1
|
Nieto Y, Banerjee P, Kaur I, Basar R, Li Y, Daher M, Rafei H, Kerbauy LN, Kaplan M, Marin D, Griffin L, Barnett M, Bassett R, Uprety N, Shrestha R, Silva FR, Islam S, Ganesh C, Borneo Z, Ramdial J, Ramirez A, Hosing C, Alousi A, Popat U, Qazilbash M, Ahmed S, Iyer S, Sainz TP, Vega F, Fowlkes NW, Alexis K, Emig M, Harstrick A, Overesch A, Shpall EJ, Rezvani K. Allogeneic NK cells with a bispecific innate cell engager in refractory relapsed lymphoma: a phase 1 trial. Nat Med 2025:10.1038/s41591-025-03640-8. [PMID: 40186077 DOI: 10.1038/s41591-025-03640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Outcomes of patients with CD30-positive (CD30+) lymphomas have improved with the advent of brentuximab vedotin (BV) and, in Hodgkin lymphoma, anti-PD1 checkpoint inhibitors (CPI). However, there is a need for new therapies for patients with tumors refractory to both BV and CPI, who face dismal outcomes. AFM13-a CD30/CD16A bispecific antibody-activates natural killer (NK) cells to kill CD30+ cells. Here we studied cord-blood-derived cytokine-preactivated and expanded NK cells precomplexed with AFM13 (AFM13-NK) in patients with CD30+ lymphoma refractory to BV and CPI. The primary endpoint of this phase 1 trial was to establish the safety and recommended phase 2 dose of AFM13-NK followed by intravenous AFM13 infusions. Secondary endpoints included the overall response rate and complete response (CR) rate, event-free survival and overall survival, and persistence of infused AFM13-NK cells. This is the final analysis of this trial; 42 heavily pretreated patients received 2 to 4 cycles of lymphodepletion followed by AFM13-NK cell infusion at 3 dose levels (106, 107 and 108 kg-1) and 3 weekly AFM13 infusions. No cytokine release syndrome, neurotoxicity or graft-versus-host disease was observed. The highest NK dose was established as the recommended phase 2 dose. Donor NK cells peaked in blood 1 day postinfusion, persisted up to 3 weeks and trafficked to tumor sites. The overall response and CR rates were 92.9% and 66.7%, respectively. At a median follow-up of 20 months, the 2-year event-free and overall survival rates were 26.2% and 76.2%, respectively. Eleven patients (6 with and 5 without consolidation) remained in CR at 14-40 months. This therapy showed encouraging preliminary safety and efficacy. ClinicalTrials.gov Identifier: NCT04074746 .
Collapse
Affiliation(s)
- Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Indreshpal Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lori Griffin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Barnett
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanjida Islam
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Ganesh
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zephanie Borneo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alejandro Ramirez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amin Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muzaffar Qazilbash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tania P Sainz
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Institute for Cell Therapy Discovery and Innovation, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Kim WS, Shortt J, Zinzani PL, Mikhailova N, Radeski D, Ribrag V, Domingo Domenech E, Sawas A, Alexis K, Emig M, Elbadri R, Hajela P, Ravenstijn P, Pinto S, Garcia L, Overesch A, Pietzko K, Horwitz S. A Phase II Study of Acimtamig (AFM13) in Patients with CD30-Positive, Relapsed, or Refractory Peripheral T-cell Lymphomas. Clin Cancer Res 2025; 31:65-73. [PMID: 39531538 PMCID: PMC11701429 DOI: 10.1158/1078-0432.ccr-24-1913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Patients with relapsed or refractory (R/R) peripheral T-cell lymphoma (PTCL) generally have poor prognoses and limited treatment options. This study evaluated the efficacy of a novel CD30/CD16A bispecific innate cell engager, acimtamig (AFM13), in patients with R/R PTCL. PATIENTS AND METHODS Patients included those with CD30 expression in ≥1% of tumor cells and who were R/R following ≥1 prior line of systemic therapy. Acimtamig (200 mg) was administered once weekly in 8-week cycles. The primary endpoint was the overall response rate by fluorodeoxyglucose-PET per independent review committee; secondary and exploratory endpoints included duration of response, safety, progression-free survival, and overall survival. RESULTS The overall response rate in 108 patients was 32.4% [95% confidence interval (CI), 23.7, 42.1] with a complete response rate of 10.2% (95% CI, 5.2, 17.5); the median duration of response was 2.3 months (95% CI, 1.9, 6.5). Patients with R/R angioimmunoblastic T-cell lymphoma exhibited the greatest number of responses [53.3% (95% CI, 34.3, 71.7)]. Responses were independent of CD30 expression level, prior brentuximab vedotin treatment, or steroid premedication. Acimtamig exhibited a tolerable safety profile; the most common treatment-related adverse events were infusion-related reactions in 27 patients (25.0%) and neutropenia in 11 patients (10.2%). No cases of cytokine release syndrome or acimtamig-related deaths were reported. Despite exhibiting promising clinical activity and tolerable safety in a heavily pretreated PTCL population, the study did not meet the criteria for the primary endpoint. CONCLUSIONS The promising clinical efficacy observed warrants further investigation, and development of acimtamig for patients with R/R CD30+ lymphomas continues in combination with allogeneic NK cells.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/mortality
- Lymphoma, T-Cell, Peripheral/pathology
- Male
- Female
- Middle Aged
- Ki-1 Antigen/metabolism
- Aged
- Adult
- Aged, 80 and over
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/pathology
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antibodies, Bispecific/therapeutic use
- Treatment Outcome
- Receptors, IgG/metabolism
- Drug Resistance, Neoplasm
- Young Adult
Collapse
Affiliation(s)
- Won Seog Kim
- Department of Hematology-Oncology, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jake Shortt
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia
- Monash Hematology, Monash Health, Clayton, Victoria, Australia
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia “Seràgnoli,” Bologna, Italy
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Natalia Mikhailova
- Raisa Gorbacheva Memorial Institute of Children Oncology Hematology and Transplantation, First Saint Petersburg State Pavlov Medical University, Saint Petersburg, Russia
| | - Dejan Radeski
- Linear Clinical Research & Sir Charles Gairdner Hospital, Perth, Western Australia
| | | | - Eva Domingo Domenech
- Institut Catala d’Oncologia, Hospital Duran i Reynals, IDIBELL, Barcelona, Spain
| | - Ahmed Sawas
- Columbia University Medical Center, New York, New York
| | | | | | | | | | | | | | | | | | | | - Steven Horwitz
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Shin MH, Oh E, Minn D. Current Developments in NK Cell Engagers for Cancer Immunotherapy: Focus on CD16A and NKp46. Immune Netw 2024; 24:e34. [PMID: 39513028 PMCID: PMC11538608 DOI: 10.4110/in.2024.24.e34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 11/15/2024] Open
Abstract
NK cells are specialized immune effector cells crucial for triggering immune responses against aberrant cells. Although recent advancements have concentrated on creating or releasing T-cell responses specific to tumor Ags, the clinical advantages of this approach have been limited to certain groups of patients and tumor types. This emphasizes the need for alternative strategies. One pioneering approach involves broadening and enhancing anti-tumor immune responses by targeting innate immunity. Consequently, the advent of bi-, tri-, and multi-specific Abs has facilitated the advancement of targeted cancer immunotherapies by redirecting immune effector cells to eradicate tumor cells. These Abs enable the simultaneous binding of surface Ags on tumor cells and the activation of receptors on innate immune cells, such as NK cells, with the ability to facilitate Ab-dependent cellular cytotoxicity to enhance their immunotherapeutic effectiveness in patients with solid tumors. Here, we review the recent advances in NK cell engagers (NKCEs) focusing on NK cell-activating receptors CD16A and NKp46. In addition, we provide an overview of the ongoing clinical trials investigating the safety, efficacy, and potential of NKCEs.
Collapse
Affiliation(s)
- Min Hwa Shin
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Eunha Oh
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
| | - Dohsik Minn
- Immune Research Institute, Seegene Medical Foundation, Seoul 04805, Korea
- Department of Diagnostic Immunology, Seegene Medical Foundation, Seoul 04805, Korea
| |
Collapse
|
4
|
Nieto Y, Banerjee P, Kaur I, Kim KH, Fang D, Thall PF, Griffin L, Barnett M, Basar R, Hosing C, Ramdial J, Srour S, Daher M, Marin D, Jiang X, Chen K, Champlin R, Shpall EJ, Rezvani K. Ex Vivo Expanded Cord Blood Natural Killer Cells Combined with Rituximab and High-Dose Chemotherapy and Autologous Stem Cell Transplantation for B Cell Non-Hodgkin Lymphoma. Transplant Cell Ther 2024; 30:203.e1-203.e9. [PMID: 38042257 DOI: 10.1016/j.jtct.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Relapse is the major cause of failure of high-dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT) for B cell non-Hodgkin lymphomas (B-NHL). Improvement strategies include use in combination with effective immunotherapies. We hypothesized that the combination of rituximab/HDC/ASCT with expanded cord blood (CB)-derived natural killer (NK) cells is safe and active in B-NHL. Patients with B-NHL age 15 to 70 years and appropriate ASCT candidates were eligible for the study. The CB units were selected without considering HLA match with the recipient. The CB NK cells were expanded from day -19 to day -5. Treatment included rituximab on days -13 and -7, BEAM (carmustine/etoposide/cytarabine/melphalan) on days -13 to -7, lenalidomide on days -7 to -2, CB NK infusion (108/kg) on day -5, and ASCT (day 0). The primary endpoint was 30-day treatment-related mortality (TRM); secondary endpoints included relapse-free survival (RFS), overall survival (OS), and persistence of CB NK cells. We enrolled 20 patients. CB NK cells were expanded a median of 1552-fold with >98% purity and >96% viability. We saw no adverse events attributable to the CB NK cells and 0% 30-day TRM. At median follow-up of 47 months, the RFS and OS rates were 53% and 74%, respectively. CB NK cells were detectable in blood for 2 weeks, independent of HLA-mismatch status. CD16 expression in donor NK cells was correlated favorably with outcome, and homozygosity for the high-affinity CD16 variant (158 V/V) in CB, but not recipient, NK cells was correlated with better outcomes. Our data indicate that the combination of expanded and highly purified CB-derived NK cells with HDC/ASCT for B-NHL is safe. CD16 expression in donor NK cells, particularly if homozygous for the high-affinity CD16 variant, was correlated with better outcomes.
Collapse
Affiliation(s)
- Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Pinaki Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Indresh Kaur
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kun Hee Kim
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dexing Fang
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter F Thall
- Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lori Griffin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa Barnett
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chitra Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeremy Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samer Srour
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xianli Jiang
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Rabei O, Al-Rasheed U, Alrammahi M, Al-Ibraheem A. Differentiating Hodgkin Lymphoma and Sarcoid Reaction in Subsequent FDG-PET/CT: A Case Report and Literature Review. World J Nucl Med 2023; 22:306-309. [PMID: 38152107 PMCID: PMC10751130 DOI: 10.1055/s-0043-1777694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Sarcoidosis is frequently associated with various hematological and solid tumors; it can be discovered by chance during tumor evaluations. Sarcoidosis can occur before some cancers, coexist with others, or be diagnosed 1 to 2 years later. Sarcoid reaction affecting hilar and mediastinal lymph nodes can pose a diagnostic challenge in patients with histopathological confirmation of Hodgkin lymphoma who are being evaluated using fluorodeoxyglucose-positron emission tomography computed tomography (FDG-PET/CT) scan because it cannot be easily distinguished from lymphoma infiltration. The presence of an increase or persistence of a prominent activity on a follow-up FDG-PET/CT scan after chemotherapy treatment for lymphoma that is associated with a complete metabolic response in the site of the primarily diagnosed lymphomatous disease is highly suggestive of concurrent sarcoidosis and necessitates careful assessment to avoid unnecessary therapy.
Collapse
Affiliation(s)
- Obayda Rabei
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), 202 Queen Rania St., P.O. Box 1269, Amman, Jordan
| | - Ula Al-Rasheed
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), 202 Queen Rania St., P.O. Box 1269, Amman, Jordan
| | - Mohammed Alrammahi
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), 202 Queen Rania St., P.O. Box 1269, Amman, Jordan
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), 202 Queen Rania St., P.O. Box 1269, Amman, Jordan
| |
Collapse
|
6
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
7
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pinto S, Pahl J, Schottelius A, Carter PJ, Koch J. Reimagining antibody-dependent cellular cytotoxicity in cancer: the potential of natural killer cell engagers. Trends Immunol 2022; 43:932-946. [PMID: 36306739 DOI: 10.1016/j.it.2022.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Bi-, tri- and multispecific antibodies have enabled the development of targeted cancer immunotherapies redirecting immune effector cells to eliminate malignantly transformed cells. These antibodies allow for simultaneous binding of surface antigens on malignant cells and activating receptors on innate immune cells, such as natural killer (NK) cells, macrophages, and neutrophils. Significant progress with such antibodies has been achieved, particularly in hematological malignancies. Nevertheless, several major challenges remain, including increasing their immunotherapeutic efficacy in a greater proportion of patients, particularly in those harboring solid tumors, and overcoming dose-limiting toxicities and immunogenicity. Here, we discuss novel antibody-engineering developments designed to maximize the potential of NK cells by NK cell engagers mediating antibody-dependent cellular cytotoxicity (ADCC), thereby expanding the armamentarium for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Paul J Carter
- Genentech, Department of Antibody Engineering, San Francisco, CA, USA
| | | |
Collapse
|
9
|
Immune Biomarkers in the Peripheral Blood and Tumor Microenvironment of Classical Hodgkin Lymphoma Patients in Relation to Tumor Burden and Response to Treatment. Hemasphere 2022; 6:e794. [PMID: 36325271 PMCID: PMC9619233 DOI: 10.1097/hs9.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/25/2022] [Indexed: 12/13/2022] Open
Abstract
In classical Hodgkin lymphoma (cHL), the malignant cells represent only a small fraction of the tumor. Yet, they orchestrate a lymphocyte-dominated tumor microenvironment (TME) that supports their survival and growth. The systemic effects of this local immunomodulation are not fully elucidated. Here, we aimed at characterizing circulating lymphocytes and plasma proteins in relation to clinical parameters and treatment effect. Peripheral blood (PB) samples were obtained from 48 consecutive patients at diagnosis and at 2 time points after successful primary treatment. Single-cell suspensions were prepared from lymph node (LN) biopsies obtained for routine diagnostic purposes. Twenty healthy individuals were included as controls. Cells from PB and LN were analyzed by flow cytometry, and plasma proteins by Proximity Extension Assay. We found that the frequencies of T and B cells positively correlated between the LN and the PB compartments. Compared to controls, cHL patients had higher frequencies of proliferating T cells as well as higher expression of programmed death (PD)-1 and cytotoxic T lymphocyte antigen (CTLA)-4 in circulating T cells, and lower naive T-cell frequencies. Advanced-stage patients had fewer NK cells with a functionally impaired phenotype. Differences in the immune profile were observed in patients with a high tumor burden and with high inflammation, respectively. Most of these deviations disappeared after standard first-line treatment. Patients who received radiotherapy involving the mediastinum had low T-cell counts for a prolonged period. Our findings suggest that the immunomodulation of lymphocytes in the TME of cHL might affect immune biomarkers in the PB.
Collapse
|
10
|
Hintzen G, Dulat HJ, Rajkovic E. Engaging innate immunity for targeting the epidermal growth factor receptor: Therapeutic options leveraging innate immunity versus adaptive immunity versus inhibition of signaling. Front Oncol 2022; 12:892212. [PMID: 36185288 PMCID: PMC9518002 DOI: 10.3389/fonc.2022.892212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/28/2022] [Indexed: 12/15/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a key player in the normal tissue physiology and the pathology of cancer. Therapeutic approaches have now been developed to target oncogenic genetic aberrations of EGFR, found in a subset of tumors, and to take advantage of overexpression of EGFR in tumors. The development of small-molecule inhibitors and anti-EGFR antibodies targeting EGFR activation have resulted in effective but limited treatment options for patients with mutated or wild-type EGFR-expressing cancers, while therapeutic approaches that deploy effectors of the adaptive or innate immune system are still undergoing development. This review discusses EGFR-targeting therapies acting through distinct molecular mechanisms to destroy EGFR-expressing cancer cells. The focus is on the successes and limitations of therapies targeting the activation of EGFR versus those that exploit the cytotoxic T cells and innate immune cells to target EGFR-expressing cancer cells. Moreover, we discuss alternative approaches that may have the potential to overcome limitations of current therapies; in particular the innate cell engagers are discussed. Furthermore, this review highlights the potential to combine innate cell engagers with immunotherapies, to maximize their effectiveness, or with unspecific cell therapies, to convert them into tumor-specific agents.
Collapse
|
11
|
Helmin-Basa A, Gackowska L, Balcerowska S, Ornawka M, Naruszewicz N, Wiese-Szadkowska M. The application of the natural killer cells, macrophages and dendritic cells in treating various types of cancer. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2019-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Innate immune cells such as natural killer (NK) cells, macrophages and dendritic cells (DCs) are involved in the surveillance and clearance of tumor. Intensive research has exposed the mechanisms of recognition and elimination of tumor cells by these immune cells as well as how cancers evade immune response. Hence, harnessing the immune cells has proven to be an effective therapy in treating a variety of cancers. Strategies aimed to harness and augment effector function of these cells for cancer therapy have been the subject of intense researches over the decades. Different immunotherapeutic possibilities are currently being investigated for anti-tumor activity. Pharmacological agents known to influence immune cell migration and function include therapeutic antibodies, modified antibody molecules, toll-like receptor agonists, nucleic acids, chemokine inhibitors, fusion proteins, immunomodulatory drugs, vaccines, adoptive cell transfer and oncolytic virus–based therapy. In this review, we will focus on the preclinical and clinical applications of NK cell, macrophage and DC immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Anna Helmin-Basa
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Lidia Gackowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Sara Balcerowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Marcelina Ornawka
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Natalia Naruszewicz
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology , Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun , 85-094 Bydgoszcz , Poland
| |
Collapse
|
12
|
Sasse S, Bröckelmann PJ, Momotow J, Plütschow A, Hüttmann A, Basara N, Koenecke C, Martin S, Bentz M, Grosse-Thie C, Thorspecken S, de Wit M, Kobe C, Dietlein M, Tresckow BV, Fuchs M, Borchmann P, Engert A. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: final results of an open-label, randomized, multicenter phase II trial. Leuk Lymphoma 2022; 63:1871-1878. [DOI: 10.1080/10428194.2022.2095623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Stephanie Sasse
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Clinic for Hematology, Oncology and Gastroenterology, Maria Hilf Hospital Moenchengladbach, Moenchengladbach, Germany
| | - Paul Jan Bröckelmann
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Jesko Momotow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Annette Plütschow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Andreas Hüttmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Christian Koenecke
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Sonja Martin
- Department of Hematology, Oncology, Palliative Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Martin Bentz
- Municipal Hospital Karlsruhe, Karlsruhe, Germany
| | - Christina Grosse-Thie
- Department of Internal Medicine, Medical Clinic III – Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Sven Thorspecken
- Hematology, Oncology, Immunology, Hospital Schwabing, München, Germany
| | - Maike de Wit
- Department of Medicine – Hematology, Oncology, Palliative Medicine, Vivantes Hospital Neukölln, Berlin, Germany
| | - Carsten Kobe
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Markus Dietlein
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Nuclear Medicine, University Hospital of Cologne, Cologne, Germany
| | - Bastian von Tresckow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Fuchs
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Peter Borchmann
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| | - Andreas Engert
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Medjouel Khlifi H, Guia S, Vivier E, Narni-Mancinelli E. Role of the ITAM-Bearing Receptors Expressed by Natural Killer Cells in Cancer. Front Immunol 2022; 13:898745. [PMID: 35757695 PMCID: PMC9231431 DOI: 10.3389/fimmu.2022.898745] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are innate lymphoid cells (ILCs) capable of recognizing and directly killing tumor cells. They also secrete cytokines and chemokines, which participate in the shaping of the adaptive response. NK cells identify tumor cells and are activated through a net positive signal from inhibitory and activating receptors. Several activating NK cell receptors are coupled to adaptor molecules containing an immunoreceptor tyrosine-based activation motif (ITAM). These receptors include CD16 and the natural cytotoxic receptors NKp46, NKp44, NKp30 in humans. The powerful antitumor NK cell response triggered by these activating receptors has made them attractive targets for exploitation in immunotherapy. In this review, we will discuss the different activating receptors associated with ITAM-bearing cell surface receptors expressed on NK cells, their modulations in the tumor context and the various therapeutic tools developed to boost NK cell responses in cancer patients.
Collapse
Affiliation(s)
- Hakim Medjouel Khlifi
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Sophie Guia
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.,Innate Pharma Research Laboratories, Marseille, France.,APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
14
|
Tumor Immune Microenvironment in Lymphoma: Focus on Epigenetics. Cancers (Basel) 2022; 14:cancers14061469. [PMID: 35326620 PMCID: PMC8946119 DOI: 10.3390/cancers14061469] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 02/06/2023] Open
Abstract
Lymphoma is a neoplasm arising from B or T lymphocytes or natural killer cells characterized by clonal lymphoproliferation. This tumor comprises a diverse and heterogeneous group of malignancies with distinct clinical, histopathological, and molecular characteristics. Despite advances in lymphoma treatment, clinical outcomes of patients with relapsed or refractory disease remain poor. Thus, a deeper understanding of molecular pathogenesis and tumor progression of lymphoma is required. Epigenetic alterations contribute to cancer initiation, progression, and drug resistance. In fact, over the past decade, dysregulation of epigenetic mechanisms has been identified in lymphomas, and the knowledge of the epigenetic aberrations has led to the emergence of the promising epigenetic therapy field in lymphoma tumors. However, epigenetic aberrations in lymphoma not only have been found in tumor cells, but also in cells from the tumor microenvironment, such as immune cells. Whereas the epigenetic dysregulation in lymphoma cells is being intensively investigated, there are limited studies regarding the epigenetic mechanisms that affect the functions of immune cells from the tumor microenvironment in lymphoma. Therefore, this review tries to provide a general overview of epigenetic alterations that affect both lymphoma cells and infiltrating immune cells within the tumor, as well as the epigenetic cross-talk between them.
Collapse
|
15
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
16
|
Kakiuchi-Kiyota S, Ross T, Wallweber HA, Kiefer JR, Schutten MM, Adedeji AO, Cai H, Hendricks R, Cohen S, Myneni S, Liu L, Fullerton A, Corr N, Yu L, de Almeida Nagata D, Zhong S, Leong SR, Li J, Nakamura R, Sumiyoshi T, Li J, Ovacik AM, Zheng B, Dillon M, Spiess C, Wingert S, Rajkovic E, Ellwanger K, Reusch U, Polson AG. A BCMA/CD16A bispecific innate cell engager for the treatment of multiple myeloma. Leukemia 2022; 36:1006-1014. [PMID: 35001074 DOI: 10.1038/s41375-021-01478-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Despite the recent progress, multiple myeloma (MM) is still essentially incurable and there is a need for additional effective treatments with good tolerability. RO7297089 is a novel bispecific BCMA/CD16A-directed innate cell engager (ICE®) designed to induce BCMA+ MM cell lysis through high affinity binding of CD16A and retargeting of NK cell cytotoxicity and macrophage phagocytosis. Unlike conventional antibodies approved in MM, RO7297089 selectively targets CD16A with no binding of other Fcγ receptors, including CD16B on neutrophils, and irrespective of 158V/F polymorphism, and its activity is less affected by competing IgG suggesting activity in the presence of M-protein. Structural analysis revealed this is due to selective interaction with a single residue (Y140) uniquely present in CD16A opposite the Fc binding site. RO7297089 induced tumor cell killing more potently than conventional antibodies (wild-type and Fc-enhanced) and induced lysis of BCMA+ cells at very low effector-to-target ratios. Preclinical toxicology data suggested a favorable safety profile as in vitro cytokine release was minimal and no RO7297089-related mortalities or adverse events were observed in cynomolgus monkeys. These data suggest good tolerability and the potential of RO7297089 to be a novel effective treatment of MM patients.
Collapse
Affiliation(s)
| | | | | | - James R Kiefer
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | | | - Hao Cai
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Robert Hendricks
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Sivan Cohen
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Srividya Myneni
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Luna Liu
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Aaron Fullerton
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Nicholas Corr
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Lanlan Yu
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | - Shelly Zhong
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Steven R Leong
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Ji Li
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Rin Nakamura
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Teiko Sumiyoshi
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Jinze Li
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | - Bing Zheng
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Mike Dillon
- Genentech Research and Early Development, San Francisco, CA, USA
| | - Christoph Spiess
- Genentech Research and Early Development, San Francisco, CA, USA
| | | | | | | | | | - Andrew G Polson
- Genentech Research and Early Development, San Francisco, CA, USA.
| |
Collapse
|
17
|
Henry M, Buck S, Al-Qanber B, Gadgeel M, Savaşan S. Lymphocyte HLA-DR/CD-38 co-expression correlates with Hodgkin lymphoma cell cytotoxicity in vitro independent of PD-1/PD1-L pathway. Leuk Lymphoma 2022; 63:1331-1338. [PMID: 35001800 DOI: 10.1080/10428194.2021.2023744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The interactions between Hodgkin and Reed Sternberg cells and tumor microenvironment, the changes that occur with therapy and, in particular, checkpoint inhibition are not fully understood. Understanding these is key to optimizing outcomes for patients with Hodgkin lymphoma (HL). We evaluated the immunophenotypic characteristics of cytotoxic, helper T and NK lymphocytes upon in vitro stimulation, cell-mediated cytotoxicity against HL cells, HDLM-2 and KM-H2, and the association with effector cell activation state, as well as changes in cytotoxicity following PD-1 or PDL-1 blockade. Higher HLA-DR/CD38 expression on effector cells was associated with increased cytotoxicity against HL cells. All effector cell types were cytotoxic of HL cells, though achieved maximum activation and cytotoxicity at variable timepoints. HLA-DR/CD38 co-expression correlated with cytotoxicity, but PD-1 expression did not. There was no significant change in cell-mediated cytotoxicity following PD-1/PDL-1 blockade. The mechanism of action of checkpoint inhibitors may not be limited to direct PD-1/PDL-1 blockade.
Collapse
Affiliation(s)
- Meret Henry
- Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Steven Buck
- Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Batool Al-Qanber
- Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Manisha Gadgeel
- Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Süreyya Savaşan
- Division of Hematology/Oncology, Pediatric Blood and Marrow Transplant Program, Barbara Ann Karmanos Cancer Center, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Pediatrics, Central Michigan University College of Medicine, Mount Pleasant, MI, USA.,Division of Hematology/Oncology, Hematology/Oncology Flow Cytometry Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| |
Collapse
|
18
|
Mahgoub S, Abosalem H, Emara M, Kotb N, Maged A, Soror S. Restoring NK cells functionality via cytokine activation enhances cetuximab-mediated NK-cell ADCC: A promising therapeutic tool for HCC patients. Mol Immunol 2021; 137:221-227. [PMID: 34284214 DOI: 10.1016/j.molimm.2021.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/08/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are considered the first line of defense against viral infections and tumors. Several factors affect NK cytotoxic activity rendering it dysfunctional and thereby impeding the ability to scavenge abnormal cells as a part of immune escaping mechanisms induced by different types of cancers. NK cells play a crucial role augmenting the activity of various types of anticancer mAb since dysfunctional NK cells are the main reason for the low response to these therapies. To this light, we examined the phenotypic characters of the circulating NK cells isolated from HCC patients compared to healthy controls. Then, dysfunctional NK cells, from HCC patients, were reactivated with cytokines cocktail and their cytotoxic activity with the anti-EGFR mAb "cetuximab" was investigated. This showed a downregulation of patients NK cells activating receptors (NKP30, NKP46, NKG2D and CD16) as well as CD56 and up-regulation of NKG2A inhibitory receptor. We also reported an increase in aberrant CD56- NK cells subset in peripheral blood of HCC patients compared to healthy controls. Thus, confirming the dysfunctionality of peripheral NK cells isolated from HCC patients. Cytokines re-activation of those NK cells lead to upregulation of NK activating receptors and downregulation of inhibitory receptor. Moreover, the percentage of aberrant CD56- NK cells subset was reduced. Here, we proved that advanced HCC patients have an increased percentage of more immature and noncytotoxic NK cell subsets in their peripheral blood, which might account for the low cytotoxicity noticed in those patients. A significant improvement in the cytotoxicity against HCC was noticed upon using reactivated NK cells combined with cetuximab. Therefore, this study highlights the potential recruitment of NK immune cells along with cetuximab to enhance cytotoxicity against HCC.
Collapse
Affiliation(s)
- Shahenda Mahgoub
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, 11795, Egypt.
| | - Hadeer Abosalem
- Deputy of Technical Manager, Biotechnology Unit, Egyptian Drug Authority (EDA), Giza, 12654, Egypt.
| | - Mohamed Emara
- Department of Microbiology and Immunology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, 11795, Egypt.
| | - Nahla Kotb
- Manager of Blood Derivative Unit, Egyptian Drug Authority (EDA), Giza, 12654, Egypt.
| | - A Maged
- National Hepatology and Tropical Medicine Research Institute (NHTMRI), 11441, Cairo, Egypt.
| | - Sameh Soror
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ein-Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
19
|
Lupo KB, Moon JI, Chambers AM, Matosevic S. Differentiation of natural killer cells from induced pluripotent stem cells under defined, serum- and feeder-free conditions. Cytotherapy 2021; 23:939-952. [PMID: 34272175 DOI: 10.1016/j.jcyt.2021.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/01/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AIMS Traditionally, natural killer (NK) cells are sourced from the peripheral blood of donors-a laborious and highly donor-specific process. Processes for generating NK cells from induced pluripotent stem cells (iPSCs) have demonstrated that it is possible to successfully generate renewable alloreactive NK cells that are not only functional in vivo but can also be genetically engineered for enhanced function. However, poor standardization and cumbersome differentiation procedures suggest that further improvements in the control of the differentiation process are necessary. METHODS Here the authors evaluated the potential of differentiating NK cells from centrally authenticated iPSCs under entirely chemically defined and serum-free conditions as well as their immunotherapeutic potential, after expansion in feeder-free media, against solid tumors targets. To address limitations of current differentiation approaches, the authors did not utilize feeder or stromal cell layers, TrypLE adaptation or peripheral blood during the differentiation process. The authors also evaluated the feasibility of utilizing centrally authenticated iPSC lines, thus circumventing protocol- and donor-induced variability associated with reprogramming approaches, and characterized these iPSC-NK cells in terms of cytotoxicity, cytokine production and degranulation potential against solid tumor cell lines and patient-derived targets. RESULTS Differentiation of iPSCs generated NK cells that were predominantly CD56+/CD16+/CD3- and expressed NK activation markers NKG2D, NKp30, NKp44, NKp46 and DNAM-1. These iPSC-NK cells mediated effector functions, including cytotoxicity, degranulation and IFN-γ production, in response to solid tumor targets, including patient-derived cancer cells, and could be cryopreserved and expanded in culture. CONCLUSIONS The ability to produce NK cells under defined conditions and the functional responses elicited by these iPSC-NK cells suggest that they could represent promising effectors in clinical adoptive transfer settings as a renewable source of donor-independent NK cells for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Jung-Il Moon
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| | - Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana, USA; Purdue Center for Cancer Research, West Lafayette, Indiana, USA.
| |
Collapse
|
20
|
Kerbauy LN, Marin ND, Kaplan M, Banerjee PP, Berrien-Elliott MM, Becker-Hapak M, Basar R, Foster M, Garcia Melo L, Neal CC, McClain E, Daher M, Nunez Cortes AK, Desai S, Inng Lim FW, Mendt MC, Schappe T, Li L, Shaim H, Shanley M, Ensley EL, Uprety N, Wong P, Liu E, Ang SO, Cai R, Nandivada V, Mohanty V, Miao Q, Shen Y, Baran N, Fowlkes NW, Chen K, Muniz-Feliciano L, Champlin RE, Nieto YL, Koch J, Treder M, Fischer W, Okamoto OK, Shpall EJ, Fehniger TA, Rezvani K. Combining AFM13, a Bispecific CD30/CD16 Antibody, with Cytokine-Activated Blood and Cord Blood-Derived NK Cells Facilitates CAR-like Responses Against CD30 + Malignancies. Clin Cancer Res 2021; 27:3744-3756. [PMID: 33986022 PMCID: PMC8254785 DOI: 10.1158/1078-0432.ccr-21-0164] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Natural killer (NK)-cell recognition and function against NK-resistant cancers remain substantial barriers to the broad application of NK-cell immunotherapy. Potential solutions include bispecific engagers that target NK-cell activity via an NK-activating receptor when simultaneously targeting a tumor-specific antigen, as well as enhancing functionality using IL12/15/18 cytokine pre-activation. EXPERIMENTAL DESIGN We assessed single-cell NK-cell responses stimulated by the tetravalent bispecific antibody AFM13 that binds CD30 on leukemia/lymphoma targets and CD16A on various types of NK cells using mass cytometry and cytotoxicity assays. The combination of AFM13 and IL12/15/18 pre-activation of blood and cord blood-derived NK cells was investigated in vitro and in vivo. RESULTS We found heterogeneity within AFM13-directed conventional blood NK cell (cNK) responses, as well as consistent AFM13-directed polyfunctional activation of mature NK cells across donors. NK-cell source also impacted the AFM13 response, with cNK cells from healthy donors exhibiting superior responses to those from patients with Hodgkin lymphoma. IL12/15/18-induced memory-like NK cells from peripheral blood exhibited enhanced killing of CD30+ lymphoma targets directed by AFM13, compared with cNK cells. Cord-blood NK cells preactivated with IL12/15/18 and ex vivo expanded with K562-based feeders also exhibited enhanced killing with AFM13 stimulation via upregulation of signaling pathways related to NK-cell effector function. AFM13-NK complex cells exhibited enhanced responses to CD30+ lymphomas in vitro and in vivo. CONCLUSIONS We identify AFM13 as a promising combination with cytokine-activated adult blood or cord-blood NK cells to treat CD30+ hematologic malignancies, warranting clinical trials with these novel combinations.
Collapse
Affiliation(s)
- Lucila N Kerbauy
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Nancy D Marin
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pinaki P Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa M Berrien-Elliott
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michelle Becker-Hapak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark Foster
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Luciana Garcia Melo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carly C Neal
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan McClain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sweta Desai
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Francesca Wei Inng Lim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayela Carolina Mendt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Li Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hila Shaim
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily L Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Wong
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sonny O Ang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rong Cai
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vandana Nandivada
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Yifei Shen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalia Baran
- Department of Leukemia, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yago L Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Oswaldo Keith Okamoto
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo (USP), Sao Paulo, Brazil
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri.
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
21
|
Bahrololoumi Shapourabadi M, Momburg F, Roohvand F, Jarahian M, Mohajel N, Arashkia A, Hajari Taheri F, Abbasalipour M, Azadmanesh K. Bi/tri-specific antibodies (HN-Fc-CD16 and HN-Fc-IL-15-CD16) cross-linking natural killer (NK)-CD16 and Newcastle Disease Virus (NDV)-HN, enhanced NK activation for cancer immunotherapy. Int Immunopharmacol 2021; 96:107762. [PMID: 34162140 DOI: 10.1016/j.intimp.2021.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
Cancer/tumor cells infected with the "avian paramyxovirus Newcastle Disease Virus (TC-NDV)" express the viral hemagglutinin-neuraminidase (HN) on the cell surface that is used as both the danger signal and anchor for bi/tri-specific antibodies (bs/tsAbs).We constructed a bs-Ab (HN-Fc-CD16) that bindsto HN and natural killer (NK)-CD16 receptor (FcgRIII)and a ts-Ab (HN-Fc-IL15-CD16) harbouring NK-activating cytokine "IL-15" within the bs-Ab.In silicoand computational predictions indicated proper exposure of both Abs in bs/tsAbs.Properbinding of thebi/tsAbstoHN on surface of TC-NDVandCD16+-cells was demonstrated by flow cytometry.The bi/tsAbstriggeredspecificcytotoxicity of NK cells againstTC-NDVand elicited substantial IFN-γproduction by activated NK cells(higher for ts-Ab) that sound promising for cancer immunotherapy purposes.
Collapse
MESH Headings
- Antibodies, Bispecific/biosynthesis
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/pharmacology
- Antineoplastic Agents, Immunological/chemistry
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/pharmacology
- Binding Sites
- Cytotoxicity Tests, Immunologic
- HEK293 Cells
- HN Protein/immunology
- HeLa Cells
- Humans
- Immunoglobulin Fc Fragments/immunology
- Immunotherapy/methods
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Ligands
- Models, Molecular
- Neoplasms/immunology
- Neoplasms/therapy
- Newcastle disease virus/immunology
- Receptors, IgG/immunology
Collapse
Affiliation(s)
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mostafa Jarahian
- Antigen Presentation & T/NK Cell Unit, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Maryam Abbasalipour
- Department of Molecular Medicine, Biotechnology Research Centre, Pasteur Institute of Iran, Tehran, Iran.
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
22
|
Miazek-Zapala N, Slusarczyk A, Kusowska A, Zapala P, Kubacz M, Winiarska M, Bobrowicz M. The "Magic Bullet" Is Here? Cell-Based Immunotherapies for Hematological Malignancies in the Twilight of the Chemotherapy Era. Cells 2021; 10:1511. [PMID: 34203935 PMCID: PMC8232692 DOI: 10.3390/cells10061511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the introduction of a plethora of different anti-neoplastic approaches including standard chemotherapy, molecularly targeted small-molecule inhibitors, monoclonal antibodies, and finally hematopoietic stem cell transplantation (HSCT), there is still a need for novel therapeutic options with the potential to cure hematological malignancies. Although nowadays HSCT already offers a curative effect, its implementation is largely limited by the age and frailty of the patient. Moreover, its efficacy in combating the malignancy with graft-versus-tumor effect frequently coexists with undesirable graft-versus-host disease (GvHD). Therefore, it seems that cell-based adoptive immunotherapies may constitute optimal strategies to be successfully incorporated into the standard therapeutic protocols. Thus, modern cell-based immunotherapy may finally represent the long-awaited "magic bullet" against cancer. However, enhancing the safety and efficacy of this treatment regimen still presents many challenges. In this review, we summarize the up-to-date state of the art concerning the use of CAR-T cells and NK-cell-based immunotherapies in hemato-oncology, identify possible obstacles, and delineate further perspectives.
Collapse
Affiliation(s)
- Nina Miazek-Zapala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Institute of Physiology and Pathophysiology of Hearing, World Hearing Center, 05-830 Nadarzyn, Poland
| | - Aleksander Slusarczyk
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Aleksandra Kusowska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Piotr Zapala
- Department of General, Oncological and Functional Urology, Medical University of Warsaw, 02-005 Warsaw, Poland;
| | - Matylda Kubacz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| | - Malgorzata Bobrowicz
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (N.M.-Z.); (A.S.); (A.K.); (M.K.); (M.W.)
| |
Collapse
|
23
|
Reduced frequency of cytotoxic CD56 dim CD16 + NK cells leads to impaired antibody-dependent degranulation in EBV-positive classical Hodgkin lymphoma. Cancer Immunol Immunother 2021; 71:13-24. [PMID: 33993319 PMCID: PMC8738354 DOI: 10.1007/s00262-021-02956-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/28/2021] [Indexed: 12/16/2022]
Abstract
Around 30–50% of classical Hodgkin lymphoma (cHL) cases in immunocompetent individuals from industrialized countries are associated with the B-lymphotropic Epstein-Barr virus (EBV). Although natural killer (NK) cells exhibit anti-viral and anti-tumoral functions, virtually nothing is known about quantitative and qualitative differences in NK cells in patients with EBV+ cHL vs. EBV- cHL. Here, we prospectively investigated 36 cHL patients without known immune suppression or overt immunodeficiency at diagnosis. All 10 EBV+ cHL patients and 25 out 26 EBV- cHL were seropositive for EBV antibodies, and EBV+ cHL patients presented with higher plasma EBV DNA levels compared to EBV- cHL patients. We show that the CD56dim CD16+ NK cell subset was decreased in frequency in EBV+ cHL patients compared to EBV- cHL patients. This quantitative deficiency translates into an impaired CD56dim NK cell mediated degranulation toward rituximab-coated HLA class 1 negative lymphoblastoid cells in EBV+ compared to EBV- cHL patients. We finally observed a trend to a decrease in the rituximab-associated degranulation and ADCC of in vitro expanded NK cells of EBV+ cHL compared to healthy controls. Our findings may impact on the design of adjunctive treatment targeting antibody-dependent cellular cytotoxicity in EBV+ cHL.
Collapse
|
24
|
Ponath V, Hoffmann N, Bergmann L, Mäder C, Alashkar Alhamwe B, Preußer C, Pogge von Strandmann E. Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22042189. [PMID: 33671836 PMCID: PMC7926927 DOI: 10.3390/ijms22042189] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
NKp30 (Natural Cytotoxicity Receptor 1, NCR1) is a powerful cytotoxicity receptor expressed on natural killer (NK) cells which is involved in tumor cell killing and the regulation of antitumor immune responses. Ligands for NKp30, including BAG6 and B7-H6, are upregulated in virus-infected and tumor cells but rarely detectable on healthy cells. These ligands are released by tumor cells as part of the cellular secretome and interfere with NK cell activity. BAG6 is secreted via the exosomal pathway, and BAG6-positive extracellular vesicles (EV-BAG6) trigger NK cell cytotoxicity and cytokine release, whereas the soluble protein diminishes NK cell activity. However, the extracellular format and activity of B7-H6 remain elusive. Here, we used HEK293 as a model cell line to produce recombinant ligands and to study their impact on NK cell activity. Using this system, we demonstrate that soluble B7-H6 (sB7-H6), like soluble BAG6 (sBAG6), inhibits NK cell-mediated target cell killing. This was associated with a diminished cell surface expression of NKG2D and NCRs (NKp30, NKp40, and NKp46). Strikingly, a reduced NKp30 mRNA expression was observed exclusively in response to sBAG6. Of note, B7-H6 was marginally released in association with EVs, and EVs collected from B7-H6 expressing cells did not stimulate NK cell-mediated killing. The molecular analysis of EVs on a single EV level using nano flow cytometry (NanoFCM) revealed a similar distribution of vesicle-associated tetraspanins within EVs purified from wildtype, BAG6, or B7-H6 overexpressing cells. NKp30 is a promising therapeutic target to overcome NK cell immune evasion in cancer patients, and it is important to unravel how extracellular NKp30 ligands inhibit NK cell functions.
Collapse
|
25
|
Abstract
Classic Hodgkin lymphoma (cHL) is curable with chemotherapy but relapses occur in approximately 30% of cases. Novel agents, including brentuximb vedotin (BV) and programmed cell death-1 (PD-1) inhibitors, alone or in combination with chemotherapy, have encouraging activity in newly diagnosed and relapsed/refractory cHL, confirming that the use of agents that target tumor cells or the tumor microenvironment are promising strategies to improve patient outcomes. The field of immunotherapy in cHL is now moving toward combinations of PD-1 inhibitors with other immunological agents such as cytotoxic T- lymphocyte associated protein-4 (CTLA-4) inhibitors, newer PD-1 inhibitors such as sintilimab, tislelizumab, avelumab and camrelizumab, bispecific antibodies such as AFM-13, cellular therapies using CD30 chimeric antigen T-cells (CD30.CART) and anti-CD25 antibody-drug conjugates such as camidanlumab tesirine (cami-T). Here we review early phase studies evaluating these approaches in the treatment of cHL.
Collapse
Affiliation(s)
- Sanjal Desai
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
26
|
Ferguson Bennit HR, Gonda A, Kabagwira J, Oppegard L, Chi D, Licero Campbell J, De Leon M, Wall NR. Natural Killer Cell Phenotype and Functionality Affected by Exposure to Extracellular Survivin and Lymphoma-Derived Exosomes. Int J Mol Sci 2021; 22:1255. [PMID: 33513976 PMCID: PMC7865330 DOI: 10.3390/ijms22031255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
The inherent abilities of natural killer (NK) cells to recognize and kill target cells place them among the first cells with the ability to recognize and destroy infected or transformed cells. Cancer cells, however, have mechanisms by which they can inhibit the surveillance and cytotoxic abilities of NK cells with one believed mechanism for this: their ability to release exosomes. Exosomes are vesicles that are found in abundance in the tumor microenvironment that can modulate intercellular communication and thus enhance tumor malignancy. Recently, our lab has found cancer cell exosomes to contain the inhibitor of apoptosis (IAP) protein survivin to be associated with decreased immune response in lymphocytes and cellular death. The purpose of this study was to explore the effect of survivin and lymphoma-derived survivin-containing exosomes on the immune functions of NK cells. NK cells were obtained from the peripheral blood of healthy donors and treated with pure survivin protein or exosomes from two lymphoma cell lines, DLCL2 and FSCCL. RNA was isolated from NK cell samples for measurement by PCR, and intracellular flow cytometry was used to determine protein expression. Degranulation capacity, cytotoxicity, and natural killer group 2D receptor (NKG2D) levels were also assessed. Lymphoma exosomes were examined for size and protein content. This study established that these lymphoma exosomes contained survivin and FasL but were negative for MHC class I-related chains (MIC)/B (MICA/B) and TGF-β. Treatment with exosomes did not significantly alter NK cell functionality, but extracellular survivin was seen to decrease natural killer group 2D receptor (NKG2D) levels and the intracellular protein levels of perforin, granzyme B, TNF-α, and IFN-γ.
Collapse
Affiliation(s)
- Heather R. Ferguson Bennit
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Amber Gonda
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Janviere Kabagwira
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| | - Laura Oppegard
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - David Chi
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
| | - Jenniffer Licero Campbell
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De Leon
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
- Division of Physiology, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nathan R. Wall
- Division of Biochemistry, Department of Basic Science, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (H.R.F.B.); (A.G.); (J.K.); (L.O.); (D.C.)
- Center for Health Disparities & Molecular Medicine, Department of Basic Science, Loma Linda University School of Medicine, 11085 Campus Street, Mortensen Hall 160, Loma Linda, CA 92350, USA; (J.L.C.); (M.D.L.)
| |
Collapse
|
27
|
Vela-Ojeda J, Perez-Retiguin FDC, Olivas-Bejarano AC, Garcia-Ruiz Esparza MA, Garcia-Chavez J, Majluf-Cruz A, Reyes-Maldonado E, Montiel-Cervantes LA. Clinical relevance of NKT cells and soluble MIC-A in Hodgkin lymphoma. Leuk Lymphoma 2020; 62:801-809. [PMID: 33284055 DOI: 10.1080/10428194.2020.1852473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Previous studies demonstrated that the majority of Hodgkin lymphoma (HL) patients achieve response after treatment, while 5% become refractory. Studies analyzing the role of lymphocyte subsets in peripheral blood are limited. This investigation sought to evaluate peripheral blood lymphocyte subsets and soluble MHC class I chain-related proteins A and B (sMIC-A/B) and their correlation with survival in patients with newly diagnosed HL. The study recruited 36 patients and 72 healthy donors. HL patients showed a decrease in CD4, B, monocytes, NK, and NKT cells; and an increase in γ-δ T cells and soluble MIC-A serum levels. Higher values of s-MIC-A >100 ng/mL and NKT cells >40 µL correlated with poor overall survival (OS). In conclusion, in HL peripheral blood CD4 T and B cells, monocytes, NK, and NKT cells were decreased, while s-MIC-A and γ-δ T cells increased. Higher values of s-MIC-A and NKT cells correlated with poor survival.
Collapse
Affiliation(s)
- Jorge Vela-Ojeda
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Flor Del Carmen Perez-Retiguin
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | - Jaime Garcia-Chavez
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Abraham Majluf-Cruz
- Unidad de Investigación en Trombosis, Hemostasia y Aterogénesis, Hospital General Regional Carlos Mc Gregor Sánchez Navarro, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elba Reyes-Maldonado
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Laura Arcelia Montiel-Cervantes
- Hematology Department, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Unidad de Investigación de Medicina Traslacional en Enfermedades Hemato-Oncologicas, UMAE Especialidades Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| |
Collapse
|
28
|
Pinheiro PF, Justino GC, Marques MM. NKp30 - A prospective target for new cancer immunotherapy strategies. Br J Pharmacol 2020; 177:4563-4580. [PMID: 32737988 PMCID: PMC7520444 DOI: 10.1111/bph.15222] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are an important arm of the innate immune system. They constitutively express the NKp30 receptor. NKp30-mediated responses are triggered by the binding of specific ligands e.g. tumour cell-derived B7-H6 and involve the secretion of cytotoxic mediators including TNF-α, IFN-γ, perforins and granzymes. The latter two constitute a target cell-directed response that is critical in the process of immunosurveillance. The structure of NKp30 is presented, focusing on the ligand-binding site, on the ligand-induced structural changes and on the experimental data available correlating structure and binding affinity. The translation of NKp30 structural changes to disease progression is also reviewed. NKp30 role in immunotherapy has been explored in chimeric antigen receptor T-cell (CAR-T) therapy. However, antibodies or small ligands targeting NKp30 have not yet been developed. The data reviewed herein unveil the key structural aspects that must be considered for drug design in order to develop novel immunotherapy approaches.
Collapse
Affiliation(s)
- Pedro F. Pinheiro
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - M. Matilde Marques
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
- Departamento de Engenharia Química, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| |
Collapse
|
29
|
Bahrololoumi Shapourabadi M, Roohvand F, Arashkia A, Mohajel N, Abdoli S, Shahosseini Z, Momburg F, Jarahian M, Abolhassani M, Azadmanesh K. Expression and Purification of a Bispecific Antibody against CD16 and Hemagglutinin Neuraminidase (HN) in E. Coli for Cancer Immunotherapy. Rep Biochem Mol Biol 2020; 9:50-57. [PMID: 32821751 DOI: 10.29252/rbmb.9.1.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background : Immunotherapy of cancer by bispecific antibodies (bsAb) is an attractive approach for retargeting immune effector cells including natural killer (NK) cells to the tumor if the proper expression and purification of the bsAb for such applications could be addressed. Herein, we describe E. coli expression of a recombinant bsAb (bsHN-CD16) recognizing NK-CD16 and hemagglutinin neuraminidase (HN) of Newcastle Disease Virus (NDV). This bsAb might be efficient for ex vivo stimulation of NK cells via coupling to HN on the surface of the NDV-infected tumor cells. Methods A bsAb-encoding pcDNA3.1 vector (anti-HN scFv-Fc-anti-CD16 scFv) was used as a template, and the scFv segments (after enzymatic digestion and cutting of the Fc part) were rejoined to construct the Fc-deprived bsAb (anti-HN scFv-anti-CD16 scFv; bsHN-CD16). The constructed bsHN-CD16 was inserted into the HindIII and BamHI site of the T7 promoter-based pET28a plasmid. Following restriction analyses and DNA sequencing to confirm the cloning steps, bsHN-CD16 encoding pET28a was transformed into the E. coli (Rosetta DE3 strain), induced for protein expression by IPTG, and the protein was purified under native condition by Ni/NTA column using imidazole. Results Analyses by SDS-PAGE and Western Blotting using Rabbit anti-human whole IgG-HRP conjugate, confirmed the expression and purification of the bsAb with the expected full size of 55 kDa and yields around 8% of the total protein. Conclusion Results showed efficient production of the bsAb in E. coli for future large-scale purification.
Collapse
Affiliation(s)
| | - Farzin Roohvand
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Nasir Mohajel
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Shahosseini
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.,Iran University of Medical Sciences, Tehran, Iran
| | - Frank Momburg
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
30
|
Giuliani M, Poggi A. Checkpoint Inhibitors and Engineered Cells: New Weapons for Natural Killer Cell Arsenal Against Hematological Malignancies. Cells 2020; 9:1578. [PMID: 32610578 PMCID: PMC7407972 DOI: 10.3390/cells9071578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells represent one of the first lines of defense against malignant cells. NK cell activation and recognition are regulated by a balance between activating and inhibitory receptors, whose specific ligands can be upregulated on tumor cells surface and tumor microenvironment (TME). Hematological malignancies set up an extensive network of suppressive factors with the purpose to induce NK cell dysfunction and impaired immune-surveillance ability. Over the years, several strategies have been developed to enhance NK cells-mediated anti-tumor killing, while other approaches have arisen to restore the NK cell recognition impaired by tumor cells and other cellular components of the TME. In this review, we summarize and discuss the strategies applied in hematological malignanciesto block the immune check-points and trigger NK cells anti-tumor effects through engineered chimeric antigen receptors.
Collapse
Affiliation(s)
- Massimo Giuliani
- Department of Oncology, Luxembourg Institute of Health, Luxembourg City L-1526, Luxembourg
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS AOU San Martino IST, 16132 Genoa, Italy;
| |
Collapse
|
31
|
Mariotto E, Viola G, Zanon C, Aveic S. A BAG's life: Every connection matters in cancer. Pharmacol Ther 2020; 209:107498. [PMID: 32001313 DOI: 10.1016/j.pharmthera.2020.107498] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
The members of the BCL-2 associated athanogene (BAG) family participate in the regulation of a variety of interrelated physiological processes, such as autophagy, apoptosis, and protein homeostasis. Under normal circumstances, the six BAG members described in mammals (BAG1-6) principally assist the 70 kDa heat-shock protein (HSP70) in protein folding; however, their role as oncogenes is becoming increasingly evident. Deregulation of the BAG multigene family has been associated with cell transformation, tumor recurrence, and drug resistance. In addition to BAG overexpression, BAG members are also involved in many oncogenic protein-protein interactions (PPIs). As such, either the inhibition of overloading BAGs or of specific BAG-client protein interactions could have paramount therapeutic value. In this review, we will examine the role of each BAG family member in different malignancies, focusing on their modular structure, which enables interaction with a variety of proteins to exert their pro-tumorigenic role. Lastly, critical remarks on the unmet needs for proposing effective BAG inhibitors will be pointed out.
Collapse
Affiliation(s)
- Elena Mariotto
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy.
| | - Giampietro Viola
- Department of Woman's and Child's Health, University of Padova, Via Giustiniani 2, 35127 Padova, Italy; Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Carlo Zanon
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35128 Padova, Italy
| |
Collapse
|
32
|
Yang C, Li Y, Yang Y, Chen Z. Overview of Strategies to Improve Therapy against Tumors Using Natural Killer Cell. J Immunol Res 2020; 2020:8459496. [PMID: 32411806 PMCID: PMC7201677 DOI: 10.1155/2020/8459496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.
Collapse
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Yaozhang Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
- Experimental Center, The Liwan Hospital of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510176, China
| |
Collapse
|
33
|
Lanuza PM, Pesini C, Arias MA, Calvo C, Ramirez-Labrada A, Pardo J. Recalling the Biological Significance of Immune Checkpoints on NK Cells: A Chance to Overcome LAG3, PD1, and CTLA4 Inhibitory Pathways by Adoptive NK Cell Transfer? Front Immunol 2020; 10:3010. [PMID: 31998304 PMCID: PMC6962251 DOI: 10.3389/fimmu.2019.03010] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint receptors (IC) positively or negatively regulate the activation of the host immune response, preventing unwanted reactions against self-healthy tissues. In recent years the term IC has been mainly used for the inhibitory ICs, which are critical to control Natural Killer (NK) and Cytotoxic CD8+ T cells due to its high cytotoxic potential. Due to the different nature of the signals that regulate T and NK cell activation, specific ICs have been described that mainly regulate either NK cell or T cell activity. Thus, strategies to modulate NK cell activity are raising as promising tools to treat tumors that do not respond to T cell-based immunotherapies. NK cell activation is mainly regulated by ICs and receptors from the KIR, NKG2 and NCRs families and the contribution of T cell-related ICs is less clear. Recently, NK cells have emerged as contributors to the effect of inhibitors of T cell-related ICs like CTLA4, LAG3 or the PD1/PD-L1 axes in cancer patients, suggesting that these ICs also regulate the activity of NK cells under pathological conditions. Strikingly, in contrast to NK cells from cancer patients, the level of expression of these ICs is low on most subsets of freshly isolated and in vitro activated NK cells from healthy patients, suggesting that they do not control NK cell tolerance and thus, do not act as conventional ICs under non-pathological conditions. The low level of expression of T cell-related ICs in “healthy” NK cells suggest that they should not be restricted to the detrimental effects of these inhibitory mechanisms in the cancer microenvironment. After a brief introduction of the regulatory mechanisms that control NK cell anti-tumoral activity and the conventional ICs controlling NK cell tolerance, we will critically discuss the potential role of T cell-related ICs in the control of NK cell activity under both physiological and pathological (cancer) conditions. This discussion will allow to comprehensively describe the chances and potential limitations of using allogeneic NK cells isolated from a healthy environment to overcome immune subversion by T cell-related ICs and to improve the efficacy of IC inhibitors (ICIs) in a safer way.
Collapse
Affiliation(s)
- Pilar M Lanuza
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Cecilia Pesini
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - Carlota Calvo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Medical Oncopediatry Department, Aragón Health Research Institute (IIS Aragón), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Unidad de Nanotoxicología e Inmunotoxicología (UNATI), Centro de Investigación Biomédica de Aragón (CIBA), Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Immunotherapy, Inflammation and Cancer, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón i + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
34
|
Frutoso M, Mortier E. NK Cell Hyporesponsiveness: More Is Not Always Better. Int J Mol Sci 2019; 20:ijms20184514. [PMID: 31547251 PMCID: PMC6770168 DOI: 10.3390/ijms20184514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells are a type of cytotoxic lymphocytes that play an important role in the innate immune system. They are of particular interest for their role in elimination of intracellular pathogens, viral infection and tumor cells. As such, numerous strategies are being investigated in order to potentiate their functions. One of these techniques aims at promoting the function of their activating receptors. However, different observations have revealed that providing activation signals could actually be counterproductive and lead to NK cells’ hyporesponsiveness. This phenomenon can occur during the NK cell education process, under pathological conditions, but also after treatment with different agents, including cytokines, that are promising tools to boost NK cell function. In this review, we aim to highlight the different circumstances where NK cells become hyporesponsive and the methods that could be used to restore their functionality.
Collapse
Affiliation(s)
- Marie Frutoso
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| | - Erwan Mortier
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| |
Collapse
|
35
|
Chen Z, Yang Y, Liu LL, Lundqvist A. Strategies to Augment Natural Killer (NK) Cell Activity against Solid Tumors. Cancers (Basel) 2019; 11:cancers11071040. [PMID: 31340613 PMCID: PMC6678934 DOI: 10.3390/cancers11071040] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
The immune system plays a crucial role to prevent local growth and dissemination of cancer. Therapies based on activating the immune system can result in beneficial responses in patients with metastatic disease. Treatment with antibodies targeting the immunological checkpoint axis PD-1 / PD-L1 can result in the induction of anti-tumor T cell activation leading to meaningful long-lasting clinical responses. Still, many patients acquire resistance or develop dose-limiting toxicities to these therapies. Analysis of tumors from patients who progress on anti-PD-1 treatment reveal defective interferon-signaling and antigen presentation, resulting in immune escape from T cell-mediated attack. Natural killer (NK) cells are innate lymphocytes that can kill tumor cells without prior sensitization to antigens and can be activated to kill tumor cells that have an impaired antigen processing and presentation machinery. Thus, NK cells may serve as useful effectors against tumor cells that have become resistant to classical immune checkpoint therapy. Various approaches to activate NK cells are being increasingly explored in clinical trials against cancer. While clinical benefit has been demonstrated in patients with acute myeloid leukemia receiving haploidentical NK cells, responses in patients with solid tumors are so far less encouraging. Several hurdles need to be overcome to provide meaningful clinical responses in patients with solid tumors. Here we review the recent developments to augment NK cell responses against solid tumors with regards to cytokine therapy, adoptive infusion of NK cells, NK cell engagers, and NK cell immune checkpoints.
Collapse
Affiliation(s)
- Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Ying Yang
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden
| | - Lisa L Liu
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden.
| |
Collapse
|
36
|
State of the Art of Natural Killer Cell Imaging: A Systematic Review. Cancers (Basel) 2019; 11:cancers11070967. [PMID: 31324064 PMCID: PMC6678345 DOI: 10.3390/cancers11070967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cell therapy is a promising alternative to conventional T cell-based treatments, although there is a lack of diagnostic tools to predict and evaluate therapeutic outcomes. Molecular imaging can offer several approaches to non-invasively address this issue. In this study, we systematically reviewed the literature to evaluate the state of the art of NK cell imaging and its translational potential. PubMed and Scopus databases were searched for published articles on the imaging of NK cells in humans and preclinical models. Study quality was evaluated following Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria. We pooled studies as follows: Optical, magnetic resonance imaging (MRI) and nuclear medicine imaging with a total of 21 studies (n = 5, n = 8 and n = 8, respectively). Considering the limitation of comparing different imaging modalities, it appears that optical imaging (OI) of NK cells is very useful in a preclinical setting, but has the least translational potential. MRI provides high quality images without ionizing radiations with lower sensitivity. Nuclear medicine is the only imaging technique that has been applied in humans (four papers), but results were not outstanding due to a limited number of enrolled patients. At present, no technique emerged as superior over the others and more standardization is required in conducting human and animal studies.
Collapse
|
37
|
Silva DOB, Correia NAA, de Barros FT, de Lima LPO, Morais A, Hassan R, Dellalibera E, de Mendonça Cavalcanti MDS, Muniz MTC. 3' untranslated region A>C (rs3212227) polymorphism of Interleukin 12B gene as a potential risk factor for Hodgkin's lymphoma in Brazilian children and adolescents. Tumour Biol 2019; 41:1010428319860400. [PMID: 31277552 DOI: 10.1177/1010428319860400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Interleukin 12 plays an important role in immunoregulation between the T helper 1/T helper 2 lymphocytes and in the antiviral and antitumor immune response. The aim of this study was to investigate the possible association between the interleukin 12B polymorphism rs3212227 and the risk to develop Hodgkin's lymphoma in childhood and adolescents. A total of 100 patients with Hodgkin's lymphoma and a group of 181 healthy controls were selected at random from a forensic laboratory of the University of Pernambuco. The AA genotype was detected in the controls (53.04%) and the AC genotype was found in the patients (54%). The AC genotype showed an association with the development of Hodgkin's lymphoma (odds ratio = 2.091, 95% confidence interval = 1.240-3.523, p = 0.007). When AC + CC genotypes were analyzed together, an increase in risk of 1.9 times more chances for HL development could be observed (odds ratio = 1.923, 95% confidence interval = 1.166-3.170, p = 0.014). However, there was no association between the AC and CC genotypes of the interleukin 12B polymorphism with the clinical risk group (p = 0.992, p = 0.648, respectively). Our results suggest that the presence of the C allele may be contributing to the development of Hodgkin's lymphoma in children and adolescents.
Collapse
Affiliation(s)
- de Oliveira Bárbara Silva
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil.,2 Biological Sciences Institute, University of Pernambuco, Recife, Brazil
| | - Nunes Amanda A Correia
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil.,2 Biological Sciences Institute, University of Pernambuco, Recife, Brazil
| | - Ferreira Thiago de Barros
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil.,3 Faculty of Medical Sciences, University of Pernambuco, Recife, Brazil
| | - Luísa Priscilla Oliveira de Lima
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil.,2 Biological Sciences Institute, University of Pernambuco, Recife, Brazil
| | - Adriana Morais
- 4 Pediatric Outpatient Clinic, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil
| | - Rocio Hassan
- 5 Oncovirology Laboratory, Bone Marrow Transplantation Center, National Cancer Institute of Brazil (INCA), Rio de Janeiro, Brazil
| | - Edileine Dellalibera
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil
| | | | - Maria Tereza Cartaxo Muniz
- 1 Laboratory of Molecular Biology, Pediatric Hematology Oncology Center, University of Pernambuco, Recife, Brazil.,2 Biological Sciences Institute, University of Pernambuco, Recife, Brazil
| |
Collapse
|
38
|
Ellwanger K, Reusch U, Fucek I, Wingert S, Ross T, Müller T, Schniegler-Mattox U, Haneke T, Rajkovic E, Koch J, Treder M, Tesar M. Redirected optimized cell killing (ROCK®): A highly versatile multispecific fit-for-purpose antibody platform for engaging innate immunity. MAbs 2019; 11:899-918. [PMID: 31172847 PMCID: PMC6601565 DOI: 10.1080/19420862.2019.1616506] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Redirection of immune cells to efficiently eliminate tumor cells holds great promise. Natural killer cells (NK), macrophages, or T cells are specifically engaged with target cells expressing markers after infection or neoplastic transformation, resulting in their activation and subsequent killing of those targets. Multiple strategies to redirect immunity have been developed in the past two decades, but they have technical hurdles or cause undesirable side-effects, as exemplified by the T cell-based chimeric antigen receptor approaches (CAR-T therapies) or bispecific T cell engager platforms. Our first-in-class bispecific antibody redirecting innate immune cells to tumors (AFM13, a CD30/CD16A-specific innate immune cell engager) has shown signs of clinical efficacy in CD30-positive lymphomas and the potential to be safely administered, indicating a wider therapeutic window compared to T cell engaging therapies. AFM13 is the most advanced candidate from our fit-for-purpose redirected optimized cell killing (ROCK®) antibody platform, which comprises a plethora of CD16A-binding innate immune cell engagers with unique properties. Here, we discuss aspects of this modular platform, including the advantages of innate immune cell engagement over classical monoclonal antibodies and other engager concepts. We also present details on its potential to engineer a fit-for-purpose innate immune cell engager format that can be equipped with unique CD16A domains, modules that influence pharmacokinetic properties and molecular architectures that influence the activation of immune effectors, as well as tumor targeting. The ROCK® platform is aimed at the activation of innate immunity for the effective lysis of tumor cells and holds the promise of overcoming limitations of other approaches that redirect immune cells by widening the therapeutic window.
Collapse
Affiliation(s)
| | - Uwe Reusch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Ivica Fucek
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Thorsten Ross
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Thomas Müller
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | | | - Torsten Haneke
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Erich Rajkovic
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Joachim Koch
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Martin Treder
- a Affimed GmbH, Research Department , Heidelberg , Germany
| | - Michael Tesar
- a Affimed GmbH, Research Department , Heidelberg , Germany
| |
Collapse
|
39
|
Di Vito C, Mikulak J, Zaghi E, Pesce S, Marcenaro E, Mavilio D. NK cells to cure cancer. Semin Immunol 2019; 41:101272. [PMID: 31085114 DOI: 10.1016/j.smim.2019.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Abstract
Natural Killer (NK) cells are innate lymphocytes able to mediate immune-surveillance and clearance of viral infected and tumor-transformed cells. Growing experimental and clinical evidence highlighted a dual role of NK cells either in the control of cancer development/progression or in promoting the onset of immune-suppressant tumor microenvironments. Indeed, several mechanisms of NK cell-mediated tumor escape have been described and these includes cancer-induced aberrant expression of activating and inhibitory receptors (i.e. NK cell immune checkpoints), impairments of NK cell migration to tumor sites and altered NK cell effector-functions. These phenomena highly contribute to tumor progression and metastasis formation. In this review, we discuss the latest insights on those NK cell receptors and related molecules that are currently being implemented in clinics either as possible prognostic factors or therapeutic targets to unleash NK cell anti-tumor effector-functions in vivo. Moreover, we address here the major recent advances in regard to the genetic modification and ex vivo expansion of anti-tumor specific NK cells used in innovative adoptive cellular transfer approaches.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Elisa Zaghi
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy.
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy.
| |
Collapse
|
40
|
Abstract
Natural killer (NK) cells have evolved to complement T and B cells in host defense against pathogens and cancer. They recognize infected cells and tumors using a sophisticated array of activating, costimulatory, and inhibitory receptors that are expressed on NK cell subsets to create extensive functional diversity. NK cells can be targeted to kill with exquisite antigen specificity by antibody-dependent cellular cytotoxicity. NK and T cells share many of the costimulatory and inhibitory receptors that are currently under evaluation in the clinic for cancer immunotherapy. As with T cells, genetic engineering is being employed to modify NK cells to specifically target them to tumors and to enhance their effector functions. As the selective pressures exerted by immunotherapies to augment CD8+T cell responses may result in loss of MHC class I, NK cells may provide an important fail-safe to eliminate these tumors by their capacity to eliminate tumors that are “missing self.”
Collapse
Affiliation(s)
- Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, California 94143, USA
- The Parker Institute for Cancer Immunotherapy, San Francisco, California 94143, USA
| |
Collapse
|
41
|
Ernst D, Williams BA, Wang XH, Yoon N, Kim KP, Chiu J, Luo ZJ, Hermans KG, Krueger J, Keating A. Humanized anti-CD123 antibody facilitates NK cell antibody-dependent cell-mediated cytotoxicity (ADCC) of Hodgkin lymphoma targets via ARF6/PLD-1. Blood Cancer J 2019; 9:6. [PMID: 30647406 PMCID: PMC6333842 DOI: 10.1038/s41408-018-0168-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/31/2018] [Accepted: 12/13/2018] [Indexed: 01/06/2023] Open
Abstract
CD123 (IL-3Rα) is frequently expressed by malignant Hodgkin lymphoma (HL) cells. Naked monoclonal antibodies (mAb) against HL lack clinical benefit, partially due to absence of natural killer (NK) cells in the tumor microenvironment. Here we show that the combination of a fully humanized anti-CD123 mAb (CSL362) and high-affinity Fcγ-receptor NK-92 cells (haNK) effectively target and kill HL cells in vitro. First, we confirmed high expression of CD123 in 2 of the 3 HL cell lines (KM-H2 and L-428), and its absence in NK cells. Cytotoxicity of haNK cells against CD123-positive HL cells was significantly higher in the presence of CSL362. This was also shown with IL-15-activated primary NK cells, although haNK cells showed a 10.87-fold lower estimated half-maximal stimulatory effective concentration (EC50). CSL362 facilitated a significant increase in the expression of CD107a, intracellular IFN-γ and TNF-α and enhanced expression of c-JUN, PLD-1, and ARF6 by NK cells. Inhibition of the ARF6–PLD-1 axis (NAV2729), but not of the MAPK pathway (U0126), completely abrogated CSL362-facilitated antibody-dependent cell-mediated cytotoxicity (ADCC) in haNK and activated primary NK cells. Our results support CD123 as an immunotherapeutic target for HL and the combination of NK cells and CSL362 as a treatment strategy for HL.
Collapse
Affiliation(s)
- Daniel Ernst
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada. .,Krembil Research Institute, University Health Network, Toronto, ON, Canada. .,Departamento de Hematología y Oncología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile. .,Instituto de Ingeniería Biológica y Médica, Pontificia Universidad Católica, Santiago, Chile.
| | - Brent A Williams
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Xing-Hua Wang
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nara Yoon
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Kyung-Phil Kim
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Jodi Chiu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Zhi Juan Luo
- Program of Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karin G Hermans
- Program of Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Joerg Krueger
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
42
|
Kumar D, Xu ML. Microenvironment Cell Contribution to Lymphoma Immunity. Front Oncol 2018; 8:288. [PMID: 30101129 PMCID: PMC6073855 DOI: 10.3389/fonc.2018.00288] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Lymphoma microenvironment is a complex system composed of stromal cells, blood vessels, immune cells as well as extracellular matrix, cytokines, exosomes, and chemokines. In this review, we describe the function, localization, and interactions between various cellular components. We also summarize their contribution to lymphoma immunity in the era of immunotherapy. Publications were identified from searching Pubmed. Primary literature was carefully evaluated for replicability before incorporating into the review. We describe the roles of mesenchymal stem/stromal cells (MSCs), lymphoma-associated macrophages (LAMs), dendritic cells, cytotoxic T cells, PD-1 expressing CD4+ tumor infiltrating lymphocytes (TILs), T-cells expressing markers of exhaustion such as TIM-3 and LAG-3, regulatory T cells, and natural killer cells. While it is not in itself a cell, we also include a brief overview of the lymphoma exosome and how it contributes to anti-tumor effect as well as immune dysfunction. Understanding the cellular players that comprise the lymphoma microenvironment is critical to developing novel therapeutics that can help block the signals for immune escape and promote tumor surveillance. It may also be the key to understanding mechanisms of resistance to immune checkpoint blockade and immune-related adverse events due to certain types of immunotherapy.
Collapse
Affiliation(s)
- Deepika Kumar
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Mina L Xu
- Departments of Pathology & Laboratory Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
43
|
NKG2D Immunoligand rG7S-MICA Enhances NK Cell-mediated Immunosurveillance in Colorectal Carcinoma. J Immunother 2018. [DOI: 10.1097/cji.0000000000000215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
44
|
Pahl JHW, Koch J, Götz JJ, Arnold A, Reusch U, Gantke T, Rajkovic E, Treder M, Cerwenka A. CD16A Activation of NK Cells Promotes NK Cell Proliferation and Memory-Like Cytotoxicity against Cancer Cells. Cancer Immunol Res 2018. [PMID: 29514797 DOI: 10.1158/2326-6066.cir-17-0550] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD16A is a potent cytotoxicity receptor on human natural killer (NK) cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30+ lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2- and IL15-driven NK cell proliferation and expansion. This effect involved the upregulation of CD25 (IL2Rα) and CD132 (γc) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed 1 day after CD16A engagement could be recovered by reculture in IL2 or IL15. After reculture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNγ production upon restimulation with tumor cells or cytokines. Importantly, after reculture, CD16A-experienced NK cells also exerted increased cytotoxicity toward different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to restimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell antitumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Cancer Immunol Res; 6(5); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Jens H W Pahl
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany.,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Germany
| | | | - Jana-Julia Götz
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Annette Arnold
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | - Adelheid Cerwenka
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany. .,Department for Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
45
|
Chiu J, Ernst DM, Keating A. Acquired Natural Killer Cell Dysfunction in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Front Immunol 2018; 9:267. [PMID: 29491867 PMCID: PMC5817071 DOI: 10.3389/fimmu.2018.00267] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
An understanding of interactions within the tumor microenvironment (TME) of classic Hodgkin lymphoma (cHL) has helped pave the way to novel immunotherapies that have enabled dormant and tumor-tolerant immune cells to be reactivated. The immunosuppressive nature of the TME in cHL specifically inhibits the proliferation and activity of natural killer (NK) cells, which contributes to tumor immune-escape mechanisms. This deficiency of NK cells begins at the tumor site and progresses systemically in patients with advanced disease or adverse prognostic factors. Several facets of cHL account for this effect on NK cells. Locally, malignant Reed-Sternberg cells and cells from the TME express ligands for inhibitory receptors on NK cells, including HLA-E, HLA-G, and programmed death-ligand 1. The secretion of chemokines and cytokines, including soluble IL-2 receptor (sCD25), Transforming Growth Factor-β, IL-10, CXCL9, and CXCL10, mediates the systemic immunosuppression. This review also discusses the potential reversibility of quantitative and functional NK cell deficiencies in cHL that are likely to lead to novel treatments.
Collapse
Affiliation(s)
- Jodi Chiu
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniel M Ernst
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
46
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
47
|
VEGFR2 targeted antibody fused with MICA stimulates NKG2D mediated immunosurveillance and exhibits potent anti-tumor activity against breast cancer. Oncotarget 2017; 7:16445-61. [PMID: 26909862 PMCID: PMC4941327 DOI: 10.18632/oncotarget.7501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022] Open
Abstract
Binding of MHC class I-related chain molecules A and B (MICA/B) to the natural killer (NK) cell receptor NK group 2, member D (NKG2D) is thought critical for activating NK-mediated immunosurveillance. Angiogenesis is important for tumor growth and interfering with angiogenesis using the fully human IgG1 anti-VEGFR2 (vascular endothelial growth factor receptor 2) antibody (mAb04) can be effective in treating malignancy. In an effort to make mAb04 more effective we have generated a novel antibody fusion protein (mAb04-MICA) consisting of mAb04 and MICA. We found that mAb04-MICA maintained the anti-angiogenic and antineoplastic activities of mAb04, and also enhanced immunosurveillance activated by the NKG2D pathway. Moreover, in human breast tumor-bearing nude mice, mAb04-MICA demonstrated superior anti-tumor efficacy compared to combination therapy of mAb04 + Docetaxel or Avastin + Docetaxel, highlighting the immunostimulatory effect of MICA. In conclusion, mAb04-MICA provided new inspiration for anti-tumor treatment and had prospects for clinical application.
Collapse
|
48
|
Gantke T, Weichel M, Herbrecht C, Reusch U, Ellwanger K, Fucek I, Eser M, Müller T, Griep R, Molkenthin V, Zhukovsky EA, Treder M. Trispecific antibodies for CD16A-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng Des Sel 2017; 30:673-684. [PMID: 28981915 DOI: 10.1093/protein/gzx043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/25/2017] [Indexed: 11/12/2022] Open
Abstract
Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens.
Collapse
Affiliation(s)
- Thorsten Gantke
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Weichel
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Carmen Herbrecht
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Uwe Reusch
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | | | - Ivica Fucek
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Markus Eser
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Thomas Müller
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Remko Griep
- Abcheck s.r.o., Teslova 3, 30100 Plzen, Czech Republic
| | | | - Eugene A Zhukovsky
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany.,Biomunex Pharmaceuticals, 96bis Boulevard Raspail, 75006 Paris, France
| | - Martin Treder
- Affimed GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Davis ZB, Vallera DA, Miller JS, Felices M. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy. Semin Immunol 2017; 31:64-75. [PMID: 28882429 DOI: 10.1016/j.smim.2017.07.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/26/2017] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection.
Collapse
Affiliation(s)
- Zachary B Davis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| | - Daniel A Vallera
- Masonic Cancer Center, University of Minnesota, United States; Department of Therapeutic Radiology-Radiation Oncology, University of Minnesota, United States
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States.
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, United States; Masonic Cancer Center, University of Minnesota, United States
| |
Collapse
|
50
|
Ellwanger K, Reusch U, Fucek I, Knackmuss S, Weichel M, Gantke T, Molkenthin V, Zhukovsky EA, Tesar M, Treder M. Highly Specific and Effective Targeting of EGFRvIII-Positive Tumors with TandAb Antibodies. Front Oncol 2017; 7:100. [PMID: 28596941 PMCID: PMC5442391 DOI: 10.3389/fonc.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022] Open
Abstract
To harness the cytotoxic capacity of immune cells for the treatment of solid tumors, we developed tetravalent, bispecific tandem diabody (TandAb) antibodies that recognize EGFRvIII, the deletion variant III of the epidermal growth factor receptor (EGFR), and CD3 on T-cells, thereby directing immune cells to eliminate EGFRvIII-positive tumor cells. Using phage display, we identified scFv antibodies selectively binding to EGFRvIII. These highly EGFRvIII-specific, fully human scFv were substantially improved by affinity maturation, achieving KDs in the picomolar range, and were used to construct a set of bispecific EGFRvIII-targeting TandAbs with a broad range of binding and cytotoxic properties. These antibodies exhibited an exquisite specificity for a distinguished epitope in the N-terminal portion of EGFRvIII, as shown on recombinant antigen in Western Blot, SPR, and ELISA, as well as on antigen-expressing cells in FACS assays, and did not bind to the wild-type EGFR. High-affinity EGFRvIII/CD3 TandAbs were most potent in killing assays, displaying cytotoxicity toward EGFRvIII-expressing CHO, F98 glioma, or human DK-MG cells with EC50 values in the range of 1-10 pM in vitro. They also demonstrated dose-dependent growth control in vivo in an EGFRvIII-positive subcutaneous xenograft tumor model. Together with the tumor-exclusive expression of EGFRvIII, the EGFRvIII/CD3 TandAbs' high specificity and strictly target-dependent activation with no off-target activity provide an opportunity to target tumor cells and spare normal tissues, thereby reducing the side effects associated with other anti-EGFR therapies. In summary, EGFRvIII/CD3 TandAbs are highly attractive therapeutic antibody candidates for selective immunotherapy of EGFRvIII-positive tumors.
Collapse
|