1
|
Wang D, Liu W, Venkatesan JK, Madry H, Cucchiarini M. Therapeutic Controlled Release Strategies for Human Osteoarthritis. Adv Healthc Mater 2024:e2402737. [PMID: 39506433 DOI: 10.1002/adhm.202402737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Osteoarthritis is a progressive, irreversible debilitating whole joint disease that affects millions of people worldwide. Despite the availability of various options (non-pharmacological and pharmacological treatments and therapy, orthobiologics, and surgical interventions), none of them can definitively cure osteoarthritis in patients. Strategies based on the controlled release of therapeutic compounds via biocompatible materials may provide powerful tools to enhance the spatiotemporal delivery, expression, and activities of the candidate agents as a means to durably manage the pathological progression of osteoarthritis in the affected joints upon convenient intra-articular (injectable) delivery while reducing their clearance, dissemination, or side effects. The goal of this review is to describe the current knowledge and advancements of controlled release to treat osteoarthritis, from basic principles to applications in vivo using therapeutic recombinant molecules and drugs and more innovatively gene sequences, providing a degree of confidence to manage the disease in patients in a close future.
Collapse
Affiliation(s)
- Dan Wang
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421, Homburg/Saar, Germany
| |
Collapse
|
2
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
3
|
Dalal N, Dandia H, Ingle A, Tayalia P. Surface-modified injectable poly(ethylene-glycol) diacrylate-based cryogels for localized gene delivery. Biomed Phys Eng Express 2024; 10:045039. [PMID: 38772344 DOI: 10.1088/2057-1976/ad4e3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Lentiviral transduction is widely used in research, has shown promise in clinical trials involving gene therapy and has been approved for CAR-T cell immunotherapy. However, most modifications are doneex vivoand rely on systemic administration of large numbers of transduced cells for clinical applications. A novel approach utilizingin situbiomaterial-based gene delivery can reduce off-target side effects while enhancing effectiveness of the manipulation process. In this study, poly(ethylene glycol) diacrylate (PEGDA)-based scaffolds were developed to enablein situlentivirus-mediated transduction. Compared to other widely popular biomaterials, PEGDA stands out due to its robustness and cost-effectiveness. These scaffolds, prepared via cryogelation, are capable of flowing through surgical needles in bothin vitroandin vivoconditions, and promptly regain their original shape. Modification with poly(L-lysine) (PLL) enables lentivirus immobilization while interconnected macroporous structure allows cell infiltration into these matrices, thereby facilitating cell-virus interaction over a large surface area for efficient transduction. Notably, these preformed injectable scaffolds demonstrate hemocompatibility, cell viability and minimally inflammatory response as shown by ourin vitroandin vivostudies involving histology and immunophenotyping of infiltrating cells. This study marks the first instance of using preformed injectable scaffolds for delivery of lentivectors, which offers a non-invasive and localized approach for delivery of factors enablingin situlentiviral transduction suitable for both tissue engineering and immunotherapeutic applications.
Collapse
Affiliation(s)
- Neha Dalal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Hiren Dandia
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arvind Ingle
- Tata Memorial Centre Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, 410210, India
| | - Prakriti Tayalia
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
4
|
Fischer A, Ehrlich A, Plotkin Y, Ouyang Y, Asulin K, Konstantinos I, Fan C, Nahmias Y, Willner I. Stimuli-Responsive Hydrogel Microcapsules Harnessing the COVID-19 Immune Response for Cancer Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202311590. [PMID: 37675854 DOI: 10.1002/anie.202311590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
The combination of gene therapy and immunotherapy concepts, along recent advances in DNA nanotechnology, have the potential to provide important tools for cancer therapies. We present the development of stimuli-responsive microcapsules, loaded with a viral immunogenetic agent, harnessing the immune response against the Coronavirus Disease 2019, COVID-19, to selectively attack liver cancer cells (hepatoma) or recognize breast cancer or hepatoma, by expression of green fluorescence protein, GFP. The pH-responsive microcapsules, modified with DNA-tetrahedra nanostructures, increased hepatoma permeation by 50 %. Incorporation of a GFP-encoding lentivirus vector inside the tumor-targeting pH-stimulated miRNA-triggered and Alpha-fetoprotein-dictated microcapsules enables the demonstration of neoplasm selectivity, with approximately 5,000-, 8,000- and 50,000-fold more expression in the cancerous cells, respectively. The incorporation of the SARS-CoV-2 spike protein in the gene vector promotes specific recognition of the immune-evading hepatoma by the COVID-19-analogous immune response, which leads to cytotoxic and inflammatory activity, mediated by serum components taken from vaccinated or recovered COVID-19 patients, resulting in effective elimination of the hepatoma (>85 % yield).
Collapse
Affiliation(s)
- Amit Fischer
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Yevgeni Plotkin
- The Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah University Hospital, Jerusalem, 9112001, Israel
- Faculty of Medicine, Hebrew University of Jerusalem Jerusalem, 9112001, (Israel)
| | - Yu Ouyang
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Klil Asulin
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ioannidis Konstantinos
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Bio-hybrid Complex Systems, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
Santoscoy MC, Espinoza P, De La Cruz D, Mahamdeh M, Starr JR, Patel N, Maguire CA. An AAV capsid increases transduction of striatum and a ChAT promoter allows selective cholinergic neuron transduction. Mol Ther Methods Clin Dev 2023; 29:532-540. [PMID: 37359416 PMCID: PMC10285237 DOI: 10.1016/j.omtm.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Adeno-associated virus (AAV) vectors are currently the most efficient option for intracranial gene therapies to treat neurodegenerative disease. Increased efficacy and safety will depend upon robust and specific expression of therapeutic genes into target cell-types within the human brain. In this study, we set out with two objectives: (1) to identify capsids with broader transduction of the striatum upon intracranial injection in mice and (2) to test a truncated human choline acetyltransferase (ChAT) promoter that would allow efficient and selective transduction of cholinergic neurons. We compared AAV9 and an engineered capsid, AAV-S, to mediate widespread reporter gene expression throughout the striatum. We observed that AAV-S transduced a significantly greater area of the injected hemisphere primarily in the rostral direction compared with AAV9 (CAG promoter). We tested AAV9 vectors packaging a reporter gene expression cassette driven by either the ChAT or CAG promoter. Specificity of transgene expression of ChAT neurons over other cells was 7-fold higher, and efficiency was 3-fold higher for the ChAT promoter compared with the CAG promoter. The AAV-ChAT transgene expression cassette should be a useful tool for the study of cholinergic neurons in mice, and the broader transduction area of AAV-S warrants further evaluation of this capsid.
Collapse
Affiliation(s)
- Miguel C. Santoscoy
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Espinoza
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Demitri De La Cruz
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammed Mahamdeh
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacqueline R. Starr
- Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nikita Patel
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Casey A. Maguire
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
6
|
Hosseinkhani H, Domb AJ, Sharifzadeh G, Nahum V. Gene Therapy for Regenerative Medicine. Pharmaceutics 2023; 15:856. [PMID: 36986717 PMCID: PMC10057434 DOI: 10.3390/pharmaceutics15030856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biological methods over the past decade has stimulated great interest in the possibility to regenerate human tissues. Advances in stem cell research, gene therapy, and tissue engineering have accelerated the technology in tissue and organ regeneration. However, despite significant progress in this area, there are still several technical issues that must be addressed, especially in the clinical use of gene therapy. The aims of gene therapy include utilising cells to produce a suitable protein, silencing over-producing proteins, and genetically modifying and repairing cell functions that may affect disease conditions. While most current gene therapy clinical trials are based on cell- and viral-mediated approaches, non-viral gene transfection agents are emerging as potentially safe and effective in the treatment of a wide variety of genetic and acquired diseases. Gene therapy based on viral vectors may induce pathogenicity and immunogenicity. Therefore, significant efforts are being invested in non-viral vectors to enhance their efficiency to a level comparable to the viral vector. Non-viral technologies consist of plasmid-based expression systems containing a gene encoding, a therapeutic protein, and synthetic gene delivery systems. One possible approach to enhance non-viral vector ability or to be an alternative to viral vectors would be to use tissue engineering technology for regenerative medicine therapy. This review provides a critical view of gene therapy with a major focus on the development of regenerative medicine technologies to control the in vivo location and function of administered genes.
Collapse
Affiliation(s)
- Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10019, USA
| | - Abraham J. Domb
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Victoria Nahum
- The Center for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
7
|
Amini M, Venkatesan JK, Liu W, Leroux A, Nguyen TN, Madry H, Migonney V, Cucchiarini M. Advanced Gene Therapy Strategies for the Repair of ACL Injuries. Int J Mol Sci 2022; 23:ijms232214467. [PMID: 36430947 PMCID: PMC9695211 DOI: 10.3390/ijms232214467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
The anterior cruciate ligament (ACL), the principal ligament for stabilization of the knee, is highly predisposed to injury in the human population. As a result of its poor intrinsic healing capacities, surgical intervention is generally necessary to repair ACL lesions, yet the outcomes are never fully satisfactory in terms of long-lasting, complete, and safe repair. Gene therapy, based on the transfer of therapeutic genetic sequences via a gene vector, is a potent tool to durably and adeptly enhance the processes of ACL repair and has been reported for its workability in various experimental models relevant to ACL injuries in vitro, in situ, and in vivo. As critical hurdles to the effective and safe translation of gene therapy for clinical applications still remain, including physiological barriers and host immune responses, biomaterial-guided gene therapy inspired by drug delivery systems has been further developed to protect and improve the classical procedures of gene transfer in the future treatment of ACL injuries in patients, as critically presented here.
Collapse
Affiliation(s)
- Mahnaz Amini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Jagadeesh K. Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Amélie Leroux
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Tuan Ngoc Nguyen
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
| | - Véronique Migonney
- Laboratoire CSPBAT UMR CNRS 7244, Université Sorbonne Paris Nord, Avenue JB Clément, 93430 Villetaneuse, France
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, D-66421 Homburg, Germany
- Correspondence: or
| |
Collapse
|
8
|
Wang K, Zheng M, Askew C, Zhang X, Li C, Han Z. Elastin‐Like Polypeptides Facilitate Adeno‐Associated Virus Transduction in the Presence of Pre‐Existing Neutralizing Antibodies. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Wang
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Min Zheng
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Charles Askew
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Xintao Zhang
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Chengwen Li
- Gene Therapy Center The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Department of Pediatrics The University of North Carolina at Chapel Hill Chapel Hill NC USA
| | - Zongchao Han
- Department of Ophthalmology The University of North Carolina at Chapel Hill Chapel Hill NC USA
- Pharmacoengineering & Molecular Pharmaceutics UNC Eshelman School of Pharmacy Chapel Hill NC USA
| |
Collapse
|
9
|
Soltani Dehnavi S, Eivazi Zadeh Z, Harvey AR, Voelcker NH, Parish CL, Williams RJ, Elnathan R, Nisbet DR. Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108757. [PMID: 35396884 DOI: 10.1002/adma.202108757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The incorporation of nanotechnology in regenerative medicine is at the nexus of fundamental innovations and early-stage breakthroughs, enabling exciting biomedical advances. One of the most exciting recent developments is the use of nanoscale constructs to influence the fate of cells, which are the basic building blocks of healthy function. Appropriate cell types can be effectively manipulated by direct cell reprogramming; a robust technique to manipulate cellular function and fate, underpinning burgeoning advances in drug delivery systems, regenerative medicine, and disease remodeling. Individual transcription factors, or combinations thereof, can be introduced into cells using both viral and nonviral delivery systems. Existing approaches have inherent limitations. Viral-based tools include issues of viral integration into the genome of the cells, the propensity for uncontrollable silencing, reduced copy potential and cell specificity, and neutralization via the immune response. Current nonviral cell reprogramming tools generally suffer from inferior expression efficiency. Nanomaterials are increasingly being explored to address these challenges and improve the efficacy of both viral and nonviral delivery because of their unique properties such as small size and high surface area. This review presents the state-of-the-art research in cell reprogramming, focused on recent breakthroughs in the deployment of nanomaterials as cell reprogramming delivery tools.
Collapse
Affiliation(s)
- Shiva Soltani Dehnavi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- ANU College of Engineering & Computer Science, Canberra, ACT, 2601, Australia
| | - Zahra Eivazi Zadeh
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, 15875-4413, Iran
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA, 6009, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
| | - Richard J Williams
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Roey Elnathan
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC, 3168, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - David R Nisbet
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, 2601, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, 3010, Australia
| |
Collapse
|
10
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
11
|
Lentiviral Vectors Delivered with Biomaterials as Therapeutics for Spinal Cord Injury. Cells 2021; 10:cells10082102. [PMID: 34440872 PMCID: PMC8394044 DOI: 10.3390/cells10082102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma that can cause permanent disability, life-long chronic issues for sufferers and is a big socioeconomic burden. Regenerative medicine aims to overcome injury caused deficits and restore function after SCI through gene therapy and tissue engineering approaches. SCI has a multifaceted pathophysiology. Due to this, producing therapies that target multiple different cellular and molecular mechanisms might prove to be a superior approach in attempts at regeneration. Both biomaterials and nucleic acid delivery via lentiviral vectors (LVs) have proven to promote repair and restoration of function post SCI in animal models. Studies indicate that a combination of biomaterials and LVs is more effective than either approach alone. This review presents studies supporting the use of LVs and LVs delivered with biomaterials in therapies for SCI and summarises methods to combine LVs with biomaterials for SCI treatment. By summarising this knowledge this review aims to demonstrate how LV delivery with biomaterials can augment/compliment both LV and biomaterial therapeutic effects in SCI.
Collapse
|
12
|
Guerra-Rebollo M, Stampa M, Lázaro MÁ, Cascante A, Fornaguera C, Borrós S. Electrostatic Coating of Viral Particles for Gene Delivery Applications in Muscular Dystrophies: Influence of Size on Stability and Antibody Protection. J Neuromuscul Dis 2021; 8:815-825. [PMID: 34366365 DOI: 10.3233/jnd-210662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is one of the most common muscular dystrophies, caused by mutated forms of the dystrophin gene. Currently, the only treatment available is symptoms management. Novel approximations are trying to treat these patients with gene therapy, namely, using viral vectors. However, these vectors can be recognized by the immune system decreasing their therapeutic activity and making impossible a multidose treatment due to the induction of the humoral immunity following the first dose. OBJECTIVE Our objective is to demonstrate the feasibility of using a hybrid vector to avoid immune clearance, based on the electrostatic coating of adeno-associated virus (AAVs) vectors with our proprietary polymers. METHODS We coated model adeno-associated virus vectors by electrostatic interaction of our cationic poly (beta aminoester) polymers with the viral anionic capsid and characterized biophysical properties. Once the nanoformulations were designed, we studied their in vivo biodistribution by bioluminescence analysis and we finally studied the capacity of the polymers as potential coatings to avoid antibody neutralization. RESULTS We tested two polymer combinations and we demonstrated the need for poly(ethylene glycol) addition to avoid vector aggregation after coating. In vivo biodistribution studies demonstrated that viral particles are located in the liver (short times) and also in muscles (long times), the target organ. However, we did not achieve complete antibody neutralization shielding using this electrostatic coating. CONCLUSIONS The null hypothesis stands: although it is feasible to coat viral particles by electrostatic interaction with a proprietary polymer, this strategy is not appropriate for AAVs due to their small size, so other alternatives are required as a novel treatment for DMD patients.
Collapse
Affiliation(s)
- Marta Guerra-Rebollo
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - María Stampa
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain
| | | | - Anna Cascante
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarriá (IQS), Universitat Ramon Llull (URL), Via Augusta, Barcelona, Spain.,Sagetis Biotech, Via Augusta, Barcelona, Spain
| |
Collapse
|
13
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
14
|
Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. Chem Rev 2021; 121:11194-11237. [DOI: 10.1021/acs.chemrev.0c00816] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mehmet Berat Taskin
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Wistlich
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry and Helmholtz Institute for RNA Based Infection Research, 97074 Würzburg, Germany
| | - Michael Schmitz
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Angela Rossi
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Würzburg, 97070 Würzburg, Germany
| |
Collapse
|
15
|
Hasanzadeh A, Mofazzal Jahromi MA, Abdoli A, Mohammad-Beigi H, Fatahi Y, Nourizadeh H, Zare H, Kiani J, Radmanesh F, Rabiee N, Jahani M, Mombeiny R, Karimi M. Photoluminescent carbon quantum dot/poly-l-Lysine core-shell nanoparticles: A novel candidate for gene delivery. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
17
|
Yoo S, Kang B, Oh S, Kim Y, Jang JH. A Versatile Adeno-Associated Viral Vector Cross-Linking Platform Capable of Tuning Cellular Tropisms and Simultaneously Inducing Solid-Phase Gene Delivery. ACS APPLIED BIO MATERIALS 2020; 3:4847-4857. [PMID: 35021729 DOI: 10.1021/acsabm.0c00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing gene carriers with improved affinities for target cells and the simultaneous diversification of their delivery modes will be pivotal for upgrading gene therapy technologies. In this study, a simple and versatile adeno-associated virus (AAV) conjugation platform using the cross-linker 3,3'-dithiobis(sulfosuccinimidyl propionate) (DTSSP) is proposed. Depending on the quantity of the DTSSP molecules, the AAV-DTSSP complexes could either be linked with the relevant biomolecules for altering cellular tropisms or further form a self-assembled AAV-DTSSP pellet capable of mimicking a polymeric gene delivery system. At lower quantities of DTSSP, the AAV-DTSSP complexes were conjugated with aminated l-fucose molecules, whose levels are typically upregulated in pancreatic cancer cells, resulting in enhanced gene delivery efficiencies in pancreatic cancer cells. At higher concentrations of DTSSP, visible solid forms of the AAV-DTSSP pellets were formed, and the AAV pellets demonstrated the capability to induce a localized, sustained gene expression pattern comparable to that of conventional biomaterial-based approaches. Thus, a multipurpose AAV cross-linking platform, which can enable AAV vector systems that are capable of altering cellular tropisms and simultaneously inducing solid-phase delivery, will provide crucial insights into vector design for further upgrading of gene delivery technologies.
Collapse
Affiliation(s)
- Seungju Yoo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Byunguk Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Seokmin Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Yunha Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
18
|
Zhang J, Li Y, Li J, Shi Y, Hu J, Yang G. Surfce Functionalized via AdLAMA3 Multilayer Coating for Re-epithelization Around Titanium Implants. Front Bioeng Biotechnol 2020; 8:624. [PMID: 32596232 PMCID: PMC7300264 DOI: 10.3389/fbioe.2020.00624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/21/2020] [Indexed: 11/29/2022] Open
Abstract
The peri-implant epithelium (PIE) forms a crucial seal between the oral environment and the implant surface. Compared with the junctional epithelium (JE), the biological sealing of PIE is fragile, which lacks hemidesmosomes (HDs) and internal basal lamina (extracellular matrix containing laminin332, IBL) on the upper part of the interface. In the study, we aim to prepare a coating with good biocompatibility and ability to immobilize the recombinant adenovirus vector of LAMA3 (AdLAMA3) for promoting the re-epithelization of PIE. The titanium surface functionalized with AdLAMA3 was established via layer-by-layer assembly technique and antibody-antigen specific binding. The biological evaluations including cell adhesion and the re-epithelization of PIE were investigated. The results in vitro demonstrated that the AdLAMA3 coating could improve epithelial cell attachment and cell spreading in the early stage. In vivo experiments indicated that the AdLAMA3 coating on the implant surface has the potential to accelerate the healing of the PIE, and could promote the expression of laminin α3 and the formation of hemidesmosomes. This study might provide a novel approach and experimental evidence for the precise attachment of LAMA3 to titanium surfaces. The process could improve the re-epithelization of PIE.
Collapse
Affiliation(s)
- Jing Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yongzheng Li
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Jialu Li
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Yuan Shi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Jinxing Hu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Guoli Yang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| |
Collapse
|
19
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Kim SH, Lee S, Lee H, Cho M, Schaffer DV, Jang JH. AAVR-Displaying Interfaces: Serotype-Independent Adeno-Associated Virus Capture and Local Delivery Systems. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:432-443. [PMID: 31670142 PMCID: PMC6831863 DOI: 10.1016/j.omtn.2019.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Interfacing gene delivery vehicles with biomaterials has the potential to play a key role in diversifying gene transfer capabilities, including localized, patterned, and controlled delivery. However, strategies for modifying biomaterials to interact with delivery vectors must be redesigned whenever new delivery vehicles and applications are explored. We have developed a vector-independent biomaterial platform capable of interacting with various adeno-associated viral (AAV) serotypes. A water-soluble, cysteine-tagged, recombinant protein version of the recently discovered multi-AAV serotype receptor (AAVR), referred to as cys-AAVR, was conjugated to maleimide-displaying polycaprolactone (PCL) materials using click chemistry. The resulting cys-AAVR-PCL system bound to a broad range of therapeutically relevant AAV serotypes, thereby providing a platform capable of modulating the delivery of all AAV serotypes. Intramuscular injection of cys-AAVR-PCL microspheres with bound AAV vectors resulted in localized and sustained gene delivery as well as reduced spread to off-target organs compared to a vector solution. This cys-AAVR-PCL system is thus an effective approach for biomaterial-based AAV gene delivery for a broad range of therapeutic applications.
Collapse
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Slgirim Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea; Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, IL 60611, USA
| | - Heehyung Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-3220, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720-3220, USA.
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, Korea.
| |
Collapse
|
21
|
Zhang H, Huang JJ, Wang J, Hu M, Chen XC, Sun W, Ren KF, Ji J. Surface-Mediated Stimuli-Responsive Gene Delivery Based on Breath Figure Film Combined with Matrix Metalloproteinase-Sensitive Hydrogel. ACS Biomater Sci Eng 2019; 5:6610-6616. [PMID: 33423480 DOI: 10.1021/acsbiomaterials.9b01353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-mediated gene delivery appears to be potential gene delivery modes for various applications. Still, controlled and smart delivery manners are required especially considering the need for gene therapy to deliver gene with selectivity. A surface that can effectively payload DNA, promote cell adhesion, and stimuli response is an important prerequisite. Here, we report a matrix metalloproteinase (MMP)-responsive surface-mediated gene delivery system by combining MMP-degradable hydrogel with a breath figure (BF) porous film. The MMP-degradable hydrogel containing plasmid DNA was loaded into the surface pores of the BF film as DNA reservoirs. The upper surface without hydrogel on the BF film served as footholds of integrin adhesions. MMP is one of the important endogenous signals in tumor-related pathologic changes, and MMP expressions in cancer cells are significantly higher than those in normal cells. Consequently, our surface-mediated gene delivery locally and rapidly released the payload DNA in response to cancer cells and transfected them. This work highlights the importance of the combination of stimuli-response and surface-mediated gene delivery to functional materials, showing good potential applications in the field of gene therapy.
Collapse
Affiliation(s)
- He Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jun-Jie Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Mi Hu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Xia-Chao Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Wei Sun
- Department of Polymer Science and Engineering, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
| |
Collapse
|
22
|
Zhang H, Wang J, Hu M, Li BC, Li H, Chen TT, Ren KF, Ji J, Jing QM, Fu GS. Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomater Sci 2019; 7:5177-5186. [PMID: 31588463 DOI: 10.1039/c9bm01284b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of gene therapy puts forward the requirements for efficient delivery of genetic information into diverse cells. However, in some cases of transfection, especially those for transfecting some primary cells and for delivering large size plasmid DNA (pDNA), the existing conventional transfection methods show poor efficiency. How to further improve transfection efficiency in these hard-to-achieve issues remains a crucial challenge. Here, we report a photothermal-assisted surface-mediated gene delivery based on a polydopamine-polyethylenimine (PDA-PEI) surface. The PDA-PEI surface was prepared through PEI-accelerated dopamine polymerization, which showed efficiency in the immobilization of PEI/pDNA polyplexes and remarkable photothermal properties. Upon IR irradiation, we observed improved transfection efficiencies of two important hard-to-achieve transfection issues, namely the transfection of primary endothelial cells, which are kinds of typical hard-to-transfect cells, and the transfection of cells with large-size pDNA. We demonstrate that the increases of transfection efficiency were due to the hyperthermia-induced pDNA release, the local cell membrane disturbance, and the polyplex internalization. This work highlights the importance of local immobilization and release of pDNA to gene deliveries, showing great potential applications in medical devices in the field of gene therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jing Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Mi Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bo-Chao Li
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huan Li
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ting-Ting Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ke-Feng Ren
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Quan-Min Jing
- General Hospital of Northern Theater Command, Shenyang 110004, China.
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
23
|
Jackman SL, Chen CH, Chettih SN, Neufeld SQ, Drew IR, Agba CK, Flaquer I, Stefano AN, Kennedy TJ, Belinsky JE, Roberston K, Beron CC, Sabatini BL, Harvey CD, Regehr WG. Silk Fibroin Films Facilitate Single-Step Targeted Expression of Optogenetic Proteins. Cell Rep 2019; 22:3351-3361. [PMID: 29562189 PMCID: PMC5894120 DOI: 10.1016/j.celrep.2018.02.081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 01/08/2023] Open
Abstract
Optical methods of interrogating neural circuits have emerged as powerful tools for understanding how the brain drives behaviors. Optogenetic proteins are widely used to control neuronal activity, while genetically encoded fluorescent reporters are used to monitor activity. These proteins are often expressed by injecting viruses, which frequently leads to inconsistent experiments due to misalignment of expression and optical components. Here, we describe how silk fibroin films simplify optogenetic experiments by providing targeted delivery of viruses. Films composed of silk fibroin and virus are applied to the surface of implantable optical components. After surgery, silk releases the virus to transduce nearby cells and provide localized expression around optical fibers and endoscopes. Silk films can also be used to express genetically encoded sensors in large cortical regions by using cranial windows coated with a silk/virus mixture. The ease of use and improved performance provided by silk make this a promising approach for optogenetic studies.
Collapse
Affiliation(s)
- Skyler L Jackman
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher H Chen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Selmaan N Chettih
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shay Q Neufeld
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Iain R Drew
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chimuanya K Agba
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Isabella Flaquer
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexis N Stefano
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas J Kennedy
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Justine E Belinsky
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keiramarie Roberston
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Celia C Beron
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wade G Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Venkatesan JK, Rey-Rico A, Cucchiarini M. Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue Eng Regen Med 2019; 16:345-355. [PMID: 31413939 PMCID: PMC6675832 DOI: 10.1007/s13770-019-00179-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Background Viral vector-based therapeutic gene therapy is a potent strategy to enhance the intrinsic reparative abilities of human orthopaedic tissues. However, clinical application of viral gene transfer remains hindered by detrimental responses in the host against such vectors (immunogenic responses, vector dissemination to nontarget locations). Combining viral gene therapy techniques with tissue engineering procedures may offer strong tools to improve the current systems for applications in vivo. Methods The goal of this work is to provide an overview of the most recent systems exploiting biomaterial technologies and therapeutic viral gene transfer in human orthopaedic regenerative medicine. Results Integration of tissue engineering platforms with viral gene vectors is an active area of research in orthopaedics as a means to overcome the obstacles precluding effective viral gene therapy. Conclusions In light of promising preclinical data that may rapidly expand in a close future, biomaterial-guided viral gene therapy has a strong potential for translation in the field of human orthopaedic regenerative medicine.
Collapse
Affiliation(s)
- Jagadeesh Kumar Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| | - Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
- Cell Therapy and Regenerative Medicine Unit, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Coruña, 15071 A Coruña, Spain
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr, Bldg 37, 66421 Homburg/Saar, Germany
| |
Collapse
|
25
|
Caronia JM, Sorensen DW, Leslie HM, van Berlo JH, Azarin SM. Adhesive thermosensitive gels for local delivery of viral vectors. Biotechnol Bioeng 2019; 116:2353-2363. [PMID: 31038193 DOI: 10.1002/bit.27007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/18/2022]
Abstract
Local delivery of viral vectors can enhance the efficacy of therapies by selectively affecting necessary tissues and reducing the required vector dose. Pluronic F127 is a thermosensitive polymer that undergoes a solution-gelation (sol-gel) transition as temperature increases and can deliver vectors without damaging them. While pluronics can be spread over large areas, such as the surface of an organ, before gelation, they lack sufficient adhesivity to remain attached to some tissues, such as the surface of the heart or mucosal surfaces. Here, we utilized blends of pluronic F127 and polycarbophil (PCB), a mucoadhesive agent, to provide the necessary adhesivity for local delivery of viral vectors to the cardiac muscle. The effects of PCB concentration on adhesive properties, sol-gel temperature transition and cytocompatibility were evaluated. Rheological studies showed that PCB decreased the sol-gel transition temperature at concentrations >1% and increased the adhesive properties of the gel. Furthermore, these gels were able to deliver viral vectors and transduce cells in vitro and in vivo in a neonatal mouse apical resection model. These gels could be a useful platform for delivering viral vectors over the surface of organs where increased adhesivity is required.
Collapse
Affiliation(s)
- Jeanette M Caronia
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Daniel W Sorensen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Hope M Leslie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Jop H van Berlo
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,Department of Medicine, Cardiovascular Division and Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samira M Azarin
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota.,Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
26
|
Adeno-associated virus as a gene therapy vector: strategies to neutralize the neutralizing antibodies. Clin Exp Med 2019; 19:289-298. [DOI: 10.1007/s10238-019-00557-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/23/2019] [Indexed: 11/26/2022]
|
27
|
Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare. J Control Release 2019; 302:19-41. [DOI: 10.1016/j.jconrel.2019.03.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
|
28
|
Kim SH, Yu SJ, Kim I, Choi J, Choi YH, Im SG, Hwang NS. A biofunctionalized viral delivery patch for spatially defined transfection. Chem Commun (Camb) 2019; 55:2317-2320. [PMID: 30720044 DOI: 10.1039/c8cc09768b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gene therapy holds the significance of correcting genetic defects. However, difficulties in the in vivo delivery to the targeted tissues and systemic delivery remain the biggest challenges to be overcome. Here, a robust system of biofunctionalized polymeric layer-mediated lentiviral delivery was designed for the site-specific spatial and temporal control of viral gene delivery. Poly glycidyl methacrylate (pGMA) modification of a substrate via initiated chemical vapor deposition (iCVD) followed by polyethyleneimine (PEI) immobilization provided the adhesion site for the lentivirus. Furthermore, the polymeric patch based gene delivery system showed a high rate of gene transduction compared to bolus treatment. Furthermore, by using mask patterning, we were able to spatially pattern the lentivirus which allowed spatially defined transfection.
Collapse
Affiliation(s)
- Su-Hwan Kim
- Institute of Engineering Research, Seoul National University, Seoul, 151-742, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
29
|
Shrimali P, Peter M, Singh A, Dalal N, Dakave S, Chiplunkar SV, Tayalia P. Efficient in situ gene delivery via PEG diacrylate matrices. Biomater Sci 2019; 6:3241-3250. [PMID: 30334035 DOI: 10.1039/c8bm00916c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For diseases related to genetic disorders or cancer, many cellular therapies rely on the ex vivo modification of cells for attaining a desired therapeutic effect. The efficacy of such therapies involving the genetic modification of cells relies on the extent of gene expression and subsequent persistence of modified cells when infused into the patient's body. In situ gene delivery implies the manipulation of cells in their in vivo niche such that the effectiveness can be improved by minimizing post manipulation effects like cell death, lack of persistence, etc. Furthermore, material-based in situ localized gene delivery can reduce the undesired side effects caused by systemic modifications. Here, we have used polyethylene (glycol) diacrylate (PEGDA) based cryogels to genetically modify cells in vivo with a focus on immunotherapy. PEGDA cryogels were either blended with gelatin methacrylate (GELMA) or surface modified with poly-l-lysine (PLL) in order to improve cell adhesion and/or retain viruses for localized gene delivery. On using the lentiviruses encoding gene for green fluorescent protein (GFP) in in vitro experiments, we found higher transduction efficiency in HEK 293FT cells via PEGDA modified with poly-l-lysine (PEGDA-PLL) and PEGDA-GELMA cryogels compared to PEGDA cryogels. In vitro release experiments showed improved retention of GFP lentiviruses in PEGDA-PLL cryogels, which were then employed for in vivo gene delivery and were demonstrated to perform better than the corresponding bolus delivery of lentiviruses through an injection. Both physical and biological characterization studies of these cryogels show that this material platform can be used for gene delivery as well as other tissue engineering applications.
Collapse
Affiliation(s)
- Paresh Shrimali
- Department of Biosciences & Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mantz A, Pannier AK. Biomaterial substrate modifications that influence cell-material interactions to prime cellular responses to nonviral gene delivery. Exp Biol Med (Maywood) 2019; 244:100-113. [PMID: 30621454 PMCID: PMC6405826 DOI: 10.1177/1535370218821060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
IMPACT STATEMENT This review summarizes how biomaterial substrate modifications (e.g. chemical modifications like natural coatings, ligands, or functional side groups, and/or physical modifications such as topography or stiffness) can prime the cellular response to nonviral gene delivery (e.g. affecting integrin binding and focal adhesion formation, cytoskeletal remodeling, endocytic mechanisms, and intracellular trafficking), to aid in improving gene delivery for applications where a cell-material interface might exist (e.g. tissue engineering scaffolds, medical implants and devices, sensors and diagnostics, wound dressings).
Collapse
Affiliation(s)
- Amy Mantz
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| | - Angela K Pannier
- Department of Biological Systems Engineering,
University
of Nebraska-Lincoln, Lincoln, NE 68583,
USA
| |
Collapse
|
31
|
Youngblood RL, Truong NF, Segura T, Shea LD. It's All in the Delivery: Designing Hydrogels for Cell and Non-viral Gene Therapies. Mol Ther 2018; 26:2087-2106. [PMID: 30107997 PMCID: PMC6127639 DOI: 10.1016/j.ymthe.2018.07.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 01/08/2023] Open
Abstract
Hydrogels provide a regenerative medicine platform with their ability to create an environment that supports transplanted or endogenous infiltrating cells and enables these cells to restore or replace the function of tissues lost to disease or trauma. Furthermore, these systems have been employed as delivery vehicles for therapeutic genes, which can direct and/or enhance the function of the transplanted or endogenous cells. Herein, we review recent advances in the development of hydrogels for cell and non-viral gene delivery through understanding the design parameters, including both physical and biological components, on promoting transgene expression, cell engraftment, and ultimately cell function. Furthermore, this review identifies emerging opportunities for combining cell and gene delivery approaches to overcome challenges to the field.
Collapse
Affiliation(s)
- Richard L Youngblood
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
32
|
Madrigal JL, Sharma SN, Campbell KT, Stilhano RS, Gijsbers R, Silva EA. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors. Acta Biomater 2018; 69:265-276. [PMID: 29398644 PMCID: PMC6819130 DOI: 10.1016/j.actbio.2018.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 12/01/2022]
Abstract
Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. STATEMENT OF SIGNIFICANCE Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for controlled genetic vector release. We adjust the physiochemical properties of alginate for quicker or slower release, and we demonstrate how combining distinct formulations of microgels can tune the release of the overall composite microgel suspension. These composite suspensions are generated using a straightforward and powerful application of droplet microfluidics which allows for the real-time generation of a composite suspension.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Shonit N Sharma
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Kevin T Campbell
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Roberta S Stilhano
- Department of Biomedical Engineering, University of California, Davis, CA, USA
| | - Rik Gijsbers
- Department of Pharmaceutic and Pharmacological Sciences, Laboratory for Viral Vector Technology and Gene Therapy, KU Leuven-University of Leuven, Leuven, Belgium
| | - Eduardo A Silva
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction. Biomaterials 2018; 160:69-81. [PMID: 29396380 DOI: 10.1016/j.biomaterials.2018.01.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) leads to the mass death of cardiomyocytes accompanying with the unfavorable alternation of microenvironment, a fibrosis scar deprived of electrical communications, and the lack of blood supply in the infarcted myocardium. The three factors are inextricably intertwined and thus result in a conservative MI therapy efficacy in clinic. A holistic approach pertinently targeted to these three key points would be favorable to rebuild the heart functions. Here, an injectable conductive hydrogel was constructed via in situ Michael addition reaction between multi-armed conductive crosslinker tetraaniline-polyethylene glycol diacrylate (TA-PEG) and thiolated hyaluronic acid (HA-SH). The resultant soft conductive hydrogel with equivalent myocardial conductivity and anti-fatigue performance was loaded with plasmid DNA encoding eNOs (endothelial nitric oxide synthase) nanocomplexes and adipose derived stem cells (ADSCs) for treating MI. The TA-PEG/HA-SH/ADSCs/Gene hydrogel-based holistic system was injected into the infarcted myocardium of SD rats. We demonstrated an increased expression of eNOs in myocardial tissue the heightening of nitrite concentration, accompanied with upregulation of proangiogenic growth factors and myocardium related mRNA. The results of electrocardiography, cardiogram, and histological analysis convincingly revealed a distinct increase of ejection fraction (EF), shortened QRS interval, smaller infarction size, less fibrosis area, and higher vessel density, indicating a significant improvement of heart functions. This conception of combination approach by a conductive injectable hydrogel loaded with stem cells and gene-encoding eNOs nanoparticles will become a robust therapeutic strategy for the treatment of MI.
Collapse
|
34
|
Li W, Wu D, Tan J, Liu Z, Lu L, Zhou C. A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. J Mater Chem B 2018; 6:6977-6992. [DOI: 10.1039/c8tb02006j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gene-activated porous nanofibrous scaffold for effectively promoting vascularization, epidermalization and dermal wound healing by sustained release of dual plasmid DNAs.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- College of Life Science and Technology
| | - Dongwei Wu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Jianwang Tan
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Zhibin Liu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Lu Lu
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| | - Changren Zhou
- Department of Materials Science and Engineering
- Jinan University
- Guangzhou 510632
- China
- Engineering Research Center of Artificial Organs and Materials
| |
Collapse
|
35
|
Yokoda R, Nagalo BM, Vernon B, Oklu R, Albadawi H, DeLeon TT, Zhou Y, Egan JB, Duda DG, Borad MJ. Oncolytic virus delivery: from nano-pharmacodynamics to enhanced oncolytic effect. Oncolytic Virother 2017; 6:39-49. [PMID: 29184854 PMCID: PMC5687448 DOI: 10.2147/ov.s145262] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
With the advancement of a growing number of oncolytic viruses (OVs) to clinical development, drug delivery is becoming an important barrier to overcome for optimal therapeutic benefits. Host immunity, tumor microenvironment and abnormal vascularity contribute to inefficient vector delivery. A number of novel approaches for enhanced OV delivery are under evaluation, including use of nanoparticles, immunomodulatory agents and complex viral–particle ligands along with manipulations of the tumor microenvironment. This field of OV delivery has quickly evolved to bioengineering of complex nanoparticles that could be deposited within the tumor using minimal invasive image-guided delivery. Some of the strategies include ultrasound (US)-mediated cavitation-enhanced extravasation, magnetic viral complexes delivery, image-guided infusions with focused US and targeting photodynamic virotherapy. In addition, strategies that modulate tumor microenvironment to decrease extracellular matrix deposition and increase viral propagation are being used to improve tumor penetration by OVs. Some involve modification of the viral genome to enhance their tumoral penetration potential. Here, we highlight the barriers to oncolytic viral delivery, and discuss the challenges to improving it and the perspectives of establishing new modes of active delivery to achieve enhanced oncolytic effects.
Collapse
Affiliation(s)
- Raquel Yokoda
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Bolni M Nagalo
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Brent Vernon
- Department of Biomedical Engineering, Arizona State University, Tempe
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | - Thomas T DeLeon
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Yumei Zhou
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Jan B Egan
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| | - Dan G Duda
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Mitesh J Borad
- Division of Hematology Oncology, Department of Medicine, Mayo Clinic, Scottsdale
| |
Collapse
|
36
|
Kim SH, Lee M, Cho M, Kim IS, Park KI, Lee H, Jang JH. Inverted Quasi-Spherical Droplets on Polydopamine-TiO2
Substrates for Enhancing Gene Delivery. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/18/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Seung-Hyun Kim
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Mihyun Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
- Department of Health Sciences and Technology; ETH Zürich Otto-Stern-Weg 7 8093 Zürich Switzerland
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Il-Sun Kim
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Kook In Park
- Department of Pediatric; Yonsei University College of Medicine; 50-1 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| | - Haeshin Lee
- Department of Chemistry; Korea Advanced Institute of Science and Technology; 291 Daehak-ro Yuseong-gu Daejeon 34141 Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering; Yonsei University; 50 Yonsei-ro Seodaemun-gu Seoul 03722 Republic of Korea
| |
Collapse
|
37
|
Kim Y, Kim E, Oh S, Yoon YE, Jang JH. Mutagenic Analysis of an Adeno-Associated Virus Variant Capable of Simultaneously Promoting Immune Resistance and Robust Gene Delivery. Hum Gene Ther 2017. [PMID: 28648139 DOI: 10.1089/hum.2017.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In addition to the ability to boost gene delivery efficiency in many therapeutically relevant cells, the capability of circumventing neutralizing antibody (NAb) inactivation is a key prerequisite that gene carriers must fulfill for their extensive applications as therapeutic agents in many gene therapy trials, especially for cancer treatments. This study revealed that a genetically engineered adeno-associated virus (AAV) variant, AAVr3.45, inherently possesses dual beneficial properties as a gene carrier: (i) efficiently delivering therapeutic genes to many clinically valuable cells (e.g., stem or cancer cells) and (ii) effectively bypassing immunoglobulin (IgG) neutralization. Detailed interpretation of the structural features of AAVr3.45, which was previously engineered from AAV2, demonstrated that the LATQVGQKTA peptide at the heparan sulfate proteoglycan binding domain, especially the presence of cationic lysine on the peptide, served as a key motif for dramatically enhancing its gene delivery capabilities, ultimately broadening its tropisms for many cancer cell lines. Furthermore, the substitution of valine on the AAV2 capsid at the amino acid 719 site to methionine functioned as a coordinator for promoting viral resistance against IgG inactivation. The NAb-resistant characteristics of AAVr3.45 were possibly associated with the LATQVGQKTA sequence itself, indicating that its synergistic cooperation with the point mutation (V719M) is required for maximizing its ability to evade NAb inactivation. The potential of AAVr3.45 as a cancer gene therapy agent was confirmed by provoking apoptosis in breast adenocarcinoma by efficiently delivering a pro-apoptotic gene, BIM (Bcl-2-like protein 11), under high titers of human IgG. Thus, the superior aspects of the NAb-resistant AAVr3.45 as a potential therapeutic agent for systemic injection approaches, especially for cancer gene therapy, were highlighted in this study.
Collapse
Affiliation(s)
- Yoojin Kim
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Eunmi Kim
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea.,2 Material Research Division, R&D Unit, AmorePacific Corporation, Gyeonggi-do, Korea
| | - Seokmin Oh
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Ye-Eun Yoon
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| | - Jae-Hyung Jang
- 1 Department of Chemical and Biomolecular Engineering, Yonsei University , Seoul, Korea
| |
Collapse
|
38
|
Gu X, Matsumura Y, Tang Y, Roy S, Hoff R, Wang B, Wagner WR. Sustained viral gene delivery from a micro-fibrous, elastomeric cardiac patch to the ischemic rat heart. Biomaterials 2017; 133:132-143. [PMID: 28433936 DOI: 10.1016/j.biomaterials.2017.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 01/14/2023]
Abstract
Biodegradable and elastomeric patches have been applied to the surface of infarcted hearts as temporary mechanical supports to effectively alter adverse left ventricular remodeling processes. In this report, recombinant adeno-associated virus (AAV), known for its persistent transgene expression and low pathogenicity, was incorporated into elastomeric polyester urethane urea (PEUU) and polyester ether urethane urea (PEEUU) and processed by electrospinning into two formats (solid fibers and core-sheath fibers) designed to influence the controlled release behavior. The extended release of AAV encoding green fluorescent protein (GFP) was assessed in vitro. Sustained and localized viral particle delivery was achieved over 2 months in vitro. The biodegradable cardiac patches with or without AAV-GFP were implanted over rat left ventricular lesions three days following myocardial infarction to evaluate the transduction effect of released viral vectors. AAV particles were directly injected into the infarcted hearts as a control. Cardiac function and remodeling were significantly improved for 12 weeks after patch implantation compared to AAV injection. More GFP genes was expressed in the AAV patch group than AAV injection group, with both α-SMA positive cells and cardiac troponin T positive cells transduced in the patch group. Overall, the extended release behavior, prolonged transgene expression, and elastomeric mechanical properties make the AAV-loaded scaffold an attractive option for cardiac tissue engineering where both gene delivery and appropriate mechanical support are desired.
Collapse
Affiliation(s)
- Xinzhu Gu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yasumoto Matsumura
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Souvik Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Richard Hoff
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bing Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
39
|
Hadjizadeh A, Ghasemkhah F, Ghasemzaie N. Polymeric Scaffold Based Gene Delivery Strategies to Improve Angiogenesis in Tissue Engineering: A Review. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1292402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Afra Hadjizadeh
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farzaneh Ghasemkhah
- Institute of Nanotechnology, Amirkabir University of Technology, Tehran, Iran
| | - Niloofar Ghasemzaie
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
40
|
Frisch J, Cucchiarini M. Gene- and Stem Cell-Based Approaches to Regulate Hypertrophic Differentiation in Articular Cartilage Disorders. Stem Cells Dev 2016; 25:1495-1512. [DOI: 10.1089/scd.2016.0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Janina Frisch
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University and Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
41
|
Li J, Xu Q, Teng B, Yu C, Li J, Song L, Lai YX, Zhang J, Zheng W, Ren PG. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect. Acta Biomater 2016; 42:389-399. [PMID: 27326916 DOI: 10.1016/j.actbio.2016.06.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. The continuous release of bioactive lentiviral vectors (LV-pdgfb) from the scaffolds could be detected for 5days in vitro. In vivo, the released LV-pdgfb transfected adjacent cells and expressed PDGF-BB, facilitating angiogenesis and enhancing bone regeneration. The expression of both pdgfb and the angiogenesis-related genes vWF and VEGFR2 was significantly increased in the pdgfb gene-carrying scaffold (PHp) group. In addition, microCT scanning and histomorphology results proved that there was more new bone ingrowth in the PHp group than in the PLGA/nHA (PH) and control groups. MicroCT parameters, including BMD, BV/TV, Tb.Sp, and Tb.N indicated that there was significantly more new bone formation in the PHp group than in the other groups. With regard to neovascularization, 8weeks post-implantation, blood vessel areas (BVAs) were 9428±944μm(2), 4090±680.3μm(2), and none in the PHp, PH, and control groups, respectively. At each time point, BVAs in the PHp scaffolds were significantly higher than in the PH scaffolds. To our knowledge, this is the first use of multiphoton microscopy in bone tissue-engineering to investigate angiogenesis in scaffolds in vivo. This method represents a valuable tool for investigating neovascularization in bone scaffolds to determine if a certain scaffold is beneficial to neovascularization. We also proved that delivery of the pdgfb gene alone can improve both angiogenesis and bone regeneration Acronyms. STATEMENT OF SIGNIFICANCE Reconstruction of critical size bone defects remains a major clinical challenge because of poor bone regeneration, which is usually due to poor angiogenesis during repair. Satisfactory vascularization is a prerequisite for the survival of grafts and the integration of new tissue with existing tissue. In this work, we investigated angiogenesis in 3D scaffolds by in vivo multiphoton microscopy during bone formation in a murine calvarial critical bone defect model and evaluated bone regeneration 8weeks post-implantation. To verify that pdgfb-expressing vectors carried by the scaffolds can promote angiogenesis in 3D-printed scaffolds in vivo, we monitored angiogenesis within the implants by multiphoton microscopy. To our knowledge, this is the first study to dynamically investigate angiogenesis in bone tissue engineering scaffolds in vivo.
Collapse
Affiliation(s)
- Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qiang Xu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Bin Teng
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Chen Yu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Jian Li
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Orthopedics Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yu-Xiao Lai
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian Zhang
- Laboratory for Reproductive Health, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Pei-Gen Ren
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
42
|
Kasala D, Yoon AR, Hong J, Kim SW, Yun CO. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond) 2016; 11:1689-713. [PMID: 27348247 DOI: 10.2217/nnm-2016-0060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors are promising gene carriers for cancer therapy. However, virus-mediated gene therapies have demonstrated insufficient therapeutic efficacy in clinical trials due to rapid dissemination to nontarget tissues and to the immunogenicity of viral vectors, resulting in poor retention at the disease locus and induction of adverse inflammatory responses in patients. Further, the limited tropism of viral vectors prevents efficient gene delivery to target tissues. In this regard, modification of the viral surface with nanomaterials is a promising strategy to augment vector accumulation at the target tissue, circumvent the host immune response, and avoid nonspecific interactions with the reticuloendothelial system or serum complement. In the present review, we discuss various chemical modification strategies to enhance the therapeutic efficacy of viral vectors delivered either locally or systemically. We conclude by highlighting the salient features of various nanomaterial-coated viral vectors and their prospects and directions for future research.
Collapse
Affiliation(s)
- Dayananda Kasala
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jinwoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Sung Wan Kim
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.,Department of Pharmaceutics & Pharmaceutical Chemistry, Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
43
|
Madrigal JL, Stilhano RS, Siltanen C, Tanaka K, Rezvani SN, Morgan RP, Revzin A, Han SW, Silva EA. Microfluidic generation of alginate microgels for the controlled delivery of lentivectors. J Mater Chem B 2016; 4:6989-6999. [DOI: 10.1039/c6tb02150f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microgels fabricated through distinct microfluidic procedures encapsulate and release functioning lentivectors in a controlled manner.
Collapse
Affiliation(s)
| | | | | | - Kimberly Tanaka
- Department of Biomedical Engineering
- University of California
- Davis
- USA
| | - Sabah N. Rezvani
- Department of Biomedical Engineering
- University of California
- Davis
- USA
| | - Ryan P. Morgan
- Department of Biomedical Engineering
- University of California
- Davis
- USA
| | - Alexander Revzin
- Department of Biomedical Engineering
- University of California
- Davis
- USA
| | - Sang W. Han
- Department of Biophysics
- Federal University of São Paulo
- São Paulo
- Brazil
| | - Eduardo A. Silva
- Department of Biomedical Engineering
- University of California
- Davis
- USA
| |
Collapse
|
44
|
Tse LV, Moller-Tank S, Asokan A. Strategies to circumvent humoral immunity to adeno-associated viral vectors. Expert Opin Biol Ther 2015; 15:845-55. [PMID: 25985812 DOI: 10.1517/14712598.2015.1035645] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Recent success in gene therapy of certain monogenic diseases in the clinic has infused enthusiasm into the continued development of recombinant adeno-associated viral (AAV) vectors as next-generation biologics. However, progress in clinical trials has also highlighted the challenges posed by the host humoral immune response to AAV vectors. Specifically, while pre-existing neutralizing antibodies (NAbs) limit the cohort of eligible patients, NAb generation following treatment prevents vector re-dosing. AREAS COVERED In this review, we discuss a spectrum of complementary strategies that can help circumvent the host humoral immune response to AAV. EXPERT OPINION Specifically, we present a dual perspective, that is, vector versus host, and highlight the clinical attributes, potential caveats and limitations as well as complementarity associated with the various approaches.
Collapse
Affiliation(s)
- Longping V Tse
- University of North Carolina, Gene Therapy Center , CB#7352, Thurston Building, Chapel Hill, NC 27599 , USA
| | | | | |
Collapse
|
45
|
Donnelly A, Yata T, Bentayebi K, Suwan K, Hajitou A. Bacteriophage Mediates Efficient Gene Transfer in Combination with Conventional Transfection Reagents. Viruses 2015; 7:6476-89. [PMID: 26670247 PMCID: PMC4690874 DOI: 10.3390/v7122951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
The development of commercially available transfection reagents for gene transfer applications has revolutionized the field of molecular biology and scientific research. However, the challenge remains in ensuring that they are efficient, safe, reproducible and cost effective. Bacteriophage (phage)-based viral vectors have the potential to be utilized for general gene transfer applications within research and industry. Yet, they require adaptations in order to enable them to efficiently enter cells and overcome mammalian cellular barriers, as they infect bacteria only; furthermore, limited progress has been made at increasing their efficiency. The production of a novel hybrid nanocomplex system consisting of two different nanomaterial systems, phage vectors and conventional transfection reagents, could overcome these limitations. Here we demonstrate that the combination of cationic lipids, cationic polymers or calcium phosphate with M13 bacteriophage-derived vectors, engineered to carry a mammalian transgene cassette, resulted in increased cellular attachment, entry and improved transgene expression in human cells. Moreover, addition of a targeting ligand into the nanocomplex system, through genetic engineering of the phage capsid further increased gene expression and was effective in a stable cell line generation application. Overall, this new hybrid nanocomplex system (i) provides enhanced phage-mediated gene transfer; (ii) is applicable for laboratory transfection processes and (iii) shows promise within industry for large-scale gene transfer applications.
Collapse
Affiliation(s)
- Amanda Donnelly
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Teerapong Yata
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani 12120, Thailand.
| | - Kaoutar Bentayebi
- Laboratory of Genetics, University of Balearic islands, Valldemossa Road Km. 7,5, 07122 Palma, Spain.
| | - Keittisak Suwan
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | - Amin Hajitou
- Phage Therapy Group, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| |
Collapse
|
46
|
Rey-Rico A, Venkatesan JK, Frisch J, Rial-Hermida I, Schmitt G, Concheiro A, Madry H, Alvarez-Lorenzo C, Cucchiarini M. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater 2015; 27:42-52. [PMID: 26320543 DOI: 10.1016/j.actbio.2015.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are clinically adapted gene transfer vectors for direct human cartilage regenerative medicine. Their appropriate use in patients is still limited by a relatively low efficacy of vector penetration inside the cells, by the pre-existing humoral immune responses against the viral capsid proteins in a large part of the human population, and by possible inhibition of viral uptake by clinical compounds such as heparin. The delivery of rAAV vectors to their targets using optimized vehicles is therefore under active investigation. Here, we evaluated the possibility of providing rAAV to human bone marrow-derived mesenchymal stem cells (hMSCs), a potent source of cartilage regenerative cells, via self-assembled poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as linear poloxamers or X-shaped poloxamines. Encapsulation in poloxamer PF68 and poloxamine T908 polymeric micelles allowed for an effective, durable, and safe modification of hMSCs via rAAV to levels similar to or even higher than those noted upon direct vector application. The copolymers were capable of restoring the transduction of hMSCs with rAAV in conditions of gene transfer inhibition, i.e. in the presence of heparin or of a specific antibody directed against the rAAV capsid, enabling effective therapeutic delivery of a chondrogenic sox9 sequence leading to an enhanced chondrocyte differentiation of the cells. The present findings highlight the value of PEO-PPO copolymers as powerful tools for rAAV-based cartilage regenerative medicine. STATEMENT OF SIGNIFICANCE While recombinant adeno-associated viral (rAAV) vectors are adapted vectors to treat a variety of human disorders, their clinical use is still restricted by pre-existing antiviral immune responses, by a low efficacy of natural vector entry in the target cells, and by inhibition of viral uptake by clinically used compounds like heparin. The search for alternative routes of rAAV delivery is thus becoming a new field of investigation. In the present study, we describe the strong benefits of providing rAAV to human mesenchymal stem cells, a potent source of cells for regenerative medicine, encapsulated in polymeric micelles based on poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers as novel, effective and safe delivery systems for human gene therapy.
Collapse
Affiliation(s)
- Ana Rey-Rico
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany.
| | - Jagadeesh K Venkatesan
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Janina Frisch
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Isabel Rial-Hermida
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Gertrud Schmitt
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15702 Santiago de Compostela, Spain
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany; Department of Orthopaedics and Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany
| | - Carmen Alvarez-Lorenzo
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
47
|
Lisowski L, Tay SS, Alexander IE. Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol 2015; 24:59-67. [PMID: 26291407 DOI: 10.1016/j.coph.2015.07.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 12/11/2022]
Abstract
Gene transfer vectors based on adeno-associated virus (AAV) are showing exciting therapeutic promise in early phase clinical trials. The ability to cross-package the prototypic AAV2 vector genome into different capsids is a powerful way of conferring novel tropism and biology, with evolving capsid engineering technologies and directed evolution approaches further enhancing the utility and flexibility of these vectors. Novel properties of specific capsids show unpredictable species and cell-type specificity. Therefore, full realisation of the therapeutic potential of AAV vectors requires the development of more therapeutically predictive preclinical methods for evaluating capsid performance. This will strongly complement an iterative approach to the evaluation of capsid variants in the clinic and, should wherever possible, include the determination of gene transfer efficiencies.
Collapse
Affiliation(s)
- Leszek Lisowski
- Gene Transfer, Targeting and Therapeutics Core, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, San Diego, CA, USA
| | - Szun Szun Tay
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead 2145, NSW, Australia
| | - Ian Edward Alexander
- Gene Therapy Research Unit, The Children's Hospital at Westmead and Children's Medical Research Institute, Locked Bag 4001, Westmead 2145, NSW, Australia; Discipline of Paediatrics and Child Health, The University of Sydney, NSW, Australia.
| |
Collapse
|
48
|
Beavers KR, Nelson CE, Duvall CL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv Drug Deliv Rev 2015; 88:123-37. [PMID: 25553957 PMCID: PMC4485980 DOI: 10.1016/j.addr.2014.12.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/25/2014] [Accepted: 12/20/2014] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has motivated expanding efforts toward the development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair.
Collapse
Affiliation(s)
- Kelsey R Beavers
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Craig L Duvall
- Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
49
|
Jin G, Shin M, Kim SH, Lee H, Jang JH. SpONGE: Spontaneous Organization of Numerous-Layer Generation by Electrospray. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Jin G, Shin M, Kim SH, Lee H, Jang JH. SpONGE: Spontaneous Organization of Numerous-Layer Generation by Electrospray. Angew Chem Int Ed Engl 2015; 54:7587-91. [DOI: 10.1002/anie.201502177] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 04/03/2015] [Indexed: 11/06/2022]
|