1
|
Qi J, Suo X, Tian C, Xia X, Qin W, Wang P, Tang J, Xu J, Fu J, Liu N, Yu C, Shen H, Dou Y. TESC overexpression mitigates amyloid-β-induced hippocampal atrophy and memory decline. Gene 2025; 933:148939. [PMID: 39278373 DOI: 10.1016/j.gene.2024.148939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND OBJECTIVES Genome-wide association studies (GWASs) have identified numerous candidate genes for human brain-imaging phenotypes; however, the biological relevance of many of these genes remains unconfirmed. This study aimed to investigate the causal relationships among tescalcin (TESC) (a GWAS-indicated gene), hippocampal volume, Alzheimer's disease (AD), and the underlying biological mechanisms. METHODS Human transcriptional data were analyzed to confirm relative TESC expression in the hippocampus. In cell experiments, RNA-seq analysis was used to identify the potential biological pathways for TESC overexpression, and immunofluorescence imaging and cell viability assays were used to evaluate the effect of TESC overexpression on neuronal structure and survival. In animal experiments, the effects of TESC overexpression on hippocampal volume and cognitive function in normal mice and amyloid-β (Aβ)-induced AD mice were investigated by 9.4 T magnetic resonance imaging and behavioral tests. Underlying mechanisms were further assessed via western blotting and electrophysiological recordings. RESULTS Human transcriptional data demonstrated that TESC is primarily expressed in the hippocampus and neurons. TESC overexpression enhanced the viability of HT22 cells and reduced Aβ-induced cell death. In mouse models, Tesc-overexpressing mice revealed increased hippocampal volume, likely owing to enhanced cell viability and long-term potentiation (LTP), and reducing apoptotic- and oxidation-induced hippocampal damage. TESC overexpression could significantly mitigate Aβ-induced hippocampal atrophy and memory impairment, potentially by reducing Aβ-induced neuronal apoptosis and LTP weakening. CONCLUSION This study exemplifies the translation of GWAS findings into actionable biological knowledge and suggests that upregulation of TESC may offer a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jinbo Qi
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Xinjun Suo
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; School of Medical Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Chunxiao Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Xianyou Xia
- Department of Cell Biology, School of Basic Medicine and Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, PR China
| | - Wen Qin
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Ping Wang
- School of Medical Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Jie Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Jiayuan Xu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Jilian Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Nana Liu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China; School of Medical Technology, Tianjin Medical University, Tianjin 300070, PR China
| | - Hui Shen
- Department of Cell Biology, School of Basic Medicine and Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, PR China.
| | - Yan Dou
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging & Tianjin Institute of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, PR China.
| |
Collapse
|
2
|
Soto OB, Ramirez CS, Koyani R, Rodriguez-Palomares IA, Dirmeyer JR, Grajeda B, Roy S, Cox MB. Structure and function of the TPR-domain immunophilins FKBP51 and FKBP52 in normal physiology and disease. J Cell Biochem 2024; 125:e30406. [PMID: 37087733 PMCID: PMC10903107 DOI: 10.1002/jcb.30406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 04/24/2023]
Abstract
Coordinated cochaperone interactions with Hsp90 and associated client proteins are crucial for a multitude of signaling pathways in normal physiology, as well as in disease settings. Research on the molecular mechanisms regulated by the Hsp90 multiprotein complexes has demonstrated increasingly diverse roles for cochaperones throughout Hsp90-regulated signaling pathways. Thus, the Hsp90-associated cochaperones have emerged as attractive therapeutic targets in a wide variety of disease settings. The tetratricopeptide repeat (TPR)-domain immunophilins FKBP51 and FKBP52 are of special interest among the Hsp90-associated cochaperones given their Hsp90 client protein specificity, ubiquitous expression across tissues, and their increasingly important roles in neuronal signaling, intracellular calcium release, peptide bond isomerization, viral replication, steroid hormone receptor function, and cell proliferation to name a few. This review summarizes the current knowledge of the structure and molecular functions of TPR-domain immunophilins FKBP51 and FKBP52, recent findings implicating these immunophilins in disease, and the therapeutic potential of targeting FKBP51 and FKBP52 for the treatment of disease.
Collapse
Affiliation(s)
- Olga B. Soto
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Christian S. Ramirez
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Rina Koyani
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Isela A. Rodriguez-Palomares
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Jessica R. Dirmeyer
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Brian Grajeda
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Sourav Roy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
| | - Marc B. Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
3
|
Qiu B, Zhong Z, Righter S, Xu Y, Wang J, Deng R, Wang C, Williams KE, Ma YY, Tsechpenakis G, Liang T, Yong W. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79:175. [PMID: 35244772 PMCID: PMC11072506 DOI: 10.1007/s00018-022-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shawn Righter
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gavriil Tsechpenakis
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Bas‐Hoogendam JM, Groenewold NA, Aghajani M, Freitag GF, Harrewijn A, Hilbert K, Jahanshad N, Thomopoulos SI, Thompson PM, Veltman DJ, Winkler AM, Lueken U, Pine DS, Wee NJA, Stein DJ, Agosta F, Åhs F, An I, Alberton BAV, Andreescu C, Asami T, Assaf M, Avery SN, Nicholas L, Balderston, Barber JP, Battaglia M, Bayram A, Beesdo‐Baum K, Benedetti F, Berta R, Björkstrand J, Blackford JU, Blair JR, Karina S, Blair, Boehme S, Brambilla P, Burkhouse K, Cano M, Canu E, Cardinale EM, Cardoner N, Clauss JA, Cividini C, Critchley HD, Udo, Dannlowski, Deckert J, Demiralp T, Diefenbach GJ, Domschke K, Doruyter A, Dresler T, Erhardt A, Fallgatter AJ, Fañanás L, Brandee, Feola, Filippi CA, Filippi M, Fonzo GA, Forbes EE, Fox NA, Fredrikson M, Furmark T, Ge T, Gerber AJ, Gosnell SN, Grabe HJ, Grotegerd D, Gur RE, Gur RC, Harmer CJ, Harper J, Heeren A, Hettema J, Hofmann D, Hofmann SG, Jackowski AP, Andreas, Jansen, Kaczkurkin AN, Kingsley E, Kircher T, Kosti c M, Kreifelts B, Krug A, Larsen B, Lee S, Leehr EJ, Leibenluft E, Lochner C, Maggioni E, Makovac E, Mancini M, Manfro GG, Månsson KNT, Meeten F, Michałowski J, Milrod BL, Mühlberger A, Lilianne R, Mujica‐Parodi, Munjiza A, Mwangi B, Myers M, Igor Nenadi C, Neufang S, Nielsen JA, Oh H, Ottaviani C, Pan PM, Pantazatos SP, Martin P, Paulus, Perez‐Edgar K, Peñate W, Perino MT, Peterburs J, Pfleiderer B, Phan KL, Poletti S, Porta‐Casteràs D, Price RB, Pujol J, Andrea, Reinecke, Rivero F, Roelofs K, Rosso I, Saemann P, Salas R, Salum GA, Satterthwaite TD, Schneier F, Schruers KRJ, Schulz SM, Schwarzmeier H, Seeger FR, Smoller JW, Soares JC, Stark R, Stein MB, Straube B, Straube T, Strawn JR, Suarez‐Jimenez B, Boris, Suchan, Sylvester CM, Talati A, Tamburo E, Tükel R, Heuvel OA, Van der Auwera S, Nieuwenhuizen H, Tol M, van Velzen LS, Bort CV, Vermeiren RRJM, Visser RM, Volman I, Wannemüller A, Wendt J, Werwath KE, Westenberg PM, Wiemer J, Katharina, Wittfeld, Wu M, Yang Y, Zilverstand A, Zugman A, Zwiebel HL. ENIGMA-anxiety working group: Rationale for and organization of large-scale neuroimaging studies of anxiety disorders. Hum Brain Mapp 2022; 43:83-112. [PMID: 32618421 PMCID: PMC8805695 DOI: 10.1002/hbm.25100] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/09/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Anxiety disorders are highly prevalent and disabling but seem particularly tractable to investigation with translational neuroscience methodologies. Neuroimaging has informed our understanding of the neurobiology of anxiety disorders, but research has been limited by small sample sizes and low statistical power, as well as heterogenous imaging methodology. The ENIGMA-Anxiety Working Group has brought together researchers from around the world, in a harmonized and coordinated effort to address these challenges and generate more robust and reproducible findings. This paper elaborates on the concepts and methods informing the work of the working group to date, and describes the initial approach of the four subgroups studying generalized anxiety disorder, panic disorder, social anxiety disorder, and specific phobia. At present, the ENIGMA-Anxiety database contains information about more than 100 unique samples, from 16 countries and 59 institutes. Future directions include examining additional imaging modalities, integrating imaging and genetic data, and collaborating with other ENIGMA working groups. The ENIGMA consortium creates synergy at the intersection of global mental health and clinical neuroscience, and the ENIGMA-Anxiety Working Group extends the promise of this approach to neuroimaging research on anxiety disorders.
Collapse
Affiliation(s)
- Janna Marie Bas‐Hoogendam
- Department of Developmental and Educational PsychologyLeiden University, Institute of Psychology Leiden The Netherlands
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Nynke A. Groenewold
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
| | - Moji Aghajani
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
- Department of Research & InnovationGGZ inGeest Amsterdam The Netherlands
| | - Gabrielle F. Freitag
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Anita Harrewijn
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Kevin Hilbert
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Neda Jahanshad
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Sophia I. Thomopoulos
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Paul M. Thompson
- University of Southern California Keck School of MedicineImaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute Los Angeles California USA
| | - Dick J. Veltman
- Department of PsychiatryAmsterdam UMC / VUMC Amsterdam The Netherlands
| | - Anderson M. Winkler
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Ulrike Lueken
- Department of PsychologyHumboldt‐Universität zu Berlin Berlin Germany
| | - Daniel S. Pine
- National Institute of Mental Health, Emotion and Development Branch Bethesda Maryland USA
| | - Nic J. A. Wee
- Department of PsychiatryLeiden University Medical Center Leiden The Netherlands
- Leiden Institute for Brain and Cognition Leiden The Netherlands
| | - Dan J. Stein
- Department of Psychiatry & Mental HealthUniversity of Cape Town Cape Town South Africa
- University of Cape TownSouth African MRC Unit on Risk & Resilience in Mental Disorders Cape Town South Africa
- University of Cape TownNeuroscience Institute Cape Town South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Flint C, Cearns M, Opel N, Redlich R, Mehler DMA, Emden D, Winter NR, Leenings R, Eickhoff SB, Kircher T, Krug A, Nenadic I, Arolt V, Clark S, Baune BT, Jiang X, Dannlowski U, Hahn T. Systematic misestimation of machine learning performance in neuroimaging studies of depression. Neuropsychopharmacology 2021; 46:1510-1517. [PMID: 33958703 PMCID: PMC8209109 DOI: 10.1038/s41386-021-01020-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
We currently observe a disconcerting phenomenon in machine learning studies in psychiatry: While we would expect larger samples to yield better results due to the availability of more data, larger machine learning studies consistently show much weaker performance than the numerous small-scale studies. Here, we systematically investigated this effect focusing on one of the most heavily studied questions in the field, namely the classification of patients suffering from Major Depressive Disorder (MDD) and healthy controls based on neuroimaging data. Drawing upon structural MRI data from a balanced sample of N = 1868 MDD patients and healthy controls from our recent international Predictive Analytics Competition (PAC), we first trained and tested a classification model on the full dataset which yielded an accuracy of 61%. Next, we mimicked the process by which researchers would draw samples of various sizes (N = 4 to N = 150) from the population and showed a strong risk of misestimation. Specifically, for small sample sizes (N = 20), we observe accuracies of up to 95%. For medium sample sizes (N = 100) accuracies up to 75% were found. Importantly, further investigation showed that sufficiently large test sets effectively protect against performance misestimation whereas larger datasets per se do not. While these results question the validity of a substantial part of the current literature, we outline the relatively low-cost remedy of larger test sets, which is readily available in most cases.
Collapse
Affiliation(s)
- Claas Flint
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.5949.10000 0001 2172 9288Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Micah Cearns
- grid.1010.00000 0004 1936 7304Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA Australia ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - David M. A. Mehler
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Daniel Emden
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils R. Winter
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Ramona Leenings
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Simon B. Eickhoff
- grid.8385.60000 0001 2297 375XInstitute of Neuroscience and Medicine (INM-7) Research Center Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Volker Arolt
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Scott Clark
- grid.1010.00000 0004 1936 7304Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA Australia
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XThe Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia
| | - Xiaoyi Jiang
- grid.5949.10000 0001 2172 9288Faculty of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
6
|
Association Between Genetic Risk for Type 2 Diabetes and Structural Brain Connectivity in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:333-340. [PMID: 33684623 DOI: 10.1016/j.bpsc.2021.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) and type 2 diabetes mellitus (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if they do, how these effects could contribute to the disease course of MDD. METHODS This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic patients with MDD and 539 healthy control subjects. RESULTS Polygenic risk score for T2D across MDD patients and healthy control subjects was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this fractional anisotropy variation may mediate the association between polygenic risk score and cognitive performance. CONCLUSIONS Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in patients with MDD and healthy control subjects, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.
Collapse
|
7
|
Cortical surface area alterations shaped by genetic load for neuroticism. Mol Psychiatry 2020; 25:3422-3431. [PMID: 30185937 DOI: 10.1038/s41380-018-0236-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/22/2018] [Accepted: 07/31/2018] [Indexed: 01/24/2023]
Abstract
Neuroticism has been shown to act as an important risk factor for major depressive disorder (MDD). Genetic and neuroimaging research has independently revealed biological correlates of neurotic personality including cortical alterations in brain regions of high relevance for affective disorders. Here we investigated the influence of a polygenic score for neuroticism (PGS) on cortical brain structure in a joint discovery sample of n = 746 healthy controls (HC) and n = 268 MDD patients. Findings were validated in an independent replication sample (n = 341 HC and n = 263 MDD). Subgroup analyses stratified for case-control status and analyses of associations between neurotic phenotype and cortical measures were carried out. PGS for neuroticism was significantly associated with a decreased cortical surface area of the inferior parietal cortex, the precuneus, the rostral cingulate cortex and the inferior frontal gyrus in the discovery sample. Similar associations between PGS and surface area of the inferior parietal cortex and the precuneus were demonstrated in the replication sample. Subgroup analyses revealed negative associations in the latter regions between PGS and surface area in both HC and MDD subjects. Neurotic phenotype was negatively correlated with surface area in similar cortical regions including the inferior parietal cortex and the precuneus. No significant associations between PGS and cortical thickness were detected. The morphometric overlap of associations between both PGS and neurotic phenotype in similar cortical regions closely related to internally focused cognition points to the potential relevance of genetically shaped cortical alterations in the development of neuroticism.
Collapse
|
8
|
Flint C, Förster K, Koser SA, Konrad C, Zwitserlood P, Berger K, Hermesdorf M, Kircher T, Nenadic I, Krug A, Baune BT, Dohm K, Redlich R, Opel N, Arolt V, Hahn T, Jiang X, Dannlowski U, Grotegerd D. Biological sex classification with structural MRI data shows increased misclassification in transgender women. Neuropsychopharmacology 2020; 45:1758-1765. [PMID: 32272482 PMCID: PMC7419542 DOI: 10.1038/s41386-020-0666-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022]
Abstract
Transgender individuals (TIs) show brain-structural alterations that differ from their biological sex as well as their perceived gender. To substantiate evidence that the brain structure of TIs differs from male and female, we use a combined multivariate and univariate approach. Gray matter segments resulting from voxel-based morphometry preprocessing of N = 1753 cisgender (CG) healthy participants were used to train (N = 1402) and validate (20% holdout N = 351) a support-vector machine classifying the biological sex. As a second validation, we classified N = 1104 patients with depression. A third validation was performed using the matched CG sample of the transgender women (TW) application sample. Subsequently, the classifier was applied to N = 26 TW. Finally, we compared brain volumes of CG-men, women, and TW-pre/post treatment cross-sex hormone treatment (CHT) in a univariate analysis controlling for sexual orientation, age, and total brain volume. The application of our biological sex classifier to the transgender sample resulted in a significantly lower true positive rate (TPR-male = 56.0%). The TPR did not differ between CG-individuals with (TPR-male = 86.9%) and without depression (TPR-male = 88.5%). The univariate analysis of the transgender application-sample revealed that TW-pre/post treatment show brain-structural differences from CG-women and CG-men in the putamen and insula, as well as the whole-brain analysis. Our results support the hypothesis that brain structure in TW differs from brain structure of their biological sex (male) as well as their perceived gender (female). This finding substantiates evidence that TIs show specific brain-structural alterations leading to a different pattern of brain structure than CG-individuals.
Collapse
Affiliation(s)
- Claas Flint
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany ,grid.5949.10000 0001 2172 9288Department of Computer Science, University of Münster, Einsteinstraße 62, 48149 Münster, Germany
| | - Katharina Förster
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Sophie A. Koser
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Carsten Konrad
- grid.440210.30000 0004 0560 2107Department of Psychiatry and Psychotherapy, Agaplesion Diakonieklinikum, 27356 Rotenburg, Germany
| | - Pienie Zwitserlood
- grid.5949.10000 0001 2172 9288Department of Psychology, University of Münster, Fliednerstraße 21, 48149 Münster, Germany
| | - Klaus Berger
- grid.5949.10000 0001 2172 9288Department of Epidemiology and Social Medicine, University of Münster, Albert Schweitzer-Campus 1, D3, 48149 Münster, Germany
| | - Marco Hermesdorf
- grid.5949.10000 0001 2172 9288Department of Epidemiology and Social Medicine, University of Münster, Albert Schweitzer-Campus 1, D3, 48149 Münster, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, The University of Melbourne, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XThe Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC Australia
| | - Katharina Dohm
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Ronny Redlich
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Nils Opel
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Volker Arolt
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Tim Hahn
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| | - Xiaoyi Jiang
- grid.5949.10000 0001 2172 9288Department of Computer Science, University of Münster, Einsteinstraße 62, 48149 Münster, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149, Münster, Germany.
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Albert Schweitzer-Campus 1, A9, 48149 Münster, Germany
| |
Collapse
|
9
|
Zhou ZG, Chen JB, Zhang RX, Ye L, Wang JC, Pan YX, Wang XH, Li WX, Zhang YJ, Xu L, Chen MS. Tescalcin is an unfavorable prognosis factor that regulats cell proliferation and survival in hepatocellular carcinoma patients. Cancer Commun (Lond) 2020; 40:355-369. [PMID: 32609436 PMCID: PMC7427307 DOI: 10.1002/cac2.12069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major health problem and a primary cause of cancer‐related death worldwide. Although great advances have achieved recently by large‐scale high‐throughput analysis, the precise molecular mechanism underlying HCC progression remains to be clearly elucidated. We investigated the relationship between Tescalcin (TESC), a candidate oncogene, and clinicopathological features of HCC patients and explored the role of TECS in HCC development. Methods To identify new genes involved in HCC development, we analyzed The Cancer Genome Atlas liver cancer database, and TESC was selected for further investigation. HCC tissue microarray analysis for TESC and its association with clinicopathological features were performed to investigate its clinical significance. TESC was knocked down by using short‐hairpin RNAs. Cell proliferation was analyzed by WST‐1 assay and cell counting. Cell apoptosis was tested by fluorescence‐activated cell sorting. A subcutaneous xenograft tumor model in nude mice was established to determine the in vivo function of TESC. Affymetrix microarray was used to identify its molecular mechanism. Results TESC was significantly increased in HCC tissues compared with the adjacent normal liver tissues. High expression of TESC was detected in 61 of 172 HCC patients by tissue microarray. Large tumor (> 5 cm) and elevated total bilirubin were associated with high TESC expression (both P < 0.050). In multivariate analysis, TESC was identified as an independent prognostic factor for short overall survival of HCC patients. TESC knockdown impaired HCC cell growth in vitro and in vivo. TESC knockdown significantly increased cell apoptosis in HCC cell lines. Furthermore, Affymetrix microarray analysis revealed that TESC knockdown inhibited tumor proliferation‐related pathways while activated cell death‐related pathways. Conclusion TESC was identified as an independent prognostic factor for short overall survival of HCC patients, and was critical for HCC cell proliferation and survival.
Collapse
Affiliation(s)
- Zhong-Guo Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jin-Bin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Rong-Xin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Colorectal Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ling Ye
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, P. R. China
| | - Jun-Cheng Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yang-Xun Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Xiao-Hui Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Wen-Xuan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yao-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Li Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Min-Shan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China.,Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
10
|
Goltermann J, Opel N, Redlich R, Repple J, Kaehler C, Grotegerd D, Dohm K, Leehr EJ, Böhnlein J, Förster K, Meinert S, Enneking V, Emden D, Leenings R, Winter NR, Hahn T, Mikhail S, Jansen A, Krug A, Nenadić I, Rietschel M, Witt SH, Heilmann-Heimbach S, Hoffmann P, Forstner AJ, Nöthen MM, Baune BT, Kircher T, Dannlowski U. Replication of a hippocampus specific effect of the tescalcin regulating variant rs7294919 on gray matter structure. Eur Neuropsychopharmacol 2020; 36:10-17. [PMID: 32451266 DOI: 10.1016/j.euroneuro.2020.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.
Collapse
Affiliation(s)
- Janik Goltermann
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany; Interdisciplinary Centre for Clinical Research (IZKF), University of Mü̈nster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Claas Kaehler
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany; Department of Mathematics and Computer Science, University of Münster, Germany
| | - Dominik Grotegerd
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Elisabeth J Leehr
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Joscha Böhnlein
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Förster
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Daniel Emden
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Ramona Leenings
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils R Winter
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Sami Mikhail
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry, University of Marburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Centre for Human Genetics, University of Marburg, Marburg, Germany; Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany; Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany.
| |
Collapse
|
11
|
Evidence for a sex-specific contribution of polygenic load for anorexia nervosa to body weight and prefrontal brain structure in nonclinical individuals. Neuropsychopharmacology 2019; 44:2212-2219. [PMID: 31284291 PMCID: PMC6898345 DOI: 10.1038/s41386-019-0461-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022]
Abstract
Genetic predisposition and brain structural abnormalities have been shown to be involved in the biological underpinnings of anorexia nervosa (AN). Prefrontal brain regions are suggested to contribute through behavioral inhibition mechanisms to body weight. However, it is unknown if and to which extent biological correlates for AN might be present in individuals without clinical AN symptomatology. We therefore investigated the contribution of polygenic load for AN on body weight and prefrontal brain structure in a sample of n = 380 nonclinical individuals. A polygenic score (PGS) reflecting the individual genetic load for the trait of anorexia nervosa was calculated. Structural MRI data were acquired and preprocessed using the cortical parcellation stream of FreeSurfer. We observed a significant PGS × sex interaction effect on body mass index (BMI), which was driven by a negative correlation between PGS and BMI in female participants. Imaging analyses revealed significant interaction effects of sex × PGS on surface area of the lateral orbitofrontal cortex (OFC), the pars orbitalis (PO), the rostral middle frontal gyrus (RMF) and the pars triangularis (PT) of the left frontal cortex. The interaction effects were driven by positive correlations between PGS and prefrontal surface areas in female participants and negative correlations in male participants. We furthermore found sex-specific associations between BMI and left RMF surface area as well as between BMI and left PO and left RMF thickness. Our findings demonstrate a sex-specific association between polygenic load for AN, BMI, and prefrontal brain structure in nonclinical individuals. Hence, this study identifies structural abnormalities associated with polygenic load for AN and BMI in brain regions deeply involved in behavioral inhibition and impulse regulation as candidate brain regions for future research.
Collapse
|
12
|
Opel N, Cearns M, Clark S, Toben C, Grotegerd D, Heindel W, Kugel H, Teuber A, Minnerup H, Berger K, Dannlowski U, Baune BT. Large-scale evidence for an association between low-grade peripheral inflammation and brain structural alterations in major depression in the BiDirect study. J Psychiatry Neurosci 2019; 44:423-431. [PMID: 31304733 PMCID: PMC6821515 DOI: 10.1503/jpn.180208] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Preliminary research suggests that major depressive disorder (MDD) is associated with structural alterations in the brain; as well as with low-grade peripheral inflammation. However, even though a link between inflammatory processes and altered brain structural integrity has been purported by experimental research, well-powered studies to confirm this hypothesis in patients with MDD have been lacking. We aimed to investigate the potential association between structural brain alterations and low-grade inflammation as interrelated biological correlates of MDD. METHODS In this cross-sectional study, 514 patients with MDD and 359 healthy controls underwent structural MRI. We used voxel-based morphometry to study local differences in grey matter volume. We also assessed serum levels of high-sensitivity C-reactive protein (hsCRP) in each participant. RESULTS Compared with healthy controls (age [mean ± standard deviation] 52.57 ± 7.94 yr; 50% male), patients with MDD (49.14 ± 7.28 yr, 39% male) exhibited significantly increased hsCRP levels (Z = −5.562, p < 0.001) and significantly decreased grey matter volume in the prefrontal cortex and the insula. Prefrontal grey matter volume reductions were significantly associated with higher hsCRP levels in patients with MDD (x = 50, y = 50, z = 8; t1,501 = 5.15; k = 92; pFWE < 0.001). In the MDD sample, the significant negative association between hsCRP and grey matter appeared independent of age, sex, body mass index, current smoking status, antidepressant load, hospitalization and medical comorbidities. LIMITATIONS This study had a cross-sectional design. CONCLUSION The present study highlights the role of reduced grey matter volume and low-grade peripheral inflammation as interrelated biological correlates of MDD. The reported inverse association between peripheral low-grade inflammation and brain structural integrity in patients with MDD translates current knowledge from experimental studies to the bedside.
Collapse
Affiliation(s)
- Nils Opel
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Micah Cearns
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Scott Clark
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Catherine Toben
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Dominik Grotegerd
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Walter Heindel
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Harald Kugel
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Anja Teuber
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Heike Minnerup
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Klaus Berger
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Udo Dannlowski
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| | - Bernhard T. Baune
- From the Department of Psychiatry and Psychotherapy, University of Münster, Germany (Opel, Grotegerd, Dannlowski, Baune) the Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Germany (Opel); the Discipline of Psychiatry, School of Medicine, University of Adelaide, Australia (Cearns, Clark, Toben); the Institute of Clinical Radiology, University of Münster, Germany (Heindel, Kugel); the Institute of Epidemiology and Social Medicine, University of Münster, Germany (Teuber, Minnerup, Berger); the Department of Psychiatry, Melbourne Medical School, the University of Melbourne, Victoria, Australia (Baune); and the Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia (Baune)
| |
Collapse
|
13
|
Meinert S, Repple J, Nenadic I, Krug A, Jansen A, Grotegerd D, Förster K, Enneking V, Dohm K, Schmitt S, Stein F, Brosch K, Meller T, Redlich R, Böhnlein J, Sindermann L, Goltermann J, Leehr EJ, Opel N, Aldermann L, Reuter A, Schubotz RI, Hahn T, Kircher T, Dannlowski U. Reduced fractional anisotropy in depressed patients due to childhood maltreatment rather than diagnosis. Neuropsychopharmacology 2019; 44:2065-2072. [PMID: 31382267 PMCID: PMC6897978 DOI: 10.1038/s41386-019-0472-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Abstract
Reduced fractional anisotropy (FA) associated with Major Depressive Disorder (MDD) overlaps anatomically with effects of childhood maltreatment experiences. The aim of this study was, therefore, to replicate the negative effect of childhood maltreatment on white matter fiber structure and to demonstrate, that alterations in MDD might be partially attributed to the higher occurrence of childhood maltreatment in MDD. Two independent cohorts (total N = 1 256) were investigated in a diffusion tensor imaging study: The Münster Neuroimaging Cohort (MNC, N = 186 MDD, N = 210 healthy controls, HC) as discovery sample and the Marburg-Münster Affective Disorders Cohort Study (MACS, N = 397 MDD, N = 462 HC) as replication sample. The effects of diagnosis (HC vs. MDD) and Childhood Trauma Questionnaire (CTQ) scores on FA were analyzed. A main effect of diagnosis with higher FA in MDD patients compared with HC was found in the MNC (pFWE = 0.021), but not in the MACS (pFWE = 0.52) before correcting for CTQ. A significant negative correlation of FA with CTQ emerged in both cohorts (MNC: pFWE = 0.006, MACS: pFWE = 0.012) in several tracts previously described in the literature. No CTQ × diagnosis interaction could be detected. Any main effect of diagnosis was abolished after correcting for CTQ (MNC: pFWE = 0.562, MACS: pFWE = 0.115). No differences in FA between MDD and HC could be found after correcting for childhood maltreatment, suggesting that previously reported group differences might be attributed partially to higher levels of maltreatment experiences in MDD rather than diagnosis itself. Furthermore, a well-established finding of reduced FA following childhood maltreatment experiences was replicated.
Collapse
Affiliation(s)
- Susanne Meinert
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Igor Nenadic
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany ,0000 0004 1936 9756grid.10253.35Core-Unit Brain Imaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - Dominik Grotegerd
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Förster
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Simon Schmitt
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Frederike Stein
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Ronny Redlich
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Lisa Sindermann
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Janik Goltermann
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany ,0000 0001 2172 9288grid.5949.1Interdisciplinary Centre for Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Leni Aldermann
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Andreas Reuter
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Ricarda I. Schubotz
- 0000 0001 2172 9288grid.5949.1Department of Psychology, University of Münster, Münster, Germany
| | - Tim Hahn
- 0000 0001 2172 9288grid.5949.1Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- 0000 0004 1936 9756grid.10253.35Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Koelkebeck K, Dannlowski U, Ohrmann P, Suslow T, Murai T, Bauer J, Pedersen A, Matsukawa N, Son S, Haidl T, Miyata J. Gray matter volume reductions in patients with schizophrenia: A replication study across two cultural backgrounds. Psychiatry Res Neuroimaging 2019; 292:32-40. [PMID: 31499256 DOI: 10.1016/j.pscychresns.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023]
Abstract
Structural gray matter (GM) volume reductions in patients with schizophrenia have rarely been replicated across two different sites, the impact of culture and clinical characteristics remains unresolved. Hence, we assessed GM volume reductions in patients with schizophrenia using 3 T magnetic resonace imaging to replicate results across two independent and culturally different backgrounds (Germany, Japan), and to investigate the impact of brain volume reductions on clinical characteristics. In total, 163 German (80 patients) and 203 Japanese (83 patients) participants were included in the analysis. Voxel-based morphometry (VBM) was used to investigate structural differences between the groups and across the two sites, comparing local GM volumes. Clinical variables were used to analyze effects unrelated to the socio-cultural background. Across both data sets, widespread GM reductions in frontal and temporal cortical parts were found between patients and controls, indicating strong effects of diagnosis and only small effects of site. The investigation of clinical characteristics revealed the strongest effects for chlorpromazine equivalents on GM volume reductions primarily in the Japanese sample. Although the effects of site are small, several brain regions do not overlap between the two groups. Thus, GM may be affected differently at the two sites in patients with schizophrenia.
Collapse
Affiliation(s)
- Katja Koelkebeck
- Department of Psychiatry and Psychotherapy, University of Muenster, School of Medicine, Albert-Schweitzer-Campus 1, Building A9, 48149 Muenster, Germany.
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, University of Muenster, School of Medicine, Albert-Schweitzer-Campus 1, Building A9, 48149 Muenster, Germany
| | - Patricia Ohrmann
- Department of Psychiatry and Psychotherapy, University of Muenster, School of Medicine, Albert-Schweitzer-Campus 1, Building A9, 48149 Muenster, Germany
| | - Thomas Suslow
- University of Leipzig, Department of Psychosomatic Medicine and Psychotherapy, Semmelweisstrasse 10, 04103 Leipzig, Germany
| | - Toshiya Murai
- Department of Psychiatry, University of Kyoto, School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jochen Bauer
- Institute of Clinical Radiology, Medical Faculty - University of Muenster - and University Hospital Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany
| | - Anya Pedersen
- Clinical Psychology and Psychotherapy, University of Kiel, Olshausenstrasse 62, 24118 Kiel, Germany
| | - Noriko Matsukawa
- Department of Psychiatry, University of Kyoto, School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuraku Son
- Department of Psychiatry, University of Kyoto, School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Theresa Haidl
- Department of Psychiatry and Psychotherapy, University of Cologne, Kerpener Strasse 62, 50934 Cologne, Germany
| | - Jun Miyata
- Department of Psychiatry, University of Kyoto, School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
15
|
Horgusluoglu-Moloch E, Risacher SL, Crane PK, Hibar D, Thompson PM, Saykin AJ, Nho K. Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Sci Rep 2019; 9:14498. [PMID: 31601890 PMCID: PMC6787090 DOI: 10.1038/s41598-019-50507-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 09/09/2019] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis occurs in the dentate gyrus of the hippocampus during adulthood and contributes to sustaining the hippocampal formation. To investigate whether neurogenesis-related pathways are associated with hippocampal volume, we performed gene-set enrichment analysis using summary statistics from a large-scale genome-wide association study (N = 13,163) of hippocampal volume from the Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Consortium and two year hippocampal volume changes from baseline in cognitively normal individuals from Alzheimer's Disease Neuroimaging Initiative Cohort (ADNI). Gene-set enrichment analysis of hippocampal volume identified 44 significantly enriched biological pathways (FDR corrected p-value < 0.05), of which 38 pathways were related to neurogenesis-related processes including neurogenesis, generation of new neurons, neuronal development, and neuronal migration and differentiation. For genes highly represented in the significantly enriched neurogenesis-related pathways, gene-based association analysis identified TESC, ACVR1, MSRB3, and DPP4 as significantly associated with hippocampal volume. Furthermore, co-expression network-based functional analysis of gene expression data in the hippocampal subfields, CA1 and CA3, from 32 normal controls showed that distinct co-expression modules were mostly enriched in neurogenesis related pathways. Our results suggest that neurogenesis-related pathways may be enriched for hippocampal volume and that hippocampal volume may serve as a potential phenotype for the investigation of human adult neurogenesis.
Collapse
Grants
- UL1 TR001108 NCATS NIH HHS
- R01 CA129769 NCI NIH HHS
- R35 CA197289 NCI NIH HHS
- P50 GM115318 NIGMS NIH HHS
- R01 AG019771 NIA NIH HHS
- P30 AG010133 NIA NIH HHS
- R03 AG054936 NIA NIH HHS
- U01 AG024904 NIA NIH HHS
- UL1 TR002369 NCATS NIH HHS
- R01 LM011360 NLM NIH HHS
- U54 EB020403 NIBIB NIH HHS
- K01 AG049050 NIA NIH HHS
- R01 LM012535 NLM NIH HHS
- CIHR
- NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
- ENIGMA was supported in part by a Consortium grant (U54EB020403 to PMT) from the NIH Institutes contributing to the Big Data to Knowledge (BD2K) Initiative, including the NIBIB and NCI.
- Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Additional support for data analysis was provided by NLM R01 LM012535, NIA R03 AG054936, NIA R01 AG19771, NIA P30 AG10133, NLM R01 LM011360, NSF IIS-1117335, DOD W81XWH-14-2-0151, NCAA 14132004, NIGMS P50GM115318, NCATS UL1 TR001108, NIA K01 AG049050, the Alzheimer’s Association, the Indiana Clinical and Translational Science Institute, and the IU Health-IU School of Medicine Strategic Neuroscience Research Initiative.
Collapse
Affiliation(s)
- Emrin Horgusluoglu-Moloch
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon L Risacher
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Derrek Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Neuroscience Biomarkers, Janssen Research and Development, LLC, San Diego, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, USC Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Andrew J Saykin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
16
|
Goltermann J, Redlich R, Dohm K, Zaremba D, Repple J, Kaehler C, Grotegerd D, Förster K, Meinert S, Enneking V, Schlaghecken E, Fleischer L, Hahn T, Kugel H, Jansen A, Krug A, Brosch K, Nenadic I, Schmitt S, Stein F, Meller T, Yüksel D, Fischer E, Rietschel M, Witt SH, Forstner AJ, Nöthen MM, Kircher T, Thalamuthu A, Baune BT, Dannlowski U, Opel N. Apolipoprotein E Homozygous ε4 Allele Status: A Deteriorating Effect on Visuospatial Working Memory and Global Brain Structure. Front Neurol 2019; 10:552. [PMID: 31191441 PMCID: PMC6545528 DOI: 10.3389/fneur.2019.00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/08/2019] [Indexed: 01/22/2023] Open
Abstract
Theoretical background: The Apolipoprotein E (APOE) ε4 genotype is known to be one of the strongest single-gene predictors for Alzheimer disease, which is characterized by widespread brain structural degeneration progressing along with cognitive impairment. The ε4 allele status has been associated with brain structural alterations and lower cognitive ability in non-demented subjects. However, it remains unclear to what extent the visuospatial cognitive domain is affected, from what age onward changes are detectable and if alterations may interact with cognitive deficits in major depressive disorder (MDD). The current work investigated the effect of APOE ε4 homozygosity on visuospatial working memory (vWM) capacity, and on hippocampal morphometry. Furthermore, potential moderating roles of age and MDD were assessed. Methods: A sample of n = 31 homozygous ε4 carriers was contrasted with n = 31 non-ε4 carriers in a cross-sectional design. The sample consisted of non-demented, young to mid-age participants (mean age = 34.47; SD = 13.48; 51.6% female). Among them were n = 12 homozygous ε4 carriers and n = 12 non-ε4 carriers suffering from MDD (39%). VWM was assessed using the Corsi block-tapping task. Region of interest analyses of hippocampal gray matter density and volume were conducted using voxel-based morphometry (CAT12), and Freesurfer, respectively. Results: Homozygous ε4 carriers showed significantly lower Corsi span capacity than non-ε4 carriers did, and Corsi span capacity was associated with higher gray matter density of the hippocampus. APOE group differences in hippocampal volume could be detected but were no longer present when controlling for total intracranial volume. Hippocampal gray matter density did not differ between APOE groups. We did not find any interaction effects of age and MDD diagnosis on hippocampal morphometry. Conclusion: Our results point toward a negative association of homozygous ε4 allele status with vWM capacity already during mid-adulthood, which emerges independently of MDD diagnosis and age. APOE genotype seems to be associated with global brain structural rather than hippocampus specific alterations in young- to mid-age participants.
Collapse
Affiliation(s)
- Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Claas Kaehler
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Mathematics and Computer Science, University of Münster, Münster, Germany
| | | | | | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Lara Fleischer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Institute of Clinical Radiology, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany.,Core-Facility BrainImaging, Faculty of Medicine, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Igor Nenadic
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Dilara Yüksel
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Elena Fischer
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Andreas J Forstner
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany.,Centre for Human Genetics, University of Marburg, Marburg, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- School of Medicine & University Hospital Bonn, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, VIC, Australia.,The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Opel N, Redlich R, Repple J, Kaehler C, Grotegerd D, Dohm K, Zaremba D, Goltermann J, Steinmann LAM, Krughöfer R, Leehr EJ, Böhnlein J, Förster K, Bürger C, Meinert S, Enneking V, Emden D, Leenings R, Winter N, Heindel W, Kugel H, Thalamuthu A, Hahn T, Arolt V, Baune BT, Dannlowski U. Childhood maltreatment moderates the influence of genetic load for obesity on reward related brain structure and function in major depression. Psychoneuroendocrinology 2019; 100:18-26. [PMID: 30268003 DOI: 10.1016/j.psyneuen.2018.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a clinically relevant and highly prevalent somatic comorbidity of major depression (MDD). Genetic predisposition and history of childhood trauma have both independently been demonstrated to act as risk factors for obesity and to be associated with alterations in reward related brain structure and function. We therefore aimed to investigate the influence of childhood maltreatment and genetic risk for obesity on structural and functional imaging correlates associated with reward processing in MDD. 161 MDD patients underwent structural and functional MRI during a frequently used card guessing paradigm. Main and interaction effects of a polygenic risk score for obesity (PRS) and childhood maltreatment experiences as assessed using the Childhood Trauma Questionnaire (CTQ) were investigated. We found that maltreatment experiences and polygenic risk for obesity significantly interacted on a) body mass index b) gray matter volume of the orbitofrontal cortex as well as on c) BOLD response in the right insula during reward processing. While polygenic risk for obesity was associated with elevated BMI as well as with decreased OFC gray matter and increased insular BOLD response in non-maltreated patients, these associations were absent in patients with a history of childhood trauma. No significant main effect of PRS or maltreatment on gray matter or BOLD response could be detected at the applied thresholds. The present study suggests that childhood maltreatment moderates the influence of genetic load for obesity on BMI as well as on altered brain structure and function in reward related brain circuits in MDD.
Collapse
Affiliation(s)
- Nils Opel
- Department of Psychiatry, University of Münster, Germany.
| | - Ronny Redlich
- Department of Psychiatry, University of Münster, Germany
| | | | - Claas Kaehler
- Department of Psychiatry, University of Münster, Germany; Department of Mathematics and Computer Science, University of Münster, Germany
| | | | - Katharina Dohm
- Department of Psychiatry, University of Münster, Germany
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Germany
| | | | | | | | | | | | | | | | | | | | - Daniel Emden
- Department of Psychiatry, University of Münster, Germany
| | | | - Nils Winter
- Department of Psychiatry, University of Münster, Germany
| | - Walter Heindel
- Institute of Clinical Radiology, University of Münster, Germany
| | - Harald Kugel
- Institute of Clinical Radiology, University of Münster, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Australia
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Germany
| |
Collapse
|
18
|
Redlich R, Opel N, Bürger C, Dohm K, Grotegerd D, Förster K, Zaremba D, Meinert S, Repple J, Enneking V, Leehr E, Böhnlein J, Winters L, Froböse N, Thrun S, Emtmann J, Heindel W, Kugel H, Arolt V, Romer G, Postert C, Dannlowski U. The Limbic System in Youth Depression: Brain Structural and Functional Alterations in Adolescent In-patients with Severe Depression. Neuropsychopharmacology 2018; 43:546-554. [PMID: 29039414 PMCID: PMC5770774 DOI: 10.1038/npp.2017.246] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
Abstract
Adolescent-onset major depressive disorder (MDD) is associated with an increased risk of recurrent depressive episodes, suicidal behaviors, and psychiatric morbidity throughout the lifespan. The objective of the present study was to investigate brain structural and functional changes in adolescent patients with MDD. Furthermore, we aimed to clarify the influence of early-life stress on brain function and structure. The study investigated adolescent patients with severe MDD (n=20, mean age=16.0, range=15-18 years) and a control sample of matched healthy adolescents (n=21, mean age=16.6, range=15-18 years). Functional MRI data were obtained using a face-matching paradigm to investigate emotion processing. Structural MRI data were analyzed using voxel-based morphometry (VBM). In line with previous studies on adult MDD, adolescent patients showed elevated amygdala activity to negative and reduced amygdala activity to positive emotional stimuli. Furthermore, MDD patients showed smaller hippocampal volumes compared to healthy adolescents. Higher levels of childhood maltreatment were associated with smaller hippocampal volumes in both depressed patients and healthy controls, whereby no associations between amygdala reactivity and childhood maltreatment were found. Our results suggest that hippocampal alterations in youth MDD patients may at least partly be traced back to higher occurrence of early-life adverse experiences. Regarding the strong morphometric impact of childhood maltreatment and its distinctly elevated prevalence in MDD populations, this study provides an alternative explanation for frequently observed limbic structural abnormalities in depressed patients.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Muenster, Albert-Schweitzer-Campus 1, A9, Muenster 48149, Germany, Tel: +49-251-8357214, Fax: +49-251-8358641, E-mail:
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christian Bürger
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Verena Enneking
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth Leehr
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Lena Winters
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Neele Froböse
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia Thrun
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Julia Emtmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Georg Romer
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany
| | - Christian Postert
- Department of Child and Adolescent Psychiatry, University of Münster, Münster, Germany,Department of Applied Health Sciences, University of Applied Sciences, Bochum, Germany
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Günther V, Ihme K, Kersting A, Hoffmann KT, Lobsien D, Suslow T. Volumetric Associations Between Amygdala, Nucleus Accumbens, and Socially Anxious Tendencies in Healthy Women. Neuroscience 2018; 374:25-32. [PMID: 29378282 DOI: 10.1016/j.neuroscience.2018.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Abstract
Socially anxious individuals report higher social fears and feelings of distress in interpersonal interactions. Structural neuroimaging studies indicate brain morphological abnormalities in patients with social anxiety disorder (SAD), but findings are heterogeneous and partially discrepant. Studies on structural correlates of socially anxious tendencies in participants without clinical diagnoses are scarce. Using structural magnetic resonance imaging, the present study examined the relationship between social interaction anxiety and gray matter (GM) volume in 38 healthy women. The amygdala and nucleus accumbens (NAcc) were defined as a priori regions of interest. Moreover, exploratory whole-brain analyses were conducted. Higher levels of social anxiety significantly predicted increased GM volume in the right amygdala [k = 262 voxels, voxel-level threshold at p < .05 (uncorrected), with a cluster-corrected significance level of p = 0.05 calculated by Monte Carlo Simulations] and bilateral NAcc [left: k = 52 voxels, right: k = 49 voxels; at p < .05 (corrected for search volume)]. These relationships remained significant when controlling for a potential influence of trait anxiety. Additionally, socially anxious tendencies were associated with an enlarged striatum [i.e., putamen and caudate; left: k = 567 voxels, right: k = 539 voxels; at p < .001 (uncorrected)]. Our findings indicate that higher social interaction anxiety in healthy individuals is related to amygdalar and striatal volumetric increases. These brain regions are known to be involved in social perception, anxiety, and the avoidance of harm. Future studies may clarify whether the observed morphological alterations constitute a structural vulnerability factor for SAD.
Collapse
Affiliation(s)
- Vivien Günther
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | - Klas Ihme
- Institute of Transportation Systems, German Aerospace Center, Braunschweig, Germany
| | - Anette Kersting
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany
| | | | - Donald Lobsien
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
20
|
Han KM, Won E, Kang J, Choi S, Kim A, Lee MS, Tae WS, Ham BJ. TESC gene-regulating genetic variant (rs7294919) affects hippocampal subfield volumes and parahippocampal cingulum white matter integrity in major depressive disorder. J Psychiatr Res 2017; 93:20-29. [PMID: 28575645 DOI: 10.1016/j.jpsychires.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 11/18/2022]
Abstract
Two recent genome-wide association studies have suggested that rs7294919 is associated with changes in hippocampal volume. rs7294919 regulates the transcriptional products of the TESC gene, which is involved in neuronal proliferation and differentiation. We investigated the interactive effect of rs7294919 and major depressive disorder (MDD) on the volume of the hippocampal subfields and the integrity of the parahippocampal cingulum (PHC). We also investigated the correlation of these structural changes with the DNA methylation status of rs7294919. A total of 105 patients with MDD and 85 healthy control subjects underwent T1-weighted structural magnetic resonance imaging and diffusion tensor imaging. The rs7294919 was genotyped and its DNA methylation status was assessed in all the participants. We analyzed the hippocampal subfield volumes and PHC integrity using FreeSurfer and the Tracts Constrained by Underlying Anatomy (TRACULA) respectively. Significant interactive effects of rs7294919 and MDD were observed in the volumes of the dentate gyrus and CA4. The patients with MDD had increased methylation in two of the three CpG loci of rs7294919, and the methylation of CpG3 was significantly correlated with right PHC integrity in the MDD group. Our results provide neurobiological evidence for the association of rs7294919 with brain structural changes in MDD.
Collapse
Affiliation(s)
- Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunsoo Won
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - June Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sunyoung Choi
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Min-Soo Lee
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Redlich R, Bürger C, Dohm K, Grotegerd D, Opel N, Zaremba D, Meinert S, Förster K, Repple J, Schnelle R, Wagenknecht C, Zavorotnyy M, Heindel W, Kugel H, Gerbaulet M, Alferink J, Arolt V, Zwanzger P, Dannlowski U. Effects of electroconvulsive therapy on amygdala function in major depression - a longitudinal functional magnetic resonance imaging study. Psychol Med 2017; 47:2166-2176. [PMID: 28397635 DOI: 10.1017/s0033291717000605] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depression. However, little is known regarding brain functional processes mediating ECT effects. METHOD In a non-randomized prospective study, functional magnetic resonance imaging data during the automatic processing of subliminally presented emotional faces were obtained twice, about 6 weeks apart, in patients with major depressive disorder (MDD) before and after treatment with ECT (ECT, n = 24). Additionally, a control sample of MDD patients treated solely with pharmacotherapy (MED, n = 23) and a healthy control sample (HC, n = 22) were obtained. RESULTS Before therapy, both patient groups equally showed elevated amygdala reactivity to sad faces compared with HC. After treatment, a decrease in amygdala activity to negative stimuli was discerned in both patient samples indicating a normalization of amygdala function, suggesting mechanisms potentially unspecific for ECT. Moreover, a decrease in amygdala activity to sad faces was associated with symptomatic improvements in the ECT sample (r spearman = -0.48, p = 0.044), and by tendency also for the MED sample (r spearman = -0.38, p = 0.098). However, we did not find any significant association between pre-treatment amygdala function to emotional stimuli and individual symptom improvement, neither for the ECT sample, nor for the MED sample. CONCLUSIONS In sum, the present study provides first results regarding functional changes in emotion processing due to ECT treatment using a longitudinal design, thus validating and extending our knowledge gained from previous treatment studies. A limitation was that ECT patients received concurrent medication treatment.
Collapse
Affiliation(s)
- R Redlich
- Department of Psychiatry,University of Münster,Münster,Germany
| | - C Bürger
- Department of Psychiatry,University of Münster,Münster,Germany
| | - K Dohm
- Department of Psychiatry,University of Münster,Münster,Germany
| | - D Grotegerd
- Department of Psychiatry,University of Münster,Münster,Germany
| | - N Opel
- Department of Psychiatry,University of Münster,Münster,Germany
| | - D Zaremba
- Department of Psychiatry,University of Münster,Münster,Germany
| | - S Meinert
- Department of Psychiatry,University of Münster,Münster,Germany
| | - K Förster
- Department of Psychiatry,University of Münster,Münster,Germany
| | - J Repple
- Department of Psychiatry,University of Münster,Münster,Germany
| | - R Schnelle
- Department of Psychiatry,University of Münster,Münster,Germany
| | - C Wagenknecht
- Department of Psychiatry,University of Münster,Münster,Germany
| | - M Zavorotnyy
- Department of Psychiatry,University of Marburg,Marburg,Germany
| | - W Heindel
- Department of Clinical Radiology,University of Münster,Münster,Germany
| | - H Kugel
- Department of Clinical Radiology,University of Münster,Münster,Germany
| | - M Gerbaulet
- Department of Psychiatry,University of Münster,Münster,Germany
| | - J Alferink
- Department of Psychiatry,University of Münster,Münster,Germany
| | - V Arolt
- Department of Psychiatry,University of Münster,Münster,Germany
| | - P Zwanzger
- Department of Psychiatry,University of Münster,Münster,Germany
| | - U Dannlowski
- Department of Psychiatry,University of Münster,Münster,Germany
| |
Collapse
|
22
|
Opel N, Redlich R, Grotegerd D, Dohm K, Zaremba D, Meinert S, Bürger C, Plümpe L, Alferink J, Heindel W, Kugel H, Zwanzger P, Arolt V, Dannlowski U. Prefrontal brain responsiveness to negative stimuli distinguishes familial risk for major depression from acute disorder. J Psychiatry Neurosci 2017; 42:343-352. [PMID: 28606245 PMCID: PMC5573576 DOI: 10.1503/jpn.160198] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Identifying reliable trait markers of familial risk for major depressive disorder (MDD) is a challenge in translational psychiatric research. In individuals with acute MDD, dysfunctional connectivity patterns of prefrontal areas have been shown repeatedly. However, it has been unclear in which neuronal networks functional alterations in individuals at familial risk for MDD might be present and to what extent they resemble findings previously reported in those with acute MDD. METHODS We investigated differences in blood oxygen level-dependent (BOLD) response of the medial orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) to aversive stimuli between acute MDD and familial risk for the disorder in healthy first-degree relatives of acutely depressed patients with MDD (HC-FH+), healthy age- and sex-matched controls without any family history of depression (HC-FH-), and acutely depressed patients with MDD with (MDD-FH+) and without a family history of depression (MDD-FH-) during a frequently used emotional face-matching paradigm. Analyses of task-specific network connectivity were conducted in terms of psychophysiological interactions (PPI). RESULTS The present analysis included a total of 100 participants: 25 HC-FH+, 25 HC-FH-, 25 MDD-FH+ and 25 MDD-FH-. Patients with MDD exhibited significantly increased activation in the medial OFC to negative stimuli irrespective of familial risk status, whereas healthy participants at familial risk and patients with MDD alike showed significant hypoactivation in the DLPFC compared with healthy participants without familial risk. The PPI analyses revealed significantly enhanced task-specific coupling between the medial OFC and differing cortical areas in individuals with acute MDD and those with familial risk for the disorder. LIMITATIONS The main limitation of our study is its cross-sectional design. CONCLUSION Whereas hypoactivation during negative emotion processing in the DLPFC appears as a common feature in both healthy high-risk individuals and acutely depressed patients, activation patterns of the medial OFC and its underlying connectivity seem to distinguish familial risk from acute disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Udo Dannlowski
- Correspondence to: U. Dannlowski, Department of Psychiatry, University of Münster, Albert-Schweitzer-Str. 11, 48149 Münster, Germany;
| |
Collapse
|
23
|
Bogdan R, Salmeron BJ, Carey CE, Agrawal A, Calhoun VD, Garavan H, Hariri AR, Heinz A, Hill MN, Holmes A, Kalin NH, Goldman D. Imaging Genetics and Genomics in Psychiatry: A Critical Review of Progress and Potential. Biol Psychiatry 2017; 82:165-175. [PMID: 28283186 PMCID: PMC5505787 DOI: 10.1016/j.biopsych.2016.12.030] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/17/2022]
Abstract
Imaging genetics and genomics research has begun to provide insight into the molecular and genetic architecture of neural phenotypes and the neural mechanisms through which genetic risk for psychopathology may emerge. As it approaches its third decade, imaging genetics is confronted by many challenges, including the proliferation of studies using small sample sizes and diverse designs, limited replication, problems with harmonization of neural phenotypes for meta-analysis, unclear mechanisms, and evidence that effect sizes may be more modest than originally posited, with increasing evidence of polygenicity. These concerns have encouraged the field to grow in many new directions, including the development of consortia and large-scale data collection projects and the use of novel methods (e.g., polygenic approaches, machine learning) that enhance the quality of imaging genetic studies but also introduce new challenges. We critically review progress in imaging genetics and offer suggestions and highlight potential pitfalls of novel approaches. Ultimately, the strength of imaging genetics and genomics lies in their translational and integrative potential with other research approaches (e.g., nonhuman animal models, psychiatric genetics, pharmacologic challenge) to elucidate brain-based pathways that give rise to the vast individual differences in behavior as well as risk for psychopathology.
Collapse
Affiliation(s)
- Ryan Bogdan
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri.
| | - Betty Jo Salmeron
- Neuroimaging Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland
| | - Caitlin E Carey
- BRAIN Lab, Department of Psychological and Brain Sciences, St. Louis, Missouri
| | - Arpana Agrawal
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, University of New Mexico, Albuquerque, New Mexico; Departments of Psychiatry and Neuroscience, University of New Mexico, Albuquerque, New Mexico; Electronic and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, North Carolina
| | - Andreas Heinz
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin; Neuroscience Training Program (NHK, RK, PHR, DPMT, MEE), University of Wisconsin, Madison, Wisconsin; Wisconsin National Primate Research Center (NHK, MEE), Madison, Wisconsin
| | - David Goldman
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| |
Collapse
|
24
|
Dohm K, Redlich R, Zwitserlood P, Dannlowski U. Trajectories of major depression disorders: A systematic review of longitudinal neuroimaging findings. Aust N Z J Psychiatry 2017; 51:441-454. [PMID: 27539592 DOI: 10.1177/0004867416661426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Structural and functional brain alterations in major depression disorder (MDD) are well studied in cross-sectional designs, but little is known about the causality between onset and course of depression on the one hand, and neurobiological changes over time on the other. To explore the direction of causality, longitudinal studies with a long time window (preferably years) are needed, but only few have been undertaken so far. This article reviews all prospective neuroimaging studies in MDD patients currently available and provides a critical discussion of methodological challenges involved in the investigation of the causal relationship between brain alterations and the course of MDD. METHOD We conducted a systematic review of studies published before September 2015, to identify structural magnetic resonance imaging (MRI) studies that assess the relation between neuronal alterations and MDD in longitudinal (⩾1 year) designs. RESULTS Only 15 studies meeting minimal standards were identified. An analysis of these longitudinal data showed a large heterogeneity between studies regarding design, samples, imaging methods, spatial restrictions and, consequently, results. There was a strong relationship between brain-volume outcomes and the current mood state, whereas longitudinal studies failed to clarify the influence of pre-existing brain changes on depressive outcome. CONCLUSION So far, available longitudinal studies cannot resolve the causality between the course of depression and neurobiological changes over time. Future studies should combine high methodological standards with large sample sizes. Cooperation in multi-center studies is indispensable to attain sufficient sample sizes, and should allow careful assessment of possible confounders.
Collapse
Affiliation(s)
- Katharina Dohm
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | - Ronny Redlich
- 1 Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Udo Dannlowski
- 1 Department of Psychiatry, University of Münster, Münster, Germany.,3 Department of Psychiatry, University of Marburg, Marburg, Germany
| |
Collapse
|
25
|
Opel N, Redlich R, Kaehler C, Grotegerd D, Dohm K, Heindel W, Kugel H, Thalamuthu A, Koutsouleris N, Arolt V, Teuber A, Wersching H, Baune BT, Berger K, Dannlowski U. Prefrontal gray matter volume mediates genetic risks for obesity. Mol Psychiatry 2017; 22:703-710. [PMID: 28348383 DOI: 10.1038/mp.2017.51] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/18/2022]
Abstract
Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.
Collapse
Affiliation(s)
- N Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - C Kaehler
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Mathematics and Computer Science, University of Münster, Münster, Germany
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster, Germany
| | - K Dohm
- Department of Psychiatry, University of Münster, Münster, Germany
| | - W Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - A Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - N Koutsouleris
- Department of Psychiatry, University of Munich, Munich, Germany
| | - V Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - A Teuber
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - H Wersching
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - K Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
26
|
Takamatsu G, Katagiri C, Tomoyuki T, Shimizu-Okabe C, Nakamura W, Nakamura-Higa M, Hayakawa T, Wakabayashi S, Kondo T, Takayama C, Matsushita M. Tescalcin is a potential target of class I histone deacetylase inhibitors in neurons. Biochem Biophys Res Commun 2016; 482:1327-1333. [PMID: 27939885 DOI: 10.1016/j.bbrc.2016.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
Class I histone deacetylase (HDAC) inhibitors are believed to have positive effects on neurite outgrowth, synaptic plasticity, and neurogenesis in adult brain. However, the downstream molecular targets of class I HDAC inhibitors in neurons are not clear. Although class I HDAC inhibitors are thought to broadly promote transcription of many neuronal genes through enhancement of histone acetylation, the affected gene set may include unidentified genes that are essential for neuronal survival and function. To identify novel genes that are targets of class I HDAC inhibitors, we used a microarray to screen transcripts from neuronal cultures and evaluated changes in protein and mRNA expression following treatment with four HDAC inhibitors. We identified tescalcin (Tesc) as the most strongly up-regulated gene following treatment with class I HDAC inhibitors in neurons. Moreover, hippocampal neurons overexpressing TESC showed a greater than 5-fold increase in the total length of neurites and number of branch points compared with controls. These findings highlight a potentially important role for TESC in mediating the neuroprotective effect of class I HDAC inhibitors. TESC may also be involved in the development of brain and neurodegenerative diseases through epigenetic mechanisms.
Collapse
Affiliation(s)
- Gakuya Takamatsu
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chiaki Katagiri
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan; Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tsumuraya Tomoyuki
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Wakako Nakamura
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Mariko Nakamura-Higa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Tomoko Hayakawa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, 569-8686 Osaka, Japan
| | - Tsuyoshi Kondo
- Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, 903-0215 Okinawa, Japan.
| |
Collapse
|
27
|
Stacey D, Redlich R, Büschel A, Opel N, Grotegerd D, Zaremba D, Dohm K, Bürger C, Meinert SL, Förster K, Repple J, Kaufmann C, Kugel H, Heindel W, Arolt V, Dannlowski U, Baune BT. TNF receptors 1 and 2 exert distinct region-specific effects on striatal and hippocampal grey matter volumes (VBM) in healthy adults. GENES BRAIN AND BEHAVIOR 2016; 16:352-360. [PMID: 27528091 DOI: 10.1111/gbb.12318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022]
Abstract
Tumour necrosis factor alpha (TNFα) has been implicated in the pathophysiology of neurodegenerative and neuropsychiatric disease, with research highlighting a role for TNFα in hippocampal and striatal regulation. TNFα signals are primarily transduced by TNF receptors 1 and 2 (TNFR1 and TNFR2), encoded by TNFRSF1A and TNFRSF1B, which exert opposing effects on cell survival (TNFR1, neurodegenerative; TNFR2, neuroprotective). We therefore sought to explore the respective roles of TNFR1 and TNFR2 in the regulation of hippocampal and striatal morphology in an imaging genetics study. Voxel-based morphometry was used to analyse the associations between TNFRSF1A (rs4149576 and rs4149577) and TNFRSF1B (rs1061624) genotypes and grey matter structure. The final samples comprised a total of 505 subjects (mean age = 33.29, SD = 11.55 years; 285 females and 220 males) for morphometric analyses of rs1061624 and rs4149576, and 493 subjects for rs4149577 (mean age = 33.20, SD = 11.56 years; 281 females and 212 males). Analyses of TNFRSF1A single nucleotide polymorphisms (SNPs) rs4149576 and rs4149577 showed highly significant genotypic associations with striatal volume but not the hippocampus. Specifically, for rs4149576, G homozygotes were associated with reduced caudate nucleus volumes relative to A homozygotes and heterozygotes, whereas for rs4149577, reduced caudate volumes were observed in C homozygotes relative to T homozygotes and heterozygotes. Analysis of the TNFRSF1B SNP rs1061624 yielded a significant association with hippocampal but not with striatal volume, whereby G homozygotes were associated with increased volumes relative to A homozygotes and heterozygotes. Our findings indicate a role for TNFR1 in regulating striatal but not hippocampal morphology, as well as a complementary role for TNFR2 in hippocampal but not in striatal morphology.
Collapse
Affiliation(s)
- D Stacey
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - R Redlich
- Department of Psychiatry, University of Münster, Münster
| | - A Büschel
- Department of Psychiatry, University of Münster, Münster
| | - N Opel
- Department of Psychiatry, University of Münster, Münster
| | - D Grotegerd
- Department of Psychiatry, University of Münster, Münster
| | - D Zaremba
- Department of Psychiatry, University of Münster, Münster
| | - K Dohm
- Department of Psychiatry, University of Münster, Münster
| | - C Bürger
- Department of Psychiatry, University of Münster, Münster
| | - S L Meinert
- Department of Psychiatry, University of Münster, Münster
| | - K Förster
- Department of Psychiatry, University of Münster, Münster
| | - J Repple
- Department of Psychiatry, University of Münster, Münster
| | - C Kaufmann
- Department of Psychiatry, University of Münster, Münster
| | - H Kugel
- Department of Clinical Radiology, University of Münster, Münster
| | - W Heindel
- Department of Clinical Radiology, University of Münster, Münster
| | - V Arolt
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - U Dannlowski
- Department of Psychiatry, University of Münster, Münster.,Department of Psychiatry, University of Marburg, Marburg, Germany
| | - B T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
28
|
Kolobynina KG, Solovyova VV, Levay K, Rizvanov AA, Slepak VZ. Emerging roles of the single EF-hand Ca2+ sensor tescalcin in the regulation of gene expression, cell growth and differentiation. J Cell Sci 2016; 129:3533-3540. [PMID: 27609838 DOI: 10.1242/jcs.191486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Tescalcin (TESC, also known as calcineurin-homologous protein 3, CHP3) is a 24-kDa EF-hand Ca2+-binding protein that has recently emerged as a regulator of cell differentiation and growth. The TESC gene has also been linked to human brain abnormalities, and high expression of tescalcin has been found in several cancers. The expression level of tescalcin changes dramatically during development and upon signal-induced cell differentiation. Recent studies have shown that tescalcin is not only subjected to up- or down-regulation, but also has an active role in pathways that drive cell growth and differentiation programs. At the molecular level, there is compelling experimental evidence showing that tescalcin can directly interact with and regulate the activities of the Na+/H+ exchanger NHE1, subunit 4 of the COP9 signalosome (CSN4) and protein kinase glycogen-synthase kinase 3 (GSK3). In hematopoetic precursor cells, tescalcin has been shown to couple activation of the extracellular signal-regulated kinase (ERK) cascade to the expression of transcription factors that control cell differentiation. The purpose of this Commentary is to summarize recent efforts that have served to characterize the biochemical, genetic and physiological attributes of tescalcin, and its unique role in the regulation of various cellular functions.
Collapse
Affiliation(s)
- Ksenia G Kolobynina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Valeria V Solovyova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Konstantin Levay
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, 420000, Russian Federation
| | - Vladlen Z Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
29
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Opel N, Dohm K, Zaremba D, Grögler A, Schwieren J, Suslow T, Ohrmann P, Bauer J, Krug A, Kircher T, Jansen A, Domschke K, Hohoff C, Zwitserlood P, Heinrichs M, Arolt V, Heindel W, Baune BT. Disadvantage of Social Sensitivity: Interaction of Oxytocin Receptor Genotype and Child Maltreatment on Brain Structure. Biol Psychiatry 2016; 80:398-405. [PMID: 26858213 DOI: 10.1016/j.biopsych.2015.12.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/17/2015] [Accepted: 12/10/2015] [Indexed: 01/20/2023]
Abstract
BACKGROUND Oxytocin has received much attention as a prosocial and anxiolytic neuropeptide. In human studies, the G-allele of a common variant (rs53576) in the oxytocin receptor gene (OXTR) has been associated with protective properties such as reduced stress response and higher receptiveness for social support. In contrast, recent studies suggest a detrimental role of the rs53576 G-allele in the context of childhood maltreatment. To further elucidate the role of OXTR, gene by maltreatment interactions on brain structure and function were investigated. METHODS Three hundred nine healthy participants genotyped for OXTR rs53576 underwent structural as well as functional magnetic resonance imaging during a common emotional face-matching task. Childhood maltreatment was assessed with the Childhood Trauma Questionnaire (CTQ). Gray matter volumes were investigated by means of voxel-based morphometry across the entire brain. RESULTS Structural magnetic resonance imaging data revealed a strong interaction of rs53576 genotype and CTQ scores, mapping specifically to the bilateral ventral striatum. GG homozygotes but not A-allele carriers showed strong gray matter reduction with increasing CTQ scores. In turn, lower ventral striatum gray matter volumes were associated with lower reward dependence, a prosocial trait. Furthermore, the G-allele was associated with increased amygdala responsiveness to emotional facial expressions. CONCLUSIONS The findings suggest that the G-allele constitutes a vulnerability factor for specific alterations of limbic brain structure in individuals with adverse childhood experiences, complemented by increased limbic responsiveness to emotional interpersonal stimuli. While oxytocinergic signaling facilitates attachment and bonding in supportive social environments, this attunement for social cues may turn disadvantageous under early adverse conditions.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster; Department of Psychiatry, University of Marburg, Marburg.
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster
| | - Katharina Dohm
- Department of Psychiatry, University of Münster, Münster
| | - Dario Zaremba
- Department of Psychiatry, University of Münster, Münster
| | - Anne Grögler
- Department of Psychiatry, University of Münster, Münster
| | | | - Thomas Suslow
- Department of Psychosomatics and Psychotherapy, University of Leipzig, Leipzig
| | | | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg
| | | | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster
| | | | - Markus Heinrichs
- Department of Psychology, University Medical Center, University of Freiburg, Freiburg, Germany; Freiburg Brain Imaging Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
30
|
Lindgren L, Bergdahl J, Nyberg L. Longitudinal Evidence for Smaller Hippocampus Volume as a Vulnerability Factor for Perceived Stress. Cereb Cortex 2016; 26:3527-33. [PMID: 27230217 PMCID: PMC4961026 DOI: 10.1093/cercor/bhw154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hippocampal volume has been found to be smaller in individuals with stress-related disorders, but it remains unclear whether smaller volume is a consequence of stress or rather a vulnerability factor. Here, we examined this issue by relating stress levels to hippocampal volumes in healthy participants examined every 5 years in a longitudinal population-based study. Based on scores of 25- to 60-year–old participants on the perceived stress questionnaire, we defined moderately to high (n = 35) and low (n = 76) stress groups. The groups were re-examined after 5 years (at the 6th study wave). Historical data on subjective stress were available up to 10 years prior to Wave 5. At the first MRI session, the moderately to high stress group had a significantly smaller hippocampal volume, as measured by FreeSurfer (version 5.3), compared with the low-stress group. At follow-up, group differences in stress levels and hippocampal volume remained unchanged. In retrospective analyses of subjective stress, the observed group difference in stress was found to be stable. The long-term stability of group differences in perceived stress and hippocampal volume suggests that a small hippocampal volume may be a vulnerability factor for stress-related disorders.
Collapse
Affiliation(s)
- Lenita Lindgren
- From the Department of Nursing Department of Surgical and Perioperative Science Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Jan Bergdahl
- Department of Psychology Department of Clinical Dentistry, Faculty of Health Sciences, UIT - The Arctic University of Norway, Tromsø, Norway
| | - Lars Nyberg
- Department of Integrative Medical Biology Department of Radiation Sciences and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Won E, Ham BJ. Imaging genetics studies on monoaminergic genes in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:311-9. [PMID: 25828849 DOI: 10.1016/j.pnpbp.2015.03.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 12/28/2022]
Abstract
Although depression is the leading cause of disability worldwide, current understanding of the neurobiology of depression has failed to be translated into clinical practice. Major depressive disorder (MDD) pathogenesis is considered to be significantly influenced by multiple risk genes, however genetic effects are not simply expressed at a behavioral level. Therefore the concept of endophenotype has been applied in psychiatric genetics. Imaging genetics applies anatomical or functional imaging technologies as phenotypic assays to evaluate genetic variation and their impact on behavior. This paper attempts to provide a comprehensive review of available imaging genetics studies, including reports on genetic variants that have most frequently been linked to MDD, such as the monoaminergic genes (serotonin transporter gene, monoamine oxidase A gene, tryptophan hydroxylase-2 gene, serotonin receptor 1A gene and catechol-O-methyl transferase gene), with regard to key structures involved in emotion processing, such as the hippocampus, amygdala, anterior cingulate cortex and orbitofrontal cortex.
Collapse
Affiliation(s)
- Eunsoo Won
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Opel N, Zwanzger P, Redlich R, Grotegerd D, Dohm K, Arolt V, Heindel W, Kugel H, Dannlowski U. Differing brain structural correlates of familial and environmental risk for major depressive disorder revealed by a combined VBM/pattern recognition approach. Psychol Med 2016; 46:277-290. [PMID: 26355299 DOI: 10.1017/s0033291715001683] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroimaging traits of either familial or environmental risk for major depressive disorder (MDD) have been interpreted as possibly useful vulnerability markers. However, the simultaneous occurrence of familial and environmental risk might prove to be a major obstacle in the attempt of recent studies to confine the precise impact of each of these conditions on brain structure. Moreover, the exclusive use of group-level analyses does not permit prediction of individual illness risk which would be the basic requirement for the clinical application of imaging vulnerability markers. Hence, we aimed to distinguish between brain structural characteristics of familial predisposition and environmental stress by using both group- and individual-level analyses. METHOD We investigated grey matter alterations between 20 healthy control subjects (HC) and 20 MDD patients; 16 healthy first-degree relatives of MDD patients (FH+) and 20 healthy subjects exposed to former childhood maltreatment (CM+) by using a combined VBM/pattern recognition approach. RESULTS We found similar grey matter reductions in the insula and the orbitofrontal cortex in patients and FH+ subjects and in the hippocampus in patients and CM+ subjects. No direct overlap in grey matter alterations was found between FH+ and CM+ subjects. Pattern classification successfully detected subjects at risk for the disease even by strictly focusing on morphological traits of MDD. CONCLUSIONS Familial and environmental risk factors for MDD are associated with differing morphometric anomalies. Pattern recognition might be a promising instrument in the search for and future application of vulnerability markers for MDD.
Collapse
Affiliation(s)
- N Opel
- Department of Psychiatry,University of Münster,Münster,Germany
| | - P Zwanzger
- Department of Psychiatry,University of Münster,Münster,Germany
| | - R Redlich
- Department of Psychiatry,University of Münster,Münster,Germany
| | - D Grotegerd
- Department of Psychiatry,University of Münster,Münster,Germany
| | - K Dohm
- Department of Psychiatry,University of Münster,Münster,Germany
| | - V Arolt
- Department of Psychiatry,University of Münster,Münster,Germany
| | - W Heindel
- Department of Clinical Radiology,University of Münster,Münster,Germany
| | - H Kugel
- Department of Clinical Radiology,University of Münster,Münster,Germany
| | - U Dannlowski
- Department of Psychiatry,University of Münster,Münster,Germany
| |
Collapse
|
33
|
Dannlowski U, Kugel H, Grotegerd D, Redlich R, Suchy J, Opel N, Suslow T, Konrad C, Ohrmann P, Bauer J, Kircher T, Krug A, Jansen A, Baune BT, Heindel W, Domschke K, Forstner AJ, Nöthen MM, Treutlein J, Arolt V, Hohoff C, Rietschel M, Witt SH. NCAN Cross-Disorder Risk Variant Is Associated With Limbic Gray Matter Deficits in Healthy Subjects and Major Depression. Neuropsychopharmacology 2015; 40:2510-6. [PMID: 25801500 PMCID: PMC4569958 DOI: 10.1038/npp.2015.86] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/03/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies have reported an association between NCAN rs1064395 genotype and bipolar disorder. This association was later extended to schizophrenia and major depression. However, the neurobiological underpinnings of these associations are poorly understood. NCAN is implicated in neuronal plasticity and expressed in subcortical brain areas, such as the amygdala and hippocampus, which are critically involved in dysfunctional emotion processing and regulation across diagnostic boundaries. We hypothesized that the NCAN risk variant is associated with reduced gray matter volumes in these areas. Gray matter structure was assessed by voxel-based morphometry on structural MRI data in two independent German samples (healthy subjects, n=512; depressed inpatients, n=171). All participants were genotyped for NCAN rs1064395. Hippocampal and amygdala region-of-interest analyses were performed within each sample. In addition, whole-brain data from the combined sample were analyzed. Risk (A)-allele carriers showed reduced amygdala and hippocampal gray matter volumes in both cohorts with a remarkable spatial overlap. In the combined sample, genotype effects observed for the amygdala and hippocampus survived correction for entire brain volume. Further effects were also observed in the left orbitofrontal cortex and the cerebellum/fusiform gyrus. We conclude that NCAN genotype is associated with limbic gray matter alterations in healthy and depressed subjects in brain areas implicated in emotion perception and regulation. The present data suggest that NCAN forms susceptibility to neurostructural deficits in the amygdala, hippocampus, and prefrontal areas independent of disease, which might lead to disorder onset in the presence of other genetic or environmental risk factors.
Collapse
Affiliation(s)
- Udo Dannlowski
- Department of Psychiatry, University of Marburg, Marburg, Germany,Department of Psychiatry, University of Münster, Münster, Germany,Department of Psychiatry, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany, Tel: +49 251 8357218, Fax: +49 251 8356612, E-mail:
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Janina Suchy
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Thomas Suslow
- Department of Psychosomatic Medicine, University of Leipzig, Leipzig, Germany
| | - Carsten Konrad
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Patricia Ohrmann
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | | | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany,Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Christa Hohoff
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| |
Collapse
|
34
|
Reward Processing in Unipolar and Bipolar Depression: A Functional MRI Study. Neuropsychopharmacology 2015; 40:2623-31. [PMID: 25881114 PMCID: PMC4569953 DOI: 10.1038/npp.2015.110] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Abstract
Differentiating bipolar disorders (BD) from unipolar depression (UD) remains a major clinical challenge. The identification of neurobiological markers may help to differentiate these disorders, particularly during depressive episodes. This cross-sectional study, including 33 patients with UD, 33 patients with BD, and 34 healthy controls, is one of the first to directly compare UD and BD with respect to reward processing. A card-guessing paradigm was employed and brain activity associated with reward processing was investigated by means of fMRI. A 3 (group) × 2 (condition: reward>control, loss>control) ANOVA was conducted using the nucleus accumbens (NAcc) as ROI. Furthermore, a whole-brain approach was applied. A functional connectivity analysis was performed to characterize diagnosis-related alterations in the functional coupling between the NAcc and other brain areas. The ANOVA revealed higher activity for healthy controls (HCs) than for BD and UD in the NAcc during reward processing. Moreover, UD showed a higher functional connectivity between the NAcc and the VTA than HC. The patients groups could be differentiated in that BD showed a decreased activation, in the reward condition, of the NAcc, caudate nucleus, thalamus, putamen, insula, and prefrontal areas compared with UD. These results may help to refine the understanding of neural correlates of reward processing in both disorders, and to understand the neural underpinnings of anhedonia, a core symptom of depressive episodes.
Collapse
|
35
|
Foster PP. Role of physical and mental training in brain network configuration. Front Aging Neurosci 2015; 7:117. [PMID: 26157387 PMCID: PMC4477154 DOI: 10.3389/fnagi.2015.00117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/01/2015] [Indexed: 01/21/2023] Open
Abstract
It is hypothesized that the topology of brain networks is constructed by connecting nodes which may be continuously remodeled by appropriate training. Efficiency of physical and/or mental training on the brain relies on the flexibility of networks' architecture molded by local remodeling of proteins and synapses of excitatory neurons producing transformations in network topology. Continuous remodeling of proteins of excitatory neurons is fine-tuning the scaling and strength of excitatory synapses up or down via regulation of intra-cellular metabolic and regulatory networks of the genome-transcriptome-proteome interface. Alzheimer's disease is a model of “energy cost-driven small-world network disorder” with dysfunction of high-energy cost wiring as the network global efficiency is impaired by the deposition of an informed agent, the amyloid-β, selectively targeting high-degree nodes. In schizophrenia, the interconnectivity and density of rich-club networks are significantly reduced. Training-induced homeostatic synaptogenesis-enhancement, presumably via reconfiguration of brain networks into greater small-worldness, appears essential in learning, memory, and executive functions. A macroscopic cartography of creation-removal of synaptic connections in a macro-network, and at the intra-cellular scale, micro-networks regulate the physiological mechanisms for the preferential attachment of synapses. The strongest molecular relationship of exercise and functional connectivity was identified for brain-derived neurotrophic factor (BDNF). The allele variant, rs7294919, also shows a powerful relationship with the hippocampal volume. How the brain achieves this unique quest of reconfiguration remains a puzzle. What are the underlying mechanisms of synaptogenesis promoting communications brain ↔ muscle and brain ↔ brain in such trainings? What is the respective role of independent mental, physical, or combined-mental-physical trainings? Physical practice seems to be playing an instrumental role in the cognitive enhancement (brain ↔ muscle com.). However, mental training, meditation or virtual reality (films, games) require only minimal motor activity and cardio-respiratory stimulation. Therefore, other potential paths (brain ↔ brain com.) molding brain networks are nonetheless essential. Patients with motor neuron disease/injury (e.g., amyotrophic lateral sclerosis, traumatism) also achieve successful cognitive enhancement albeit they may only elicit mental practice.
Collapse
Affiliation(s)
- Philip P Foster
- Department of Nano Medicine and Biomedical Engineering, The Brown Foundation, Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston - Medical School Houston, TX, USA ; Pulmonary, Sleep and Critical Care Medicine, Department of Internal Medicine, The University of Texas Health Science Center at Houston - Medical School Houston, TX, USA
| |
Collapse
|
36
|
Daskalakis NP, Binder EB. Schizophrenia in the spectrum of gene-stress interactions: the FKBP5 example. Schizophr Bull 2015; 41:323-9. [PMID: 25592294 PMCID: PMC4332957 DOI: 10.1093/schbul/sbu189] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many studies have demonstrated that genotype (G) interacts with adverse life experiences (E) to produce individual differences in vulnerability and resilience to mental disorders, including schizophrenia. Genetic susceptibility to stress and the timing of the environmental exposure(s) are relevant for these interactions and represent common risk factors. We take the example of the FKBP5 gene to illustrate G × E interactions that predict pleiotropic psychiatric outcomes, including schizophrenia.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY;,Mental Health Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY;,*To whom correspondence should be addressed; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, US; tel: +1-212-241-0250, fax: +1-212-828-4221, e-mail:
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany;,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
37
|
Opel N, Redlich R, Grotegerd D, Dohm K, Haupenthal C, Heindel W, Kugel H, Arolt V, Dannlowski U. Enhanced neural responsiveness to reward associated with obesity in the absence of food-related stimuli. Hum Brain Mapp 2015; 36:2330-7. [PMID: 25704752 DOI: 10.1002/hbm.22773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Obesity has been characterized by alterations in brain structure and function associated with emotion processing and regulation. Particularly, aberrations in food-related reward processing have been frequently demonstrated in obese subjects. However, it remains unclear whether reward-associated functional aberrations in obesity are specific for food-related stimuli or represent a general deficit in reward processing, extending to other stimulus domains. Given the crucial role of rewarding effects in the development of obesity and the ongoing discussion on overlapping neurobiological traits of obesity and psychiatric disorders such as depression and substance-related disorders, this study aimed to investigate the possibility of altered reward processing in obese subjects to occur in the absence of food-related stimuli during a monetary reward condition. METHODS Twenty-nine healthy obese subjects (body mass index >30) and 29 healthy, age-, and sex-matched control subjects of normal weight underwent functional MRI during a frequently used card guessing paradigm. A Group × Condition (win vs. loss) ANOVA was conducted to investigate differences between obese and normal-weight subjects. RESULTS We found significant Group × Condition interaction effects in brain areas involved in emotion regulation and reward processing including the insula, the striatum, and the orbitofrontal cortex (OFC). This interaction was predominantly driven by a significant increase in blood oxygenation level dependent (BOLD) response in obese individuals while experiencing reward. CONCLUSIONS Enhanced neural activation in obesity during reward processing seems to be apparent even in the absence of food-related stimuli and, thus, might point to generalized dysfunctions in reward-related brain circuits in obese individuals.
Collapse
Affiliation(s)
- Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Redlich R, Almeida JJR, Grotegerd D, Opel N, Kugel H, Heindel W, Arolt V, Phillips ML, Dannlowski U. Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 2014; 71:1222-30. [PMID: 25188810 PMCID: PMC5538312 DOI: 10.1001/jamapsychiatry.2014.1100] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IMPORTANCE The structural abnormalities in the brain that accurately differentiate unipolar depression (UD) and bipolar depression (BD) remain unidentified. OBJECTIVES First, to investigate and compare morphometric changes in UD and BD, and to replicate the findings at 2 independent neuroimaging sites; second, to differentiate UD and BD using multivariate pattern classification techniques. DESIGN, SETTING, AND PARTICIPANTS In a 2-center cross-sectional study, structural gray matter data were obtained at 2 independent sites (Pittsburgh, Pennsylvania, and Münster, Germany) using 3-T magnetic resonance imaging. Voxel-based morphometry was used to compare local gray and white matter volumes, and a novel pattern classification approach was used to discriminate between UD and BD, while training the classifier at one imaging site and testing in an independent sample at the other site. The Pittsburgh sample of participants was recruited from the Western Psychiatric Institute and Clinic at the University of Pittsburgh from 2008 to 2012. The Münster sample was recruited from the Department of Psychiatry at the University of Münster from 2010 to 2012. Equally divided between the 2 sites were 58 currently depressed patients with bipolar I disorder, 58 age- and sex-matched unipolar depressed patients, and 58 matched healthy controls. MAIN OUTCOMES AND MEASURES Magnetic resonance imaging was used to detect structural differences between groups. Morphometric analyses were applied using voxel-based morphometry. Pattern classification techniques were used for a multivariate approach. RESULTS At both sites, individuals with BD showed reduced gray matter volumes in the hippocampal formation and the amygdala relative to individuals with UD (Montreal Neurological Institute coordinates x = -22, y = -1, z = 20; k = 1938 voxels; t = 4.75), whereas individuals with UD showed reduced gray matter volumes in the anterior cingulate gyrus compared with individuals with BD (Montreal Neurological Institute coordinates x = -8, y = 32, z = 3; k = 979 voxels; t = 6.37; all corrected P < .05). Reductions in white matter volume within the cerebellum and hippocampus were found in individuals with BD. Pattern classification yielded up to 79.3% accuracy (P < .001) by differentiating the 2 depressed groups, training and testing the classifier at one site, and up to 69.0% accuracy (P < .001), training the classifier at one imaging site (Pittsburgh) and testing it at the other independent sample (Münster). Medication load did not alter the pattern of results. CONCLUSIONS AND RELEVANCE Individuals with UD and those with BD are differentiated by structural abnormalities in neural regions supporting emotion processing. Neuroimaging and multivariate pattern classification techniques are promising tools to differentiate UD from BD and show promise as future diagnostic aids.
Collapse
Affiliation(s)
- Ronny Redlich
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Jorge J. R. Almeida
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | | | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Walter Heindel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany4Department of Psychiatry, University of Marburg, Marburg, Germany
| |
Collapse
|