1
|
Islam MR, Rabbi MA, Hossain T, Sultana S, Uddin S. Mechanistic Approach to Immunity and Immunotherapy of Alzheimer's Disease: A Review. ACS Chem Neurosci 2024. [PMID: 39173186 DOI: 10.1021/acschemneuro.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative condition characterized by progressive cognitive decline and memory loss, affecting millions of people worldwide. Traditional treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, offer limited symptomatic relief without addressing the underlying disease mechanisms. These limitations have driven the development of more potent and effective therapies. Recent advances in immunotherapy present promising avenues for AD treatment. Immunotherapy strategies, including both active and passive approaches, harness the immune system to target and mitigate AD-related pathology. Active immunotherapy stimulates the patient's immune response to produce antibodies against AD-specific antigens, while passive immunotherapy involves administering preformed antibodies or immune cells that specifically target amyloid-β (Aβ) or tau proteins. Monoclonal antibodies, such as aducanumab and lecanemab, have shown potential in reducing Aβ plaques and slowing cognitive decline in clinical trials, despite challenges related to adverse immune responses and the need for precise targeting. This comprehensive review explores the role of the immune system in AD, evaluates the current successes and limitations of immunotherapeutic approaches, and discusses future directions for enhancing the treatment efficacy.
Collapse
Affiliation(s)
- Md Rubiath Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Md Afser Rabbi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Tanbir Hossain
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Sadia Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Shihab Uddin
- Department of Bioengineering, King Fahad University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
- Interdisciplinary Research Center for Bio Systems and Machines, King Fahad University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
| |
Collapse
|
2
|
Singh A, Ansari VA, Mahmood T, Hasan SM, Wasim R, Maheshwari S, Akhtar J, Sheikh S, Vishwakarma VK. Targeting Abnormal Tau Phosphorylation for Alzheimer's Therapeutics. Horm Metab Res 2024; 56:482-488. [PMID: 38350636 DOI: 10.1055/a-2238-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Alzheimer's disease (AD) is a widespread neurodegenerative disorder characterized by progressive memory and cognitive decline, posing a formidable public health challenge. This review explores the intricate interplay between two pivotal players in AD pathogenesis: β-amyloid (Aβ) and tau protein. While the amyloid cascade theory has long dominated AD research, recent developments have ignited debates about its centrality. Aβ plaques and tau NFTs are hallmark pathologies in AD. Aducanumab and lecanemab, monoclonal antibodies targeting Aβ, have been approved, albeit amidst controversy, raising questions about the therapeutic efficacy of Aβ-focused interventions. On the other hand, tau, specifically its hyperphosphorylation, disrupts microtubule stability and contributes to neuronal dysfunction. Various post-translational modifications of tau drive its aggregation into NFTs. Emerging treatments targeting tau, such as GSK-3β and CDK5 inhibitors, have shown promise in preclinical and clinical studies. Restoring the equilibrium between protein kinases and phosphatases, notably protein phosphatase-2A (PP2A), is a promising avenue for AD therapy, as tau is primarily regulated by its phosphorylation state. Activation of tau-specific phosphatases offers potential for mitigating tau pathology. The evolving landscape of AD drug development emphasizes tau-centric therapies and reevaluation of the amyloid cascade hypothesis. Additionally, exploring the role of neuroinflammation and its interaction with tau pathology present promising research directions.
Collapse
Affiliation(s)
- Aditya Singh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | | | | | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Suvaiv Sheikh
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | |
Collapse
|
3
|
Arrotta K, Ferguson L, Thompson N, Smuk V, Najm IM, Leu C, Lal D, Busch RM. Polygenic burden and its association with baseline cognitive function and postoperative cognitive outcome in temporal lobe epilepsy. Epilepsy Behav 2024; 153:109692. [PMID: 38394790 DOI: 10.1016/j.yebeh.2024.109692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Demographic and disease factors are associated with cognitive deficits and postoperative cognitive declines in adults with pharmacoresistant temporal lobe epilepsy (TLE), but the role of genetic factors in cognition in TLE is not well understood. Polygenic scores (PGS) for neurological and neuropsychiatric disorders and IQ have been associated with cognition in patient and healthy populations. In this exploratory study, we examined the relationship between PGS for Alzheimer's disease (AD), depression, and IQ and cognitive outcomes in adults with TLE. METHODS 202 adults with pharmacoresistant TLE had genotyping and completed neuropsychological evaluations as part of a presurgical work-up. A subset (n = 116) underwent temporal lobe resection and returned for postoperative cognitive testing. Logistic regression was used to determine if PGS for AD, depression, and IQ predicted baseline domain-specific cognitive function and cognitive phenotypes as well as postoperative language and memory decline. RESULTS No significant findings survived correction for multiple comparisons. Prior to correction, higher PGS for AD and depression (i.e., increased genetic risk for the disorder), but lower PGS for IQ (i.e., decreased genetic likelihood of high IQ) appeared possibly associated with baseline cognitive impairment in TLE. In comparison, higher PGS for AD and IQ appeared as possible risk factors for cognitive decline following temporal lobectomy, while the possible relationship between PGS for depression and post-operative cognitive outcome was mixed. SIGNIFICANCE We did not observe any relationships of large effect between PGS and cognitive function or postsurgical outcome; however, results highlight several promising trends in the data that warrant future investigation in larger samples better powered to detect small genetic effects.
Collapse
Affiliation(s)
- Kayela Arrotta
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Lisa Ferguson
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Nicolas Thompson
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Victoria Smuk
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Imad M Najm
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK.
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA, USA.
| | - Robyn M Busch
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Departments of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
4
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
5
|
Maheshwari S, Singh A, Ansari VA, Mahmood T, Wasim R, Akhtar J, Verma A. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res Rev 2024; 94:102193. [PMID: 38215913 DOI: 10.1016/j.arr.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The field of dementia research has witnessed significant developments in our understanding of neurodegenerative disorders, with a particular focus on Alzheimer's disease (AD) and Frontotemporal Dementia (FTD). Dementia, a collection of symptoms arising from the degeneration of brain cells, presents a significant healthcare challenge, especially as its prevalence escalates with age. This abstract delves into the complexities of these disorders, the role of biomarkers in their diagnosis and monitoring, as well as emerging neurophysiological insights. In the context of AD, anti-amyloid therapy has gained prominence, aiming to reduce the accumulation of amyloid-beta (Aβ) plaques in the brain, a hallmark of the disease. Notably, Leqembi recently received full FDA approval, marking a significant breakthrough in AD treatment. Additionally, ongoing phase 3 clinical trials are investigating novel therapies, including Masitinib and NE3107, focusing on cognitive and functional improvements in AD patients. In the realm of FTD, research has unveiled distinct neuropathological features, including the involvement of proteins like TDP-43 and progranulin, providing valuable insights into the diagnosis and management of this heterogeneous condition. Biomarkers, including neurofilaments and various tau fragments, have shown promise in enhancing diagnostic accuracy. Neurophysiological techniques, such as transcranial magnetic stimulation (TMS), have contributed to our understanding of AD and FTD. TMS has uncovered unique neurophysiological signatures, highlighting impaired plasticity, hyperexcitability, and altered connectivity in AD, while FTD displays differences in neurotransmitter systems, particularly GABAergic and glutamatergic circuits. Lastly, ongoing clinical trials in anti-amyloid therapy for AD, such as Simufilam, Solanezumab, Gantenerumab, and Remternetug, offer hope for individuals affected by this devastating disease, with the potential to alter the course of cognitive decline. These advancements collectively illuminate the evolving landscape of dementia research and the pursuit of effective treatments for these challenging conditions.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences Rama University Mandhana, Bithoor Road, Kanpur, Uttar Pradesh 209217, India; Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| | - Aditya Singh
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Vaseem Ahamad Ansari
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Tarique Mahmood
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Rufaida Wasim
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Juber Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, Integral University, Lucknow 226026, India.
| | - Amita Verma
- Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 21107, U.P., India.
| |
Collapse
|
6
|
Suh EH, Lee G, Jung SH, Wen Z, Bao J, Nho K, Huang H, Davatzikos C, Saykin AJ, Thompson PM, Shen L, Kim D. An interpretable Alzheimer's disease oligogenic risk score informed by neuroimaging biomarkers improves risk prediction and stratification. Front Aging Neurosci 2023; 15:1281748. [PMID: 37953885 PMCID: PMC10637854 DOI: 10.3389/fnagi.2023.1281748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Stratification of Alzheimer's disease (AD) patients into risk subgroups using Polygenic Risk Scores (PRS) presents novel opportunities for the development of clinical trials and disease-modifying therapies. However, the heterogeneous nature of AD continues to pose significant challenges for the clinical broadscale use of PRS. PRS remains unfit in demonstrating sufficient accuracy in risk prediction, particularly for individuals with mild cognitive impairment (MCI), and in allowing feasible interpretation of specific genes or SNPs contributing to disease risk. We propose adORS, a novel oligogenic risk score for AD, to better predict risk of disease by using an optimized list of relevant genetic risk factors. Methods Using whole genome sequencing data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 1,545), we selected 20 genes that exhibited the strongest correlations with FDG-PET and AV45-PET, recognized neuroimaging biomarkers that detect functional brain changes in AD. This subset of genes was incorporated into adORS to assess, in comparison to PRS, the prediction accuracy of CN vs. AD classification and MCI conversion prediction, risk stratification of the ADNI cohort, and interpretability of the genetic information included in the scores. Results adORS improved AUC scores over PRS in both CN vs. AD classification and MCI conversion prediction. The oligogenic model also refined risk-based stratification, even without the assistance of APOE, thus reflecting the true prevalence rate of the ADNI cohort compared to PRS. Interpretation analysis shows that genes included in adORS, such as ATF6, EFCAB11, ING5, SIK3, and CD46, have been observed in similar neurodegenerative disorders and/or are supported by AD-related literature. Discussion Compared to conventional PRS, adORS may prove to be a more appropriate choice of differentiating patients into high or low genetic risk of AD in clinical studies or settings. Additionally, the ability to interpret specific genetic information allows the focus to be shifted from general relative risk based on a given population to the information that adORS can provide for a single individual, thus permitting the possibility of personalized treatments for AD.
Collapse
Affiliation(s)
- Erica H. Suh
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Garam Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sang-Hyuk Jung
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zixuan Wen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jingxuan Bao
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Heng Huang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, School of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
7
|
Juul Rasmussen I, Frikke-Schmidt R. Modifiable cardiovascular risk factors and genetics for targeted prevention of dementia. Eur Heart J 2023; 44:2526-2543. [PMID: 37224508 PMCID: PMC10481783 DOI: 10.1093/eurheartj/ehad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Dementia is a major global challenge for health and social care in the 21st century. A third of individuals >65 years of age die with dementia, and worldwide incidence numbers are projected to be higher than 150 million by 2050. Dementia is, however, not an inevitable consequence of old age; 40% of dementia may theoretically be preventable. Alzheimer's disease (AD) accounts for approximately two-thirds of dementia cases and the major pathological hallmark of AD is accumulation of amyloid-β. Nevertheless, the exact pathological mechanisms of AD remain unknown. Cardiovascular disease and dementia share several risk factors and dementia often coexists with cerebrovascular disease. In a public health perspective, prevention is crucial, and it is suggested that a 10% reduction in prevalence of cardiovascular risk factors could prevent more than nine million dementia cases worldwide by 2050. Yet this assumes causality between cardiovascular risk factors and dementia and adherence to the interventions over decades for a large number of individuals. Using genome-wide association studies, the entire genome can be scanned for disease/trait associated loci in a hypothesis-free manner, and the compiled genetic information is not only useful for pinpointing novel pathogenic pathways but also for risk assessments. This enables identification of individuals at high risk, who likely will benefit the most from a targeted intervention. Further optimization of the risk stratification can be done by adding cardiovascular risk factors. Additional studies are, however, highly needed to elucidate dementia pathogenesis and potential shared causal risk factors between cardiovascular disease and dementia.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Lambert JC, Ramirez A, Grenier-Boley B, Bellenguez C. Step by step: towards a better understanding of the genetic architecture of Alzheimer's disease. Mol Psychiatry 2023; 28:2716-2727. [PMID: 37131074 PMCID: PMC10615767 DOI: 10.1038/s41380-023-02076-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD) is considered to have a large genetic component. Our knowledge of this component has progressed over the last 10 years, thanks notably to the advent of genome-wide association studies and the establishment of large consortia that make it possible to analyze hundreds of thousands of cases and controls. The characterization of dozens of chromosomal regions associated with the risk of developing AD and (in some loci) the causal genes responsible for the observed disease signal has confirmed the involvement of major pathophysiological pathways (such as amyloid precursor protein metabolism) and opened up new perspectives (such as the central role of microglia and inflammation). Furthermore, large-scale sequencing projects are starting to reveal the major impact of rare variants - even in genes like APOE - on the AD risk. This increasingly comprehensive knowledge is now being disseminated through translational research; in particular, the development of genetic risk/polygenic risk scores is helping to identify the subpopulations more at risk or less at risk of developing AD. Although it is difficult to assess the efforts still needed to comprehensively characterize the genetic component of AD, several lines of research can be improved or initiated. Ultimately, genetics (in combination with other biomarkers) might help to redefine the boundaries and relationships between various neurodegenerative diseases.
Collapse
Affiliation(s)
- Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| |
Collapse
|
9
|
Mathioudakis L, Dimovasili C, Bourbouli M, Latsoudis H, Kokosali E, Gouna G, Vogiatzi E, Basta M, Kapetanaki S, Panagiotakis S, Kanterakis A, Boumpas D, Lionis C, Plaitakis A, Simos P, Vgontzas A, Kafetzopoulos D, Zaganas I. Study of Alzheimer's disease- and frontotemporal dementia-associated genes in the Cretan Aging Cohort. Neurobiol Aging 2023; 123:111-128. [PMID: 36117051 DOI: 10.1016/j.neurobiolaging.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
Using exome sequencing, we analyzed 196 participants of the Cretan Aging Cohort (CAC; 95 with Alzheimer's disease [AD], 20 with mild cognitive impairment [MCI], and 81 cognitively normal controls). The APOE ε4 allele was more common in AD patients (23.2%) than in controls (7.4%; p < 0.01) and the PSEN2 p.Arg29His and p.Cys391Arg variants were found in 3 AD and 1 MCI patient, respectively. Also, we found the frontotemporal dementia (FTD)-associated TARDBP gene p.Ile383Val variant in 2 elderly patients diagnosed with AD and in 2 patients, non CAC members, with the amyotrophic lateral sclerosis/FTD phenotype. Furthermore, the p.Ser498Ala variant in the positively selected GLUD2 gene was less frequent in AD patients (2.11%) than in controls (16%; p < 0.01), suggesting a possible protective effect. While the same trend was found in another local replication cohort (n = 406) and in section of the ADNI cohort (n = 808), this finding did not reach statistical significance and therefore it should be considered preliminary. Our results attest to the value of genetic testing to study aged adults with AD phenotype.
Collapse
Affiliation(s)
- Lambros Mathioudakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Christina Dimovasili
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Mara Bourbouli
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Evgenia Kokosali
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Garyfallia Gouna
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Emmanouella Vogiatzi
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Maria Basta
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Stefania Kapetanaki
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Simeon Panagiotakis
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Alexandros Kanterakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology - Hellas (ICS-FORTH), Heraklion, Crete, Greece
| | - Dimitrios Boumpas
- University of Crete, Medical School, Internal Medicine Department, Heraklion, Crete, Greece
| | - Christos Lionis
- University of Crete, Medical School, Clinic of Social and Family Medicine, Heraklion, Crete, Greece
| | - Andreas Plaitakis
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece
| | - Panagiotis Simos
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Alexandros Vgontzas
- University of Crete, Medical School, Psychiatry Department, Heraklion, Crete, Greece
| | - Dimitrios Kafetzopoulos
- Minotech Genomics Facility, Institute of Molecular Biology and Biotechnology (IMBB-FORTH), Heraklion, Crete, Greece
| | - Ioannis Zaganas
- University of Crete, Medical School, Neurology/Neurogenetics Laboratory, Heraklion, Crete, Greece.
| |
Collapse
|
10
|
de Rojas I, del Barrio L, Hernández I, Montrreal L, García-González P, Marquié M, Valero S, Cano A, Orellana A, Boada M, Mañes S, Ruiz A. Correlations between the NMR Lipoprotein Profile, APOE Genotype, and Cholesterol Efflux Capacity of Fasting Plasma from Cognitively Healthy Elderly Adults. Int J Mol Sci 2023; 24:ijms24032186. [PMID: 36768512 PMCID: PMC9916740 DOI: 10.3390/ijms24032186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Cholesterol efflux capacity (CEC) is of interest given its potential relationship with several important clinical conditions including Alzheimer's disease. The inactivation of the APOE locus in mouse models supports the idea that it is involved in determining the CEC. With that in mind, we examine the impact of the plasma metabolome profile and the APOE genotype on the CEC in cognitively healthy elderly subjects. The study subjects were 144 unrelated healthy individuals. The plasma CEC was determined by exposing cultured mouse macrophages treated with BODIPY-cholesterol to human plasma. The metabolome profile was determined using NMR techniques. Multiple regression was performed to identify the most important predictors of CEC, as well as the NMR features most strongly associated with the APOE genotype. Plasma 3-hydroxybutyrate was the variable most strongly correlated with the CEC (r = 0.365; p = 7.3 × 10-6). Male sex was associated with a stronger CEC (r = -0.326, p = 6.8 × 10-5). Most of the NMR particles associated with the CEC did not correlate with the APOE genotype. The NMR metabolomics results confirmed the APOE genotype to have a huge effect on the concentration of plasma lipoprotein particles as well as those of other molecules including omega-3 fatty acids. In conclusion, the CEC of human plasma was associated with ketone body concentration, sex, and (to a lesser extent) the other features of the plasma lipoprotein profile. The APOE genotype exerted only a weak effect on the CEC via the modulation of the lipoprotein profile. The APOE locus was associated with omega-3 fatty acid levels independent of the plasma cholesterol level.
Collapse
Affiliation(s)
- Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura del Barrio
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Marquié
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amanda Cano
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- Correspondence: (S.M.); (A.R.)
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (S.M.); (A.R.)
| |
Collapse
|
11
|
Mendelian Randomisation Confirms the Role of Y-Chromosome Loss in Alzheimer's Disease Aetiopathogenesis in Men. Int J Mol Sci 2023; 24:ijms24020898. [PMID: 36674414 PMCID: PMC9863537 DOI: 10.3390/ijms24020898] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Mosaic loss of chromosome Y (mLOY) is a common ageing-related somatic event and has been previously associated with Alzheimer's disease (AD). However, mLOY estimation from genotype microarray data only reflects the mLOY degree of subjects at the moment of DNA sampling. Therefore, mLOY phenotype associations with AD can be severely age-confounded in the context of genome-wide association studies. Here, we applied Mendelian randomisation to construct an age-independent mLOY polygenic risk score (mloy-PRS) using 114 autosomal variants. The mloy-PRS instrument was associated with an 80% increase in mLOY risk per standard deviation unit (p = 4.22 × 10-20) and was orthogonal with age. We found that a higher genetic risk for mLOY was associated with faster progression to AD in men with mild cognitive impairment (hazard ratio (HR) = 1.23, p = 0.01). Importantly, mloy-PRS had no effect on AD conversion or risk in the female group, suggesting that these associations are caused by the inherent loss of the Y chromosome. Additionally, the blood mLOY phenotype in men was associated with increased cerebrospinal fluid levels of total tau and phosphorylated tau181 in subjects with mild cognitive impairment and dementia. Our results strongly suggest that mLOY is involved in AD pathogenesis.
Collapse
|
12
|
Wu BS, Zhang YR, Yang L, Zhang W, Deng YT, Chen SD, Feng JF, Cheng W, Yu JT. Polygenic Liability to Alzheimer's Disease Is Associated with a Wide Range of Chronic Diseases: A Cohort Study of 312,305 Participants. J Alzheimers Dis 2023; 91:437-447. [PMID: 36442194 DOI: 10.3233/jad-220740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) patients rank among the highest levels of comorbidities compared to persons with other diseases. However, it is unclear whether the conditions are caused by shared pathophysiology due to the genetic pleiotropy for AD risk genes. OBJECTIVE To figure out the genetic pleiotropy for AD risk genes in a wide range of diseases. METHODS We estimated the polygenic risk score (PRS) for AD and tested the association between PRS and 16 ICD10 main chapters, 136 ICD10 level-1 chapters, and 377 diseases with cases more than 1,000 in 312,305 individuals without AD diagnosis from the UK Biobank. RESULTS After correction for multiple testing, AD PRS was associated with two main ICD10 chapters: Chapter IV (endocrine, nutritional and metabolic diseases) and Chapter VII (eye and adnexa disorders). When narrowing the definition of the phenotypes, positive associations were observed between AD PRS and other types of dementia (OR = 1.39, 95% CI [1.34, 1.45], p = 1.96E-59) and other degenerative diseases of the nervous system (OR = 1.18, 95% CI [1.13, 1.24], p = 7.74E-10). In contrast, we detected negative associations between AD PRS and diabetes mellitus, obesity, chronic bronchitis, other retinal disorders, pancreas diseases, and cholecystitis without cholelithiasis (ORs range from 0.94 to 0.97, FDR < 0.05). CONCLUSION Our study confirms several associations reported previously and finds some novel results, which extends the knowledge of genetic pleiotropy for AD in a range of diseases. Further mechanistic studies are necessary to illustrate the molecular mechanisms behind these associations.
Collapse
Affiliation(s)
- Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Sullivan M, Deng HW, Greenbaum J. Identification of genetic loci shared between Alzheimer's disease and hypertension. Mol Genet Genomics 2022; 297:1661-1670. [PMID: 36069947 DOI: 10.1007/s00438-022-01949-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Abstract
Alzheimer's disease (AD) and high blood pressure (BP) are prevalent age-related diseases with significant unexplained heritability. A thorough analysis of genetic pleiotropy between AD and BP will lay a foundation for the study of the associated molecular mechanisms, leading to a better understanding of the development of each phenotype. We used the conditional false discovery rate (cFDR) method to identify novel genetic loci associated with both AD and BP. The cFDR approach improves the effective sample size for association testing by combining GWAS summary statistics for correlated phenotypes. We identified 50 pleiotropic SNPs for AD and BP, 7 of which are novel and have not previously been reported to be associated with either AD or BP. The novel SNPs located at STK3 are particularly noteworthy, as this gene may influence AD risk via the Hippo signaling network, which regulates cell death. Bayesian colocalization analysis demonstrated that although AD and BP are associated, they do not appear to share the same causal variants. We further performed two sample Mendelian randomization analysis, but could not detect a causal effect of BP on AD. Despite the inability to establish a causal link between AD and BP, our findings report some potential novel pleiotropic loci that may influence disease susceptibility. In summary, we identified 7 SNPs that annotate to 4 novel genes which have not previously been reported to be associated with AD nor with BP and discuss the possible role of one of these genes, STK3 in the Hippo signaling network.
Collapse
Affiliation(s)
- Megan Sullivan
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
14
|
Orellana A, García-González P, Valero S, Montrreal L, de Rojas I, Hernández I, Rosende-Roca M, Vargas L, Tartari JP, Esteban-De Antonio E, Bojaryn U, Narvaiza L, Alarcón-Martín E, Alegret M, Alcolea D, Lleó A, Tárraga L, Pytel V, Cano A, Marquié M, Boada M, Ruiz A. Establishing In-House Cutoffs of CSF Alzheimer’s Disease Biomarkers for the AT(N) Stratification of the Alzheimer Center Barcelona Cohort. Int J Mol Sci 2022; 23:ijms23136891. [PMID: 35805894 PMCID: PMC9266894 DOI: 10.3390/ijms23136891] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Clinical diagnosis of Alzheimer’s disease (AD) increasingly incorporates CSF biomarkers. However, due to the intrinsic variability of the immunodetection techniques used to measure these biomarkers, establishing in-house cutoffs defining the positivity/negativity of CSF biomarkers is recommended. However, the cutoffs currently published are usually reported by using cross-sectional datasets, not providing evidence about its intrinsic prognostic value when applied to real-world memory clinic cases. Methods: We quantified CSF Aβ1-42, Aβ1-40, t-Tau, and p181Tau with standard INNOTEST® ELISA and Lumipulse G® chemiluminescence enzyme immunoassay (CLEIA) performed on the automated Lumipulse G600II. Determination of cutoffs included patients clinically diagnosed with probable Alzheimer’s disease (AD, n = 37) and subjective cognitive decline subjects (SCD, n = 45), cognitively stable for 3 years and with no evidence of brain amyloidosis in 18F-Florbetaben-labeled positron emission tomography (FBB-PET). To compare both methods, a subset of samples for Aβ1-42 (n = 519), t-Tau (n = 399), p181Tau (n = 77), and Aβ1-40 (n = 44) was analyzed. Kappa agreement of single biomarkers and Aβ1-42/Aβ1-40 was evaluated in an independent group of mild cognitive impairment (MCI) and dementia patients (n = 68). Next, established cutoffs were applied to a large real-world cohort of MCI subjects with follow-up data available (n = 647). Results: Cutoff values of Aβ1-42 and t-Tau were higher for CLEIA than for ELISA and similar for p181Tau. Spearman coefficients ranged between 0.81 for Aβ1-40 and 0.96 for p181TAU. Passing–Bablok analysis showed a systematic and proportional difference for all biomarkers but only systematic for Aβ1-40. Bland–Altman analysis showed an average difference between methods in favor of CLEIA. Kappa agreement for single biomarkers was good but lower for the Aβ1-42/Aβ1-40 ratio. Using the calculated cutoffs, we were able to stratify MCI subjects into four AT(N) categories. Kaplan–Meier analyses of AT(N) categories demonstrated gradual and differential dementia conversion rates (p = 9.815−27). Multivariate Cox proportional hazard models corroborated these findings, demonstrating that the proposed AT(N) classifier has prognostic value. AT(N) categories are only modestly influenced by other known factors associated with disease progression. Conclusions: We established CLEIA and ELISA internal cutoffs to discriminate AD patients from amyloid-negative SCD individuals. The results obtained by both methods are not interchangeable but show good agreement. CLEIA is a good and faster alternative to manual ELISA for providing AT(N) classification of our patients. AT(N) categories have an impact on disease progression. AT(N) classifiers increase the certainty of the MCI prognosis, which can be instrumental in managing real-world MCI subjects.
Collapse
Affiliation(s)
- Adelina Orellana
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Pablo García-González
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Sergi Valero
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Isabel Hernández
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Maitee Rosende-Roca
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Liliana Vargas
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Ester Esteban-De Antonio
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Urszula Bojaryn
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Leire Narvaiza
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Montserrat Alegret
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Daniel Alcolea
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08029 Barcelona, Spain
| | - Alberto Lleó
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08029 Barcelona, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
| | - Amanda Cano
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Marta Marquié
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08029 Barcelona, Spain; (A.O.); (P.G.-G.); (S.V.); (L.M.); (I.d.R.); (I.H.); (M.R.-R.); (L.V.); (J.P.T.); (E.E.-D.A.); (U.B.); (L.N.); (E.A.-M.); (M.A.); (L.T.); (V.P.); (A.C.); (M.M.); (M.B.)
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (D.A.); (A.L.)
- Correspondence:
| |
Collapse
|
15
|
Sharafeldin N, Zhang J, Singh P, Bosworth A, Chen Y, Patel SK, Wang X, Francisco L, Forman SJ, Wong FL, Ojesina AI, Bhatia S. Genome-wide variants and polygenic risk scores for cognitive impairment following blood or marrow transplantation. Bone Marrow Transplant 2022; 57:925-933. [PMID: 35379913 PMCID: PMC9233077 DOI: 10.1038/s41409-022-01642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022]
Abstract
Cognitive impairment is prevalent in blood or marrow transplantation (BMT) recipients, albeit with inter-individual variability. We conducted a genome-wide association study of objective cognitive function assessed longitudinally in 239 adult BMT recipients for discovery and replicated in an independent cohort of 540 BMT survivors. Weighted genome-wide polygenic risk scores (PRS) were constructed using linkage disequilibrium pruned significant SNPs. Forty-four genome-wide significant SNPs were identified using additive (n = 3); codominant (n = 20) and genotype models (n = 21). Each additional copy of a risk allele was associated with a 0.28-point (p = 1.07 × 10-8) to a 1.82-point (p = 6.7 × 10-12) increase in a global deficit score. We replicated two SNPs (rs11634183 and rs12486041) with links to neural integrity. Patients in the top PRS quintile were at increased risk of cognitive impairment in discovery (RR = 1.95, 95%CI: 1.28-2.96, p = 0.002) and replication cohorts (OR = 1.84, 95%CI, 1.02-3.32, p = 0.043). Associations were stronger among individuals with lowest clinical risk for cognitive impairment. These findings support potential utility of PRS-based risk classification in the development of targeted interventions aimed at improving cognitive outcomes in BMT survivors.
Collapse
Affiliation(s)
- Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jianqing Zhang
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purnima Singh
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Yanjun Chen
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, TX, USA
| | - Liton Francisco
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephen J Forman
- Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | | | - Akinyemi I Ojesina
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
16
|
Transcriptional Profiling of Hippocampus Identifies Network Alterations in Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by rapid brain cell degeneration affecting different areas of the brain. Hippocampus is one of the earliest involved brain regions in the disease. Modern technologies based on high-throughput data have identified transcriptional profiling of several neurological diseases, including AD, for a better comprehension of genetic mechanisms of the disease. In this study, we investigated differentially expressed genes (DEGs) from six Gene Expression Omnibus (GEO) datasets of hippocampus of AD patients. The identified DEGs were submitted to Weighted correlation network analysis (WGCNA) and ClueGo to explore genes with a higher degree centrality and to comprehend their biological role. Subsequently, MCODE was used to identify subnetworks of interconnected DEGs. Our study found 40 down-regulated genes and 36 up-regulated genes as consensus DEGs. Analysis of the co-expression network revealed ACOT7, ATP8A2, CDC42, GAD1, GOT1, INA, NCALD, and WWTR1 to be genes with a higher degree centrality. ClueGO revealed the pathways that were mainly enriched, such as clathrin coat assembly, synaptic vesicle endocytosis, and DNA damage response signal transduction by p53 class mediator. In addition, we found a subnetwork of 12 interconnected genes (AMPH, CA10, CALY, NEFL, SNAP25, SNAP91, SNCB, STMN2, SV2B, SYN2, SYT1, and SYT13). Only CA10 and CALY are targets of known drugs while the others could be potential novel drug targets.
Collapse
|
17
|
Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N, Naj AC, Campos-Martin R, Grenier-Boley B, Andrade V, Holmans PA, Boland A, Damotte V, van der Lee SJ, Costa MR, Kuulasmaa T, Yang Q, de Rojas I, Bis JC, Yaqub A, Prokic I, Chapuis J, Ahmad S, Giedraitis V, Aarsland D, Garcia-Gonzalez P, Abdelnour C, Alarcón-Martín E, Alcolea D, Alegret M, Alvarez I, Álvarez V, Armstrong NJ, Tsolaki A, Antúnez C, Appollonio I, Arcaro M, Archetti S, Pastor AA, Arosio B, Athanasiu L, Bailly H, Banaj N, Baquero M, Barral S, Beiser A, Pastor AB, Below JE, Benchek P, Benussi L, Berr C, Besse C, Bessi V, Binetti G, Bizarro A, Blesa R, Boada M, Boerwinkle E, Borroni B, Boschi S, Bossù P, Bråthen G, Bressler J, Bresner C, Brodaty H, Brookes KJ, Brusco LI, Buiza-Rueda D, Bûrger K, Burholt V, Bush WS, Calero M, Cantwell LB, Chene G, Chung J, Cuccaro ML, Carracedo Á, Cecchetti R, Cervera-Carles L, Charbonnier C, Chen HH, Chillotti C, Ciccone S, Claassen JAHR, Clark C, Conti E, Corma-Gómez A, Costantini E, Custodero C, Daian D, Dalmasso MC, Daniele A, Dardiotis E, Dartigues JF, de Deyn PP, de Paiva Lopes K, de Witte LD, Debette S, Deckert J, Del Ser T, Denning N, DeStefano A, Dichgans M, Diehl-Schmid J, Diez-Fairen M, Rossi PD, Djurovic S, Duron E, Düzel E, Dufouil C, Eiriksdottir G, Engelborghs S, Escott-Price V, Espinosa A, Ewers M, Faber KM, Fabrizio T, Nielsen SF, Fardo DW, Farotti L, Fenoglio C, Fernández-Fuertes M, Ferrari R, Ferreira CB, Ferri E, Fin B, Fischer P, Fladby T, Fließbach K, Fongang B, Fornage M, Fortea J, Foroud TM, Fostinelli S, Fox NC, Franco-Macías E, Bullido MJ, Frank-García A, Froelich L, Fulton-Howard B, Galimberti D, García-Alberca JM, García-González P, Garcia-Madrona S, Garcia-Ribas G, Ghidoni R, Giegling I, Giorgio G, Goate AM, Goldhardt O, Gomez-Fonseca D, González-Pérez A, Graff C, Grande G, Green E, Grimmer T, Grünblatt E, Grunin M, Gudnason V, Guetta-Baranes T, Haapasalo A, Hadjigeorgiou G, Haines JL, Hamilton-Nelson KL, Hampel H, Hanon O, Hardy J, Hartmann AM, Hausner L, Harwood J, Heilmann-Heimbach S, Helisalmi S, Heneka MT, Hernández I, Herrmann MJ, Hoffmann P, Holmes C, Holstege H, Vilas RH, Hulsman M, Humphrey J, Biessels GJ, Jian X, Johansson C, Jun GR, Kastumata Y, Kauwe J, Kehoe PG, Kilander L, Ståhlbom AK, Kivipelto M, Koivisto A, Kornhuber J, Kosmidis MH, Kukull WA, Kuksa PP, Kunkle BW, Kuzma AB, Lage C, Laukka EJ, Launer L, Lauria A, Lee CY, Lehtisalo J, Lerch O, Lleó A, Longstreth W, Lopez O, de Munain AL, Love S, Löwemark M, Luckcuck L, Lunetta KL, Ma Y, Macías J, MacLeod CA, Maier W, Mangialasche F, Spallazzi M, Marquié M, Marshall R, Martin ER, Montes AM, Rodríguez CM, Masullo C, Mayeux R, Mead S, Mecocci P, Medina M, Meggy A, Mehrabian S, Mendoza S, Menéndez-González M, Mir P, Moebus S, Mol M, Molina-Porcel L, Montrreal L, Morelli L, Moreno F, Morgan K, Mosley T, Nöthen MM, Muchnik C, Mukherjee S, Nacmias B, Ngandu T, Nicolas G, Nordestgaard BG, Olaso R, Orellana A, Orsini M, Ortega G, Padovani A, Paolo C, Papenberg G, Parnetti L, Pasquier F, Pastor P, Peloso G, Pérez-Cordón A, Pérez-Tur J, Pericard P, Peters O, Pijnenburg YAL, Pineda JA, Piñol-Ripoll G, Pisanu C, Polak T, Popp J, Posthuma D, Priller J, Puerta R, Quenez O, Quintela I, Thomassen JQ, Rábano A, Rainero I, Rajabli F, Ramakers I, Real LM, Reinders MJT, Reitz C, Reyes-Dumeyer D, Ridge P, Riedel-Heller S, Riederer P, Roberto N, Rodriguez-Rodriguez E, Rongve A, Allende IR, Rosende-Roca M, Royo JL, Rubino E, Rujescu D, Sáez ME, Sakka P, Saltvedt I, Sanabria Á, Sánchez-Arjona MB, Sanchez-Garcia F, Juan PS, Sánchez-Valle R, Sando SB, Sarnowski C, Satizabal CL, Scamosci M, Scarmeas N, Scarpini E, Scheltens P, Scherbaum N, Scherer M, Schmid M, Schneider A, Schott JM, Selbæk G, Seripa D, Serrano M, Sha J, Shadrin AA, Skrobot O, Slifer S, Snijders GJL, Soininen H, Solfrizzi V, Solomon A, Song Y, Sorbi S, Sotolongo-Grau O, Spalletta G, Spottke A, Squassina A, Stordal E, Tartan JP, Tárraga L, Tesí N, Thalamuthu A, Thomas T, Tosto G, Traykov L, Tremolizzo L, Tybjærg-Hansen A, Uitterlinden A, Ullgren A, Ulstein I, Valero S, Valladares O, Broeckhoven CV, Vance J, Vardarajan BN, van der Lugt A, Dongen JV, van Rooij J, van Swieten J, Vandenberghe R, Verhey F, Vidal JS, Vogelgsang J, Vyhnalek M, Wagner M, Wallon D, Wang LS, Wang R, Weinhold L, Wiltfang J, Windle G, Woods B, Yannakoulia M, Zare H, Zhao Y, Zhang X, Zhu C, Zulaica M, Farrer LA, Psaty BM, Ghanbari M, Raj T, Sachdev P, Mather K, Jessen F, Ikram MA, de Mendonça A, Hort J, Tsolaki M, Pericak-Vance MA, Amouyel P, Williams J, Frikke-Schmidt R, Clarimon J, Deleuze JF, Rossi G, Seshadri S, Andreassen OA, Ingelsson M, Hiltunen M, Sleegers K, Schellenberg GD, van Duijn CM, Sims R, van der Flier WM, Ruiz A, Ramirez A, Lambert JC. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet 2022; 54:412-436. [PMID: 35379992 PMCID: PMC9005347 DOI: 10.1038/s41588-022-01024-z] [Citation(s) in RCA: 894] [Impact Index Per Article: 447.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023]
Abstract
Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele.
Collapse
Affiliation(s)
- Céline Bellenguez
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Sonia Moreno-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Adam C Naj
- Department of Biostatistics, Epidemiology, and Informatics, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Benjamin Grenier-Boley
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Victor Andrade
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Peter A Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Vincent Damotte
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marcos R Costa
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Amber Yaqub
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Ivana Prokic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Julien Chapuis
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- LACDR, Leiden, the Netherlands
| | - Vilmantas Giedraitis
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Dag Aarsland
- Centre of Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Institute of Psychiatry, Psychology & Neuroscience, London, UK
| | - Pablo Garcia-Gonzalez
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carla Abdelnour
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Department of Surgery, Biochemistry and Molecular Biology, School of Medicine, University of Málaga, Málaga, Spain
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Alegret
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Anthoula Tsolaki
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ildebrando Appollonio
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
| | - Silvana Archetti
- Department of Laboratory Diagnostics, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | - Alfonso Arias Pastor
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Henri Bailly
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Miquel Baquero
- Servei de Neurologia, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Sandra Barral
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Unit of Neurology, University of Parma and AOU, Parma, Italy
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Alexa Beiser
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Ana Belén Pastor
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Jennifer E Below
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Penelope Benchek
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Claudine Berr
- Neuropsychiatry: Epidemiological and Clinical Research, PSNREC, Université de Montpellier, INSERM U1061, Montpellier, France
| | - Céline Besse
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC - Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Eric Boerwinkle
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Paola Bossù
- Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Catherine Bresner
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Keeley J Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Luis Ignacio Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), C.A.B.A., Buenos Aires, Argentina
- Departamento Ciencias Fisiológicas UAII, Facultad de Medicina, UBA, C.A.B.A., Buenos Aires, Argentina
- Hospital Interzonal General de Agudos Eva Perón, San Martín, Buenos Aires, Argentina
| | - Dolores Buiza-Rueda
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Katharina Bûrger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Vanessa Burholt
- Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
- Wales Centre for Ageing & Dementia Research, Swansea University, Wales, New Zealand
| | - William S Bush
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Miguel Calero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura B Cantwell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Geneviève Chene
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France
- Pole Santé Publique, CHU de Bordeaux, Bordeaux, France
| | - Jaeyoon Chung
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
| | - Michael L Cuccaro
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camille Charbonnier
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Hung-Hsin Chen
- Division of Genetic Medicine, Vanderbilt University, Nashville, TN, USA
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Simona Ciccone
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Jurgen A H R Claassen
- Radboudumc Alzheimer Center, Department of Geriatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Schlieren, Switzerland
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Anaïs Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Emanuele Costantini
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Delphine Daian
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | | | - Peter Paul de Deyn
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Katia de Paiva Lopes
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stéphanie Debette
- Bordeaux Population Health Research Center, University Bordeaux, INSERM, Bordeaux, France
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Teodoro Del Ser
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Nicola Denning
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Anita DeStefano
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Janine Diehl-Schmid
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Mónica Diez-Fairen
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Paolo Dionigi Rossi
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Emmanuelle Duron
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-Von-Guericke University, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Carole Dufouil
- INSERM, Bordeaux Population Health Research Center, UMR 1219, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France
- Pole Santé Publique, CHU de Bordeaux, Bordeaux, France
| | | | - Sebastiaan Engelborghs
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel, Brussels, Belgium
| | - Valentina Escott-Price
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Ana Espinosa
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig Maximilians Universität (LMU), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | | | | | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | | | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Raffaele Ferrari
- Laboratory of Neurogenetics, Department of Internal Medicine, Texas Tech University Health Science Center, Lubbock, TX, USA
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Evelyn Ferri
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Bertrand Fin
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Peter Fischer
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Tormod Fladby
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Klaus Fließbach
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Myriam Fornage
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nick C Fox
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Emlio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
| | - Ana Frank-García
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Hospital Universitario la Paz, Madrid, Spain
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute for Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Brian Fulton-Howard
- Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Galimberti
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Jose Maria García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Pablo García-González
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | | | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ina Giegling
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Giaccone Giorgio
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Ronald M. Loeb Center for Alzheimer's Disease Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oliver Goldhardt
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Duber Gomez-Fonseca
- Department of Biostatistics, Epidemiology, and Informatics Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Caroline Graff
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Unit for Hereditary Dementias, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Emma Green
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Timo Grimmer
- Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Michelle Grunin
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Tamar Guetta-Baranes
- Human Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham, UK
| | - Annakaisa Haapasalo
- AI Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Harald Hampel
- GRC 21, Alzheimer Precision Medicine Initiative (APMI), Sorbonne University, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Olivier Hanon
- EA 4468, Université de Paris, APHP, Hôpital Broca, Paris, France
| | - John Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Janet Harwood
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Isabel Hernández
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Clive Holmes
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Raquel Huerto Vilas
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jack Humphrey
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geert Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Xueqiu Jian
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Charlotte Johansson
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Gyungah R Jun
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
| | - Yuriko Kastumata
- Biostatistics, University of Kentucky College of Public Health, Lexington, KY, USA
| | - John Kauwe
- Department of Biology, Brigham Young University, Provo, UT, USA
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lena Kilander
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anne Kinhult Ståhlbom
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, UK
- Research & Development, UnitStockholms Sjukhem, Stockholm, Sweden
| | - Anne Koivisto
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Department of Neurology, Kuopio University Hospital, Kuopio, Finland
- Department of Neurosciences, University of Helsinki and Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Walter A Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Pavel P Kuksa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Brian W Kunkle
- Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Amanda B Kuzma
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Erika J Laukka
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Lenore Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institute of Aging, The National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Bethesda, MD, USA
| | - Alessandra Lauria
- Geriatrics Unit, Fondazione Policlinico A. Gemelli IRCCS, Rome, Italy
| | - Chien-Yueh Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jenni Lehtisalo
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - William Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | | | - Adolfo Lopez de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA-Servicio Vasco de Salud, San Sebastian, Spain
| | - Seth Love
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Malin Löwemark
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lauren Luckcuck
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Kathryn L Lunetta
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Yiyi Ma
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Neurology, Columbia University, New York, NY, USA
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | | | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Marco Spallazzi
- Unit of Neurology, University of Parma and AOU, Parma, Italy
| | - Marta Marquié
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Rachel Marshall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Eden R Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Angel Martín Montes
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Hospital Universitario la Paz, Madrid, Spain
| | - Carmen Martínez Rodríguez
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Alun Meggy
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Shima Mehrabian
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Silvia Mendoza
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Merel Mol
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, Barcelona, Spain
| | - Laura Montrreal
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Laura Morelli
- Laboratory of Brain Aging and Neurodegeneration, FIL-CONICET, Buenos Aires, Argentina
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA-Servicio Vasco de Salud, San Sebastian, Spain
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Thomas Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, MS, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Carolina Muchnik
- Centro de Neuropsiquiatría y Neurología de la Conducta (CENECON), Facultad de Medicina, Universidad de Buenos Aires (UBA), C.A.B.A., Buenos Aires, Argentina
- Laboratorio de Bioquímica Molecular, Facultad de Medicina, Instituto de Investigaciones Médicas A. Lanari, UBA, C.A.B.A, Buenos Aires, Argentina
| | | | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tiia Ngandu
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Gael Nicolas
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Robert Olaso
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Adelina Orellana
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Michela Orsini
- Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gemma Ortega
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alessandro Padovani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Florence Pasquier
- Resources and Research Memory Center (MRRC) of Distalz, LicendUniversity of Lille, INSERM, CHU Lille, UMR1172, Lille, France
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital MútuaTerrassa, Terrassa, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Gina Peloso
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Alba Pérez-Cordón
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Institut de Biomedicina de València-CSIC CIBERNED, València, Spain
- Unitat Mixta de de Neurología y Genética, Institut d'Investigació Sanitària La Fe, València, Spain
| | - Pierre Pericard
- US 41-UMS 2014-PLBS, bilille, Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Oliver Peters
- Institute of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Claudia Pisanu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Julius Popp
- CHUV, Old Age Psychiatry, Department of Psychiatry, Lausanne, Switzerland
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité, Charitéplatz 1, Berlin, Germany
| | - Raquel Puerta
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Olivier Quenez
- Department of Genetics and CNR-MAJ, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Alberto Rábano
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Innocenzo Rainero
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Farid Rajabli
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Inez Ramakers
- Department of Psychiatry & Neuropsychologie, Maastricht University, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
- Depatamento de Especialidades Quirúrgicas Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
| | - Christiane Reitz
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Delft Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Taub Institute, Columbia University, New York, NY, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Columbia University, New York, NY, USA
- Taub Institute, Columbia University, New York, NY, USA
| | - Perry Ridge
- Bioinformatics, College of Life Sciences, Brigham Young University, Provo, UT, USA
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Wuerzburg, Germany
| | - Natalia Roberto
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Arvid Rongve
- Department of Research and Innovation, Helse Fonna, Haugesund Hospital, Haugesund, Norway
- Institute of Clinical Medicine (K1), The University of Bergen, Bergen, Norway
| | - Irene Rosas Allende
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias- Oviedo and Instituto de Investigación Biosanitaria del Principado de Asturias, Oviedo, Spain
| | - Maitée Rosende-Roca
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Jose Luis Royo
- Departamento de Especialidades Quirúrgicas, Bioquímicas e Inmunología, School of Medicine, University of Málaga, Málaga, Spain
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Athens, Greece
| | - Ingvild Saltvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Geriatrics, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ángela Sanabria
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - María Bernal Sánchez-Arjona
- Unidad de Demencias, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Florentino Sanchez-Garcia
- Department of Immunology, Hospital Universitario Doctor Negrín, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Raquel Sánchez-Valle
- Neurology Department-Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Sigrid B Sando
- Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Chloé Sarnowski
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudia L Satizabal
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nikolaos Scarmeas
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- First Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Elio Scarpini
- Fondazione IRCCS Ca'Granda, Ospedale Policlinico, Milan, Italy
- University of Milan, Milan, Italy
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Jonathan M Schott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Geir Selbæk
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Seripa
- Laboratory for Advanced Hematological Diagnostics, Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Manuel Serrano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Hospital Clínico San Carlos, Madrid, Spain
| | - Jin Sha
- Department of Biostatistics, Epidemiology, and Informatics, Penn Neurodegeneration Genomics Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Olivia Skrobot
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan Slifer
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gijsje J L Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hilkka Soininen
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
| | | | - Alina Solomon
- Institute of Clinical Medicine, Neurology, University of Eastern, Kuopio, Finland
- Division of Clinical Geriatrics, Center for Alzheimer Research, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Yeunjoo Song
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Oscar Sotolongo-Grau
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Juan Pablo Tartan
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Lluís Tárraga
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Niccolo Tesí
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Tegos Thomas
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | - Giuseppe Tosto
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Latchezar Traykov
- Clinic of Neurology, UH 'Alexandrovska', Medical University - Sofia, Sofia, Bulgaria
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
- Neurology Unit, San Gerardo Hospital, Monza, Italy
| | - Anne Tybjærg-Hansen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Andre Uitterlinden
- Department of Internal Medicine and Biostatistics, Erasmus MC, Rotterdam, the Netherlands
| | - Abbe Ullgren
- Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Ingun Ulstein
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Sergi Valero
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christine Van Broeckhoven
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Jeffery Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Badri N Vardarajan
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | | | - Jasper Van Dongen
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeroen van Rooij
- Department of Neurology, Erasmus MC, Rotterdam, the Netherlands
- Department of Neurology, ErasmusMC, Rotterdam, the Netherlands
| | | | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Frans Verhey
- Department of Psychiatry & Neuropsychologie, Maastricht University, Alzheimer Center Limburg, Maastricht, the Netherlands
| | | | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - David Wallon
- Department of Neurology and CNR-MAJ, F 76000, Normandy Center for Genomic and Personalized Medicine, Normandie University, UNIROUEN, INSERM U1245, CHU Rouen, Rouen, France
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ruiqi Wang
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Gill Windle
- School of Health Sciences, Bangor University, Bangor, UK
| | - Bob Woods
- School of Health Sciences, Bangor University, Bangor, UK
| | - Mary Yannakoulia
- Department of Nutrition and Diatetics, Harokopio University, Athens, Greece
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Yi Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Lindsay A Farrer
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
- Medicine Biomedical Genetics Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bruce M Psaty
- Framingham Heart Study, Framingham, MA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Health Service, University of Washington, Seattle, WA, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Towfique Raj
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Karen Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Frank Jessen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Jakub Hort
- Intramural Research Program/National Institute on Aging/National Institutes of Health, Bethesda, MD, USA
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Praha, Czechia
| | - Magda Tsolaki
- First Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Alzheimer Hellas, Thessaloniki, Greece
| | | | - Philippe Amouyel
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Julie Williams
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- UKDRI@ Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Jordi Clarimon
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, Evry, France
| | - Giacomina Rossi
- Fondazione IRCCS, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sudha Seshadri
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | | | - Martin Ingelsson
- Department of Public Health and Carins Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mikko Hiltunen
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born - Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Rebecca Sims
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jean-Charles Lambert
- Université de Lille, INSERM, CHU Lille, Institut Pasteur Lille, U1167-RID-AGE, Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France.
| |
Collapse
|
18
|
Meng Q, Li X, Zhao M, Lin S, Yu X, Dong G. Study on the Mechanism of Platelet-Released Clusterins Inducing Restenosis after Carotid Endarterectomy by Activating TLR3/NF- κb p65 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7631126. [PMID: 35047156 PMCID: PMC8763522 DOI: 10.1155/2022/7631126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group (p=0.003) 6 months after operation (p=0.047) and 12 months after operation (p=0.011). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.
Collapse
Affiliation(s)
- Qingyu Meng
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xichun Li
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Mingyu Zhao
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shusen Lin
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xiangwen Yu
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Guanglong Dong
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
19
|
Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in Genetics and Epigenetic Alterations in Alzheimer's Disease: A Notion for Therapeutic Treatment. Genes (Basel) 2021; 12:1959. [PMID: 34946908 PMCID: PMC8700838 DOI: 10.3390/genes12121959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling neurodegenerative disorder that leads to long-term functional and cognitive impairment and greatly reduces life expectancy. Early genetic studies focused on tracking variations in genome-wide DNA sequences discovered several polymorphisms and novel susceptibility genes associated with AD. However, despite the numerous risk factors already identified, there is still no fully satisfactory explanation for the mechanisms underlying the onset of the disease. Also, as with other complex human diseases, the causes of low heritability are unclear. Epigenetic mechanisms, in which changes in gene expression do not depend on changes in genotype, have attracted considerable attention in recent years and are key to understanding the processes that influence age-related changes and various neurological diseases. With the recent use of massive sequencing techniques, methods for studying epigenome variations in AD have also evolved tremendously, allowing the discovery of differentially expressed disease traits under different conditions and experimental settings. This is important for understanding disease development and for unlocking new potential AD therapies. In this work, we outline the genomic and epigenomic components involved in the initiation and development of AD and identify potentially effective therapeutic targets for disease control.
Collapse
Affiliation(s)
- Rubén Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic
- School of Biological Sciences, James Clerk Maxwell Building, The King’s Buildings Campus, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Beatriz Mena-Montes
- Laboratorio de Biología del Envejecimiento, Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Sara Torres-Castro
- Departamento de Epidemiología Demográfica y Determinantes Sociales, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| |
Collapse
|
20
|
Cai S, Huang K, Yang F, Wang X, Wu S, Wang Y, Huang L. Cortical Thickness Differences Are Associated With Chemical Synaptic Transmission Upregulated Genes in Degeneration of Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:745381. [PMID: 34776930 PMCID: PMC8585991 DOI: 10.3389/fnagi.2021.745381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Mild cognitive impairment (MCI) is a transition between normal cognition (NC) and Alzheimer’s disease (AD). Differences in cortical thickness (ΔCT) have been reported in cases that degenerate from MCI to AD. The aspects of genetic and transcriptional variation related to ΔCT are vague. In this study, using an 8-year longitudinal follow-up outcome, we investigated the genetic correlates of ΔCT in MCI subjects with degeneration from MCI to AD (MCI_AD). We employed partial least squares regression (PLSR) on brain T1-weighted magnetic resonance imaging (MRI) images of 180 participants [143 stable MCI (MCI_S) participants and 37 MCI_AD participants] and brain gene expression data from the Allen Institute for Brain Science (AIBS) database to investigate genes associated with ΔCT. We found that upregulated PLS component 1 ΔCT-related genes were enriched in chemical synaptic transmission. To verify the robustness and specificity of the results, we conducted PLSR analysis invalidation and specificity datasets and performed weighted gene co-expression network analysis instead of PLSR for the above three datasets. We also used gene expression data in the brain prefrontal cortex from the Gene Expression Omnibus (GEO) database to indirectly validate the robustness and specificity of our results. We conclude that transcriptionally upregulated genes involved in chemical synaptic transmission are strongly related to global ΔCT in MCI patients who experience degeneration from MCI to AD.
Collapse
Affiliation(s)
- Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Fan Yang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Xuwen Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Sijia Wu
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yubo Wang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| |
Collapse
|
21
|
Ebenau JL, van der Lee SJ, Hulsman M, Tesi N, Jansen IE, Verberk IM, van Leeuwenstijn M, Teunissen CE, Barkhof F, Prins ND, Scheltens P, Holstege H, van Berckel BN, van der Flier WM. Risk of dementia in APOE ε4 carriers is mitigated by a polygenic risk score. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12229. [PMID: 34541285 PMCID: PMC8438688 DOI: 10.1002/dad2.12229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTION We investigated relationships among genetic determinants of Alzheimer's disease (AD), amyloid/tau/neurodegenaration (ATN) biomarkers, and risk of dementia. METHODS We studied cognitively normal individuals with subjective cognitive decline (SCD) from the Amsterdam Dementia Cohort and SCIENCe project. We examined associations between genetic variants and ATN biomarkers, and evaluated their predictive value for incident dementia. A polygenic risk score (PRS) was calculated based on 39 genetic variants. The APOE gene was not included in the PRS and was analyzed separately. RESULTS The PRS and APOE ε4 were associated with amyloid-positive ATN profiles, and APOE ε4 additionally with isolated increased tau (A-T+N-). A high PRS and APOE ε4 separately predicted AD dementia. Combined, a high PRS increased while a low PRS attenuated the risk associated with ε4 carriers. DISCUSSION Genetic variants beyond APOE are clinically relevant and contribute to the pathophysiology of AD. In the future, a PRS might be used in individualized risk profiling.
Collapse
Affiliation(s)
- Jarith L. Ebenau
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Sven J. van der Lee
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical GeneticsAmsterdam UMCAmsterdamthe Netherlands
| | - Marc Hulsman
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical GeneticsAmsterdam UMCAmsterdamthe Netherlands
- Delft Bioinformatics LabDelft University of TechnologyDelftthe Netherlands
| | - Niccolò Tesi
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical GeneticsAmsterdam UMCAmsterdamthe Netherlands
- Delft Bioinformatics LabDelft University of TechnologyDelftthe Netherlands
| | - Iris E. Jansen
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Complex Trait GeneticsCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVU UniversityAmsterdamthe Netherlands
| | - Inge M.W. Verberk
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Neurochemistry LaboratoryDepartment of Clinical ChemistryVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Mardou van Leeuwenstijn
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Niels D. Prins
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Philip Scheltens
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Henne Holstege
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Clinical GeneticsAmsterdam UMCAmsterdamthe Netherlands
- Delft Bioinformatics LabDelft University of TechnologyDelftthe Netherlands
| | - Bart N.M. van Berckel
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Radiology & Nuclear MedicineAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Epidemiology and BiostatisticsAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
22
|
Pyun JM, Park YH, Lee KJ, Kim S, Saykin AJ, Nho K. Predictability of polygenic risk score for progression to dementia and its interaction with APOE ε4 in mild cognitive impairment. Transl Neurodegener 2021; 10:32. [PMID: 34465370 PMCID: PMC8406896 DOI: 10.1186/s40035-021-00259-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/14/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The combinatorial effect of multiple genetic factors calculated as a polygenic risk score (PRS) has been studied to predict disease progression to Alzheimer's disease (AD) from mild cognitive impairment (MCI). Previous studies have investigated the performance of PRS in the prediction of disease progression to AD by including and excluding single nucleotide polymorphisms within the region surrounding the APOE gene. These studies may have missed the APOE genotype-specific predictability of PRS for disease progression to AD. METHODS We analyzed 732 MCI from the Alzheimer's Disease Neuroimaging Initiative cohort, including those who progressed to AD within 5 years post-baseline (n = 270) and remained stable as MCI (n = 462). The predictability of PRS including and excluding the APOE region (PRS+APOE and PRS-APOE) on the conversion to AD and its interaction with the APOE ε4 carrier status were assessed using Cox regression analyses. RESULTS PRS+APOE (hazard ratio [HR] 1.468, 95% CI 1.335-1.615) and PRS-APOE (HR 1.293, 95% CI 1.157-1.445) were both associated with a significantly increased risk of MCI progression to dementia. The interaction between PRS+APOE and APOE ε4 carrier status was significant with a P-value of 0.0378. The association of PRSs with the progression risk was stronger in APOE ε4 non-carriers (PRS+APOE: HR 1.710, 95% CI 1.244-2.351; PRS-APOE: HR 1.429, 95% CI 1.182-1.728) than in APOE ε4 carriers (PRS+APOE: HR 1.167, 95% CI 1.005-1.355; PRS-APOE: HR 1.172, 95% CI 1.020-1.346). CONCLUSIONS PRS could predict the conversion of MCI to dementia with a stronger association in APOE ε4 non-carriers than APOE ε4 carriers. This indicates PRS as a potential genetic predictor particularly for MCI with no APOE ε4 alleles.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea.
| | - Keon-Joo Lee
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
23
|
Jia L, Li F, Wei C, Zhu M, Qu Q, Qin W, Tang Y, Shen L, Wang Y, Shen L, Li H, Peng D, Tan L, Luo B, Guo Q, Tang M, Du Y, Zhang J, Zhang J, Lyu J, Li Y, Zhou A, Wang F, Chu C, Song H, Wu L, Zuo X, Han Y, Liang J, Wang Q, Jin H, Wang W, Lü Y, Li F, Zhou Y, Zhang W, Liao Z, Qiu Q, Li Y, Kong C, Li Y, Jiao H, Lu J, Jia J. Prediction of Alzheimer's disease using multi-variants from a Chinese genome-wide association study. Brain 2021; 144:924-937. [PMID: 33188687 PMCID: PMC8041344 DOI: 10.1093/brain/awaa364] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/28/2022] Open
Abstract
Previous genome-wide association studies have identified dozens of susceptibility loci for sporadic Alzheimer’s disease, but few of these loci have been validated in longitudinal cohorts. Establishing predictive models of Alzheimer’s disease based on these novel variants is clinically important for verifying whether they have pathological functions and provide a useful tool for screening of disease risk. In the current study, we performed a two-stage genome-wide association study of 3913 patients with Alzheimer’s disease and 7593 controls and identified four novel variants (rs3777215, rs6859823, rs234434, and rs2255835; Pcombined = 3.07 × 10−19, 2.49 × 10−23, 1.35 × 10−67, and 4.81 × 10−9, respectively) as well as nine variants in the apolipoprotein E region with genome-wide significance (P < 5.0 × 10−8). Literature mining suggested that these novel single nucleotide polymorphisms are related to amyloid precursor protein transport and metabolism, antioxidation, and neurogenesis. Based on their possible roles in the development of Alzheimer’s disease, we used different combinations of these variants and the apolipoprotein E status and successively built 11 predictive models. The predictive models include relatively few single nucleotide polymorphisms useful for clinical practice, in which the maximum number was 13 and the minimum was only four. These predictive models were all significant and their peak of area under the curve reached 0.73 both in the first and second stages. Finally, these models were validated using a separate longitudinal cohort of 5474 individuals. The results showed that individuals carrying risk variants included in the models had a shorter latency and higher incidence of Alzheimer’s disease, suggesting that our models can predict Alzheimer’s disease onset in a population with genetic susceptibility. The effectiveness of the models for predicting Alzheimer’s disease onset confirmed the contributions of these identified variants to disease pathogenesis. In conclusion, this is the first study to validate genome-wide association study-based predictive models for evaluating the risk of Alzheimer’s disease onset in a large Chinese population. The clinical application of these models will be beneficial for individuals harbouring these risk variants, and particularly for young individuals seeking genetic consultation.
Collapse
Affiliation(s)
- Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Min Zhu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qiumin Qu
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Luxi Shen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yanjiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Honglei Li
- Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Muni Tang
- Department of Geriatrics, Guangzhou Huiai Hospital, Affiliated Hospital of Guangzhou Medical College, Guangzhou, China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital, Wuhan University, Hubei, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Aihong Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fen Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haiqing Song
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Liyong Wu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiumei Zuo
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yue Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Junhua Liang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yang Lü
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Li
- Department of Geriatric, Fuxing Hospital, Capital Medical University, Beijing, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center for Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhengluan Liao
- Department of Psychiatry, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiongqiong Qiu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chaojun Kong
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Haishan Jiao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jie Lu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
24
|
Huq AJ, Fulton‐Howard B, Riaz M, Laws S, Sebra R, Ryan J, Renton AE, Goate AM, Masters CL, Storey E, Shah RC, Murray A, McNeil J, Winship I, James PA, Lacaze P. Polygenic score modifies risk for Alzheimer's disease in APOE ε4 homozygotes at phenotypic extremes. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12226. [PMID: 34386572 PMCID: PMC8339682 DOI: 10.1002/dad2.12226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Diversity in cognition among apolipoprotein E (APOE) ε4 homozygotes can range from early-onset Alzheimer's disease (AD) to a lifetime with no symptoms. METHODS We evaluated a phenotypic extreme polygenic risk score (PRS) for AD between cognitively healthy APOE ε4 homozygotes aged ≥75 years (n = 213) and early-onset APOE ε4 homozygote AD cases aged ≤65 years (n = 223) as an explanation for this diversity. RESULTS The PRS for AD was significantly higher in APOE ε4 homozygote AD cases compared to older cognitively healthy APOE ε4/ε4 controls (odds ratio [OR] 8.39; confidence interval [CI] 2.0-35.2; P = .003). The difference in the same PRS between APOE ε3/ε3 extremes was not as significant (OR 3.13; CI 0.98-9.92; P = .053) despite similar numbers and power. There was no statistical difference in an educational attainment PRS between these age extreme case-controls. DISCUSSION A PRS for AD contributes to modified cognitive expression of the APOE ε4/ε4 genotype at phenotypic extremes of risk.
Collapse
Affiliation(s)
- Aamira J. Huq
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
- Department of Genomic MedicineRoyal Melbourne HospitalMelbourneVictoriaAustralia
- Department of MedicineRoyal Melbourne HospitalUniversity of MelbourneMelbourneVictoriaAustralia
| | - Brian Fulton‐Howard
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Departments of Neurology and Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Moeen Riaz
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Simon Laws
- Collaborative Genomics GroupCentre of Excellence for Alzheimer's Disease Research and CareSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWestern AustraliaAustralia
- School of Pharmacy and Biomedical SciencesFaculty of Health SciencesCurtin Health InnovationPerthWestern AustraliaAustralia
| | - Robert Sebra
- Departments of Neurology and Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Joanne Ryan
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | | | - Alan E. Renton
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Departments of Neurology and Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alison M. Goate
- Nash Family Department of Neuroscience and Ronald Loeb Center for Alzheimer's DiseaseIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Departments of Neurology and Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Colin L. Masters
- The Florey InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Elsdon Storey
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Raj C. Shah
- Department of Family Medicine and Rush Alzheimer's Disease CenterRush University Medical CenterChicagoIllinoisUSA
| | - Anne Murray
- Berman Center for Outcomes and Clinical ResearchHennepin Healthcare Research InstituteHennepin Healthcareand University of MinnesotaMinneapolisMinnesotaUSA
| | - John McNeil
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| | - Ingrid Winship
- Department of Genomic MedicineRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul A. James
- Department of Genomic MedicineRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Paul Lacaze
- Department of Epidemiology and Preventive MedicineSchool of Public Health and Preventive MedicineMonash UniversityMelbourneAustralia
| |
Collapse
|
25
|
de Rojas I, Moreno-Grau S, Tesi N, Grenier-Boley B, Andrade V, Jansen IE, Pedersen NL, Stringa N, Zettergren A, Hernández I, Montrreal L, Antúnez C, Antonell A, Tankard RM, Bis JC, Sims R, Bellenguez C, Quintela I, González-Perez A, Calero M, Franco-Macías E, Macías J, Blesa R, Cervera-Carles L, Menéndez-González M, Frank-García A, Royo JL, Moreno F, Huerto Vilas R, Baquero M, Diez-Fairen M, Lage C, García-Madrona S, García-González P, Alarcón-Martín E, Valero S, Sotolongo-Grau O, Ullgren A, Naj AC, Lemstra AW, Benaque A, Pérez-Cordón A, Benussi A, Rábano A, Padovani A, Squassina A, de Mendonça A, Arias Pastor A, Kok AAL, Meggy A, Pastor AB, Espinosa A, Corma-Gómez A, Martín Montes A, Sanabria Á, DeStefano AL, Schneider A, Haapasalo A, Kinhult Ståhlbom A, Tybjærg-Hansen A, Hartmann AM, Spottke A, Corbatón-Anchuelo A, Rongve A, Borroni B, Arosio B, Nacmias B, Nordestgaard BG, Kunkle BW, Charbonnier C, Abdelnour C, Masullo C, Martínez Rodríguez C, Muñoz-Fernandez C, Dufouil C, Graff C, Ferreira CB, Chillotti C, Reynolds CA, Fenoglio C, Van Broeckhoven C, Clark C, Pisanu C, Satizabal CL, Holmes C, Buiza-Rueda D, Aarsland D, Rujescu D, Alcolea D, Galimberti D, Wallon D, Seripa D, Grünblatt E, Dardiotis E, Düzel E, Scarpini E, Conti E, Rubino E, Gelpi E, Rodriguez-Rodriguez E, Duron E, Boerwinkle E, Ferri E, Tagliavini F, Küçükali F, Pasquier F, Sanchez-Garcia F, Mangialasche F, Jessen F, Nicolas G, Selbæk G, Ortega G, Chêne G, Hadjigeorgiou G, Rossi G, Spalletta G, Giaccone G, Grande G, Binetti G, Papenberg G, Hampel H, Bailly H, Zetterberg H, Soininen H, Karlsson IK, Alvarez I, Appollonio I, Giegling I, Skoog I, Saltvedt I, Rainero I, Rosas Allende I, Hort J, Diehl-Schmid J, Van Dongen J, Vidal JS, Lehtisalo J, Wiltfang J, Thomassen JQ, Kornhuber J, Haines JL, Vogelgsang J, Pineda JA, Fortea J, Popp J, Deckert J, Buerger K, Morgan K, Fließbach K, Sleegers K, Molina-Porcel L, Kilander L, Weinhold L, Farrer LA, Wang LS, Kleineidam L, Farotti L, Parnetti L, Tremolizzo L, Hausner L, Benussi L, Froelich L, Ikram MA, Deniz-Naranjo MC, Tsolaki M, Rosende-Roca M, Löwenmark M, Hulsman M, Spallazzi M, Pericak-Vance MA, Esiri M, Bernal Sánchez-Arjona M, Dalmasso MC, Martínez-Larrad MT, Arcaro M, Nöthen MM, Fernández-Fuertes M, Dichgans M, Ingelsson M, Herrmann MJ, Scherer M, Vyhnalek M, Kosmidis MH, Yannakoulia M, Schmid M, Ewers M, Heneka MT, Wagner M, Scamosci M, Kivipelto M, Hiltunen M, Zulaica M, Alegret M, Fornage M, Roberto N, van Schoor NM, Seidu NM, Banaj N, Armstrong NJ, Scarmeas N, Scherbaum N, Goldhardt O, Hanon O, Peters O, Skrobot OA, Quenez O, Lerch O, Bossù P, Caffarra P, Dionigi Rossi P, Sakka P, Mecocci P, Hoffmann P, Holmans PA, Fischer P, Riederer P, Yang Q, Marshall R, Kalaria RN, Mayeux R, Vandenberghe R, Cecchetti R, Ghidoni R, Frikke-Schmidt R, Sorbi S, Hägg S, Engelborghs S, Helisalmi S, Botne Sando S, Kern S, Archetti S, Boschi S, Fostinelli S, Gil S, Mendoza S, Mead S, Ciccone S, Djurovic S, Heilmann-Heimbach S, Riedel-Heller S, Kuulasmaa T, Del Ser T, Lebouvier T, Polak T, Ngandu T, Grimmer T, Bessi V, Escott-Price V, Giedraitis V, Deramecourt V, Maier W, Jian X, Pijnenburg YAL, Kehoe PG, Garcia-Ribas G, Sánchez-Juan P, Pastor P, Pérez-Tur J, Piñol-Ripoll G, Lopez de Munain A, García-Alberca JM, Bullido MJ, Álvarez V, Lleó A, Real LM, Mir P, Medina M, Scheltens P, Holstege H, Marquié M, Sáez ME, Carracedo Á, Amouyel P, Schellenberg GD, Williams J, Seshadri S, van Duijn CM, Mather KA, Sánchez-Valle R, Serrano-Ríos M, Orellana A, Tárraga L, Blennow K, Huisman M, Andreassen OA, Posthuma D, Clarimón J, Boada M, van der Flier WM, Ramirez A, Lambert JC, van der Lee SJ, Ruiz A. Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nat Commun 2021; 12:3417. [PMID: 34099642 PMCID: PMC8184987 DOI: 10.1038/s41467-021-22491-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/17/2021] [Indexed: 11/09/2022] Open
Abstract
Genetic discoveries of Alzheimer's disease are the drivers of our understanding, and together with polygenetic risk stratification can contribute towards planning of feasible and efficient preventive and curative clinical trials. We first perform a large genetic association study by merging all available case-control datasets and by-proxy study results (discovery n = 409,435 and validation size n = 58,190). Here, we add six variants associated with Alzheimer's disease risk (near APP, CHRNE, PRKD3/NDUFAF7, PLCG2 and two exonic variants in the SHARPIN gene). Assessment of the polygenic risk score and stratifying by APOE reveal a 4 to 5.5 years difference in median age at onset of Alzheimer's disease patients in APOE ɛ4 carriers. Because of this study, the underlying mechanisms of APP can be studied to refine the amyloid cascade and the polygenic risk score provides a tool to select individuals at high risk of Alzheimer's disease.
Collapse
Affiliation(s)
- Itziar de Rojas
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sonia Moreno-Grau
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Niccolo Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft Univeristy of Technology, Delft, The Netherlands
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167-Labex DISTALZ-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Victor Andrade
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
| | - Iris E Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Najada Stringa
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Isabel Hernández
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Laura Montrreal
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Carmen Antúnez
- Unidad de Demencias, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders unit. Service of Neurology, Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Rick M Tankard
- Mathematics and Statistics, Murdoch University, Perth, WA, Australia
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinial Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Céline Bellenguez
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167-Labex DISTALZ-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Miguel Calero
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- UFIEC, Instituto de Salud Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Emilio Franco-Macías
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Juan Macías
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Rafael Blesa
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera-Carles
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Menéndez-González
- Servicio de Neurología, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ana Frank-García
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, La Paz University Hospital, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímicas e Inmunología, School of Medicine, University of Málaga, Málaga, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Raquel Huerto Vilas
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Miquel Baquero
- Servei de Neurologia, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Mónica Diez-Fairen
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Pablo García-González
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Emilio Alarcón-Martín
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímicas e Inmunología, School of Medicine, University of Málaga, Málaga, Spain
| | - Sergi Valero
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Oscar Sotolongo-Grau
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Abbe Ullgren
- Karolinska Institutet, Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Adam C Naj
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alba Benaque
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alba Pérez-Cordón
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Rábano
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- BT-CIEN, Madrid, Spain
| | - Alessandro Padovani
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Alfonso Arias Pastor
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Almar A L Kok
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alun Meggy
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Ana Belén Pastor
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
- BT-CIEN, Madrid, Spain
| | - Ana Espinosa
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anaïs Corma-Gómez
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Angel Martín Montes
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, Madrid, Spain
- Department of Neurology, La Paz University Hospital, Madrid, Spain
| | - Ángela Sanabria
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Anita L DeStefano
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Anja Schneider
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Annakaisa Haapasalo
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anne Kinhult Ståhlbom
- Karolinska Institutet, Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette M Hartmann
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale), Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Arturo Corbatón-Anchuelo
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Arvid Rongve
- Haugesund Hospital, Helse Fonna, Department of Research and Innovation, Haugesund, Norway
- University of Bergen, Institute of Clinical Medicine (K1), Bergen, Norway
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, Herlev, Denmark
| | - Brian W Kunkle
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camille Charbonnier
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, FHU G4 Génomique, F-76000 Rouen, France
| | - Carla Abdelnour
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, School of Medicine, Milan, Italy
| | - Carmen Martínez Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Hospital de Cabueñes, Gijón, Spain
| | - Carmen Muñoz-Fernandez
- Servicio de Neurología, Hospital Universitario de Gran Canaria Dr.Negrín, Las Palmas, Spain
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, Bordeaux, France
- CHU de Bordeaux, Pole de Santé Publique, Bordeaux, France
| | - Caroline Graff
- Karolinska Institutet, Center for Alzheimer Research, Department NVS, Division of Neurogeriatrics, Stockholm, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Catarina B Ferreira
- Instituto de Medicina Molecular João lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Chandra A Reynolds
- Department of Psychology, University of California-Riverside, Riverside, CA, USA
| | | | - Christine Van Broeckhoven
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp., Antwerp, Belgium
| | - Christopher Clark
- Insititute for Regenerative Medicine, University of Zürich, Zürich, Switzerland
| | - Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia L Satizabal
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Population Health Sciences, UT Health San Antonio, San Antonio, TX, USA
| | - Clive Holmes
- Division of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK
| | - Dolores Buiza-Rueda
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Centre of Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale), Germany
| | - Daniel Alcolea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniela Galimberti
- University of Milan, Dino Ferrari Center, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR-MAJ, FHU G4 Génomique, F-76000 Rouen, France
| | - Davide Seripa
- Complex Structure of Geriatrics, Department of Medical Sciences Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Elio Scarpini
- University of Milan, Dino Ferrari Center, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca and Milan Center for Neuroscience, Milan, Italy
| | - Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Emmanuelle Duron
- APHP, Hôpital Brousse, equipe INSERM 1178, MOODS, Villejuif, France
- Université Paris-Saclay, UVSQ, Inserm, CESP, Team MOODS, Le Kremlin-Bicêtre, Paris, France
- APHP, Hôpital Broca, Paris, France
| | - Eric Boerwinkle
- School of Public Health, Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Evelyn Ferri
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Fahri Küçükali
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp., Antwerp, Belgium
| | - Florence Pasquier
- Inserm U1172, CHU, DISTAlz, LiCEND, Univ Lille, Lille, France
- CHU CNR-MAJ, Lille, France
| | - Florentino Sanchez-Garcia
- Servicio de Inmunología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Francesca Mangialasche
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Gemma Ortega
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Geneviève Chêne
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Univ Bordeaux, Bordeaux, France
- CHU de Bordeaux, Pole de Santé Publique, Bordeaux, France
| | | | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Giulia Grande
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Giuliano Binetti
- MAC-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Harald Hampel
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Henri Bailly
- APHP, Hôpital Broca, Paris, France
- EA 4468, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Hilkka Soininen
- Institute of Clinical Medicine Neurology, University of Eastern Finland, Kuopio, Finland
- Neurocenter, neurology, Kuopio University Hospital, Kuopio, Finland
| | - Ida K Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute for Gerontology and Aging Research Network-Jönköping (ARN-J), School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Ildebrando Appollonio
- School of Medicine and Surgery, University of Milano-Bicocca and Milan Center for Neuroscience, Milan, Italy
- Neurology Unit, 'San Gerardo' hospital, Monza, Italy
| | - Ina Giegling
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale), Germany
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Ingvild Saltvedt
- Department of Geriatrics, Clinic of Medicine, St Olavs Hospital, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technhology (NTNU), Trondheim, Norway
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Irene Rosas Allende
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, School of Medicine Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jasper Van Dongen
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
| | - Jean-Sebastien Vidal
- APHP, Hôpital Broca, Paris, France
- EA 4468, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Jenni Lehtisalo
- Institute of Clinical Medicine Neurology, University of Eastern Finland, Kuopio, Finland
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | | | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Vogelgsang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- Translational Neuroscience Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Juan A Pineda
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Fortea
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julius Popp
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
- University of Zürich, Zürich, Switzerland
- Old age Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Kevin Morgan
- Schools of Life Sciences and Medicine, University of Nottingham, Nottingham, UK
| | - Klaus Fließbach
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
| | - Kristel Sleegers
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp., Antwerp, Belgium
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Service of Neurology, Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-IDIBAPS, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Lena Kilander
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala, Sweden
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology, Ophthalmology, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, MA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luca Kleineidam
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
| | - Lucia Farotti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Lucio Tremolizzo
- School of Medicine and Surgery, University of Milano-Bicocca and Milan Center for Neuroscience, Milan, Italy
- Neurology Unit, 'San Gerardo' hospital, Monza, Italy
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - M Candida Deniz-Naranjo
- Servicio de Inmunología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Magda Tsolaki
- 1st Department of Neurology Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maitée Rosende-Roca
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Malin Löwenmark
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala, Sweden
| | - Marc Hulsman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Margaret A Pericak-Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Margaret Esiri
- Nuffield Department of Clinical Neurosciences, Oxford, UK
| | - María Bernal Sánchez-Arjona
- Unidad de Demencias, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Maria Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - María Teresa Martínez-Larrad
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marta Fernández-Fuertes
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala, Sweden
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Mary H Kosmidis
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Michael Ewers
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität LMU, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Michael T Heneka
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michela Scamosci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Neuroepidemiology and Ageing Research Unit, School of Public Health, Imperial College London, London, UK
- Stockholms Sjukhem, Research & Development Unit, Stockholm, Sweden
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Miren Zulaica
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Montserrat Alegret
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Natalia Roberto
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Natasja M van Schoor
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Nazib M Seidu
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Depatment of Neurology, Columbia University, New York, NY, USA
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, School of Medicine Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Hanon
- APHP, Hôpital Broca, Paris, France
- EA 4468, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Oliver Peters
- Department of Psychiatry and Psychotherapy and Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Olivia Anna Skrobot
- Bristol Medical School (THS), University of Bristol, Southmead Hospital, Bristol, UK
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, FHU G4 Génomique, F-76000 Rouen, France
| | - Ondrej Lerch
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Paola Bossù
- Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo Caffarra
- Unit of Neuroscience, DIMEC, University of Parma, Parma, Italy
| | - Paolo Dionigi Rossi
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Paraskevi Sakka
- Athens Association of Alzheimer's disease and Related Disorders, Athens, Greece
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Peter A Holmans
- Division of Psychological Medicine and Clinial Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Peter Fischer
- Department of Psychiatry, Social Medicine Center East- Donauspital, Vienna, Austria
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Würzburg, Würzburg, Germany
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Rachel Marshall
- Division of Psychological Medicine and Clinial Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Rajesh N Kalaria
- Translational and Clincial Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Campus for Ageing anf Vitality, Newcastle upon Tyne, UK
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, University of Leuven, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sebastiaan Engelborghs
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Reference Center for Biological Markers of Dementia (BIODEM), University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, VUB University Hospital Brussels (UZ Brussel), Brussels, Belgium
| | - Seppo Helisalmi
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), University of Gothenburg, Gothenburg, Sweden
| | - Silvana Archetti
- Department of Laboratory Diagnostics, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Silvia Fostinelli
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Gil
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Silvia Mendoza
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simona Ciccone
- Geriatic Unit, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Teodoro Del Ser
- Department of Neurology/CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Thibaud Lebouvier
- Inserm U1172, CHU, DISTAlz, LiCEND, Univ Lille, Lille, France
- CHU CNR-MAJ, Lille, France
| | - Thomas Polak
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital, Wuerzburg, Germany
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, School of Medicine Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi Largo Brambilla, Florence, Italy
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinial Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UKDRI Cardiff, Cardiff University, Cardiff, UK
| | | | - Vincent Deramecourt
- Inserm U1172, CHU, DISTAlz, LiCEND, Univ Lille, Lille, France
- CHU CNR-MAJ, Lille, France
| | - Wolfgang Maier
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Xueqiu Jian
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Patrick Gavin Kehoe
- Bristol Medical School (THS), University of Bristol, Southmead Hospital, Bristol, UK
| | | | - Pascual Sánchez-Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo Lopez de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country, San Sebastián, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
| | - Victoria Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Alberto Lleó
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marta Marquié
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica-CIBERER-IDIS, Santiago de Compostela, Spain
| | - Philippe Amouyel
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167-Labex DISTALZ-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie Williams
- Division of Psychological Medicine and Clinial Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK
| | - Sudha Seshadri
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karen A Mather
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Raquel Sánchez-Valle
- Alzheimer's disease and other cognitive disorders unit. Service of Neurology, Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Manuel Serrano-Ríos
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Lluís Tárraga
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Martijn Huisman
- Amsterdam UMC-Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Sociology, VU University, Amsterdam, The Netherlands
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Jordi Clarimón
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercè Boada
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Neurodegenerative diseases and Geriatric Psychiatry, University Clinic Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, Institut Pasteur de Lille, CHU Lille, U1167-Labex DISTALZ-RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
- Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Agustín Ruiz
- Research Center and Memory clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Liu RM, Chong Z, Chen JC. Ozone and Particulate Matter Exposure and Alzheimer's Disease: A Review of Human and Animal Studies. J Alzheimers Dis 2021; 76:807-824. [PMID: 32568209 DOI: 10.3233/jad-200435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an aging-related neurodegenerative disease, is a major cause of dementia in the elderly. Although the early-onset (familial) AD is attributed to mutations in the genes coding for amyloid-β protein precursor (AβPP) and presenilin1/presenilin 2 (PS1/PS2), the cause for the late-onset AD (LOAD), which accounts for more than 95% of AD cases, remains unclear. Aging is the greatest risk factor for LOAD, whereas the apolipo protein E4 allele (APOEɛ4) is believed to be a major genetic risk factor in acquiring LOAD, with female APOEɛ4 carriers at highest risk. Nonetheless, not all the elderly, even older female APOEɛ4 carriers, develop LOAD, suggesting that other factors, including environmental exposure, must play a role. This review summarizes recent studies that show a potential role of environmental exposure, especially ozone and particulate matter exposure, in the development of AD. Interactions between environmental exposure, genetic risk factor (APOEɛ4), and sex in AD pathophysiology are also discussed briefly. Identification of environmental risk factor(s) and elucidation of the complex interactions between genetic and environmental risk factors plus aging and female sex in the onset of AD will be a key to our understanding of the etiology and pathogenesis of AD and the development of the strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zechen Chong
- Department of Genetics, the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jiu-Chiuan Chen
- Department of Biostatistics and Data Science, The University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Basova L, Lindsey A, McGovern AM, Ellis RJ, Marcondes MCG. Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis. Viruses 2021; 13:544. [PMID: 33805201 PMCID: PMC8064323 DOI: 10.3390/v13040544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022] Open
Abstract
Human postmortem specimens are extremely valuable resources for investigating translational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic signatures would be more stable than RNA for assessing global changes associated with outcomes of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was abundant and stable up to the 72 h postmortem. We tested our ability to use HeK4me3 in human prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not (Meth +/-) which exhibited poor RNA quality and were not suitable for transcriptional profiling. Systems strategies that are typically used in transcriptional metadata were applied to H3K4me3 peaks revealing consistent genomic activity differences in regions where addiction and neuronal synapses pathway genes are represented, including genes of the dopaminergic system, as well as inflammatory pathways. The resulting comparisons mirrored previously observed effects of Meth on suppressing gene expression and provided insights on neurological processes affected by Meth. The results suggested that H3K4me3 detection in chromatin may reflect transcriptional patterns, thus providing opportunities for analysis of larger numbers of specimens from cases with substance use and neurological deficits. In conclusion, the detection of H3K4me3 in isolated chromatin can be an alternative to transcriptome strategies to increase the power of association using specimens with long postmortem intervals and low RNA quality.
Collapse
Affiliation(s)
- Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Anne Marie McGovern
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA; (L.B.); (A.L.); (A.M.M.)
| | - Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA;
| | | |
Collapse
|
28
|
Creese B, Arathimos R, Brooker H, Aarsland D, Corbett A, Lewis C, Ballard C, Ismail Z. Genetic risk for Alzheimer's disease, cognition, and mild behavioral impairment in healthy older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12164. [PMID: 33748395 PMCID: PMC7968121 DOI: 10.1002/dad2.12164] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/07/2022]
Abstract
BACKGROUND The neuropsychiatric syndrome mild behavioral impairment (MBI) describes an at-risk state for dementia and may be a useful screening tool for sample enrichment. We hypothesized that stratifying a cognitively normal sample on MBI status would enhance the association between genetic risk for Alzheimer's disease (AD) and cognition. METHODS Data from 4458 participants over age 50 without dementia was analyzed. A cognitive composite score was constructed and the MBI Checklist was used to stratify those with MBI and those without. Polygenic scores for AD were generated using summary statistics from the IGAP study. RESULTS AD genetic risk was associated with worse cognition in the MBI group but not in the no MBI group (MBI: β = -0.09, 95% confidence interval: -0.13 to -0.03, P = 0.002, R2 = 0.003). The strongest association was in those with more severe MBI aged ≥65. CONCLUSIONS MBI is an important feature of aging; screening on MBI may be a useful sample enrichment strategy for clinical research.
Collapse
Affiliation(s)
- Byron Creese
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Ryan Arathimos
- King's College LondonSocial Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Helen Brooker
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Anne Corbett
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Cathryn Lewis
- King's College LondonSocial Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceLondonUK
| | - Clive Ballard
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
| | - Zahinoor Ismail
- Medical SchoolCollege of Medicine and HealthUniversity of ExeterExeterUK
- Departments of Psychiatry, Clinical Neurosciences, and Community Health SciencesHotchkiss Brain Institute and O'Brien Institute for PublicHealthUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
29
|
Ibanez A, Yokoyama JS, Possin KL, Matallana D, Lopera F, Nitrini R, Takada LT, Custodio N, Sosa Ortiz AL, Avila-Funes JA, Behrens MI, Slachevsky A, Myers RM, Cochran JN, Brusco LI, Bruno MA, Brucki SMD, Pina-Escudero SD, Okada de Oliveira M, Donnelly Kehoe P, Garcia AM, Cardona JF, Santamaria-Garcia H, Moguilner S, Duran-Aniotz C, Tagliazucchi E, Maito M, Longoria Ibarrola EM, Pintado-Caipa M, Godoy ME, Bakman V, Javandel S, Kosik KS, Valcour V, Miller BL. The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Front Neurol 2021; 12:631722. [PMID: 33776890 PMCID: PMC7992978 DOI: 10.3389/fneur.2021.631722] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Dementia is becoming increasingly prevalent in Latin America, contrasting with stable or declining rates in North America and Europe. This scenario places unprecedented clinical, social, and economic burden upon patients, families, and health systems. The challenges prove particularly pressing for conditions with highly specific diagnostic and management demands, such as frontotemporal dementia. Here we introduce a research and networking initiative designed to tackle these ensuing hurdles, the Multi-partner consortium to expand dementia research in Latin America (ReDLat). First, we present ReDLat's regional research framework, aimed at identifying the unique genetic, social, and economic factors driving the presentation of frontotemporal dementia and Alzheimer's disease in Latin America relative to the US. We describe ongoing ReDLat studies in various fields and ongoing research extensions. Then, we introduce actions coordinated by ReDLat and the Latin America and Caribbean Consortium on Dementia (LAC-CD) to develop culturally appropriate diagnostic tools, regional visibility and capacity building, diplomatic coordination in local priority areas, and a knowledge-to-action framework toward a regional action plan. Together, these research and networking initiatives will help to establish strong cross-national bonds, support the implementation of regional dementia plans, enhance health systems' infrastructure, and increase translational research collaborations across the continent.
Collapse
Affiliation(s)
- Agustin Ibanez
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Jennifer S. Yokoyama
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Katherine L. Possin
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Diana Matallana
- Psychiatry Department, School of Medicine, Aging Institute, Pontificia Universidad Javeriana, Bogotá, Colombia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Mental Health Unit, Hospital Universitario Santa Fe de Bogotá, Bogotá, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
| | - Nilton Custodio
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Ana Luisa Sosa Ortiz
- Instituto Nacional de Neurologia y Neurocirugia MVS, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - José Alberto Avila-Funes
- Department of Geriatrics, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico, Mexico
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
| | - Maria Isabel Behrens
- Centro de Investigación Clínica Avanzada, Hospital Clínico, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Departamento de Neurociencia, Facultad de Medicina Universidad de Chile, Santiago, Chile
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Andrea Slachevsky
- Clínica Alemana Santiago, Universidad del Desarrollo, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, Institute of Biomedical Sciences, Neuroscience and East Neuroscience, Santiago, Chile
- Faculty of Medicine, University of Chile, Santiago, Chile
- Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Faculty of Medicine, Hospital del Salvador, University of Chile, Santiago, Chile
| | - Richard M. Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Luis Ignacio Brusco
- Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- ALZAR – Alzheimer, Buenos Aires, Argentina
| | - Martin A. Bruno
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad Ciencias Médicas, Instituto Ciencias Biomédicas, Universidad Católica de Cuyo, San Juan, Argentina
| | - Sonia M. D. Brucki
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Stefanie Danielle Pina-Escudero
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Maira Okada de Oliveira
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive and Behavioral Neurology Unit, Hospital das Clinicas, University of São Paulo Medical School, São Paulo, Brazil
- Hospital Santa Marcelina, São Paulo, São Paulo, Brazil
| | - Patricio Donnelly Kehoe
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Multimedia Signal Processing Group - Neuroimage Division, French-Argentine International Center for Information and Systems Sciences, Rosario, Argentina
| | - Adolfo M. Garcia
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Faculty of Education, National University of Cuyo, Mendoza, Argentina
| | | | - Hernando Santamaria-Garcia
- Memory and Cognition Clinic, Intellectus, Hospital Universitario San Ignacio, Bogotá, Colombia
- Ph.D. Program in Neuroscience, Department of Psychiatry, Physiology, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sebastian Moguilner
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Claudia Duran-Aniotz
- School of Psychology, Center for Social and Cognitive Neuroscience, Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibanez, Adolfo Ibanez University, Santiago, Chile
| | - Enzo Tagliazucchi
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Maito
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | | | - Maritza Pintado-Caipa
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Unit Cognitive Impairment and Dementia Prevention, Cognitive Neurology Center, Peruvian Institute of Neurosciences, Lima, Perú
| | - Maria Eugenia Godoy
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
| | - Vera Bakman
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kenneth S. Kosik
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Victor Valcour
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- The Global Brain Health Institute (GBHI), University of California, San Francisco, San Francisco, CA, United States
- The Global Brain Health Institute (GBHI), Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
30
|
Azar J, Salama M, Chidambaram SB, Al‐Balushi B, Essa MM, Qoronfleh MW. Precision health in Alzheimer disease: Risk assessment‐based strategies. PRECISION MEDICAL SCIENCES 2021. [DOI: 10.1002/prm2.12036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jihan Azar
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I‐GHHE) The American University in Cairo (AUC) Cairo Egypt
- Faculty of Medicine Mansoura University Mansoura Egypt
| | - Saravana Babu Chidambaram
- Department of Pharmacology JSS College of Pharmacy, JSS Academy of Higher Education & Research Mysuru India
| | - Buthaina Al‐Balushi
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition CAMS, Sultan Qaboos University Muscat Oman
- Ageing and Dementia Research Group Sultan Qaboos University Muscat Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI) Research & Policy Division Ypsilanti Michigan USA
- 21 Health Street, Consulting Services London UK
| |
Collapse
|
31
|
Parra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría‐García H, Aprahamian I, Bertolucci PHF, Bustin J, Camargos Bicalho MA, Cano‐Gutierrez C, Caramelli P, Chaves MLF, Cogram P, Beber BC, Court FA, de Souza LC, Custodio N, Damian A, de la Cruz M, Diehl Rodriguez R, Brucki SMD, Fajersztajn L, Farías GA, De Felice FG, Ferrari R, de Oliveira FF, Ferreira ST, Ferretti C, Figueredo Balthazar ML, Ferreira Frota NA, Fuentes P, García AM, Garcia PJ, de Gobbi Porto FH, Duque Peñailillo L, Engler HW, Maier I, Mata IF, Gonzalez‐Billault C, Lopez OL, Morelli L, Nitrini R, Quiroz YT, Guerrero Barragan A, Huepe D, Pio FJ, Suemoto CK, Kochhann R, Kochen S, Kumfor F, Lanata S, Miller B, Mansur LL, Hosogi ML, Lillo P, Llibre Guerra J, Lira D, Lopera F, Comas A, Avila‐Funes JA, Sosa AL, Ramos C, Resende EDPF, Snyder HM, Tarnanas I, Yokoyama J, Llibre J, Cardona JF, Possin K, Kosik KS, Montesinos R, Moguilner S, Solis PCL, Ferretti‐Rebustini REDL, Ramirez JM, Matallana D, Mbakile‐Mahlanza L, Marques Ton AM, Tavares RM, Miotto EC, Muniz‐Terrera G, Muñoz‐Nevárez LA, Orozco D, Okada de Oliveira M, Piguet O, Pintado Caipa M, Piña Escudero SD, Schilling LP, Rodrigues Palmeira AL, Yassuda MS, Santacruz‐Escudero JM, Serafim RB, Smid J, Slachevsky A, Serrano C, Soto‐Añari M, Takada LT, Grinberg LT, Teixeira AL, Barbosa MT, Trépel D, Ibanez A. Dementia in Latin America: Paving the way toward a regional action plan. Alzheimers Dement 2021; 17:295-313. [PMID: 33634602 PMCID: PMC7984223 DOI: 10.1002/alz.12202] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.
Collapse
Affiliation(s)
- Mario Alfredo Parra
- School of Psychological Sciences and HealthGraham Hills BuildingGlasgow, G1 1QE, UK, Universidad Autónoma del CaribePrograma de PsicologíaUniversity of StrathclydeBarranquillaColombia
| | | | - Lucas Sedeño
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Buenos AiresArgentina
| | - Cecilia Gonzalez Campo
- Cognitive Neuroscience Center (CNC)Universidad de San AndresConsejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Buenos AiresArgentina
| | - Hernando Santamaría‐García
- Pontificia Universidad JaverianaMedical School, Physiology and Psychiatry DepartmentsMemory and Cognition Center IntellectusHospital Universitario San IgnacioBogotáColombia
| | - Ivan Aprahamian
- Department of Internal MedicineFaculty of Medicine of JundiaíGroup of Investigation on Multimorbidity and Mental Health in Aging (GIMMA)JundiaíState of São PauloBrazil
| | - Paulo HF Bertolucci
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo ‐ UNIFESPSão PauloBrazil
| | - Julian Bustin
- INECO FoundationInstitute of Cognitive and Translational Neuroscience (INCYT)Favaloro UniversityBuenos AiresArgentina
| | | | - Carlos Cano‐Gutierrez
- Medical SchoolGeriatric Unit, Memory and Cognition Center‐IntellectusAging InstituteHospital Universitario San IgnacioPontificia Universidad JaverianaBogotáColombia
| | - Paulo Caramelli
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marcia L. F. Chaves
- Neurology ServiceHospital de Clínicas de Porto Alegre e Universidade Federal do Rio Grande do SulBrazil
| | - Patricia Cogram
- Laboratory of Molecular NeuropsychiatryINECO FoundationNational Scientific and Technical Research CouncilInstitute of Cognitive and Translational Neuroscience (INCyT)Favaloro UniversityBuenos AiresArgentina
| | - Bárbara Costa Beber
- Department of Speech and Language PathologyAtlantic Fellow for Equity in Brain HealthFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Felipe A. Court
- Center for Integrative BiologyFaculty of SciencesFONDAP Center for GeroscienceBrain Health and Metabolism, Santiago, Chile, The Buck Institute for Research on AgingUniversidad Mayor, ChileNovatoCAUSA
| | | | - Nilton Custodio
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Andres Damian
- Centro Uruguayo de Imagenología Molecular (CUDIM)Centro de Medicina Nuclear e Imagenología MolecularHospital de ClínicasUniversidad de la RepúblicaMontevideoUruguay
| | - Myriam de la Cruz
- Global Brain Health Institute, University of CaliforniaSan FranciscoUSA
| | - Roberta Diehl Rodriguez
- Behavioral and Cognitive Neurology UnitDepartment of Neurology and LIM 22University of São PauloSão PauloBrazil
| | | | - Lais Fajersztajn
- Laboratory of Experimental Air Pollution (LIM05)Department of PathologySchool of MedicineGlobal Brain Health Institute, University of CaliforniaSan Francisco (UCSF)University of São PauloSão PauloSao PauloBrazil
| | - Gonzalo A. Farías
- Department Neurology and Neurosurgery North/Department of NeurosciencesCenter for Advanced Clinical Research (CICA)Faculty of MedicineUniversidad de ChileSantiagoChile
| | | | - Raffaele Ferrari
- Department of Neurodegenerative DiseaseUniversity College LondonLondonESUK
| | - Fabricio Ferreira de Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo ‐ UNIFESPSão PauloBrazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis & Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Ceres Ferretti
- Division of NeurologyUniversity of São PauloSão PauloBrazil
| | | | | | - Patricio Fuentes
- Geriatrics Section Clinical Hospital University of Chile, Santos Dumont 999 IndependenciaSantiagoChile
| | - Adolfo M. García
- Cognitive Neuroscience Center (CNC)Faculty of EducationNational University of Cuyo (UNCuyo)Universidad de San Andres. National Scientific and Technical Research Council (CONICET)MendozaArgentina
| | | | - Fábio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM‐21)Instituto de PsiquiatriaHospital das Clinicas HCFMUSPFaculdade de MedicinaUniversidade de Sao PauloSao PauloSao PauloBrazil
| | | | | | | | - Ignacio F. Mata
- Department of Genomic MedicineLerner Research InstituteCleveland ClinicOHUSA
| | - Christian Gonzalez‐Billault
- Center for GeroscienceBrain Health and Metabolism (GERO), Santiago, Chile, and Department of Biology, Faculty of SciencesUniversity of ChileSantiagoChile
| | - Oscar L. Lopez
- Alzheimer's Disease Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Laura Morelli
- Fundacion Instituto Leloir‐IIBBA‐CONICET. AveArgentina
| | - Ricardo Nitrini
- Department of NeurologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | - Alejandra Guerrero Barragan
- Trinity College Dublin, Dublin, Departamento de Neurologia Hospital Occidente de KennedyGlobal Brain Health InstituteUniversidad de la SabanaBogotaColombia
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbañezSantiagoChile
| | - Fabricio Joao Pio
- Department of NeurologyHospital Governador Celso RamosFlorianopolisBrazil
| | | | - Renata Kochhann
- Graduate Program in PsychologySchool of Health SciencesHospital Moinhos de VentoPontifical Catholic University of Rio Grande do Sul—PUCRS and Researcher OfficePorto AlegreBrazil
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp, El Cruce “N. Kirchner”, Univ. National A, Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Fac. MedicineUniv Nacional de Buenos Aires (UBA)Buenos AiresArgentina
| | - Fiona Kumfor
- Brain and Mind Centre and School of PsychologyUniversity of SydneySydneyNSWAustralia
| | - Serggio Lanata
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | - Bruce Miller
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | | | - Mirna Lie Hosogi
- Behavioral and Cognitive Unit of Department of NeurologyUniversity of São Paulo School of MedicineSao PauloBrazil
| | - Patricia Lillo
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile, Departamento de Neurología Sur/Departamento de Neurociencia, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | | | - David Lira
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Francisco Lopera
- Neuroscience Research GroupUniversidad de AntioquiaMedellínColombia
| | - Adelina Comas
- Department of Health Policy at the London School of Economics and Political ScienceLondonUK
| | | | - Ana Luisa Sosa
- Instituto Nacional de Neurología y NeurocirugíaCiudad de MéxicoMéxico
| | - Claudia Ramos
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | | | | | - Ioannis Tarnanas
- Global Brain Health Institute, University of CaliforniaSan FranciscoUSA
- Altoida Inc.HoustonTexasUSA
| | - Jenifer Yokoyama
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | | | | | - Kate Possin
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | - Kenneth S. Kosik
- Neuroscience Research Institute and Dept of Molecular Cellular and Developmental BiologyUniversity of California SantaBarbaraCaliforniaUSA
| | - Rosa Montesinos
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | - Patricia Cristina Lourdes Solis
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp, El Cruce “N. Kirchner”, Univ. National A, Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Fac. MedicineUniv Nacional de Buenos Aires (UBA)Buenos AiresArgentina
| | | | - Jeronimo Martin Ramirez
- Departamen de Admision Continua Adultos Hospital General La Raza Instituto Mexicano del Seguro SocialGlobal Brain Health Institute, Trinity College Dublin, DublinCiudad de MexicoMexico
| | - Diana Matallana
- Medical SchoolAging Institute and Psychiatry DepartmentPontificia Universidad Javeriana. Memory and Cognition Center‐IntellectusHospital Universitario San IgnacioBogotáColombia
| | - Lingani Mbakile‐Mahlanza
- Global Brain Health InstituteUniversity of California San Francisco, University of BotswanaGaboroneBotswana
| | | | | | - Eliane C Miotto
- Department of NeurologyUniversity of Sao PauloSao PauloBrazil
| | | | | | - David Orozco
- Cognitive Neuroscience Development LaboratoryAxis NeurocienciasUniversidad Nacional del Sur, Cognitive Impairment and Behavior Disorders UnitBahía BlancaArgentina
| | - Maira Okada de Oliveira
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | - Olivier Piguet
- School of Psychology and Brain and Mind CentreUniversity of SydneyCamperdownNSWAustralia
| | - Maritza Pintado Caipa
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | | | - Lucas Porcello Schilling
- Department of NeurologyPontificia Universidade Catolica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - André Luiz Rodrigues Palmeira
- Santa Casa de Misericórdia de Porto Alegre, Serviço de Neurologia, Porto Alegre, BrazilHospital Ernesto DornellesServiço de Neurologia e NeurocirurgiaPorto AlegreBrazil
| | | | - Jose Manuel Santacruz‐Escudero
- Medical School and Psychiatry DepartmentMemory and Cognition Center‐ IntellectusPontificia Universidad JaverianaHospital Universitario San IgnacioBogotáColombia
| | | | - Jerusa Smid
- Department of NeurologyUniversity of Sao PauloSão PauloBrazil
| | - Andrea Slachevsky
- Neurology DepartmentGeroscience Center for Brain Health and Metabolism, Santiago, Chile, Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Physiopathology Program‐ICBM, East Neurologic and Neurosciences Departments, Faculty of MedicineHospital del Salvador and Faculty of Medicine University of Chile. Servicio de NeurologíaDepartamento de MedicinaClínica Alemana—Universidad del DesarrolloUniversity of Chile, Neuropsychiatry and Memory Disorders clinic (CMYN)SantiagoChile
| | | | | | | | - Lea Tenenholz Grinberg
- Departments of NeurologyPathology and Global Brain Health InstituteUCSF ‐ USA, Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Antonio Lucio Teixeira
- Laboratório Interdisciplinar de Investigação MédicaFaculdade de MedicinaAv. Alfredo Balena, 110Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Maira Tonidandel Barbosa
- Faculdade de Medicina da Universidade Federal de Minas Gerais e Faculdade deCiências Médicas de Minas GeraisBelo HorizonteBrazil
| | - Dominic Trépel
- Global Brain Health Institute (GBHI)Trinity College DublinDublin
| | - Agustin Ibanez
- Cognitive Neuroscience Center (CNC) Buenos Aires, Argentina; Universidad Autonoma del Caribe, Barranquilla, Colombia; Global Brain Health Institute (GBHI), USUniversidad de San AndresCONICETUniversidad Autonoma del CaribeUniversidad Adolfo IbanezUCSFUSA
| |
Collapse
|
32
|
Femminella GD, Harold D, Scott J, Williams J, Edison P. The Differential Influence of Immune, Endocytotic, and Lipid Metabolism Genes on Amyloid Deposition and Neurodegeneration in Subjects at Risk of Alzheimer's Disease. J Alzheimers Dis 2020; 79:127-139. [PMID: 33216025 DOI: 10.3233/jad-200578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Over 20 single-nucleotide polymorphisms (SNPs) are associated with increased risk of Alzheimer's disease (AD). We categorized these loci into immunity, lipid metabolism, and endocytosis pathways, and associated the polygenic risk scores (PRS) calculated, with AD biomarkers in mild cognitive impairment (MCI) subjects. OBJECTIVE The aim of this study was to identify associations between pathway-specific PRS and AD biomarkers in patients with MCI and healthy controls. METHODS AD biomarkers ([18F]Florbetapir-PET SUVR, FDG-PET SUVR, hippocampal volume, CSF tau and amyloid-β levels) and neurocognitive tests scores were obtained in 258 healthy controls and 451 MCI subjects from the ADNI dataset at baseline and at 24-month follow up. Pathway-related (immunity, lipid metabolism, and endocytosis) and total polygenic risk scores were calculated from 20 SNPs. Multiple linear regression analysis was used to test predictive value of the polygenic risk scores over longitudinal biomarker and cognitive changes. RESULTS Higher immune risk score was associated with worse cognitive measures and reduced glucose metabolism. Higher lipid risk score was associated with increased amyloid deposition and cortical hypometabolism. Total, immune, and lipid scores were associated with significant changes in cognitive measures, amyloid deposition, and brain metabolism. CONCLUSION Polygenic risk scores highlights the influence of specific genes on amyloid-dependent and independent pathways; and these pathways could be differentially influenced by lipid and immune scores respectively.
Collapse
Affiliation(s)
| | | | - James Scott
- Imperial College London, London, United Kingdom
| | - Julie Williams
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Paul Edison
- Imperial College London, London, United Kingdom
| | | |
Collapse
|
33
|
Ha J, Moon MK, Kim H, Park M, Cho SY, Lee J, Lee JY, Kim E. Plasma Clusterin as a Potential Link Between Diabetes and Alzheimer Disease. J Clin Endocrinol Metab 2020; 105:5860166. [PMID: 32561922 DOI: 10.1210/clinem/dgaa378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Plasma clusterin, a promising biomarker of Alzheimer disease (AD), has been associated with diabetes mellitus (DM). However, clusterin has not been investigated considering a relationship with both DM and AD. In this study, we aimed to investigate the individual and interactive relationships of plasma clusterin levels with both diseases. DESIGN Cross-sectional observation study. METHODS We classified participants by the severity of cognitive (normal cognition, mild cognitive impairment [MCI], and AD) and metabolic (healthy control, prediabetes, and DM) impairments. We evaluated the cognitive and metabolic functions of the participants with neuropsychological assessments, brain magnetic resonance imaging, and various blood tests, to explore potential relationships with clusterin. RESULTS Plasma clusterin levels were higher in participants with AD and metabolic impairment (prediabetes and DM). A two-way ANCOVA revealed no synergistic, but an additive effect of AD and DM on clusterin. Clusterin was negatively correlated with cognitive scores. It was also associated with metabolic status indicated by glycated hemoglobin A1c (HbA1c), the Homeostatic Model Assessment for Insulin Resistance index, and fasting C-peptide. It showed correlations between medial temporal atrophy and periventricular white matter lesions, indicating neurodegeneration and microvascular insufficiency, respectively. Further mediation analysis to understand the triadic relationship between clusterin, AD, and DM revealed that the association between DM and AD was significant when clusterin is considered as a mediator of their relationship. CONCLUSIONS Clusterin is a promising biomarker of DM as well as of AD. Additionally, our data suggest that clusterin may have a role in linking DM with AD as a potential mediator.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsun Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
34
|
Kleineidam L, Chouraki V, Próchnicki T, van der Lee SJ, Madrid-Márquez L, Wagner-Thelen H, Karaca I, Weinhold L, Wolfsgruber S, Boland A, Martino Adami PV, Lewczuk P, Popp J, Brosseron F, Jansen IE, Hulsman M, Kornhuber J, Peters O, Berr C, Heun R, Frölich L, Tzourio C, Dartigues JF, Hüll M, Espinosa A, Hernández I, de Rojas I, Orellana A, Valero S, Stringa N, van Schoor NM, Huisman M, Scheltens P, Rüther E, Deleuze JF, Wiltfang J, Tarraga L, Schmid M, Scherer M, Riedel-Heller S, Heneka MT, Amouyel P, Jessen F, Boada M, Maier W, Schneider A, González-Pérez A, van der Flier WM, Wagner M, Lambert JC, Holstege H, Sáez ME, Latz E, Ruiz A, Ramirez A. PLCG2 protective variant p.P522R modulates tau pathology and disease progression in patients with mild cognitive impairment. Acta Neuropathol 2020; 139:1025-1044. [PMID: 32166339 PMCID: PMC7244617 DOI: 10.1007/s00401-020-02138-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
A rare coding variant (rs72824905, p.P522R) conferring protection against Alzheimer's disease (AD) was identified in the gene encoding the enzyme phospholipase-C-γ2 (PLCG2) that is highly expressed in microglia. To explore the protective nature of this variant, we employed latent process linear mixed models to examine the association of p.P522R with longitudinal cognitive decline in 3595 MCI patients, and in 10,097 individuals from population-based studies. Furthermore, association with CSF levels of pTau181, total tau, and Aβ1-42 was assessed in 1261 MCI patients. We found that MCI patients who carried the p.P522R variant showed a slower rate of cognitive decline compared to non-carriers and that this effect was mediated by lower pTau181 levels in CSF. The effect size of the association of p.P522R with the cognitive decline and pTau181 was similar to that of APOE-ε4, the strongest genetic risk factor for AD. Interestingly, the protective effect of p.P522R was more pronounced in MCI patients with low Aβ1-42 levels suggesting a role of PLCG2 in the response to amyloid pathology. In line with this hypothesis, we observed no protective effect of the PLCG2 variant on the cognitive decline in population-based studies probably due to the lower prevalence of amyloid positivity in these samples compared to MCI patients. Concerning the potential biological underpinnings, we identified a network of co-expressed proteins connecting PLCG2 to APOE and TREM2 using unsupervised co-regulatory network analysis. The network was highly enriched for the complement cascade and genes differentially expressed in disease-associated microglia. Our data show that p.P522R in PLCG2 reduces AD disease progression by mitigating tau pathology in the presence of amyloid pathology and, as a consequence, maintains cognitive function. Targeting the enzyme PLCG2 might provide a new therapeutic approach for treating AD.
Collapse
Affiliation(s)
- Luca Kleineidam
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
- Epidemiology and Public Health Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Tomasz Próchnicki
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
| | - Sven J van der Lee
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Holger Wagner-Thelen
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ilker Karaca
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Leonie Weinhold
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Steffen Wolfsgruber
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry, France
| | - Pamela V Martino Adami
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland
- Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| | - Julius Popp
- Department of Psychiatry, Lausanne University Hospital, Prilly, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich, Zurich, Switzerland
| | - Frederic Brosseron
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Iris E Jansen
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marc Hulsman
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Oliver Peters
- Department of Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Claudine Berr
- INSERM, University Montpellier, Neuropsychiatry: Epidemiological and Clinical Research, Montpellier, France
| | - Reinhard Heun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127, Bonn, Germany
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Christophe Tzourio
- Inserm, Bordeaux Population Health Research Center, UMR1219, University of Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- Inserm, Bordeaux Population Health Research Center, UMR1219, University of Bordeaux, Bordeaux, France
| | - Michael Hüll
- Department of Psychiatry and Psychotherapy, Center for Psychiatry, Clinic for Geriatric Psychiatry and Psychotherapy Emmendingen, University of Freiburg, Freiburg, Germany
| | - Ana Espinosa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Hernández
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Adelina Orellana
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
| | - Sergi Valero
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Najada Stringa
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Natasja M van Schoor
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC-Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Scheltens
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eckart Rüther
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Évry, France
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- iBiMED, Medical Sciences Department, University of Aveiro, Aveiro, Portugal
| | - Lluis Tarraga
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital of Bonn, Bonn, Germany
| | - Martin Scherer
- Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany
| | - Merce Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Wolfgang Maier
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Wiesje M van der Flier
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael Wagner
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de risque Et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Henne Holstege
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mª Eugenia Sáez
- Andalusian Bioinformatics Research Centre (CAEBi), Seville, Spain
| | - Eicke Latz
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute of Innate Immunity, University Hospitals Bonn, Bonn, Germany
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Centre for Molecular Inflammation Research (CEMIR), Norwegian University of Science and Technology, Trondheim, Norway
| | - Agustin Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades-Universitat Internacional de Catalunya-Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo Ramirez
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Matloff WJ, Zhao L, Ning K, Conti DV, Toga AW. Interaction effect of alcohol consumption and Alzheimer disease polygenic risk score on the brain cortical thickness of cognitively normal subjects. Alcohol 2020; 85:1-12. [PMID: 31734309 PMCID: PMC7220836 DOI: 10.1016/j.alcohol.2019.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 01/01/2023]
Abstract
Alcohol consumption and genetic risk for Alzheimer disease (AD) are among many factors known to be associated with brain structure in cognitively healthy adults. It is unclear, however, whether the effect of alcohol consumption on brain structure varies depending on a person's level of genetic risk for AD. We hypothesized that there is an interaction effect of alcohol consumption and a 33-SNP AD polygenic risk score (PRS) on the cortical thickness of brain regions known to be affected early in the course of AD. Studying 6,213 cognitively healthy subjects from the UK Biobank, we found a significant interaction effect of the 33-SNP AD PRS and alcohol consumption on this AD Cortical Thickness Signature. Stratified, among those who consume 12-24 g/day of alcohol, the 33-SNP AD PRS had a significant, positive association with AD Cortical Thickness Signature, with high-risk subjects having the greatest AD Cortical Thickness Signature. There were no significant associations of the 33-SNP AD PRS with AD Cortical Thickness Signature among the nondrinker or <1, 1-6, 6-12, 24-48, or >48 g/day groups. It is unclear whether this interaction is due to a detrimental or beneficial effect of moderate alcohol consumption in those with the highest genetic risk for AD.
Collapse
Affiliation(s)
- William J Matloff
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Lu Zhao
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - Kaida Ning
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90032, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States.
| |
Collapse
|
36
|
Rychlik M, Mlyniec K. Zinc-mediated Neurotransmission in Alzheimer's Disease: A Potential Role of the GPR39 in Dementia. Curr Neuropharmacol 2020; 18:2-13. [PMID: 31272355 PMCID: PMC7327932 DOI: 10.2174/1570159x17666190704153807] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/11/2019] [Accepted: 07/01/2019] [Indexed: 01/19/2023] Open
Abstract
With more people reaching an advanced age in modern society, there is a growing need for strategies to slow down age-related neuropathology and loss of cognitive functions, which are a hallmark of Alzheimer's disease. Neuroprotective drugs and candidate drug compounds target one or more processes involved in the neurodegenerative cascade, such as excitotoxicity, oxidative stress, misfolded protein aggregation and/or ion dyshomeostasis. A growing body of research shows that a G-protein coupled zinc (Zn2+) receptor (GPR39) can modulate the abovementioned processes. Zn2+ itself has a diverse activity profile at the synapse, and by binding to numerous receptors, it plays an important role in neurotransmission. However, Zn2+ is also necessary for the formation of toxic oligomeric forms of amyloid beta, which underlie the pathology of Alzheimer’s disease. Furthermore, the binding of Zn2+ by amyloid beta causes a disruption of zincergic signaling, and recent studies point to GPR39 and its intracellular targets being affected by amyloid pathology. In this review, we present neurobiological findings related to Zn2+ and GPR39, focusing on its signaling pathways, neural plasticity, interactions with other neurotransmission systems, as well as on the effects of pathophysiological changes observed in Alzheimer's disease on GPR39 function. Direct targeting of the GPR39 might be a promising strategy for the pharmacotherapy of zincergic dyshomeostasis observed in Alzheimer’s disease. The information presented in this article will hopefully fuel further research into the role of GPR39 in neurodegeneration and help in identifying novel therapeutic targets for dementia.
Collapse
Affiliation(s)
- Michal Rychlik
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Krakow, Poland
| |
Collapse
|
37
|
Badhwar A, McFall GP, Sapkota S, Black SE, Chertkow H, Duchesne S, Masellis M, Li L, Dixon RA, Bellec P. A multiomics approach to heterogeneity in Alzheimer's disease: focused review and roadmap. Brain 2020; 143:1315-1331. [PMID: 31891371 PMCID: PMC7241959 DOI: 10.1093/brain/awz384] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 11/14/2022] Open
Abstract
Aetiological and clinical heterogeneity is increasingly recognized as a common characteristic of Alzheimer's disease and related dementias. This heterogeneity complicates diagnosis, treatment, and the design and testing of new drugs. An important line of research is discovery of multimodal biomarkers that will facilitate the targeting of subpopulations with homogeneous pathophysiological signatures. High-throughput 'omics' are unbiased data-driven techniques that probe the complex aetiology of Alzheimer's disease from multiple levels (e.g. network, cellular, and molecular) and thereby account for pathophysiological heterogeneity in clinical populations. This review focuses on data reduction analyses that identify complementary disease-relevant perturbations for three omics techniques: neuroimaging-based subtypes, metabolomics-derived metabolite panels, and genomics-related polygenic risk scores. Neuroimaging can track accrued neurodegeneration and other sources of network impairments, metabolomics provides a global small-molecule snapshot that is sensitive to ongoing pathological processes, and genomics characterizes relatively invariant genetic risk factors representing key pathways associated with Alzheimer's disease. Following this focused review, we present a roadmap for assembling these multiomics measurements into a diagnostic tool highly predictive of individual clinical trajectories, to further the goal of personalized medicine in Alzheimer's disease.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
- Université de Montréal, Montreal, Canada
| | - G Peggy McFall
- Department of Psychology, University of Alberta, Edmonton, Canada
| | - Shraddha Sapkota
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Howard Chertkow
- Baycrest Health Sciences and the Rotman Research Institute, University of Toronto, Toronto, Canada
| | - Simon Duchesne
- Centre CERVO, Quebec City Mental Health Institute, Quebec, Quebec City, Canada
- Department of Radiology, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Mario Masellis
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Roger A Dixon
- Department of Psychology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Pierre Bellec
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montreal, Canada
- Université de Montréal, Montreal, Canada
| |
Collapse
|
38
|
Vegeto E, Villa A, Della Torre S, Crippa V, Rusmini P, Cristofani R, Galbiati M, Maggi A, Poletti A. The Role of Sex and Sex Hormones in Neurodegenerative Diseases. Endocr Rev 2020; 41:5572525. [PMID: 31544208 PMCID: PMC7156855 DOI: 10.1210/endrev/bnz005] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases (NDs) are a wide class of disorders of the central nervous system (CNS) with unknown etiology. Several factors were hypothesized to be involved in the pathogenesis of these diseases, including genetic and environmental factors. Many of these diseases show a sex prevalence and sex steroids were shown to have a role in the progression of specific forms of neurodegeneration. Estrogens were reported to be neuroprotective through their action on cognate nuclear and membrane receptors, while adverse effects of male hormones have been described on neuronal cells, although some data also suggest neuroprotective activities. The response of the CNS to sex steroids is a complex and integrated process that depends on (i) the type and amount of the cognate steroid receptor and (ii) the target cell type-either neurons, glia, or microglia. Moreover, the levels of sex steroids in the CNS fluctuate due to gonadal activities and to local metabolism and synthesis. Importantly, biochemical processes involved in the pathogenesis of NDs are increasingly being recognized as different between the two sexes and as influenced by sex steroids. The aim of this review is to present current state-of-the-art understanding on the potential role of sex steroids and their receptors on the onset and progression of major neurodegenerative disorders, namely, Alzheimer's disease, Parkinson's diseases, amyotrophic lateral sclerosis, and the peculiar motoneuron disease spinal and bulbar muscular atrophy, in which hormonal therapy is potentially useful as disease modifier.
Collapse
Affiliation(s)
- Elisabetta Vegeto
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Alessandro Villa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze della Salute (DiSS), Università degli Studi di Milano, Italy
| | - Sara Della Torre
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Valeria Crippa
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Paola Rusmini
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Riccardo Cristofani
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Mariarita Galbiati
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| | - Adriana Maggi
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Scienze Farmaceutiche (DiSFarm), Università degli Studi di Milano, Italy
| | - Angelo Poletti
- Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Italy.,Dipartimento di Eccellenza di Scienze Farmacologiche e Biomolecolari (DiSFeB), Università degli Studi di Milano, Italy
| |
Collapse
|
39
|
Li WW, Wang Z, Fan DY, Shen YY, Chen DW, Li HY, Li L, Yang H, Liu YH, Bu XL, Jin WS, Zeng F, Xu ZQ, Yu JT, Chen LY, Wang YJ. Association of Polygenic Risk Score with Age at Onset and Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in a Chinese Cohort. Neurosci Bull 2020; 36:696-704. [PMID: 32072450 DOI: 10.1007/s12264-020-00469-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
To evaluate whether the polygenic profile modifies the development of sporadic Alzheimer's disease (sAD) and pathological biomarkers in cerebrospinal fluid (CSF), 462 sAD patients and 463 age-matched cognitively normal (CN) controls were genotyped for 35 single-nucleotide polymorphisms (SNPs) that are significantly associated with sAD. Then, the alleles found to be associated with sAD were used to build polygenic risk score (PRS) models to represent the genetic risk. Receiver operating characteristic (ROC) analyses and the Cox proportional hazards model were used to evaluate the predictive value of PRS for the sAD risk and age at onset. We measured the CSF levels of Aβ42, Aβ42/Aβ40, total tau (T-tau), and phosphorylated tau (P-tau) in a subgroup (60 sAD and 200 CN participants), and analyzed their relationships with the PRSs. We found that 14 SNPs, including SNPs in the APOE, BIN1, CD33, EPHA1, SORL1, and TOMM40 genes, were associated with sAD risk in our cohort. The PRS models built with these SNPs showed potential for discriminating sAD patients from CN controls, and were able to predict the incidence rate of sAD and age at onset. Furthermore, the PRSs were correlated with the CSF levels of Aβ42, Aβ42/Aβ40, T-tau, and P-tau. Our study suggests that PRS models hold promise for assessing the genetic risk and development of AD. As genetic risk profiles vary among populations, large-scale genome-wide sequencing studies are urgently needed to identify the genetic risk loci of sAD in Chinese populations to build accurate PRS models for clinical practice.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhen Wang
- Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Yu Fan
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ying-Ying Shen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Dong-Wan Chen
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Hui-Yun Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Ling Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Heng Yang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yu-Hui Liu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Wang-Sheng Jin
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Fan Zeng
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Zhi-Qiang Xu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Jin-Tai Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Li-Yong Chen
- Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China. .,Chongqing Key Laboratory of Aging and Diseases, Chongqing, 400042, China. .,Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
40
|
Harrison JR, Mistry S, Muskett N, Escott-Price V. From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review. J Alzheimers Dis 2020; 74:1271-1283. [PMID: 32250305 PMCID: PMC7242840 DOI: 10.3233/jad-191233] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Late-onset Alzheimer's disease (AD) is highly heritable. The effect of many common genetic variants, single nucleotide polymorphisms (SNPs), confer risk. Variants are clustered in areas of biology, notably immunity and inflammation, cholesterol metabolism, endocytosis, and ubiquitination. Polygenic scores (PRS), which weight the sum of an individual's risk alleles, have been used to draw inferences about the pathological processes underpinning AD. OBJECTIVE This paper aims to systematically review how AD PRS are being used to study a range of outcomes and phenotypes related to neurodegeneration. METHODS We searched the literature from July 2008-July 2018 following PRISMA guidelines. RESULTS 57 studies met criteria. The AD PRS can distinguish AD cases from controls. The ability of AD PRS to predict conversion from mild cognitive impairment (MCI) to AD was less clear. There was strong evidence of association between AD PRS and cognitive impairment. AD PRS were correlated with a number of biological phenotypes associated with AD pathology, such as neuroimaging changes and amyloid and tau measures. Pathway-specific polygenic scores were also associated with AD-related biologically relevant phenotypes. CONCLUSION PRS can predict AD effectively and are associated with cognitive impairment. There is also evidence of association between AD PRS and other phenotypes relevant to neurodegeneration. The associations between pathway specific polygenic scores and phenotypic changes may allow us to define the biology of the disease in individuals and indicate who may benefit from specific treatments. Longitudinal cohort studies are required to test the ability of PGS to delineate pathway-specific disease activity.
Collapse
Affiliation(s)
- Judith R. Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Sumit Mistry
- MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| | - Natalie Muskett
- Cardiff University Medical School, University Hospital of Wales, Cardiff, UK
| | - Valentina Escott-Price
- Dementia Research Institute & the MRC Centre for Neuropsychiatric Genetics and Genomics, Hadyn Ellis Building, Cardiff University, Cardiff, UK
| |
Collapse
|
41
|
De Velasco Oriol J, Vallejo EE, Estrada K, Taméz Peña JG, Disease Neuroimaging Initiative TA. Benchmarking machine learning models for late-onset alzheimer's disease prediction from genomic data. BMC Bioinformatics 2019; 20:709. [PMID: 31842725 PMCID: PMC6915925 DOI: 10.1186/s12859-019-3158-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Late-Onset Alzheimer's Disease (LOAD) is a leading form of dementia. There is no effective cure for LOAD, leaving the treatment efforts to depend on preventive cognitive therapies, which stand to benefit from the timely estimation of the risk of developing the disease. Fortunately, a growing number of Machine Learning methods that are well positioned to address this challenge are becoming available. RESULTS We conducted systematic comparisons of representative Machine Learning models for predicting LOAD from genetic variation data provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Our experimental results demonstrate that the classification performance of the best models tested yielded ∼72% of area under the ROC curve. CONCLUSIONS Machine learning models are promising alternatives for estimating the genetic risk of LOAD. Systematic machine learning model selection also provides the opportunity to identify new genetic markers potentially associated with the disease.
Collapse
Affiliation(s)
- Javier De Velasco Oriol
- Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710 Mexico
| | - Edgar E. Vallejo
- Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710 Mexico
| | - Karol Estrada
- Graduate Professional Studies, Brandeis University, Waltham, 02453 MA USA
| | - José Gerardo Taméz Peña
- Department of Bioinformatics, Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Monterrey, 64710 Mexico
| | | |
Collapse
|
42
|
Chasioti D, Yan J, Nho K, Saykin AJ. Progress in Polygenic Composite Scores in Alzheimer's and Other Complex Diseases. Trends Genet 2019; 35:371-382. [PMID: 30922659 PMCID: PMC6475476 DOI: 10.1016/j.tig.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Advances in high-throughput genotyping and next-generation sequencing (NGS) coupled with larger sample sizes brings the realization of precision medicine closer than ever. Polygenic approaches incorporating the aggregate influence of multiple genetic variants can contribute to a better understanding of the genetic architecture of many complex diseases and facilitate patient stratification. This review addresses polygenic concepts, methodological developments, hypotheses, and key issues in study design. Polygenic risk scores (PRSs) have been applied to many complex diseases and here we focus on Alzheimer's disease (AD) as a primary exemplar. This review was designed to serve as a starting point for investigators wishing to use PRSs in their research and those interested in enhancing clinical study designs through enrichment strategies.
Collapse
Affiliation(s)
- Danai Chasioti
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kwangsik Nho
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrew J Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
43
|
Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, Teipel SJ, Grothe MJ. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson's disease. Brain 2019; 141:165-176. [PMID: 29228203 PMCID: PMC5837422 DOI: 10.1093/brain/awx310] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
See Gratwicke and Foltynie (doi:10.1093/brain/awx333) for a scientific commentary on this article. Cognitive impairments are a prevalent and disabling non-motor complication of Parkinson’s disease, but with variable expression and progression. The onset of serious cognitive decline occurs alongside substantial cholinergic denervation, but imprecision of previously available techniques for in vivo measurement of cholinergic degeneration limit their use as predictive cognitive biomarkers. However, recent developments in stereotactic mapping of the cholinergic basal forebrain have been found useful for predicting cognitive decline in prodromal stages of Alzheimer’s disease. These methods have not yet been applied to longitudinal Parkinson’s disease data. In a large sample of people with de novo Parkinson’s disease (n = 168), retrieved from the Parkinson’s Progressive Markers Initiative database, we measured cholinergic basal forebrain volumes, using morphometric analysis of T1-weighted images in combination with a detailed stereotactic atlas of the cholinergic basal forebrain nuclei. Using a binary classification procedure, we defined patients with reduced basal forebrain volumes (relative to age) at baseline, based on volumes measured in a normative sample (n = 76). Additionally, relationships between the basal forebrain volumes at baseline, risk of later cognitive decline, and scores on up to 5 years of annual cognitive assessments were assessed with regression, survival analysis and linear mixed modelling. In patients, smaller volumes in a region corresponding to the nucleus basalis of Meynert were associated with greater change in global cognitive, but not motor scores after 2 years. Using the binary classification procedure, patients classified as having smaller than expected volumes of the nucleus basalis of Meynert had ∼3.5-fold greater risk of being categorized as mildly cognitively impaired over a period of up to 5 years of follow-up (hazard ratio = 3.51). Finally, linear mixed modelling analysis of domain-specific cognitive scores revealed that patients classified as having smaller than expected nucleus basalis volumes showed more severe and rapid decline over up to 5 years on tests of memory and semantic fluency, but not on tests of executive function. Thus, we provide the first evidence that volumetric measurement of the nucleus basalis of Meynert can predict early cognitive decline. Our methods therefore provide the opportunity for multiple-modality biomarker models to include a cholinergic biomarker, which is currently lacking for the prediction of cognitive deterioration in Parkinson’s disease. Additionally, finding dissociated relationships between nucleus basalis status and domain-specific cognitive decline has implications for understanding the neural basis of heterogeneity of Parkinson’s disease-related cognitive decline.
Collapse
Affiliation(s)
- Nicola J Ray
- Department of Psychology, Manchester Metropolitan University, Manchester, UK
| | - Steven Bradburn
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | | | - Umar Toseeb
- Department of Education, Derwent College, University of York, York, YO10 5DD, UK
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Csubstantia innominataC/Universidad de Sevilla, Sevilla, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | | | - Stefan J Teipel
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE) - Rostock/Greifswald, Rostock, Germany
| |
Collapse
|
44
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
45
|
The Contribution of Genetic Factors to Cognitive Impairment and Dementia: Apolipoprotein E Gene, Gene Interactions, and Polygenic Risk. Int J Mol Sci 2019; 20:ijms20051177. [PMID: 30866553 PMCID: PMC6429136 DOI: 10.3390/ijms20051177] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. Although it has been studied for years, the pathogenesis of AD is still controversial. Genetic factors may play an important role in pathogenesis, with the apolipoprotein E (APOE) gene among the greatest risk factors for AD. In this review, we focus on the influence of genetic factors, including the APOE gene, the interaction between APOE and other genes, and the polygenic risk factors for cognitive function and dementia. The presence of the APOE ε4 allele is associated with increased AD risk and reduced age of AD onset. Accelerated cognitive decline and abnormal internal environment, structure, and function of the brain were also found in ε4 carriers. The effect of the APOE promoter on cognition and the brain was confirmed by some studies, but further investigation is still needed. We also describe the effects of the associations between APOE and other genetic risk factors on cognition and the brain that exhibit a complex gene⁻gene interaction, and we consider the importance of using a polygenic risk score to investigate the association between genetic variance and phenotype.
Collapse
|
46
|
Varatharajah Y, Ramanan VK, Iyer R, Vemuri P. Predicting Short-term MCI-to-AD Progression Using Imaging, CSF, Genetic Factors, Cognitive Resilience, and Demographics. Sci Rep 2019; 9:2235. [PMID: 30783207 PMCID: PMC6381141 DOI: 10.1038/s41598-019-38793-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/07/2019] [Indexed: 11/08/2022] Open
Abstract
In the Alzheimer's disease (AD) continuum, the prodromal state of mild cognitive impairment (MCI) precedes AD dementia and identifying MCI individuals at risk of progression is important for clinical management. Our goal was to develop generalizable multivariate models that integrate high-dimensional data (multimodal neuroimaging and cerebrospinal fluid biomarkers, genetic factors, and measures of cognitive resilience) for identification of MCI individuals who progress to AD within 3 years. Our main findings were i) we were able to build generalizable models with clinically relevant accuracy (~93%) for identifying MCI individuals who progress to AD within 3 years; ii) markers of AD pathophysiology (amyloid, tau, neuronal injury) accounted for large shares of the variance in predicting progression; iii) our methodology allowed us to discover that expression of CR1 (complement receptor 1), an AD susceptibility gene involved in immune pathways, uniquely added independent predictive value. This work highlights the value of optimized machine learning approaches for analyzing multimodal patient information for making predictive assessments.
Collapse
Affiliation(s)
- Yogatheesan Varatharajah
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | | | - Ravishankar Iyer
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
47
|
Sapkota S, Dixon RA. A Network of Genetic Effects on Non-Demented Cognitive Aging: Alzheimer's Genetic Risk (CLU + CR1 + PICALM) Intensifies Cognitive Aging Genetic Risk (COMT + BDNF) Selectively for APOEɛ4 Carriers. J Alzheimers Dis 2019; 62:887-900. [PMID: 29480189 DOI: 10.3233/jad-170909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trajectories of complex neurocognitive phenotypes in preclinical aging may be produced differentially through selective and interactive combinations of genetic risk. OBJECTIVE We organize three possible combinations into a "network" of genetic risk indices derived from polymorphisms associated with normal and impaired cognitive aging, as well as Alzheimer's disease (AD). Specifically, we assemble and examine three genetic clusters relevant to non-demented cognitive trajectories: 1) Apolipoprotein E (APOE), 2) a Cognitive Aging Genetic Risk Score (CA-GRS; Catechol-O-methyltransferase + Brain-derived neurotrophic factor), and 3) an AD-Genetic Risk Score (AD-GRS; Clusterin + Complement receptor 1 + Phosphatidylinositol-binding clathrin assembly protein). METHOD We use an accelerated longitudinal design (n = 634; age range = 55-95 years) to test whether AD-GRS (low versus high) moderates the effect of increasing CA-GRS risk on executive function (EF) performance and change as stratified by APOE status (ɛ4+ versus ɛ4-). RESULTS APOEɛ4 carriers with high AD-GRS had poorer EF performance at the centering age (75 years) and steeper 9-year decline with increasing CA-GRS but this association was not present in APOEɛ4 carriers with low AD-GRS. CONCLUSIONS APOEɛ4 carriers with high AD-GRS are at elevated risk of cognitive decline when they also possess higher CA-GRS risk. Genetic risk from both common cognitive aging and AD-related indices may interact in intensification networks to differentially predict (1) level and trajectories of EF decline and (2) potential selective vulnerability for transitions into impairment and dementia.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Roger A Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Porter T, Burnham SC, Savage G, Lim YY, Maruff P, Milicic L, Peretti M, Ames D, Masters CL, Martins RN, Rainey-Smith S, Rowe CC, Salvado O, Taddei K, Groth D, Verdile G, Villemagne VL, Laws SM. A Polygenic Risk Score Derived From Episodic Memory Weighted Genetic Variants Is Associated With Cognitive Decline in Preclinical Alzheimer's Disease. Front Aging Neurosci 2018; 10:423. [PMID: 30620773 PMCID: PMC6305908 DOI: 10.3389/fnagi.2018.00423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/06/2018] [Indexed: 01/29/2023] Open
Abstract
Studies of Alzheimer’s disease risk-weighted polygenic risk scores (PRSs) for cognitive performance have reported inconsistent associations. This inconsistency is particularly evident when PRSs are assessed independent of APOE genotype. As such, the development and assessment of phenotype-specific weightings to derive PRSs for cognitive decline in preclinical AD is warranted. To this end a episodic memory-weighted PRS (emPRS) was derived and assessed against decline in cognitive performance in 226 healthy cognitively normal older adults with high brain Aβ-amyloid burden participants from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. The effect size for decline in a verbal episodic memory was determined individually for 27 genetic variants in a reference sample (n = 151). These were then summed to generate a emPRS either including APOE (emPRSc¯APOE) or excluding APOE (emPRSs¯APOE). Resultant emPRS were then evaluated, in a test sample (n = 75), against decline in global cognition, verbal episodic memory and a pre-Alzheimer’s cognitive composite (AIBL-PACC) over 7.5 years. The mean (SD) age of the 226 participants was 72.2 (6.6) years and 116 (51.3%) were female. Reference and test samples did not differ significantly demographically. Whilst no association of emPRSs were observed with baseline cognition, the emPRSc¯APOE was associated with longitudinal global cognition (-0.237, P = 0.0002), verbal episodic memory (-0.259, P = 0.00003) and the AIBL-PACC (-0.381, P = 0.02). The emPRSs¯APOE was also associated with global cognition (-0.169, P = 0.021) and verbal episodic memory (-0.208, P = 0.004). Stratification by APOE ε4 revealed that the association between the emPRS and verbal episodic memory was limited to carriage of no ε4 or one ε4 allele. This was also observed for global cognition. The emPRS and rates of decline in AIBL-PACC were associated in those carrying one ε4 allele. Overall, the described novel emPRS has utility for the prediction of decline in cognition in preclinical AD. This study provides evidence to support the further use and evaluation of phenotype weightings in PRS development.
Collapse
Affiliation(s)
- Tenielle Porter
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - Samantha C Burnham
- CSIRO Health and Biosecurity, Parkville, VIC, Australia.,Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Greg Savage
- ARC Centre of Excellence in Cognition and its Disorders, Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Yen Ying Lim
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Paul Maruff
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,CogState Ltd., Melbourne, VIC, Australia
| | - Lidija Milicic
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - Madeline Peretti
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia
| | - David Ames
- Academic Unit for Psychiatry of Old Age, St. Vincent's Health, The University of Melbourne, Kew, VIC, Australia.,National Ageing Research Institute, Parkville, VIC, Australia
| | - Colin L Masters
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Stephanie Rainey-Smith
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Christopher C Rowe
- Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | | | - Kevin Taddei
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - David Groth
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Victor L Villemagne
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Department of Nuclear Medicine and Centre for PET, Austin Health, Heidelberg, VIC, Australia
| | - Simon M Laws
- Collaborative Genomics Group, Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,Cooperative Research Centre (CRC) for Mental Health, Carlton, VIC, Australia.,School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| |
Collapse
|
49
|
Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158:359-375. [DOI: 10.1016/j.bcp.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
|
50
|
Fernández-Eulate G, Alberro A, Muñoz-Culla M, Zulaica M, Zufiría M, Barandiarán M, Etxeberria I, Yanguas JJ, Gallardo MM, Soberón N, Lacosta AM, Pérez-Grijalba V, Canudas J, Fandos N, Pesini P, Sarasa M, Indakoetxea B, Moreno F, Vergara I, Otaegui D, Blasco M, López de Munain A. Blood Markers in Healthy-Aged Nonagenarians: A Combination of High Telomere Length and Low Amyloidβ Are Strongly Associated With Healthy Aging in the Oldest Old. Front Aging Neurosci 2018; 10:380. [PMID: 30546303 PMCID: PMC6280560 DOI: 10.3389/fnagi.2018.00380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022] Open
Abstract
Many factors may converge in healthy aging in the oldest old, but their association and predictive power on healthy or functionally impaired aging has yet to be demonstrated. By detecting healthy aging and in turn, poor aging, we could take action to prevent chronic diseases associated with age. We conducted a pilot study comparing results of a set of markers (peripheral blood mononuclear cell or PBMC telomere length, circulating Aβ peptides, anti-Aβ antibodies, and ApoE status) previously associated with poor aging or cognitive deterioration, and their combinations, in a cohort of “neurologically healthy” (both motor and cognitive) nonagenarians (n = 20) and functionally impaired, institutionalized nonagenarians (n = 38) recruited between 2014 and 2015. We recruited 58 nonagenarians (41 women, 70.7%; mean age: 92.37 years in the neurologically healthy group vs. 94.13 years in the functionally impaired group). Healthy nonagenarians had significantly higher mean PBMC telomere lengths (mean = 7, p = 0.001), this being inversely correlated with functional impairment, and lower circulating Aβ40 (total in plasma fraction or TP and free in plasma fraction or FP), Aβ42 (TP and FP) and Aβ17 (FP) levels (FP40 131.35, p = 0.004; TP40 299.10, p = 0.007; FP42 6.29, p = 0.009; TP42 22.53, p = 0.019; FP17 1.32 p = 0.001; TP17 4.47, p = 0.3), after adjusting by age. Although healthy nonagenarians had higher anti-Aβ40 antibody levels (net adsorbed signal or NAS ± SD: 0.211 ± 0.107), the number of participants that pass the threshold (NAS > 3) to be considered as positive did not show such a strong association. There was no association with ApoE status. Additionally, we propose a “Composite Neurologically Healthy Aging Score” combining TP40 and mean PBMC telomere length, the strongest correlation of measured biomarkers with neurologically healthy status in nonagenarians (AUC = 0.904).
Collapse
Affiliation(s)
- Gorka Fernández-Eulate
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Ainhoa Alberro
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Maider Muñoz-Culla
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Miren Zulaica
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Mónica Zufiría
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Myriam Barandiarán
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Igone Etxeberria
- Department of Personality, Assessment, and Psychological Treatments, Faculty of Psychology, University of the Basque UPV/EHU, San Sebastián, Spain
| | | | - Maria Mercedes Gallardo
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Nora Soberón
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | | | | | | | | | | | | | - Begoña Indakoetxea
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain
| | - Fermin Moreno
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain
| | - Itziar Vergara
- Primary Health Area, Biodonostia Institute, San Sebastián, Spain.,Health Services Research on Chronic Patients Network, REDISSEC, Bilbao, Spain
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Maria Blasco
- Telomeres & Telomerase Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Adolfo López de Munain
- Department of Neurology, Donostia Universitary Hospital, San Sebastián, Spain.,Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, Madrid, Spain.,Department of Neurosciences, University of the Basque Country, San Sebastián, Spain
| |
Collapse
|