main advantage of the quantitative endophenotypes approach to study human diseases over a classic case-control study design is the inferred biological context that can enable the development of effective disease-modifying treatments. Here, we summarize recent progress on biomarkers for neurodegenerative diseases, including cerebrospinal fluid and blood-based, neuroimaging, neuropathological, and clinical studies. This review focuses on how endophenotypic studies have successfully linked genetic modifiers to disease risk, disease onset, or progression rate and provided biological context to genes identified in genome-wide association studies. Finally, we review critical methodological considerations for implementing this approach and future directions.
Collapse
Affiliation(s)
- Fabiana H G Farias
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Bruno A Benitez
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, United States of America; NeuroGenomics and Informatics, Washington University, St. Louis, MO 63110, United States of America; Hope Center for Neurologic Diseases, Washington University, St. Louis, MO 63110, United States of America; The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, 63110, United States of America; Department of Genetics, Washington University School of Medicine, St Louis, MO, 63110, United States of America.
| |
Collapse
|
42
|
Yan Q, Nho K, Del-Aguila JL, Wang X, Risacher SL, Fan KH, Snitz BE, Aizenstein HJ, Mathis CA, Lopez OL, Demirci FY, Feingold E, Klunk WE, Saykin AJ, Cruchaga C, Kamboh MI. Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging. Mol Psychiatry 2021; 26:309-321. [PMID: 30361487 PMCID: PMC6219464 DOI: 10.1038/s41380-018-0246-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/31/2018] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid plaques in the brain is one of the two main pathological hallmarks of Alzheimer's disease (AD). Amyloid positron emission tomography (PET) is a neuroimaging tool that selectively detects in vivo amyloid deposition in the brain and is a reliable endophenotype for AD that complements cerebrospinal fluid biomarkers with regional information. We measured in vivo amyloid deposition in the brains of ~1000 subjects from three collaborative AD centers and ADNI using 11C-labeled Pittsburgh Compound-B (PiB)-PET imaging followed by meta-analysis of genome-wide association studies, first to our knowledge for PiB-PET, to identify novel genetic loci for this endophenotype. The APOE region showed the most significant association where several SNPs surpassed the genome-wide significant threshold, with APOE*4 being most significant (P-meta = 9.09E-30; β = 0.18). Interestingly, after conditioning on APOE*4, 14 SNPs remained significant at P < 0.05 in the APOE region that were not in linkage disequilibrium with APOE*4. Outside the APOE region, the meta-analysis revealed 15 non-APOE loci with P < 1E-05 on nine chromosomes, with two most significant SNPs on chromosomes 8 (P-meta = 4.87E-07) and 3 (P-meta = 9.69E-07). Functional analyses of these SNPs indicate their potential relevance with AD pathogenesis. Top 15 non-APOE SNPs along with APOE*4 explained 25-35% of the amyloid variance in different datasets, of which 14-17% was explained by APOE*4 alone. In conclusion, we have identified novel signals in APOE and non-APOE regions that affect amyloid deposition in the brain. Our data also highlights the presence of yet to be discovered variants that may be responsible for the unexplained genetic variance of amyloid deposition.
Collapse
Affiliation(s)
- Qi Yan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge L Del-Aguila
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Xingbin Wang
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Chester A Mathis
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - William E Klunk
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Zhou Y, Lu X, Du C, Liu Y, Wang Y, Hong KH, Chen Y, Sun H. Novel BuChE-IDO1 inhibitors from sertaconazole: Virtual screening, chemical optimization and molecular modeling studies. Bioorg Med Chem Lett 2020; 34:127756. [PMID: 33359445 DOI: 10.1016/j.bmcl.2020.127756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/14/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
Abstract
In our effort towards the identification of novel BuChE-IDO1 dual-targeted inhibitor for the treatment of Alzheimer's disease (AD), sertaconazole was identified through a combination of structure-based virtual screening followed by MM-GBSA rescoring. Preliminary chemical optimization was performed to develop more potent and selective sertaconazole analogues. In consideration of the selectivity and the inhibitory activity against target proteins, compounds 5c and 5d were selected for the next study. Further modification of compound 5c led to the generation of compound 10g with notably improved selectivity towards BuChE versus AChE. The present study provided us with a good starting point to further design potent and selective BuChE-IDO1 inhibitors, which may benefit the treatment of late stage AD.
Collapse
Affiliation(s)
- You Zhou
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xin Lu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Chenxi Du
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yijun Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Wang
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55414, USA
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
44
|
Ruffini N, Klingenberg S, Schweiger S, Gerber S. Common Factors in Neurodegeneration: A Meta-Study Revealing Shared Patterns on a Multi-Omics Scale. Cells 2020; 9:E2642. [PMID: 33302607 PMCID: PMC7764447 DOI: 10.3390/cells9122642] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) are heterogeneous, progressive diseases with frequently overlapping symptoms characterized by a loss of neurons. Studies have suggested relations between neurodegenerative diseases for many years (e.g., regarding the aggregation of toxic proteins or triggering endogenous cell death pathways). We gathered publicly available genomic, transcriptomic, and proteomic data from 177 studies and more than one million patients to detect shared genetic patterns between the neurodegenerative diseases on three analyzed omics-layers. The results show a remarkably high number of shared differentially expressed genes between the transcriptomic and proteomic levels for all conditions, while showing a significant relation between genomic and proteomic data between AD and PD and AD and ALS. We identified a set of 139 genes being differentially expressed in several transcriptomic experiments of all four diseases. These 139 genes showed overrepresented gene ontology (GO) Terms involved in the development of neurodegeneration, such as response to heat and hypoxia, positive regulation of cytokines and angiogenesis, and RNA catabolic process. Furthermore, the four analyzed neurodegenerative diseases (NDDs) were clustered by their mean direction of regulation throughout all transcriptomic studies for this set of 139 genes, with the closest relation regarding this common gene set seen between AD and HD. GO-Term and pathway analysis of the proteomic overlap led to biological processes (BPs), related to protein folding and humoral immune response. Taken together, we could confirm the existence of many relations between Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis on transcriptomic and proteomic levels by analyzing the pathways and GO-Terms arising in these intersections. The significance of the connection and the striking relation of the results to processes leading to neurodegeneration between the transcriptomic and proteomic data for all four analyzed neurodegenerative diseases showed that exploring many studies simultaneously, including multiple omics-layers of different neurodegenerative diseases simultaneously, holds new relevant insights that do not emerge from analyzing these data separately. Furthermore, the results shed light on processes like the humoral immune response that have previously been described only for certain diseases. Our data therefore suggest human patients with neurodegenerative diseases should be addressed as complex biological systems by integrating multiple underlying data sources.
Collapse
Affiliation(s)
- Nicolas Ruffini
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
- Leibniz Institute for Resilience Research, Leibniz Association, Wallstraße 7, 55122 Mainz, Germany
| | - Susanne Klingenberg
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (N.R.); (S.K.); (S.S.)
| |
Collapse
|
45
|
Dick F, Nido GS, Alves GW, Tysnes OB, Nilsen GH, Dölle C, Tzoulis C. Differential transcript usage in the Parkinson's disease brain. PLoS Genet 2020; 16:e1009182. [PMID: 33137089 PMCID: PMC7660910 DOI: 10.1371/journal.pgen.1009182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/12/2020] [Accepted: 10/08/2020] [Indexed: 11/18/2022] Open
Abstract
Studies of differential gene expression have identified several molecular signatures and pathways associated with Parkinson's disease (PD). The role of isoform switches and differential transcript usage (DTU) remains, however, unexplored. Here, we report the first genome-wide study of DTU in PD. We performed RNA sequencing following ribosomal RNA depletion in prefrontal cortex samples of 49 individuals from two independent case-control cohorts. DTU was assessed using two transcript-count based approaches, implemented in the DRIMSeq and DEXSeq tools. Multiple PD-associated DTU events were detected in each cohort, of which 23 DTU events in 19 genes replicated across both patient cohorts. For several of these, including THEM5, SLC16A1 and BCHE, DTU was predicted to have substantial functional consequences, such as altered subcellular localization or switching to non-protein coding isoforms. Furthermore, genes with PD-associated DTU were enriched in functional pathways previously linked to PD, including reactive oxygen species generation and protein homeostasis. Importantly, the vast majority of genes exhibiting DTU were not differentially expressed at the gene-level and were therefore not identified by conventional differential gene expression analysis. Our findings provide the first insight into the DTU landscape of PD and identify novel disease-associated genes. Moreover, we show that DTU may have important functional consequences in the PD brain, since it is predicted to alter the functional composition of the proteome. Based on these results, we propose that DTU analysis is an essential complement to differential gene expression studies in order to provide a more accurate and complete picture of disease-associated transcriptomic alterations.
Collapse
Affiliation(s)
- Fiona Dick
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gonzalo S. Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Guido Werner Alves
- The Norwegian Center for Movement Disorders and Department of Neurology, Stavanger University Hospital, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gry Hilde Nilsen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
46
|
Raghavan NS, Dumitrescu L, Mormino E, Mahoney ER, Lee AJ, Gao Y, Bilgel M, Goldstein D, Harrison T, Engelman CD, Saykin AJ, Whelan CD, Liu JZ, Jagust W, Albert M, Johnson SC, Yang HS, Johnson K, Aisen P, Resnick SM, Sperling R, De Jager PL, Schneider J, Bennett DA, Schrag M, Vardarajan B, Hohman TJ, Mayeux R. Association Between Common Variants in RBFOX1, an RNA-Binding Protein, and Brain Amyloidosis in Early and Preclinical Alzheimer Disease. JAMA Neurol 2020; 77:1288-1298. [PMID: 32568366 PMCID: PMC7309575 DOI: 10.1001/jamaneurol.2020.1760] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/06/2020] [Indexed: 01/27/2023]
Abstract
Importance Genetic studies of Alzheimer disease have focused on the clinical or pathologic diagnosis as the primary outcome, but little is known about the genetic basis of the preclinical phase of the disease. Objective To examine the underlying genetic basis for brain amyloidosis in the preclinical phase of Alzheimer disease. Design, Setting, and Participants In the first stage of this genetic association study, a meta-analysis was conducted using genetic and imaging data acquired from 6 multicenter cohort studies of healthy older individuals between 1994 and 2019: the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study, the Berkeley Aging Cohort Study, the Wisconsin Registry for Alzheimer's Prevention, the Biomarkers of Cognitive Decline Among Normal Individuals cohort, the Baltimore Longitudinal Study of Aging, and the Alzheimer Disease Neuroimaging Initiative, which included Alzheimer disease and mild cognitive impairment. The second stage was designed to validate genetic observations using pathologic and clinical data from the Religious Orders Study and Rush Memory and Aging Project. Participants older than 50 years with amyloid positron emission tomographic (PET) imaging data and DNA from the 6 cohorts were included. The largest cohort, the Anti-Amyloid Treatment in Asymptomatic Alzheimer Disease Study (n = 3154), was the PET screening cohort used for a secondary prevention trial designed to slow cognitive decline associated with brain amyloidosis. Six smaller, longitudinal cohort studies (n = 1160) provided additional amyloid PET imaging data with existing genetic data. The present study was conducted from March 29, 2019, to February 19, 2020. Main Outcomes and Measures A genome-wide association study of PET imaging amyloid levels. Results From the 4314 analyzed participants (age, 52-96 years; 2478 participants [57%] were women), a novel locus for amyloidosis was noted within RBFOX1 (β = 0.61, P = 3 × 10-9) in addition to APOE. The RBFOX1 protein localized around plaques, and reduced expression of RBFOX1 was correlated with higher amyloid-β burden (β = -0.008, P = .002) and worse cognition (β = 0.007, P = .006) during life in the Religious Orders Study and Rush Memory and Aging Project cohort. Conclusions and Relevance RBFOX1 encodes a neuronal RNA-binding protein known to be expressed in neuronal tissues and may play a role in neuronal development. The findings of this study suggest that RBFOX1 is a novel locus that may be involved in the pathogenesis of Alzheimer disease.
Collapse
Affiliation(s)
- Neha S. Raghavan
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
- The Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Elizabeth Mormino
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | - Emily R. Mahoney
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annie J. Lee
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
| | - Yizhe Gao
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - David Goldstein
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
| | - Theresa Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin, School of Medicine and Public Health, Madison
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, School of Medicine, Indiana University, Indianapolis
- Department of Medical and Molecular Genetics, School of Medicine, Indiana University, Indianapolis
| | | | - Jimmy Z. Liu
- Research and Early Development, Biogen Inc, Cambridge, Massachusetts
| | - William Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sterling C. Johnson
- Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Boston
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Keith Johnson
- Department of Neurology, Massachusetts General Hospital, Boston
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Paul Aisen
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, San Diego
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Boston
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Philip L. De Jager
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York
- Cell Circuits Program, Broad Institute, Cambridge, Massachusetts
| | - Julie Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Matthew Schrag
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Badri Vardarajan
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
- The Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| | - Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, New York
- Department of Neurology, The New York Presbyterian Hospital, New York
- Taub Institute for Research on Alzheimer’s Disease and The Aging Brain, Columbia University Medical Center, New York, New York
- The Institute for Genomic Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
47
|
Ramanan VK, Wang X, Przybelski SA, Raghavan S, Heckman MG, Batzler A, Kosel ML, Hohman TJ, Knopman DS, Graff-Radford J, Lowe VJ, Mielke MM, Jack CR, Petersen RC, Ross OA, Vemuri P. Variants in PPP2R2B and IGF2BP3 are associated with higher tau deposition. Brain Commun 2020; 2:fcaa159. [PMID: 33426524 PMCID: PMC7780444 DOI: 10.1093/braincomms/fcaa159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Tau deposition is a key biological feature of Alzheimer's disease that is closely related to cognitive impairment. However, it remains poorly understood why certain individuals may be more susceptible to tau deposition while others are more resistant. The recent availability of in vivo assessment of tau burden through positron emission tomography provides an opportunity to test the hypothesis that common genetic variants may influence tau deposition. We performed a genome-wide association study of tau-positron emission tomography on a sample of 754 individuals over age 50 (mean age 72.4 years, 54.6% men, 87.6% cognitively unimpaired) from the population-based Mayo Clinic Study of Aging. Linear regression was performed to test nucleotide polymorphism associations with AV-1451 (18F-flortaucipir) tau-positron emission tomography burden in an Alzheimer's-signature composite region of interest, using an additive genetic model and covarying for age, sex and genetic principal components. Genome-wide significant associations with higher tau were identified for rs76752255 (P = 9.91 × 10-9, β = 0.20) in the tau phosphorylation regulatory gene PPP2R2B (protein phosphatase 2 regulatory subunit B) and for rs117402302 (P = 4.00 × 10-8, β = 0.19) near IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3). The PPP2R2B association remained genome-wide significant after additionally covarying for global amyloid burden and cerebrovascular disease risk, while the IGF2BP3 association was partially attenuated after accounting for amyloid load. In addition to these discoveries, three single nucleotide polymorphisms within MAPT (microtubule-associated protein tau) displayed nominal associations with tau-positron emission tomography burden, and the association of the APOE (apolipoprotein E) ɛ4 allele with tau-positron emission tomography was marginally nonsignificant (P = 0.06, β = 0.07). No associations with tau-positron emission tomography burden were identified for other single nucleotide polymorphisms associated with Alzheimer's disease clinical diagnosis in prior large case-control studies. Our findings nominate PPP2R2B and IGF2BP3 as novel potential influences on tau pathology which warrant further functional characterization. Our data are also supportive of previous literature on the associations of MAPT genetic variation with tau, and more broadly supports the inference that tau accumulation may have a genetic architecture distinct from known Alzheimer's susceptibility genes, which may have implications for improved risk stratification and therapeutic targeting.
Collapse
Affiliation(s)
- Vijay K Ramanan
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Xuewei Wang
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | | | - Michael G Heckman
- Division of Biomedical Statistics and Informatics, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
| | - Anthony Batzler
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Matthew L Kosel
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Timothy J Hohman
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | | | - Val J Lowe
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
- Department of Health Sciences Research, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
- Department of Clinical Genomics, Mayo Clinic-Florida, Jacksonville, FL 32224, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic-Minnesota, Rochester, MN 55905, USA
| |
Collapse
|
48
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
49
|
Zhu Y, Ji J, Lin W, Li M, Liu L, Zhu H, Xue F, Li X, Zhou X, Yuan Z. MCC-SP: a powerful integration method for identification of causal pathways from genetic variants to complex disease. BMC Genet 2020; 21:90. [PMID: 32847502 PMCID: PMC7477886 DOI: 10.1186/s12863-020-00899-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have successfully identified genetic susceptible variants for complex diseases. However, the underlying mechanism of such association remains largely unknown. Most disease-associated genetic variants have been shown to reside in noncoding regions, leading to the hypothesis that regulation of gene expression may be the primary biological mechanism. Current methods to characterize gene expression mediating the effect of genetic variant on diseases, often analyzed one gene at a time and ignored the network structure. The impact of genetic variant can propagate to other genes along the links in the network, then to the final disease. There could be multiple pathways from the genetic variant to the final disease, with each having the chain structure since the first node is one specific SNP (Single Nucleotide Polymorphism) variant and the end is disease outcome. One key but inadequately addressed question is how to measure the between-node connection strength and rank the effects of such chain-type pathways, which can provide statistical evidence to give the priority of some pathways for potential drug development in a cost-effective manner. RESULTS We first introduce the maximal correlation coefficient (MCC) to represent the between-node connection, and then integrate MCC with K shortest paths algorithm to rank and identify the potential pathways from genetic variant to disease. The pathway importance score (PIS) was further provided to quantify the importance of each pathway. We termed this method as "MCC-SP". Various simulations are conducted to illustrate MCC is a better measurement of the between-node connection strength than other quantities including Pearson correlation, Spearman correlation, distance correlation, mutual information, and maximal information coefficient. Finally, we applied MCC-SP to analyze one real dataset from the Religious Orders Study and the Memory and Aging Project, and successfully detected 2 typical pathways from APOE genotype to Alzheimer's disease (AD) through gene expression enriched in Alzheimer's disease pathway. CONCLUSIONS MCC-SP has powerful and robust performance in identifying the pathway(s) from the genetic variant to the disease. The source code of MCC-SP is freely available at GitHub ( https://github.com/zhuyuchen95/ADnet ).
Collapse
Affiliation(s)
- Yuchen Zhu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Jiadong Ji
- Department of Data Science, School of Statistics, Shandong University of Finance and Economics, Jinan, 250014 China
| | - Weiqiang Lin
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Mingzhuo Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Huanhuan Zhu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Fuzhong Xue
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Xiujun Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109 USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109 USA
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China
| |
Collapse
|
50
|
Nho K, Nudelman K, Allen M, Hodges A, Kim S, Risacher SL, Apostolova LG, Lin K, Lunnon K, Wang X, Burgess JD, Ertekin-Taner N, Petersen RC, Wang L, Qi Z, He A, Neuhaus I, Patel V, Foroud T, Faber KM, Lovestone S, Simmons A, Weiner MW, Saykin AJ. Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology. Alzheimers Dement 2020; 16:1213-1223. [PMID: 32755048 DOI: 10.1002/alz.12092] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/23/2020] [Accepted: 02/21/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Abnormal gene expression patterns may contribute to the onset and progression of late-onset Alzheimer's disease (LOAD). METHODS We performed transcriptome-wide meta-analysis (N = 1440) of blood-based microarray gene expression profiles as well as neuroimaging and cerebrospinal fluid (CSF) endophenotype analysis. RESULTS We identified and replicated five genes (CREB5, CD46, TMBIM6, IRAK3, and RPAIN) as significantly dysregulated in LOAD. The most significantly altered gene, CREB5, was also associated with brain atrophy and increased amyloid beta (Aβ) accumulation, especially in the entorhinal cortex region. cis-expression quantitative trait loci mapping analysis of CREB5 detected five significant associations (P < 5 × 10-8 ), where rs56388170 (most significant) was also significantly associated with global cortical Aβ deposition measured by [18 F]Florbetapir positron emission tomography and CSF Aβ1-42 . DISCUSSION RNA from peripheral blood indicated a differential gene expression pattern in LOAD. Genes identified have been implicated in biological processes relevant to Alzheimer's disease. CREB, in particular, plays a key role in nervous system development, cell survival, plasticity, and learning and memory.
Collapse
Affiliation(s)
- Kwangsik Nho
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kelly Nudelman
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Angela Hodges
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Sungeun Kim
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Electrical and Computer Engineering, State University of New York, Oswego, New York
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Liana G Apostolova
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kuang Lin
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | | | - Xue Wang
- Department of Health Sciences Research, Mayo Clinic Florida, Jacksonville, Florida
| | - Jeremy D Burgess
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida.,Department of Neurology, Mayo Clinic Florida, Jacksonville, Florida
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Lisu Wang
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Zhenhao Qi
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | - Aiqing He
- Bristol-Meyers Squibb, Wallingford, Connecticut
| | | | | | - Tatiana Foroud
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.,National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University, Indiana
| | | | - Andrew Simmons
- Psychology & Neuroscience, Institute of Psychiatry, King's college London, London, UK
| | - Michael W Weiner
- Departments of Radiology, Medicine, and Psychiatry, University of California-San Francisco, San Francisco, California.,Department of Veterans Affairs Medical Center, San Francisco, California
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | | |
Collapse
|