1
|
Liu T, Wang S, Zhang Y, Li Y, Liu Y, Huang S. TIWMFLP: Two-Tier Interactive Weighted Matrix Factorization and Label Propagation Based on Similarity Matrix Fusion for Drug-Disease Association Prediction. J Chem Inf Model 2024. [PMID: 39486090 DOI: 10.1021/acs.jcim.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Accurately identifying new therapeutic uses for drugs is crucial for advancing pharmaceutical research and development. Matrix factorization is often used in association prediction due to its simplicity and high interpretability. However, existing matrix factorization models do not enable real-time interaction between molecular feature matrices and similarity matrices, nor do they consider the geometric structure of the matrices. Additionally, efficiently integrating multisource data remains a significant challenge. To address these issues, we propose a two-tier interactive weighted matrix factorization and label propagation model based on similarity matrix fusion (TIWMFLP) to assist in personalized treatment. First, we calculate the Gaussian and Laplace kernel similarities for drugs and diseases using known drug-disease associations. We then introduce a new multisource similarity fusion method, called similarity matrix fusion (SMF), to integrate these drug/disease similarities. SMF not only considers the different contributions represented by each neighbor but also incorporates drug-disease association information to enhance the contextual topological relationships and potential features of each drug/disease node in the network. Second, we innovatively developed a two-tier interactive weighted matrix factorization (TIWMF) method to process three biological networks. This method realizes for the first time the real-time interaction between the drug/disease feature matrix and its similarity matrix, allowing for a better capture of the complex relationships between drugs and diseases. Additionally, the weighted matrix of the drug/disease similarity matrix is introduced to preserve the underlying structure of the similarity matrix. Finally, the label propagation algorithm makes predictions based on the three updated biological networks. Experimental outcomes reveal that TIWMFLP consistently surpasses state-of-the-art models on four drug-disease data sets, two small molecule-miRNA data sets, and one miRNA-disease data set.
Collapse
Affiliation(s)
- Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yingye Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Shiyuan Huang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
2
|
Ganapathiraju MK, Bhatia T, Deshpande S, Wesesky M, Wood J, Nimgaonkar VL. Schizophrenia Interactome-Derived Repurposable Drugs and Randomized Controlled Trials of Two Candidates. Biol Psychiatry 2024; 96:651-658. [PMID: 38950808 DOI: 10.1016/j.biopsych.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
There is a substantial unmet need for effective and patient-acceptable drugs to treat severe mental illnesses such as schizophrenia (SZ). Computational analysis of genomic, transcriptomic, and pharmacologic data generated in the past 2 decades enables repurposing of drugs or compounds with acceptable safety profiles, namely those that are U.S. Food and Drug Administration approved or have reached late stages in clinical trials. We developed a rational approach to achieve this computationally for SZ by studying drugs that target the proteins in its protein interaction network (interactome). This involved contrasting the transcriptomic modulations observed in the disorder and the drug; our analyses resulted in 12 candidate drugs, 9 of which had additional supportive evidence whereby their target networks were enriched for pathways relevant to SZ etiology or for genes that had an association with diseases pathogenically similar to SZ. To translate these computational results to the clinic, these shortlisted drugs must be tested empirically through randomized controlled trials, in which their previous safety approvals obviate the need for time-consuming phase 1 and 2 studies. We selected 2 among the shortlisted candidates based on likely adherence and side-effect profiles. We are testing them through adjunctive randomized controlled trials for patients with SZ or schizoaffective disorder who experienced incomplete resolution of psychotic features with conventional treatment. The integrated computational analysis for identifying and ranking drugs for clinical trials can be iterated as additional data are obtained. Our approach could be expanded to enable disease subtype-specific drug discovery in the future and should also be exploited for other psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania; Carnegie Mellon University in Qatar, Doha, Qatar.
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, ABVIMS - Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Koramangala, Bengaluru, Karnataka, India
| | - Maribeth Wesesky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Bharadwaj S, Deepika K, Kumar A, Jaiswal S, Miglani S, Singh D, Fartyal P, Kumar R, Singh S, Singh MP, Gaidhane AM, Kumar B, Jha V. Exploring the Artificial Intelligence and Its Impact in Pharmaceutical Sciences: Insights Toward the Horizons Where Technology Meets Tradition. Chem Biol Drug Des 2024; 104:e14639. [PMID: 39396920 DOI: 10.1111/cbdd.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
The technological revolutions in computers and the advancement of high-throughput screening technologies have driven the application of artificial intelligence (AI) for faster discovery of drug molecules with more efficiency, and cost-friendly finding of hit or lead molecules. The ability of software and network frameworks to interpret molecular structures' representations and establish relationships/correlations has enabled various research teams to develop numerous AI platforms for identifying new lead molecules or discovering new targets for already established drug molecules. The prediction of biological activity, ADME properties, and toxicity parameters in early stages have reduced the chances of failure and associated costs in later clinical stages, which was observed at a high rate in the tedious, expensive, and laborious drug discovery process. This review focuses on the different AI and machine learning (ML) techniques with their applications mainly focused on the pharmaceutical industry. The applications of AI frameworks in the identification of molecular target, hit identification/hit-to-lead optimization, analyzing drug-receptor interactions, drug repurposing, polypharmacology, synthetic accessibility, clinical trial design, and pharmaceutical developments are discussed in detail. We have also compiled the details of various startups in AI in this field. This review will provide a comprehensive analysis and outline various state-of-the-art AI/ML techniques to the readers with their framework applications. This review also highlights the challenges in this field, which need to be addressed for further success in pharmaceutical applications.
Collapse
Affiliation(s)
- Shruti Bharadwaj
- Center for SeNSE, Indian Institute of Technology Delhi (IIT), New Delhi, India
| | - Kumari Deepika
- Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Manesar, India
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Shaweta Miglani
- Department of Education, Central University of Punjab, Bathinda, India
| | - Damini Singh
- IES Institute of Pharmacy, IES University, Bhopal, Madhya Pradesh, India
| | - Prachi Fartyal
- Department of Mathematics, Govt PG College Bajpur (US Nagar), Bazpur, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, India
| | - Shareen Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education, Wardha, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar, Uttarakhand, India
| | - Vibhu Jha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
4
|
Gu Y, Xu Z, Yang C. Empowering Graph Neural Network-Based Computational Drug Repositioning with Large Language Model-Inferred Knowledge Representation. Interdiscip Sci 2024:10.1007/s12539-024-00654-7. [PMID: 39325266 DOI: 10.1007/s12539-024-00654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Computational drug repositioning, through predicting drug-disease associations (DDA), offers significant potential for discovering new drug indications. Current methods incorporate graph neural networks (GNN) on drug-disease heterogeneous networks to predict DDAs, achieving notable performances compared to traditional machine learning and matrix factorization approaches. However, these methods depend heavily on network topology, hampered by incomplete and noisy network data, and overlook the wealth of biomedical knowledge available. Correspondingly, large language models (LLMs) excel in graph search and relational reasoning, which can possibly enhance the integration of comprehensive biomedical knowledge into drug and disease profiles. In this study, we first investigate the contribution of LLM-inferred knowledge representation in drug repositioning and DDA prediction. A zero-shot prompting template was designed for LLM to extract high-quality knowledge descriptions for drug and disease entities, followed by embedding generation from language models to transform the discrete text to continual numerical representation. Then, we proposed LLM-DDA with three different model architectures (LLM-DDANode Feat, LLM-DDADual GNN, LLM-DDAGNN-AE) to investigate the best fusion mode for LLM-based embeddings. Extensive experiments on four DDA benchmarks show that, LLM-DDAGNN-AE achieved the optimal performance compared to 11 baselines with the overall relative improvement in AUPR of 23.22%, F1-Score of 17.20%, and precision of 25.35%. Meanwhile, selected case studies of involving Prednisone and Allergic Rhinitis highlighted the model's capability to identify reliable DDAs and knowledge descriptions, supported by existing literature. This study showcases the utility of LLMs in drug repositioning with its generality and applicability in other biomedical relation prediction tasks.
Collapse
Affiliation(s)
- Yaowen Gu
- Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zidu Xu
- School of Nursing, Columbia University, 560 W 168th Street, New York, NY, 10032, USA.
| | - Carl Yang
- Department of Computer Science, Emory College of Arts and Sciences, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Majidifar S, Zabihian A, Hooshmand M. Combination therapy synergism prediction for virus treatment using machine learning models. PLoS One 2024; 19:e0309733. [PMID: 39231124 PMCID: PMC11373828 DOI: 10.1371/journal.pone.0309733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Combining different drugs synergistically is an essential aspect of developing effective treatments. Although there is a plethora of research on computational prediction for new combination therapies, there is limited to no research on combination therapies in the treatment of viral diseases. This paper proposes AI-based models for predicting novel antiviral combinations to treat virus diseases synergistically. To do this, we assembled a comprehensive dataset comprising information on viral strains, drug compounds, and their known interactions. As far as we know, this is the first dataset and learning model on combination therapy for viruses. Our proposal includes using a random forest model, an SVM model, and a deep model to train viral combination therapy. The machine learning models showed the highest performance, and the predicted values were validated by a t-test, indicating the effectiveness of the proposed methods. One of the predicted combinations of acyclovir and ribavirin has been experimentally confirmed to have a synergistic antiviral effect against herpes simplex type-1 virus, as described in the literature.
Collapse
Affiliation(s)
- Shayan Majidifar
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Arash Zabihian
- Department of QA, Kimia Zist Parsian Pharmaceutical Company, Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|
6
|
Messa L, Testa C, Carelli S, Rey F, Jacchetti E, Cereda C, Raimondi MT, Ceri S, Pinoli P. Non-Negative Matrix Tri-Factorization for Representation Learning in Multi-Omics Datasets with Applications to Drug Repurposing and Selection. Int J Mol Sci 2024; 25:9576. [PMID: 39273521 PMCID: PMC11394968 DOI: 10.3390/ijms25179576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The vast corpus of heterogeneous biomedical data stored in databases, ontologies, and terminologies presents a unique opportunity for drug design. Integrating and fusing these sources is essential to develop data representations that can be analyzed using artificial intelligence methods to generate novel drug candidates or hypotheses. Here, we propose Non-Negative Matrix Tri-Factorization as an invaluable tool for integrating and fusing data, as well as for representation learning. Additionally, we demonstrate how representations learned by Non-Negative Matrix Tri-Factorization can effectively be utilized by traditional artificial intelligence methods. While this approach is domain-agnostic and applicable to any field with vast amounts of structured and semi-structured data, we apply it specifically to computational pharmacology and drug repurposing. This field is poised to benefit significantly from artificial intelligence, particularly in personalized medicine. We conducted extensive experiments to evaluate the performance of the proposed method, yielding exciting results, particularly compared to traditional methods. Novel drug-target predictions have also been validated in the literature, further confirming their validity. Additionally, we tested our method to predict drug synergism, where constructing a classical matrix dataset is challenging. The method demonstrated great flexibility, suggesting its applicability to a wide range of tasks in drug design and discovery.
Collapse
Affiliation(s)
- Letizia Messa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Carolina Testa
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Federica Rey
- Pediatric Clinical Research Center "Fondazione Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, 20154 Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Pinoli
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, 20133 Milan, Italy
| |
Collapse
|
7
|
de Alencar Morais Lima W, de Souza JG, García-Villén F, Loureiro JL, Raffin FN, Fernandes MAC, Souto EB, Severino P, Barbosa RDM. Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders. World J Pediatr 2024:10.1007/s12519-024-00834-x. [PMID: 39192003 DOI: 10.1007/s12519-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field. DATA SOURCES Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources. RESULTS Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population. CONCLUSIONS Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.
Collapse
Affiliation(s)
| | - Jackson G de Souza
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071, Granada, Spain.
| | - Julia Lira Loureiro
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Fernanda Nervo Raffin
- Laboratory of Galenic Pharmacy, Department of Pharmacy, Federal University of Rio Grande Do Norte, Natal, 59012-570, Brazil
| | - Marcelo A C Fernandes
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande Do Norte, Natal, RN, 59078-970, Brazil
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Patricia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Aracaju, Sergipe, 49032-490, Brazil
| | - Raquel de M Barbosa
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Seville, C/Professor García González, 2, 41012, Seville, Spain.
| |
Collapse
|
8
|
Ohnuki Y, Akiyama M, Sakakibara Y. Deep learning of multimodal networks with topological regularization for drug repositioning. J Cheminform 2024; 16:103. [PMID: 39180095 PMCID: PMC11342530 DOI: 10.1186/s13321-024-00897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024] Open
Abstract
MOTIVATION Computational techniques for drug-disease prediction are essential in enhancing drug discovery and repositioning. While many methods utilize multimodal networks from various biological databases, few integrate comprehensive multi-omics data, including transcriptomes, proteomes, and metabolomes. We introduce STRGNN, a novel graph deep learning approach that predicts drug-disease relationships using extensive multimodal networks comprising proteins, RNAs, metabolites, and compounds. We have constructed a detailed dataset incorporating multi-omics data and developed a learning algorithm with topological regularization. This algorithm selectively leverages informative modalities while filtering out redundancies. RESULTS STRGNN demonstrates superior accuracy compared to existing methods and has identified several novel drug effects, corroborating existing literature. STRGNN emerges as a powerful tool for drug prediction and discovery. The source code for STRGNN, along with the dataset for performance evaluation, is available at https://github.com/yuto-ohnuki/STRGNN.git .
Collapse
Affiliation(s)
- Yuto Ohnuki
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Manato Akiyama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
9
|
Ozcelik F, Dundar MS, Yildirim AB, Henehan G, Vicente O, Sánchez-Alcázar JA, Gokce N, Yildirim DT, Bingol NN, Karanfilska DP, Bertelli M, Pojskic L, Ercan M, Kellermayer M, Sahin IO, Greiner-Tollersrud OK, Tan B, Martin D, Marks R, Prakash S, Yakubi M, Beccari T, Lal R, Temel SG, Fournier I, Ergoren MC, Mechler A, Salzet M, Maffia M, Danalev D, Sun Q, Nei L, Matulis D, Tapaloaga D, Janecke A, Bown J, Cruz KS, Radecka I, Ozturk C, Nalbantoglu OU, Sag SO, Ko K, Arngrimsson R, Belo I, Akalin H, Dundar M. The impact and future of artificial intelligence in medical genetics and molecular medicine: an ongoing revolution. Funct Integr Genomics 2024; 24:138. [PMID: 39147901 DOI: 10.1007/s10142-024-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Artificial intelligence (AI) platforms have emerged as pivotal tools in genetics and molecular medicine, as in many other fields. The growth in patient data, identification of new diseases and phenotypes, discovery of new intracellular pathways, availability of greater sets of omics data, and the need to continuously analyse them have led to the development of new AI platforms. AI continues to weave its way into the fabric of genetics with the potential to unlock new discoveries and enhance patient care. This technology is setting the stage for breakthroughs across various domains, including dysmorphology, rare hereditary diseases, cancers, clinical microbiomics, the investigation of zoonotic diseases, omics studies in all medical disciplines. AI's role in facilitating a deeper understanding of these areas heralds a new era of personalised medicine, where treatments and diagnoses are tailored to the individual's molecular features, offering a more precise approach to combating genetic or acquired disorders. The significance of these AI platforms is growing as they assist healthcare professionals in the diagnostic and treatment processes, marking a pivotal shift towards more informed, efficient, and effective medical practice. In this review, we will explore the range of AI tools available and show how they have become vital in various sectors of genomic research supporting clinical decisions.
Collapse
Affiliation(s)
- Firat Ozcelik
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Sait Dundar
- Department of Electrical and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, Kayseri, Turkey
| | - A Baki Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gary Henehan
- School of Food Science and Environmental Health, Technological University of Dublin, Dublin, Ireland
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Valencia, Spain
| | - José A Sánchez-Alcázar
- Centro de Investigación Biomédica en Red: Enfermedades Raras, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Instituto de Salud Carlos III, Sevilla, Spain
| | - Nuriye Gokce
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Duygu T Yildirim
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
| | - Dijana Plaseska Karanfilska
- Research Centre for Genetic Engineering and Biotechnology, Macedonian Academy of Sciences and Arts, Skopje, Macedonia
| | | | - Lejla Pojskic
- Institute for Genetic Engineering and Biotechnology, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mehmet Ercan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Miklos Kellermayer
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Izem Olcay Sahin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Busra Tan
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Donald Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), Grenoble, France
| | - Robert Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Satya Prakash
- Department of Biomedical Engineering, University of McGill, Montreal, QC, Canada
| | - Mustafa Yakubi
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tommaso Beccari
- Department of Pharmeceutical Sciences, University of Perugia, Perugia, Italy
| | - Ratnesh Lal
- Neuroscience Research Institute, University of California, Santa Barbara, USA
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa, Turkey
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Isabelle Fournier
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - M Cerkez Ergoren
- Department of Medical Genetics, Near East University Faculty of Medicine, Nicosia, Cyprus
| | - Adam Mechler
- Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michel Salzet
- Réponse Inflammatoire et Spectrométrie de Masse-PRISM, University of Lille, Lille, France
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, Lecce, 73100, Italy
| | - Dancho Danalev
- University of Chemical Technology and Metallurgy, Sofia, Bulgaria
| | - Qun Sun
- Department of Food Science and Technology, Sichuan University, Chengdu, China
| | - Lembit Nei
- School of Engineering Tallinn University of Technology, Tartu College, Tartu, Estonia
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Dana Tapaloaga
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Andres Janecke
- Department of Paediatrics I, Medical University of Innsbruck, Innsbruck, Austria
- Division of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - James Bown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | | | - Iza Radecka
- School of Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| | - Celal Ozturk
- Department of Software Engineering, Erciyes University, Kayseri, Turkey
| | - Ozkan Ufuk Nalbantoglu
- Department of Computer Engineering, Engineering Faculty, Erciyes University, Kayseri, Turkey
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Bursa Uludag University Faculty of Medicine, Bursa, Turkey
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Reynir Arngrimsson
- Iceland Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Munis Dundar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
10
|
Li G, Li S, Liang C, Xiao Q, Luo J. Drug repositioning based on residual attention network and free multiscale adversarial training. BMC Bioinformatics 2024; 25:261. [PMID: 39118000 PMCID: PMC11308596 DOI: 10.1186/s12859-024-05893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Conducting traditional wet experiments to guide drug development is an expensive, time-consuming and risky process. Analyzing drug function and repositioning plays a key role in identifying new therapeutic potential of approved drugs and discovering therapeutic approaches for untreated diseases. Exploring drug-disease associations has far-reaching implications for identifying disease pathogenesis and treatment. However, reliable detection of drug-disease relationships via traditional methods is costly and slow. Therefore, investigations into computational methods for predicting drug-disease associations are currently needed. RESULTS This paper presents a novel drug-disease association prediction method, RAFGAE. First, RAFGAE integrates known associations between diseases and drugs into a bipartite network. Second, RAFGAE designs the Re_GAT framework, which includes multilayer graph attention networks (GATs) and two residual networks. The multilayer GATs are utilized for learning the node embeddings, which is achieved by aggregating information from multihop neighbors. The two residual networks are used to alleviate the deep network oversmoothing problem, and an attention mechanism is introduced to combine the node embeddings from different attention layers. Third, two graph autoencoders (GAEs) with collaborative training are constructed to simulate label propagation to predict potential associations. On this basis, free multiscale adversarial training (FMAT) is introduced. FMAT enhances node feature quality through small gradient adversarial perturbation iterations, improving the prediction performance. Finally, tenfold cross-validations on two benchmark datasets show that RAFGAE outperforms current methods. In addition, case studies have confirmed that RAFGAE can detect novel drug-disease associations. CONCLUSIONS The comprehensive experimental results validate the utility and accuracy of RAFGAE. We believe that this method may serve as an excellent predictor for identifying unobserved disease-drug associations.
Collapse
Affiliation(s)
- Guanghui Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China.
| | - Shuwen Li
- School of Information Engineering, East China Jiaotong University, Nanchang, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Qiu Xiao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Jiawei Luo
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.
| |
Collapse
|
11
|
Wang Z, Wei Z. PT-KGNN: A framework for pre-training biomedical knowledge graphs with graph neural networks. Comput Biol Med 2024; 178:108768. [PMID: 38936076 DOI: 10.1016/j.compbiomed.2024.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024]
Abstract
Biomedical knowledge graphs (KGs) serve as comprehensive data repositories that contain rich information about nodes and edges, providing modeling capabilities for complex relationships among biological entities. Many approaches either learn node features through traditional machine learning methods, or leverage graph neural networks (GNNs) to directly learn features of target nodes in the biomedical KGs and utilize them for downstream tasks. Motivated by the pre-training technique in natural language processing (NLP), we propose a framework named PT-KGNN (Pre-Training the biomedical KG with GNNs) to learn embeddings of nodes in a broader context by applying GNNs on the biomedical KG. We design several experiments to evaluate the effectivity of our proposed framework and the impact of the scale of KGs. The results of tasks consistently improve as the scale of the biomedical KG used for pre-training increases. Pre-training on large-scale biomedical KGs significantly enhances the drug-drug interaction (DDI) and drug-disease association (DDA) prediction performance on the independent dataset. The embeddings derived from a larger biomedical KG have demonstrated superior performance compared to those obtained from a smaller KG. By applying pre-training techniques on biomedical KGs, rich semantic and structural information can be learned, leading to enhanced performance on downstream tasks. it is evident that pre-training techniques hold tremendous potential and wide-ranging applications in bioinformatics.
Collapse
Affiliation(s)
- Zhenxing Wang
- School of Data Science, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| | - Zhongyu Wei
- School of Data Science, Fudan University, 220 Handan Rd., Shanghai, 200433, China.
| |
Collapse
|
12
|
He H, Xie J, Huang D, Zhang M, Zhao X, Ying Y, Wang J. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. J Mol Graph Model 2024; 130:108783. [PMID: 38677034 DOI: 10.1016/j.jmgm.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Drug repurposing is an effective method to reduce the time and cost of drug development. Computational drug repurposing can quickly screen out the most likely associations from large biological databases to achieve effective drug repurposing. However, building a comprehensive model that integrates drugs, proteins, and diseases for drug repurposing remains challenging. This study proposes a drug repurposing method based on the ternary heterogeneous graph attention network (DRTerHGAT). DRTerHGAT designs a novel protein feature extraction process consisting of a large-scale protein language model and a multi-task autoencoder, so that protein features can be extracted accurately and efficiently from amino acid sequences. The ternary heterogeneous graph of drug-protein-disease comprehensively considering the relationships among the three types of nodes, including three homogeneous and three heterogeneous relationships. Based on the graph and the extracted protein features, the deep features of the drugs and the diseases are extracted by graph convolutional networks (GCN) and heterogeneous graph node attention networks (HGNA). In the experiments, DRTerHGAT is proven superior to existing advanced methods and DRTerHGAT variants. DRTerHGAT's powerful ability for drug repurposing is also demonstrated in Alzheimer's disease.
Collapse
Affiliation(s)
- Hongjian He
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Jiang Xie
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| | - Dingkai Huang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Mengfei Zhang
- The School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xuyu Zhao
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Yiwei Ying
- School of Life Sciences,Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences,Shanghai University, Shanghai, China.
| |
Collapse
|
13
|
Wang S, Liu T, Ren C, Zhao Y, Qiao S, Zhang Y, Pang S. Heterogeneous graph inference with range constrainted L 2,1-collaborative matrix factorization for small molecule-miRNA association prediction. Comput Biol Chem 2024; 110:108078. [PMID: 38677013 DOI: 10.1016/j.compbiolchem.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
MicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed. However, most existing methods do not adequately address the inherent sparsity in SM-miRNA association networks, and imprecise SM/miRNA similarity metrics reduce the accuracy of predicting SM-miRNA associations. In this research, we proposed a heterogeneous graph inference with range constrained L2,1-collaborative matrix factorization (HGIRCLMF) method to predict potential SM-miRNA associations. First, we computed the multi-source similarities of SM/miRNA and integrated these similarity information into a comprehensive SM/miRNA similarity. This step improved the accuracy of SM and miRNA similarity, ensuring reliability for the subsequent inference of the heterogeneity map. Second, we used a range constrained L2,1-collaborative matrix factorization (RCLMF) model to pre-populate the SM-miRNA association matrix with missing values. In this step, we developed a novel matrix decomposition method that enhances the robustness and formative nature of SM-miRNA edges between SM networks and miRNA networks. Next, we built a well-established SM-miRNA heterogeneous network utilizing the processed biological information. Finally, HGIRCLMF used this network data to infer unknown association pair scores. We implemented four cross-validation experiments on two distinct datasets, and HGIRCLMF acquired the highest areas under the curve, surpassing six state-of-the-art computational approaches. Furthermore, we performed three case studies to validate the predictive power of our method in practical application.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Tiyao Liu
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yawu Zhao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Sibo Qiao
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China.
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum, Qingdao 266580, China
| |
Collapse
|
14
|
Ianevski A, Kushnir A, Nader K, Miihkinen M, Xhaard H, Aittokallio T, Tanoli Z. RepurposeDrugs: an interactive web-portal and predictive platform for repurposing mono- and combination therapies. Brief Bioinform 2024; 25:bbae328. [PMID: 38980370 PMCID: PMC11232279 DOI: 10.1093/bib/bbae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
RepurposeDrugs (https://repurposedrugs.org/) is a comprehensive web-portal that combines a unique drug indication database with a machine learning (ML) predictor to discover new drug-indication associations for approved as well as investigational mono and combination therapies. The platform provides detailed information on treatment status, disease indications and clinical trials across 25 indication categories, including neoplasms and cardiovascular conditions. The current version comprises 4314 compounds (approved, terminated or investigational) and 161 drug combinations linked to 1756 indications/conditions, totaling 28 148 drug-disease pairs. By leveraging data on both approved and failed indications, RepurposeDrugs provides ML-based predictions for the approval potential of new drug-disease indications, both for mono- and combinatorial therapies, demonstrating high predictive accuracy in cross-validation. The validity of the ML predictor is validated through a number of real-world case studies, demonstrating its predictive power to accurately identify repurposing candidates with a high likelihood of future approval. To our knowledge, RepurposeDrugs web-portal is the first integrative database and ML-based predictor for interactive exploration and prediction of both single-drug and combination approval likelihood across indications. Given its broad coverage of indication areas and therapeutic options, we expect it accelerates many future drug repurposing projects.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Aleksandr Kushnir
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Kristen Nader
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
| | - Mitro Miihkinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Finland
| | - Henri Xhaard
- Faculty of Pharmacy, University of Helsinki, Finland
- Drug Discovery and Chemical Biology (DDCB) consortium, Biocenter Finland
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Norway
| | - Ziaurrehman Tanoli
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki and Helsinki University Hospital, Finland
- Drug Discovery and Chemical Biology (DDCB) consortium, Biocenter Finland
- BioICAWtech, Helsinki, Finland
| |
Collapse
|
15
|
Hassanali Aragh A, Givehchian P, Moslemi Amirani R, Masumshah R, Eslahchi C. MiRAGE: mining relationships for advanced generative evaluation in drug repositioning. Brief Bioinform 2024; 25:bbae337. [PMID: 39038932 PMCID: PMC11262809 DOI: 10.1093/bib/bbae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/09/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
MOTIVATION Drug repositioning, the identification of new therapeutic uses for existing drugs, is crucial for accelerating drug discovery and reducing development costs. Some methods rely on heterogeneous networks, which may not fully capture the complex relationships between drugs and diseases. However, integrating diverse biological data sources offers promise for discovering new drug-disease associations (DDAs). Previous evidence indicates that the combination of information would be conducive to the discovery of new DDAs. However, the challenge lies in effectively integrating different biological data sources to identify the most effective drugs for a certain disease based on drug-disease coupled mechanisms. RESULTS In response to this challenge, we present MiRAGE, a novel computational method for drug repositioning. MiRAGE leverages a three-step framework, comprising negative sampling using hard negative mining, classification employing random forest models, and feature selection based on feature importance. We evaluate MiRAGE on multiple benchmark datasets, demonstrating its superiority over state-of-the-art algorithms across various metrics. Notably, MiRAGE consistently outperforms other methods in uncovering novel DDAs. Case studies focusing on Parkinson's disease and schizophrenia showcase MiRAGE's ability to identify top candidate drugs supported by previous studies. Overall, our study underscores MiRAGE's efficacy and versatility as a computational tool for drug repositioning, offering valuable insights for therapeutic discoveries and addressing unmet medical needs.
Collapse
Affiliation(s)
- Aria Hassanali Aragh
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Pegah Givehchian
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Razieh Moslemi Amirani
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Raziyeh Masumshah
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
| | - Changiz Eslahchi
- Department of Computer and Data Sciences, Faculty of Mathematical Sciences, Shahid Beheshti University, Daneshjou Blvd, District 1, Tehran 1983969411, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Farmanieh Ave, Tajrish, District 1, Tehran 193955746, Iran
| |
Collapse
|
16
|
Xu M, Li W, He J, Wang Y, Lv J, He W, Chen L, Zhi H. DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm. Int J Mol Sci 2024; 25:5267. [PMID: 38791306 PMCID: PMC11121335 DOI: 10.3390/ijms25105267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
Collapse
Affiliation(s)
- Manyi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Wan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Yahui Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Weiming He
- Institute of Opto-Electronics, Harbin Institute of Technology, Harbin 150000, China;
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China; (M.X.); (W.L.); (J.H.); (Y.W.); (J.L.)
| |
Collapse
|
17
|
Park JH, Cho YR. Computational drug repositioning with attention walking. Sci Rep 2024; 14:10072. [PMID: 38698208 PMCID: PMC11066070 DOI: 10.1038/s41598-024-60756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/26/2024] [Indexed: 05/05/2024] Open
Abstract
Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, the importance of computational drug repositioning has been highlighted because it can reduce the costs, development time, and risks compared to traditional drug discovery. Most approaches in this area use networks for systematic analysis. Inferring drug-disease associations is then defined as a link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, we present a novel method of computational drug repositioning, named drug repositioning with attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for prediction is extracted. Second, a graph convolutional network captures the structural features of the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention mechanisms and converted into random walk profiles. Finally, a multi-layer perceptron takes random walk profiles and predicts whether a target link exists. As an experiment, we constructed two heterogeneous networks with drug-drug similarities based on chemical structures and anatomical therapeutic chemical classification (ATC) codes. Using 10-fold cross-validation, DRAW achieved an area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state-of-the-art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to further confirm the capability of DRAW to predict drug-disease associations.
Collapse
Affiliation(s)
- Jong-Hoon Park
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si, 26493, Gangwon-do, Korea.
| |
Collapse
|
18
|
Wang Y, Song J, Dai Q, Duan X. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:3146-3157. [PMID: 38294927 DOI: 10.1109/jbhi.2024.3360437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Predicting potential drug-disease associations (RDAs) plays a pivotal role in elucidating therapeutic strategies for diseases and facilitating drug repositioning, making it of paramount importance. However, existing methods are constrained and rely heavily on limited domain-specific knowledge, impeding their ability to effectively predict candidate associations between drugs and diseases. Moreover, the simplistic definition of unknown information pertaining to drug-disease relationships as negative samples presents inherent limitations. To overcome these challenges, we introduce a novel hierarchical negative sampling-based graph contrastive model, termed HSGCLRDA, which aims to forecast latent associations between drugs and diseases. In this study, HSGCLRDA integrates the association information as well as similarity between drugs, diseases and proteins. Meanwhile, the model constructs a drug-disease-protein heterogeneous network. Subsequently, employing a hierarchical structural sampling technique, we establish reliable negative drug-disease samples utilizing PageRank algorithms. Utilizing meta-path aggregation within the heterogeneous network, we derive low-dimensional representations for drugs and diseases, thereby constructing global and local feature graphs that capture their interactions comprehensively. To obtain representation information, we adopt a self-supervised graph contrastive approach that leverages graph convolutional networks (GCNs) and second-order GCNs to extract feature graph information. Furthermore, we integrate a contrastive cost function derived from the cross-entropy cost function, facilitating holistic model optimization. Experimental results obtained from benchmark datasets not only showcase the superior performance of HSGCLRDA compared to various baseline methods in predicting RDAs but also emphasize its practical utility in identifying novel potential diseases associated with existing drugs through meticulous case studies.
Collapse
|
19
|
Rani N, Kaushik A, Kardam S, Kag S, Raj VS, Ambasta RK, Kumar P. Reimagining old drugs with new tricks: Mechanisms, strategies and notable success stories in drug repurposing for neurological diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:23-70. [PMID: 38789181 DOI: 10.1016/bs.pmbts.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Recent evolution in drug repurposing has brought new anticipation, especially in the conflict against neurodegenerative diseases (NDDs). The traditional approach to developing novel drugs for these complex disorders is laborious, time-consuming, and often abortive. However, drug reprofiling which is the implementation of illuminating novel therapeutic applications of existing approved drugs, has shown potential as a promising strategy to accelerate the hunt for therapeutics. The advancement of computational approaches and artificial intelligence has expedited drug repurposing. These progressive technologies have enabled scientists to analyse extensive datasets and predict potential drug-disease interactions. By prospecting into the existing pharmacological knowledge, scientists can recognise potential therapeutic candidates for reprofiling, saving precious time and resources. Preclinical models have also played a pivotal role in this field, confirming the effectiveness and mechanisms of action of repurposed drugs. Several studies have occurred in recent years, including the discovery of available drugs that demonstrate significant protective effects in NDDs, relieve debilitating symptoms, or slow down the progression of the disease. These findings highlight the potential of repurposed drugs to change the landscape of NDD treatment. Here, we present an overview of recent developments and major advances in drug repurposing intending to provide an in-depth analysis of traditional drug discovery and the strategies, approaches and technologies that have contributed to drug repositioning. In addition, this chapter attempts to highlight successful case studies of drug repositioning in various therapeutic areas related to NDDs and explore the clinical trials, challenges and limitations faced by researchers in the field. Finally, the importance of drug repositioning in drug discovery and development and its potential to address discontented medical needs is also highlighted.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Shefali Kardam
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Sonika Kag
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India
| | - V Samuel Raj
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Rashmi K Ambasta
- Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Delhi, India.
| |
Collapse
|
20
|
Israr J, Alam S, Singh V, Kumar A. Repurposing of biologics and biopharmaceuticals. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:277-302. [PMID: 38789184 DOI: 10.1016/bs.pmbts.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The field of drug repurposing is gaining attention as a way to introduce pharmaceutical agents with established safety profiles to new patient populations. This approach involves finding new applications for existing drugs through observations or deliberate efforts to understand their mechanisms of action. Recent advancements in bioinformatics and pharmacology, along with the availability of extensive data repositories and analytical techniques, have fueled the demand for novel methodologies in pharmaceutical research and development. To facilitate systematic drug repurposing, various computational methodologies have emerged, combining experimental techniques and in silico approaches. These methods have revolutionized the field of drug discovery by enabling the efficient repurposing of screens. However, establishing an ideal drug repurposing pipeline requires the integration of molecular data accessibility, analytical proficiency, experimental design expertise, and a comprehensive understanding of clinical development processes. This chapter explores the key methodologies used in systematic drug repurposing and discusses the stakeholders involved in this field. It emphasizes the importance of strategic alliances to enhance the success of repurposing existing compounds for new indications. Additionally, the chapter highlights the current benefits, considerations, and challenges faced in the repurposing process, which is pursued by both biotechnology and pharmaceutical companies. Overall, drug repurposing holds great promise in expanding the use of existing drugs and bringing them to new patient populations. With the advancements in computational methodologies and the collaboration of various stakeholders, this approach has the potential to accelerate drug development and improve patient outcomes.
Collapse
Affiliation(s)
- Juveriya Israr
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh, India; Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Shabroz Alam
- Department of Biotechnology Era University, Lucknow, Uttar Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Mandhana, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
21
|
Yang R, Fu Y, Zhang Q, Zhang L. GCNGAT: Drug-disease association prediction based on graph convolution neural network and graph attention network. Artif Intell Med 2024; 150:102805. [PMID: 38553169 DOI: 10.1016/j.artmed.2024.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
Predicting drug-disease associations can contribute to discovering new therapeutic potentials of drugs, and providing important association information for new drug research and development. Many existing drug-disease association prediction methods have not distinguished relevant background information for the same drug targeted to different diseases. Therefore, this paper proposes a drug-disease association prediction model based on graph convolutional network and graph attention network (GCNGAT) to reposition marketed drugs under the distinguishment of background information. Firstly, in order to obtain initial drug-disease information, a drug-disease heterogeneous graph structure is constructed based on all known drug-disease associations. Secondly, based on the heterogeneous graph structure, the corresponding subgraphs of each group of drug-disease association pairs are extracted to distinguish different background information for the same drug from different diseases. Finally, a model combining Graph neural network with global Average pooling (GnnAp) is designed to predict potential drug-disease associations by learning drug-disease interaction feature representations. The experimental results show that adding subgraph extraction can effectively improve the prediction performance of the model, and the graph representation learning module can fully extract the deep features of drug-disease. Using the 5-fold cross-validation, the proposed model (GCNGAT) achieves AUC (Area Under the receiver operating characteristic Curve) values of 0.9182 and 0.9417 on the PREDICT dataset and CDataset dataset, respectively. Compared with other predictors on the same dataset (PREDICT dataset), GCNGAT outperforms the existing best-performing model (PSGCN), with a 1.58% increase in the AUC value. It is anticipated that this model can provide experimental reference for drug repositioning and further promote the drug research and development process.
Collapse
Affiliation(s)
- Runtao Yang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Yao Fu
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| | - Qian Zhang
- Heze Institute of Science and Technology Information, Heze, 274000, China.
| | - Lina Zhang
- School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, 264209, China.
| |
Collapse
|
22
|
Ghandikota SK, Jegga AG. Application of artificial intelligence and machine learning in drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:171-211. [PMID: 38789178 DOI: 10.1016/bs.pmbts.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.
Collapse
Affiliation(s)
- Sudhir K Ghandikota
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
23
|
Huang MS, Han JC, Lin PY, You YT, Tsai RTH, Hsu WL. Surveying biomedical relation extraction: a critical examination of current datasets and the proposal of a new resource. Brief Bioinform 2024; 25:bbae132. [PMID: 38609331 PMCID: PMC11014787 DOI: 10.1093/bib/bbae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/06/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2024] Open
Abstract
Natural language processing (NLP) has become an essential technique in various fields, offering a wide range of possibilities for analyzing data and developing diverse NLP tasks. In the biomedical domain, understanding the complex relationships between compounds and proteins is critical, especially in the context of signal transduction and biochemical pathways. Among these relationships, protein-protein interactions (PPIs) are of particular interest, given their potential to trigger a variety of biological reactions. To improve the ability to predict PPI events, we propose the protein event detection dataset (PEDD), which comprises 6823 abstracts, 39 488 sentences and 182 937 gene pairs. Our PEDD dataset has been utilized in the AI CUP Biomedical Paper Analysis competition, where systems are challenged to predict 12 different relation types. In this paper, we review the state-of-the-art relation extraction research and provide an overview of the PEDD's compilation process. Furthermore, we present the results of the PPI extraction competition and evaluate several language models' performances on the PEDD. This paper's outcomes will provide a valuable roadmap for future studies on protein event detection in NLP. By addressing this critical challenge, we hope to enable breakthroughs in drug discovery and enhance our understanding of the molecular mechanisms underlying various diseases.
Collapse
Affiliation(s)
- Ming-Siang Huang
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Computer Science and Information Engineering, College of Information and Electrical Engineering, Asia University, Taichung, Taiwan
| | - Jen-Chieh Han
- Intelligent Information Service Research Laboratory, Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
| | - Pei-Yen Lin
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
| | - Yu-Ting You
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
| | - Richard Tzong-Han Tsai
- Intelligent Information Service Research Laboratory, Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan
- Center for Geographic Information Science, Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Lian Hsu
- Intelligent Agent Systems Laboratory, Department of Computer Science and Information Engineering, Asia University, New Taipei City, Taiwan
- Department of Computer Science and Information Engineering, College of Information and Electrical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
24
|
Li Y, Yang Y, Tong Z, Wang Y, Mi Q, Bai M, Liang G, Li B, Shu K. A comparative benchmarking and evaluation framework for heterogeneous network-based drug repositioning methods. Brief Bioinform 2024; 25:bbae172. [PMID: 38647153 PMCID: PMC11033846 DOI: 10.1093/bib/bbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/25/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Computational drug repositioning, which involves identifying new indications for existing drugs, is an increasingly attractive research area due to its advantages in reducing both overall cost and development time. As a result, a growing number of computational drug repositioning methods have emerged. Heterogeneous network-based drug repositioning methods have been shown to outperform other approaches. However, there is a dearth of systematic evaluation studies of these methods, encompassing performance, scalability and usability, as well as a standardized process for evaluating new methods. Additionally, previous studies have only compared several methods, with conflicting results. In this context, we conducted a systematic benchmarking study of 28 heterogeneous network-based drug repositioning methods on 11 existing datasets. We developed a comprehensive framework to evaluate their performance, scalability and usability. Our study revealed that methods such as HGIMC, ITRPCA and BNNR exhibit the best overall performance, as they rely on matrix completion or factorization. HINGRL, MLMC, ITRPCA and HGIMC demonstrate the best performance, while NMFDR, GROBMC and SCPMF display superior scalability. For usability, HGIMC, DRHGCN and BNNR are the top performers. Building on these findings, we developed an online tool called HN-DREP (http://hn-drep.lyhbio.com/) to facilitate researchers in viewing all the detailed evaluation results and selecting the appropriate method. HN-DREP also provides an external drug repositioning prediction service for a specific disease or drug by integrating predictions from all methods. Furthermore, we have released a Snakemake workflow named HN-DRES (https://github.com/lyhbio/HN-DRES) to facilitate benchmarking and support the extension of new methods into the field.
Collapse
Affiliation(s)
- Yinghong Li
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Yinqi Yang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Zhuohao Tong
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Yu Wang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Qin Mi
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Mingze Bai
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, P. R. China
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Kunxian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
| |
Collapse
|
25
|
Takundwa MM, Thimiri Govinda Raj DB. Novel strategies for drug repurposing. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 205:9-21. [PMID: 38789188 DOI: 10.1016/bs.pmbts.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Synthetic biology, precision medicine, and nanobiotechnology are the three main emerging areas that drive translational innovation toward commercialization. There are several strategies used in precision medicine and drug repurposing is one of the key approaches as it addresses the challenges in drug discovery (high cost and time). Here, we provide a perspective on various new approaches to drug repurposing for cancer precision medicine. We report here our optimized wound healing methodology that can be used to validate drug sensitivity and drug repurposing. Using HeLa as our benchmark, we demonstrated that the assay can be applied to identify drugs that limit cell proliferation. From a future perspective, this assay can be expanded to ex vivo culturing of solid tumors in 2D culture and leukemia in 3D culture.
Collapse
Affiliation(s)
- Mutsa Monica Takundwa
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines, Synthetic Biology and Precision Medicine Centre, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa.
| |
Collapse
|
26
|
Habib M, Lalagkas PN, Melamed RD. Mapping drug biology to disease genetics to discover drug impacts on the human phenome. BIOINFORMATICS ADVANCES 2024; 4:vbae038. [PMID: 38736684 PMCID: PMC11087821 DOI: 10.1093/bioadv/vbae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024]
Abstract
Motivation Medications can have unexpected effects on disease, including not only harmful drug side effects, but also beneficial drug repurposing. These effects on disease may result from hidden influences of drugs on disease gene networks. Then, discovering how biological effects of drugs relate to disease biology can both provide insight into the mechanism of latent drug effects, and can help predict new effects. Results Here, we develop Draphnet, a model that integrates molecular data on 429 drugs and gene associations of nearly 200 common phenotypes to learn a network that explains drug effects on disease in terms of these molecular signals. We present evidence that our method can both predict drug effects, and can provide insight into the biology of unexpected drug effects on disease. Using Draphnet to map a drug's known molecular effects to downstream effects on the disease genome, we put forward disease genes impacted by drugs, and we suggest a new grouping of drugs based on shared effects on the disease genome. Our approach has multiple applications, including predicting drug uses and learning drug biology, with implications for personalized medicine. Availability and implementation Code to reproduce the analysis is available at https://github.com/RDMelamed/drug-phenome.
Collapse
Affiliation(s)
- Mamoon Habib
- Department of Computer Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| | | | - Rachel D Melamed
- Department of Biological Science, University of Massachusetts Lowell, Lowell, MA 01854, United States
| |
Collapse
|
27
|
Lei S, Lei X, Chen M, Pan Y. Drug Repositioning Based on Deep Sparse Autoencoder and Drug-Disease Similarity. Interdiscip Sci 2024; 16:160-175. [PMID: 38103130 DOI: 10.1007/s12539-023-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Drug repositioning is critical to drug development. Previous drug repositioning methods mainly constructed drug-disease heterogeneous networks to extract drug-disease features. However, these methods faced difficulty when we are using structurally simple models to deal with complex heterogeneous networks. Therefore, in this study, the researchers introduced a drug repositioning method named DRDSA. The method utilizes a deep sparse autoencoder and integrates drug-disease similarities. First, the researchers constructed a drug-disease feature network by incorporating information from drug chemical structure, disease semantic data, and existing known drug-disease associations. Then, we learned the low-dimensional representation of the feature network using a deep sparse autoencoder. Finally, we utilized a deep neural network to make predictions on new drug-disease associations based on the feature representation. The experimental results show that our proposed method has achieved optimal results on all four benchmark datasets, especially on the CTD dataset where AUC and AUPR reached 0.9619 and 0.9676, respectively, outperforming other baseline methods. In the case study, the researchers predicted the top ten antiviral drugs for COVID-19. Remarkably, six out of these predictions were subsequently validated by other literature sources.
Collapse
Affiliation(s)
- Song Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Ming Chen
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China
| | - Yi Pan
- Faculty of Computer Science and Control Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shenzhen Key Laboratory of Intelligent Bioinformatics, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Jin S, Zhang Y, Yu H, Lu M. SADR: Self-Supervised Graph Learning With Adaptive Denoising for Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:265-277. [PMID: 38190661 DOI: 10.1109/tcbb.2024.3351079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Traditional drug development is often high-risk and time-consuming. A promising alternative is to reuse or relocate approved drugs. Recently, some methods based on graph representation learning have started to be used for drug repositioning. These models learn the low dimensional embeddings of drug and disease nodes from the drug-disease interaction network to predict the potential association between drugs and diseases. However, these methods have strict requirements for the dataset, and if the dataset is sparse, the performance of these methods will be severely affected. At the same time, these methods have poor robustness to noise in the dataset. In response to the above challenges, we propose a drug repositioning model based on self-supervised graph learning with adptive denoising, called SADR. SADR uses data augmentation and contrastive learning strategies to learn feature representations of nodes, which can effectively solve the problems caused by sparse datasets. SADR includes an adaptive denoising training (ADT) component that can effectively identify noisy data during the training process and remove the impact of noise on the model. We have conducted comprehensive experiments on three datasets and have achieved better prediction accuracy compared to multiple baseline models. At the same time, we propose the top 10 new predictive approved drugs for treating two diseases. This demonstrates the ability of our model to identify potential drug candidates for disease indications.
Collapse
|
29
|
Luo H, Zhu C, Wang J, Zhang G, Luo J, Yan C. Prediction of drug-disease associations based on reinforcement symmetric metric learning and graph convolution network. Front Pharmacol 2024; 15:1337764. [PMID: 38384286 PMCID: PMC10879308 DOI: 10.3389/fphar.2024.1337764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Accurately identifying novel indications for drugs is crucial in drug research and discovery. Traditional drug discovery is costly and time-consuming. Computational drug repositioning can provide an effective strategy for discovering potential drug-disease associations. However, the known experimentally verified drug-disease associations is relatively sparse, which may affect the prediction performance of the computational drug repositioning methods. Moreover, while the existing drug-disease prediction method based on metric learning algorithm has achieved better performance, it simply learns features of drugs and diseases only from the drug-centered perspective, and cannot comprehensively model the latent features of drugs and diseases. In this study, we propose a novel drug repositioning method named RSML-GCN, which applies graph convolutional network and reinforcement symmetric metric learning to predict potential drug-disease associations. RSML-GCN first constructs a drug-disease heterogeneous network by integrating the association and feature information of drugs and diseases. Then, the graph convolutional network (GCN) is applied to complement the drug-disease association information. Finally, reinforcement symmetric metric learning with adaptive margin is designed to learn the latent vector representation of drugs and diseases. Based on the learned latent vector representation, the novel drug-disease associations can be identified by the metric function. Comprehensive experiments on benchmark datasets demonstrated the superior prediction performance of RSML-GCN for drug repositioning.
Collapse
Affiliation(s)
- Huimin Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Chunli Zhu
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Jianlin Wang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Ge Zhang
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| | - Junwei Luo
- School of Computer and Information Engineering, Henan University, Kaifeng, China
| | - Chaokun Yan
- School of Computer and Information Engineering, Henan University, Kaifeng, China
- Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, China
| |
Collapse
|
30
|
Pillai M, Wu D. Validation approaches for computational drug repurposing: a review. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2024; 2023:559-568. [PMID: 38222367 PMCID: PMC10785886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Affiliation(s)
- Malvika Pillai
- Stanford University, Stanford, CA
- University of North Carolina, Chapel Hill, NC
| | - Di Wu
- University of North Carolina, Chapel Hill, NC
| |
Collapse
|
31
|
Ren ZH, Yu CQ, Li LP, You ZH, Li ZW, Zhang SW, Zeng X, Shang YF. SiSGC: A Drug Repositioning Prediction Model Based on Heterogeneous Simplifying Graph Convolution. J Chem Inf Model 2024; 64:238-249. [PMID: 38103039 DOI: 10.1021/acs.jcim.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Drug repositioning plays a key role in disease treatment. With the large-scale chemical data increasing, many computational methods are utilized for drug-disease association prediction. However, most of the existing models neglect the positive influence of non-Euclidean data and multisource information, and there is still a critical issue for graph neural networks regarding how to set the feature diffuse distance. To solve the problems, we proposed SiSGC, which makes full use of the biological knowledge information as initial features and learns the structure information from the constructed heterogeneous graph with the adaptive selection of the information diffuse distance. Then, the structural features are fused with the denoised similarity information and fed to the advanced classifier of CatBoost to make predictions. Three different data sets are used to confirm the robustness and generalization of SiSGC under two splitting strategies. Experiment results demonstrate that the proposed model achieves superior performance compared with the six leading methods and four variants. Our case study on breast neoplasms further indicates that SiSGC is trustworthy and robust yet simple. We also present four drugs for breast cancer treatment with high confidence and further give an explanation for demonstrating the rationality. There is no doubt that SiSGC can be used as a beneficial supplement for drug repositioning.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Li-Ping Li
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Shan-Wen Zhang
- School of Information Engineering, Xijing University, Xi'an 710123, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| | - Yi-Fan Shang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
32
|
Sun X, Jia X, Lu Z, Tang J, Li M. Drug repositioning with adaptive graph convolutional networks. Bioinformatics 2024; 40:btad748. [PMID: 38070161 PMCID: PMC10761094 DOI: 10.1093/bioinformatics/btad748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/04/2024] Open
Abstract
MOTIVATION Drug repositioning is an effective strategy to identify new indications for existing drugs, providing the quickest possible transition from bench to bedside. With the rapid development of deep learning, graph convolutional networks (GCNs) have been widely adopted for drug repositioning tasks. However, prior GCNs based methods exist limitations in deeply integrating node features and topological structures, which may hinder the capability of GCNs. RESULTS In this study, we propose an adaptive GCNs approach, termed AdaDR, for drug repositioning by deeply integrating node features and topological structures. Distinct from conventional graph convolution networks, AdaDR models interactive information between them with adaptive graph convolution operation, which enhances the expression of model. Concretely, AdaDR simultaneously extracts embeddings from node features and topological structures and then uses the attention mechanism to learn adaptive importance weights of the embeddings. Experimental results show that AdaDR achieves better performance than multiple baselines for drug repositioning. Moreover, in the case study, exploratory analyses are offered for finding novel drug-disease associations. AVAILABILITY AND IMPLEMENTATION The soure code of AdaDR is available at: https://github.com/xinliangSun/AdaDR.
Collapse
Affiliation(s)
- Xinliang Sun
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xiao Jia
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhangli Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jing Tang
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, FI00014 Helsinki, Finland
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
33
|
Liu Y, Sang G, Liu Z, Pan Y, Cheng J, Zhang Y. MPTN: A message-passing transformer network for drug repurposing from knowledge graph. Comput Biol Med 2024; 168:107800. [PMID: 38043469 DOI: 10.1016/j.compbiomed.2023.107800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Drug repurposing (DR) based on knowledge graphs (KGs) is challenging, which uses knowledge graph reasoning models to predict new therapeutic pathways for existing drugs. With the rapid development of computing technology and the growing availability of validated biomedical data, various knowledge graph-based methods have been widely used to analyze and process complex and novel data to discover new indications for given drugs. However, existing methods need to be improved in extracting semantic information from contextual triples of biomedical entities. In this study, we propose a message-passing transformer network named MPTN based on knowledge graph for drug repurposing. Firstly, CompGCN is used as precoder to jointly aggregate entity and relation embeddings. Then, to fully capture the semantic information of entity context triples, the message propagating transformer module is designed. The module integrates the transformer into the message passing mechanism and incorporates the attention weight information of computing entity context triples into the entity embedding to update the entity embedding. Next, the residual connection is introduced to retain information as much as possible and improve prediction accuracy. Finally, MPTN utilizes the InteractE module as the decoder to obtain heterogeneous feature interactions in entity and relation representations and predict new pathways for drug treatment. Experiments on two datasets show that the model is superior to the existing knowledge graph embedding (KGE) learning methods.
Collapse
Affiliation(s)
- Yuanxin Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Guoming Sang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Zhi Liu
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yilin Pan
- School of Artificial Intelligence, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Junkai Cheng
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China
| | - Yijia Zhang
- School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, Liaoning, China.
| |
Collapse
|
34
|
Qu J, Ni J, Ni TG, Bian ZK, Liang JZ. Prediction of Human Microbe-Drug Association based on Layer Attention Graph Convolutional Network. Curr Med Chem 2024; 31:5097-5109. [PMID: 39225188 DOI: 10.2174/0109298673249941231108091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/20/2023] [Accepted: 10/19/2023] [Indexed: 09/04/2024]
Abstract
Human microbes are closely associated with a variety of complex diseases and have emerged as drug targets. Identification of microbe-related drugs is becoming a key issue in drug development and precision medicine. It can also provide guidance for solving the increasingly serious problem of drug resistance enhancement in viruses. METHODS In this paper, we have proposed a novel model of layer attention graph convolutional network for microbe-drug association prediction. First, multiple biological data have been integrated into a heterogeneous network. Then, the heterogeneous network has been incorporated into a graph convolutional network to determine the embedded microbe and drug. Finally, the microbe-drug association scores have been obtained by decoding the embedding of microbe and drug based on the layer attention mechanism. RESULTS To evaluate the performance of our proposed model, leave-one-out crossvalidation (LOOCV) and 5-fold cross-validation have been implemented on the two datasets of aBiofilm and MDAD. As a result, based on the aBiofilm dataset, our proposed model has attained areas under the curve (AUC) of 0.9178 and 0.9022 on global LOOCV and local LOOCV, respectively. Based on aBiofilm dataset, the proposed model has attained an AUC value of 0.9018 and 0.8902 on global LOOCV and local LOOCV, respectively. In addition, the average AUC and standard deviation of the proposed model for 5- fold cross-validation on the aBiofilm and MDAD datasets were 0.9141±6.8556e-04 and 0.8982±7.5868e-04, respectively. Also, two kinds of case studies have been further conducted to evaluate the proposed models. CONCLUSION Traditional methods for microbe-drug association prediction are timeconsuming and laborious. Therefore, the computational model proposed was used to predict new microbe-drug associations. Several evaluation results have shown the proposed model to achieve satisfactory results and that it can play a role in drug development and precision medicine.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Jie Ni
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Tong-Guang Ni
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| | - Ze-Kang Bian
- School of AI & Computer Science, Jiangnan University, Wuxi, 214122, China
| | - Jiu-Zhen Liang
- School of Computer Science and Artificial Intelligence & Aliyun School of Big Data, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
35
|
B S N, P K KN, Akey KS, Sankaran S, Raman RK, Natarajan J, Selvaraj J. Vitamin D analog calcitriol for breast cancer therapy; an integrated drug discovery approach. J Biomol Struct Dyn 2023; 41:11017-11043. [PMID: 37054526 DOI: 10.1080/07391102.2023.2199866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/11/2022] [Indexed: 04/15/2023]
Abstract
As breast cancer remains leading cause of cancer death globally, it is essential to develop an affordable breast cancer therapy in underdeveloped countries. Drug repurposing offers potential to address gaps in breast cancer treatment. Molecular networking studies were performed for drug repurposing approach by using heterogeneous data. The PPI networks were built to select the target genes from the EGFR overexpression signaling pathway and its associated family members. The selected genes EGFR, ErbB2, ErbB4 and ErbB3 were allowed to interact with 2637 drugs, leads to PDI network construction of 78, 61, 15 and 19 drugs, respectively. As drugs approved for treating non cancer-related diseases or disorders are clinically safe, effective, and affordable, these drugs were given considerable attention. Calcitriol had shown significant binding affinities with all four receptors than standard neratinib. The RMSD, RMSF, and H-bond analysis of protein-ligand complexes from molecular dynamics simulation (100 ns), confirmed the stable binding of calcitriol with ErbB2 and EGFR receptors. In addition, MMGBSA and MMP BSA also affirmed the docking results. These in-silico results were validated with in-vitro cytotoxicity studies in SK-BR-3 and Vero cells. The IC50 value of calcitriol (43.07 mg/ml) was found to be lower than neratinib (61.50 mg/ml) in SK-BR-3 cells. In Vero cells the IC50 value of calcitriol (431.05 mg/ml) was higher than neratinib (404.95 mg/ml). It demonstrates that calcitriol suggestively downregulated the SK-BR-3 cell viability in a dose-dependent manner. These implications revealed calcitriol has shown better cytotoxicity and decreased the proliferation rate of breast cancer cells than neratinib.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nagaraj B S
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Krishnan Namboori P K
- Amrita Molecular Modeling and Synthesis (AMMAS) Research lab, Amrita Vishwavidyapeetham, Coimbatore, Tamilnadu, India
| | - Krishna Swaroop Akey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Sathianarayanan Sankaran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamilnadu, India
| | - Rajesh Kumar Raman
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Jawahar Natarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| | - Jubie Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Tamilnadu, India
| |
Collapse
|
36
|
Zhao BW, Su XR, Yang Y, Li DX, Li GD, Hu PW, Zhao YG, Hu L. Drug-disease association prediction using semantic graph and function similarity representation learning over heterogeneous information networks. Methods 2023; 220:106-114. [PMID: 37972913 DOI: 10.1016/j.ymeth.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/13/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Discovering new indications for existing drugs is a promising development strategy at various stages of drug research and development. However, most of them complete their tasks by constructing a variety of heterogeneous networks without considering available higher-order connectivity patterns in heterogeneous biological information networks, which are believed to be useful for improving the accuracy of new drug discovering. To this end, we propose a computational-based model, called SFRLDDA, for drug-disease association prediction by using semantic graph and function similarity representation learning. Specifically, SFRLDDA first integrates a heterogeneous information network (HIN) by drug-disease, drug-protein, protein-disease associations, and their biological knowledge. Second, different representation learning strategies are applied to obtain the feature representations of drugs and diseases from different perspectives over semantic graph and function similarity graphs constructed, respectively. At last, a Random Forest classifier is incorporated by SFRLDDA to discover potential drug-disease associations (DDAs). Experimental results demonstrate that SFRLDDA yields a best performance when compared with other state-of-the-art models on three benchmark datasets. Moreover, case studies also indicate that the simultaneous consideration of semantic graph and function similarity of drugs and diseases in the HIN allows SFRLDDA to precisely predict DDAs in a more comprehensive manner.
Collapse
Affiliation(s)
- Bo-Wei Zhao
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Xiao-Rui Su
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yue Yang
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Dong-Xu Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Guo-Dong Li
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Peng-Wei Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| | - Yong-Gang Zhao
- Department of Orthopaedic Surgery (hand and foot trauma), People's Hospital of Dongxihu, Wuhan 420100, China.
| | - Lun Hu
- The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Xinjiang Laboratory of Minority Speech and Language Information Processing, Urumqi 830011, China.
| |
Collapse
|
37
|
Meng Y, Wang Y, Xu J, Lu C, Tang X, Peng T, Zhang B, Tian G, Yang J. Drug repositioning based on weighted local information augmented graph neural network. Brief Bioinform 2023; 25:bbad431. [PMID: 38019732 PMCID: PMC10686358 DOI: 10.1093/bib/bbad431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Drug repositioning, the strategy of redirecting existing drugs to new therapeutic purposes, is pivotal in accelerating drug discovery. While many studies have engaged in modeling complex drug-disease associations, they often overlook the relevance between different node embeddings. Consequently, we propose a novel weighted local information augmented graph neural network model, termed DRAGNN, for drug repositioning. Specifically, DRAGNN firstly incorporates a graph attention mechanism to dynamically allocate attention coefficients to drug and disease heterogeneous nodes, enhancing the effectiveness of target node information collection. To prevent excessive embedding of information in a limited vector space, we omit self-node information aggregation, thereby emphasizing valuable heterogeneous and homogeneous information. Additionally, average pooling in neighbor information aggregation is introduced to enhance local information while maintaining simplicity. A multi-layer perceptron is then employed to generate the final association predictions. The model's effectiveness for drug repositioning is supported by a 10-times 10-fold cross-validation on three benchmark datasets. Further validation is provided through analysis of the predicted associations using multiple authoritative data sources, molecular docking experiments and drug-disease network analysis, laying a solid foundation for future drug discovery.
Collapse
Affiliation(s)
- Yajie Meng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Yi Wang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Changcheng Lu
- College of Computer Science and Electronic Engineering, Hunan University, Lushan Road (S), Yuelu District, Changsha, Hunan Province 410082, China
| | - Xianfang Tang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Tao Peng
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Bengong Zhang
- Center of Applied Mathematics & Interdisciplinary Science, School of Mathematical & Physical Sciences, Wuhan Textile University, No. 1, Yangguang Avenue, Jiangxia District, Wuhan City, Hubei Province 430200, China
| | - Geng Tian
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| | - Jialiang Yang
- Geneis Beijing Co., Ltd, No. 31, New North Road, Laiguanying, Chaoyang District, Beijing 100102, China
| |
Collapse
|
38
|
Zhao Y, Yin J, Zhang L, Zhang Y, Chen X. Drug-drug interaction prediction: databases, web servers and computational models. Brief Bioinform 2023; 25:bbad445. [PMID: 38113076 PMCID: PMC10782925 DOI: 10.1093/bib/bbad445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
In clinical treatment, two or more drugs (i.e. drug combination) are simultaneously or successively used for therapy with the purpose of primarily enhancing the therapeutic efficacy or reducing drug side effects. However, inappropriate drug combination may not only fail to improve efficacy, but even lead to adverse reactions. Therefore, according to the basic principle of improving the efficacy and/or reducing adverse reactions, we should study drug-drug interactions (DDIs) comprehensively and thoroughly so as to reasonably use drug combination. In this review, we first introduced the basic conception and classification of DDIs. Further, some important publicly available databases and web servers about experimentally verified or predicted DDIs were briefly described. As an effective auxiliary tool, computational models for predicting DDIs can not only save the cost of biological experiments, but also provide relevant guidance for combination therapy to some extent. Therefore, we summarized three types of prediction models (including traditional machine learning-based models, deep learning-based models and score function-based models) proposed during recent years and discussed the advantages as well as limitations of them. Besides, we pointed out the problems that need to be solved in the future research of DDIs prediction and provided corresponding suggestions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Jun Yin
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Li Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Yong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xing Chen
- School of Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
39
|
Muniyappan S, Rayan AXA, Varrieth GT. EGeRepDR: An enhanced genetic-based representation learning for drug repurposing using multiple biomedical sources. J Biomed Inform 2023; 147:104528. [PMID: 37858852 DOI: 10.1016/j.jbi.2023.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
MOTIVATION Drug repurposing (DR) is an imminent approach for identifying novel therapeutic indications for the available drugs and discovering novel drugs for previously untreatable diseases. Nowadays, DR has major attention in the pharmaceutical industry due to the high cost and time of launching new drugs to the market through traditional drug development. DR task majorly depends on genetic information since the drugs revert the modified Gene Expression (GE) of diseases to normal. Many of the existing studies have not considered the genetic importance of predicting the potential candidates. METHOD We proposed a novel multimodal framework that utilizes genetic aspects of drugs and diseases such as genes, pathways, gene signatures, or expression to enhance the performance of DR using various data sources. Firstly, the heterogeneous biological network (HBN) is constructed with three types of nodes namely drug, disease, and gene, and 4 types of edges similarities (drug, gene, and disease), drug-gene, gene-disease, and drug-disease. Next, a modified graph auto-encoder (GAE*) model is applied to learn the representation of drug and disease nodes using the topological structure and edge information. Secondly, the HBN is enhanced with the information extracted from biomedical literature and ontology using a novel semi-supervised pattern embedding-based bootstrapping model and novel DR perspective representation learning respectively to improve the prediction performance. Finally, our proposed system uses a neural network model to generate the probability score of drug-disease pairs. RESULTS We demonstrate the efficiency of the proposed model on various datasets and achieved outstanding performance in 5-fold cross-validation (AUC = 0.99, AUPR = 0.98). Further, we validated the top-ranked potential candidates using pathway analysis and proved that the known and predicted candidates share common genes in the pathways.
Collapse
Affiliation(s)
- Saranya Muniyappan
- Computer Science and Engineering, CEG Campus, Anna University, Chennai, Tamil Nadu, India.
| | | | | |
Collapse
|
40
|
Wang S, Li J, Wang D, Xu D, Jin J, Wang Y. Predicting Drug-Disease Associations Through Similarity Network Fusion and Multi-View Feature Projection Representation. IEEE J Biomed Health Inform 2023; 27:5165-5176. [PMID: 37527303 DOI: 10.1109/jbhi.2023.3300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Predicting drug-disease associations (DDAs) through computational methods has become a prevalent trend in drug development because of their high efficiency and low cost. Existing methods usually focus on constructing heterogeneous networks by collecting multiple data resources to improve prediction ability. However, potential association possibilities of numerous unconfirmed drug-related or disease-related pairs are not sufficiently considered. In this article, we propose a novel computational model to predict new DDAs. First, a heterogeneous network is constructed, including four types of nodes (drugs, targets, cell lines, diseases) and three types of edges (associations, association scores, similarities). Second, an updating and merging-based similarity network fusion method, termed UM-SF, is presented to fuse various similarity networks with diverse weights. Finally, an intermediate layer-mediated multi-view feature projection representation method, termed IM-FP, is proposed to calculate the predicted DDA scores. This method uses multiple association scores to construct multi-view drug features, then projects them into disease space through the intermediate layer, where an intermediate layer similarity constraint is designed to learn the projection matrices. Results of comparative experiments reveal the effectiveness of our innovations. Comparisons with other state-of-the-art models by the 10-fold cross-validation experiment indicate our model's advantage on AUROC and AUPR metrics. Moreover, our proposed model successfully predicted 107 novel high-ranked DDAs.
Collapse
|
41
|
Wang S, Ren C, Zhang Y, Li Y, Pang S, Song T. Identifying potential small molecule-miRNA associations via Robust PCA based on γ-norm regularization. Brief Bioinform 2023; 24:bbad312. [PMID: 37670501 DOI: 10.1093/bib/bbad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/07/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.
Collapse
Affiliation(s)
- Shudong Wang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Chuanru Ren
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Xin An Street, 266590 Shandong, China
| | - Yunyin Li
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Shanchen Pang
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| | - Tao Song
- College of Computer Science and Technology, Qingdao Institute of Software, China University of Petroleum (East China), 66 Changjiang Xi Lu, 266580 Shandong, China
| |
Collapse
|
42
|
Yang M, Yang B, Duan G, Wang J. ITRPCA: a new model for computational drug repositioning based on improved tensor robust principal component analysis. Front Genet 2023; 14:1271311. [PMID: 37795241 PMCID: PMC10545866 DOI: 10.3389/fgene.2023.1271311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Background: Drug repositioning is considered a promising drug development strategy with the goal of discovering new uses for existing drugs. Compared with the experimental screening for drug discovery, computational drug repositioning offers lower cost and higher efficiency and, hence, has become a hot issue in bioinformatics. However, there are sparse samples, multi-source information, and even some noises, which makes it difficult to accurately identify potential drug-associated indications. Methods: In this article, we propose a new scheme with improved tensor robust principal component analysis (ITRPCA) in multi-source data to predict promising drug-disease associations. First, we use a weighted k-nearest neighbor (WKNN) approach to increase the overall density of the drug-disease association matrix that will assist in prediction. Second, a drug tensor with five frontal slices and a disease tensor with two frontal slices are constructed using multi-similarity matrices and an updated association matrix. The two target tensors naturally integrate multiple sources of data from the drug-side aspect and the disease-side aspect, respectively. Third, ITRPCA is employed to isolate the low-rank tensor and noise information in the tensor. In this step, an additional range constraint is incorporated to ensure that all the predicted entry values of a low-rank tensor are within the specific interval. Finally, we focus on identifying promising drug indications by analyzing drug-disease association pairs derived from the low-rank drug and low-rank disease tensors. Results: We evaluate the effectiveness of the ITRPCA method by comparing it with five prominent existing drug repositioning methods. This evaluation is carried out using 10-fold cross-validation and independent testing experiments. Our numerical results show that ITRPCA not only yields higher prediction accuracy but also exhibits remarkable computational efficiency. Furthermore, case studies demonstrate the practical effectiveness of our method.
Collapse
Affiliation(s)
- Mengyun Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
- School of Computer Science, Hunan First Normal University, Changsha, China
| | - Bin Yang
- School of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
43
|
Yang X, Yang G, Chu J. Self-Supervised Learning for Label Sparsity in Computational Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3245-3256. [PMID: 37028367 DOI: 10.1109/tcbb.2023.3254163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The computational drug repositioning aims to discover new uses for marketed drugs, which can accelerate the drug development process and play an important role in the existing drug discovery system. However, the number of validated drug-disease associations is scarce compared to the number of drugs and diseases in the real world. Too few labeled samples will make the classification model unable to learn effective latent factors of drugs, resulting in poor generalization performance. In this work, we propose a multi-task self-supervised learning framework for computational drug repositioning. The framework tackles label sparsity by learning a better drug representation. Specifically, we take the drug-disease association prediction problem as the main task, and the auxiliary task is to use data augmentation strategies and contrast learning to mine the internal relationships of the original drug features, so as to automatically learn a better drug representation without supervised labels. And through joint training, it is ensured that the auxiliary task can improve the prediction accuracy of the main task. More precisely, the auxiliary task improves drug representation and serving as additional regularization to improve generalization. Furthermore, we design a multi-input decoding network to improve the reconstruction ability of the autoencoder model. We evaluate our model using three real-world datasets. The experimental results demonstrate the effectiveness of the multi-task self-supervised learning framework, and its predictive ability is superior to the state-of-the-art model.
Collapse
|
44
|
Zhong J, Cui P, Zhu Y, Xiao Q, Qu Z. DAHNGC: A Graph Convolution Model for Drug-Disease Association Prediction by Using Heterogeneous Network. J Comput Biol 2023; 30:1019-1033. [PMID: 37702623 DOI: 10.1089/cmb.2023.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
In the field of drug development and repositioning, the prediction of drug-disease associations is a critical task. A recently proposed method for predicting drug-disease associations based on graph convolution relies heavily on the features of adjacent nodes within the homogeneous network for characterizing information. However, this method lacks node attribute information from heterogeneous networks, which could hardly provide valuable insights for predicting drug-disease associations. In this study, a novel drug-disease association prediction model called DAHNGC is proposed, which is based on a graph convolutional neural network. This model includes two feature extraction methods that are specifically designed to extract the attribute characteristics of drugs and diseases from both homogeneous and heterogeneous networks. First, the DropEdge technique is added to the graph convolutional neural network to alleviate the oversmoothing problem and obtain the characteristics of the same nodes of drugs or diseases in the homogeneous network. Then, an automatic feature extraction method in the heterogeneous network is designed to obtain the features of drugs or diseases at different nodes. Finally, the obtained features are put into the fully connected network for nonlinear transformation, and the potential drug-disease pairs are obtained by bilinear decoding. Experimental results demonstrate that the DAHNGC model exhibits good predictive performance for drug-disease associations.
Collapse
Affiliation(s)
- Jiancheng Zhong
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Pan Cui
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yihong Zhu
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Qiu Xiao
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Zuohang Qu
- School of Information Science and Engineering, Hunan Normal University, Changsha, China
| |
Collapse
|
45
|
Ai C, Yang H, Ding Y, Tang J, Guo F. Low Rank Matrix Factorization Algorithm Based on Multi-Graph Regularization for Detecting Drug-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3033-3043. [PMID: 37159322 DOI: 10.1109/tcbb.2023.3274587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting potential associations between drugs and diseases plays an indispensable role in drug development, which has also become a research hotspot in recent years. Compared with traditional methods, some computational approaches have the advantages of fast speed and low cost, which greatly accelerate the progress of predicting the drug-disease association. In this study, we propose a novel similarity-based method of low-rank matrix decomposition based on multi-graph regularization. On the basis of low-rank matrix factorization with L2 regularization, the multi-graph regularization constraint is constructed by combining a variety of similarity matrices from drugs and diseases respectively. In the experiments, we analyze the difference in the combination of different similarities, resulting that combining all the similarity information on drug space is unnecessary, and only a part of the similarity information can achieve the desired performance. Then our method is compared with other existing models on three data sets (Fdataset, Cdataset and LRSSLdataset) and have a good advantage in the evaluation measurement of AUPR. Besides, a case study experiment is conducted and showing that the superior ability for predicting the potential disease-related drugs of our model. Finally, we compare our model with some methods on six real world datasets, and our model has a good performance in detecting real world data.
Collapse
|
46
|
Zhu X, Lu W. Multi-Label Classification With Dual Tail-Node Augmentation for Drug Repositioning. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3068-3079. [PMID: 37418410 DOI: 10.1109/tcbb.2023.3292883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Due to the lengthy and costly process of new drug discovery, increasing attention has been paid to drug repositioning, i.e., identifying new drug-disease associations. Current machine learning methods for drug repositioning mainly leverage matrix factorization or graph neural networks, and have achieved impressive performance. However, they often suffer from insufficient training labels of inter-domain associations, while ignore the intra-domain associations. Moreover, they often neglect the importance of tail nodes that have few known associations, which limits their effectiveness in drug repositioning. In this paper, we propose a novel multi-label classification model with dual Tail-Node Augmentation for Drug Repositioning (TNA-DR). We incorporate disease-disease similarity and drug-drug similarity information into k-nearest neighbor ( kNN) augmentation module and contrastive augmentation module, respectively, which effectively complements the weak supervision of drug-disease associations. Furthermore, before employing the two augmentation modules, we filter the nodes by their degrees, so that the two modules are only applied to tail nodes. We conduct 10-fold cross validation experiments on four different real-world datasets, and our model achieves the state-of-the-art performance on all the four datasets. We also demonstrate our model's capability of identifying drug candidates for new diseases and discovering potential new links between existing drugs and diseases.
Collapse
|
47
|
Huang Z, Chen S, Yu L. Predicting new drug indications based on double variational autoencoders. Comput Biol Med 2023; 164:107261. [PMID: 37487382 DOI: 10.1016/j.compbiomed.2023.107261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Experimental drug development is costly, complex, and time-consuming, and the number of drugs that have been put into application treatment is small. The identification of drug-disease correlations can provide important information for drug discovery and drug repurposing. Computational drug repurposing is an important and effective method that can be used to determine novel treatments for diseases. In recent years, an increasing number of large databases have been utilized for biological data research, particularly in the fields of drugs and diseases. Consequently, researchers have begun to explore the application of deep neural networks in biological data development. One particularly promising method for unsupervised learning is the deep generative model, with the variational autoencoder (VAE) being among the mainstream models. Here, we propose a drug indication prediction algorithm called DIDVAE (predicting new drug indications based on double variational autoencoders), which generates new data by learning the latent variable distribution of known data to achieve the goal of predicting drug-disease associations. In the experiment, we compared the DIDVAE algorithm with the BBNR, DrugNet, MBiRW and DRRS algorithms on a unified dataset. The comprehensive experimental results show that, compared with these prediction algorithms, the DIDVAE algorithm provides an overall improved prediction. In addition, further analysis and verification of the predicted unknown drug-disease association also proved the practicality of the method.
Collapse
Affiliation(s)
- Zhaoyang Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Shengjian Chen
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - Liang Yu
- School of Computer Science and Technology, Xidian University, Xi'an, 710071, Shaanxi, China.
| |
Collapse
|
48
|
Qu J, Song Z, Cheng X, Jiang Z, Zhou J. Neighborhood-based inference and restricted Boltzmann machine for small molecule-miRNA associations prediction. PeerJ 2023; 11:e15889. [PMID: 37641598 PMCID: PMC10460564 DOI: 10.7717/peerj.15889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Background A growing number of experiments have shown that microRNAs (miRNAs) can be used as target of small molecules (SMs) to regulate gene expression for treating diseases. Therefore, identifying SM-related miRNAs is helpful for the treatment of diseases in the domain of medical investigation. Methods This article presents a new computational model, called NIRBMSMMA (neighborhood-based inference (NI) and restricted Boltzmann machine (RBM)), which we developed to identify potential small molecule-miRNA associations (NIRBMSMMA). First, grounded on known SM-miRNAs associations, SM similarity and miRNA similarity, NI was used to predict score of an unknown SM-miRNA pair by reckoning the sum of known associations between neighbors of the SM (miRNA) and the miRNA (SM). Second, utilizing a two-layered generative stochastic artificial neural network, RBM was used to predict SM-miRNA association by learning potential probability distribution from known SM-miRNA associations. At last, an ensemble learning model was conducted to combine NI and RBM for identifying potential SM-miRNA associations. Results Furthermore, we conducted global leave one out cross validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation to assess performance of NIRBMSMMA based on three datasets. Results showed that NIRBMSMMA obtained areas under the curve (AUC) of 0.9912, 0.9875, 0.8376 and 0.9898 ± 0.0009 under global LOOCV, miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation based on dataset 1, respectively. For dataset 2, the AUCs are 0.8645, 0.8720, 0.7066 and 0.8547 ± 0.0046 in turn. For dataset 3, the AUCs are 0.9884, 0.9802, 0.8239 and 0.9870 ± 0.0015 in turn. Also, we conducted case studies to further assess the predictive performance of NIRBMSMMA. These results illustrated the proposed model is a useful tool in predicting potential SM-miRNA associations.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zihao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zhibin Jiang
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jie Zhou
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
49
|
Qu J, Song Z, Cheng X, Jiang Z, Zhou J. A new integrated framework for the identification of potential virus-drug associations. Front Microbiol 2023; 14:1179414. [PMID: 37675432 PMCID: PMC10478006 DOI: 10.3389/fmicb.2023.1179414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction With the increasingly serious problem of antiviral drug resistance, drug repurposing offers a time-efficient and cost-effective way to find potential therapeutic agents for disease. Computational models have the ability to quickly predict potential reusable drug candidates to treat diseases. Methods In this study, two matrix decomposition-based methods, i.e., Matrix Decomposition with Heterogeneous Graph Inference (MDHGI) and Bounded Nuclear Norm Regularization (BNNR), were integrated to predict anti-viral drugs. Moreover, global leave-one-out cross-validation (LOOCV), local LOOCV, and 5-fold cross-validation were implemented to evaluate the performance of the proposed model based on datasets of DrugVirus that consist of 933 known associations between 175 drugs and 95 viruses. Results The results showed that the area under the receiver operating characteristics curve (AUC) of global LOOCV and local LOOCV are 0.9035 and 0.8786, respectively. The average AUC and the standard deviation of the 5-fold cross-validation for DrugVirus datasets are 0.8856 ± 0.0032. We further implemented cross-validation based on MDAD and aBiofilm, respectively, to evaluate the performance of the model. In particle, MDAD (aBiofilm) dataset contains 2,470 (2,884) known associations between 1,373 (1,470) drugs and 173 (140) microbes. In addition, two types of case studies were carried out further to verify the effectiveness of the model based on the DrugVirus and MDAD datasets. The results of the case studies supported the effectiveness of MHBVDA in identifying potential virus-drug associations as well as predicting potential drugs for new microbes.
Collapse
Affiliation(s)
- Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zihao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zhibin Jiang
- School of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jie Zhou
- School of Computer Science and Engineering, Shaoxing University, Shaoxing, Zhejiang, China
| |
Collapse
|
50
|
Singh S, Kumar R, Payra S, Singh SK. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 2023; 15:e44359. [PMID: 37779744 PMCID: PMC10539991 DOI: 10.7759/cureus.44359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
Artificial intelligence (AI) has transformed pharmacological research through machine learning, deep learning, and natural language processing. These advancements have greatly influenced drug discovery, development, and precision medicine. AI algorithms analyze vast biomedical data identifying potential drug targets, predicting efficacy, and optimizing lead compounds. AI has diverse applications in pharmacological research, including target identification, drug repurposing, virtual screening, de novo drug design, toxicity prediction, and personalized medicine. AI improves patient selection, trial design, and real-time data analysis in clinical trials, leading to enhanced safety and efficacy outcomes. Post-marketing surveillance utilizes AI-based systems to monitor adverse events, detect drug interactions, and support pharmacovigilance efforts. Machine learning models extract patterns from complex datasets, enabling accurate predictions and informed decision-making, thus accelerating drug discovery. Deep learning, specifically convolutional neural networks (CNN), excels in image analysis, aiding biomarker identification and optimizing drug formulation. Natural language processing facilitates the mining and analysis of scientific literature, unlocking valuable insights and information. However, the adoption of AI in pharmacological research raises ethical considerations. Ensuring data privacy and security, addressing algorithm bias and transparency, obtaining informed consent, and maintaining human oversight in decision-making are crucial ethical concerns. The responsible deployment of AI necessitates robust frameworks and regulations. The future of AI in pharmacological research is promising, with integration with emerging technologies like genomics, proteomics, and metabolomics offering the potential for personalized medicine and targeted therapies. Collaboration among academia, industry, and regulatory bodies is essential for the ethical implementation of AI in drug discovery and development. Continuous research and development in AI techniques and comprehensive training programs will empower scientists and healthcare professionals to fully exploit AI's potential, leading to improved patient outcomes and innovative pharmacological interventions.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Rajesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Shuvasree Payra
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Sunil K Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| |
Collapse
|