1
|
Jia B, Xue R, Li J, Xu G, Li X, Wang W, Li Z, Liu J. Molecular mechanisms of EGCG-CSH/n-HA/CMC in promoting osteogenic differentiation and macrophage polarization. Bioorg Chem 2024; 150:107493. [PMID: 38870703 DOI: 10.1016/j.bioorg.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
2. This research investigates the impact of the EGCG-CSH/n-HA/CMC composite material on bone defect repair, emphasizing its influence on macrophage polarization and osteogenic differentiation of BMSCs. Comprehensive evaluations of the composite's physical and chemical characteristics were performed. BMSC response to the material was tested in vitro for proliferation, migration, and osteogenic potential. An SD rat model was employed for in vivo assessments of bone repair efficacy. Both transcriptional and proteomic analyses were utilized to delineate the mechanisms influencing macrophage behavior and stem cell differentiation. The material maintained excellent structural integrity and significantly promoted BMSC functions critical to bone healing. In vivo results confirmed accelerated bone repair, and molecular analysis highlighted the role of macrophage M2 polarization, particularly through changes in the SIRPA gene and protein expression. EGCG-CSH/n-HA/CMC plays a significant role in enhancing bone repair, with implications for macrophage and BMSC function. Our findings suggest that targeting SIRPA may offer new therapeutic opportunities for bone regeneration.
Collapse
Affiliation(s)
- Bei Jia
- Nosocomial Infection Management Department, Hebei Medical University First Hospital, Shijiazhuang 050000, China
| | - Rui Xue
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Jia Li
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Guohui Xu
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Xu Li
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Wei Wang
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Zhiyong Li
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China
| | - Jianning Liu
- Department of Orthopaedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, China.
| |
Collapse
|
2
|
Jiang X, Wang W, Tang J, Han M, Xu Y, Zhang L, Wu J, Huang Y, Ding Z, Sun H, Xi K, Gu Y, Chen L. Ligand-Screened Cerium-Based MOF Microcapsules Promote Nerve Regeneration via Mitochondrial Energy Supply. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306780. [PMID: 38037294 PMCID: PMC10853750 DOI: 10.1002/advs.202306780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Indexed: 12/02/2023]
Abstract
Although mitochondria are crucial for recovery after spinal cord injury (SCI), therapeutic strategies to modulate mitochondrial metabolic energy to coordinate the immune response and nerve regeneration are lacking. Here, a ligand-screened cerium-based metal-organic framework (MOF) with better ROS scavenging and drug-loading abilities is encapsulated with polydopamine after loading creatine to obtain microcapsules (Cr/Ce@PDA nanoparticles), which reverse the energy deficits in both macrophages and neuronal cells by combining ROS scavenging and energy supplementation. It reprogrames inflammatory macrophages to the proregenerative phenotype via the succinate/HIF-1α/IL-1β signaling axis. It also promotes the regeneration and differentiation of neural cells by activating the mTOR pathway and paracrine function of macrophages. In vivo experiments further confirm the effect of the microcapsules in regulating early ROS-inflammation positive-feedback chain reactions and continuously promoting nerve regeneration. This study provides a new strategy for correcting mitochondrial energy deficiency in the immune response and nerve regeneration following SCI.
Collapse
Affiliation(s)
- Xinzhao Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Wei Wang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jincheng Tang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Meng Han
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
- Department of Spinal SurgeryXuzhou Central HospitalXuzhou221000China
| | - Yichang Xu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Lichen Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Jie Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yiyang Huang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Zhouye Ding
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Huiwen Sun
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Kun Xi
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Yong Gu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| | - Liang Chen
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversityOrthopedic InstituteSoochow University188 Shizi RoadSuzhouJiangsu215000China
| |
Collapse
|
3
|
Roman A, Huntemer-Silveira A, Waldron MA, Khalid Z, Blake J, Parr AM, Low WC. Cell Transplantation for Repair of the Spinal Cord and Prospects for Generating Region-Specific Exogenic Neuronal Cells. Cell Transplant 2024; 33:9636897241241998. [PMID: 38590295 PMCID: PMC11005494 DOI: 10.1177/09636897241241998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Spinal cord injury (SCI) is associated with currently irreversible consequences in several functional components of the central nervous system. Despite the severity of injury, there remains no approved treatment to restore function. However, with a growing number of preclinical studies and clinical trials, cell transplantation has gained significant potential as a treatment for SCI. Researchers have identified several cell types as potential candidates for transplantation. To optimize successful functional outcomes after transplantation, one key factor concerns generating neuronal cells with regional and subtype specificity, thus calling on the developmental transcriptome patterning of spinal cord cells. A potential source of spinal cord cells for transplantation is the generation of exogenic neuronal progenitor cells via the emerging technologies of gene editing and blastocyst complementation. This review highlights the use of cell transplantation to treat SCI in the context of relevant developmental gene expression patterns useful for producing regionally specific exogenic spinal cells via in vitro differentiation and blastocyst complementation.
Collapse
Affiliation(s)
- Alex Roman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Anne Huntemer-Silveira
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Madison A. Waldron
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Zainab Khalid
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey Blake
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Ann M. Parr
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Zhu D, Peng T, Zhang Z, Guo S, Su Y, Zhang K, Wang J, Liu C. Mesenchymal stem cells overexpressing XIST induce macrophage M2 polarization and improve neural stem cell homeostatic microenvironment, alleviating spinal cord injury. J Tissue Eng 2024; 15:20417314231219280. [PMID: 38223166 PMCID: PMC10785713 DOI: 10.1177/20417314231219280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability worldwide, with limited treatment options. This study investigated the potential of bone marrow-derived mesenchymal stem cells (BMSCs) modified with XIST lentiviral vector to modulate macrophage polarization and affect neural stem cell (NSC) microenvironment reconstruction following SCI. Bioinformatics analysis revealed that MID1 might be crucial for BMSCs' treatment of SCI. XIST overexpression enriched Zmynd8 to the promoter region of MID1 and inhibited MID1 transcription, which promoted macrophage M2 polarization. In vitro experiments showed that BMSCs-XIST promoted NSC proliferation, migration, differentiation, and axonal growth by inducing macrophage M2 polarization, suppressing inflammation, and accelerating the re-establishment of the homeostatic microenvironment of NSCs. In vivo, animal experiments confirmed that BMSCs-XIST significantly alleviated SCI by promoting NSC differentiation and axon formation in the injured area. The study demonstrated the potential of XIST-overexpressing BMSCs for treating SCI by regulating macrophage polarization and homeostasis of the NSC microenvironment. These findings provide new insights into the development of stem cell-based therapies for SCI.
Collapse
Affiliation(s)
- Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Tie Peng
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Ying Su
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Kangwei Zhang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Jiawei Wang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R. China
| |
Collapse
|
5
|
Rashchupkin IM, Shevela EY, Maksimova AA, Tikhonova MA, Ostanin AA, Chernykh ER. Effect of Differently Polarized Human Macrophages on the SH-SY5Y Cells Damaged by Ischemia and Hypoxia In Vitro. J Immunol Res 2023; 2023:5595949. [PMID: 37692837 PMCID: PMC10484653 DOI: 10.1155/2023/5595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored. The aim of this study was to compare the neuroregenerative and neuroprotective activity of soluble factors secreted by variously activated human macrophages on the functions of neural progenitors in an in vitro model of ischemia or ischemia/hypoxia. Macrophages were polarized by interferon-γ (M1), IL-4 (M2a), or interaction with apoptotic cells (M2(LS)). The effect of macrophages conditioned media on the proliferation, differentiation, and survival of SH-SY5Y cells damaged by serum deprivation alone (ischemic conditions) or in combination with CoCl2 (ischemic/hypoxic conditions) was assessed. All studied macrophages stimulated the proliferation and differentiation of SH-SY5Y cells. On day 3, the pro-proliferating effect of M1 and M2 was similar and did not depend on the severity of the damaging effect (ischemia or ischemia/hypoxia), while on day 7 and under ischemic/hypoxic conditions, the effects of M2(LS) exceeded those of M1 and M2a cells. The prodifferentiation effects of macrophages were manifested in both short- and long-term cultures, mainly under ischemic/hypoxic conditions, and were most characteristic of M2(LS) cells. Importantly, the ischemia/hypoxia model was accompanied by the pronounced death of SH-SY5Y cells. Only macrophages with the M2 phenotype demonstrated antiapoptotic activity, and the effect of M2(LS) was higher than that of M2a. The results obtained indicate that human macrophages have neuroprotective and neuroregenerative activity, which is mediated by soluble factors, is most characteristic for macrophages activated by efferocytosis (M2(LS)), and is most prominent under in vitro conditions simulating the combined effect of ischemia/hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Removna Chernykh
- Scientific Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
6
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
7
|
Theocharidis G, Rahmani S, Lee S, Li Z, Lobao A, Kounas K, Katopodi XL, Wang P, Moon S, Vlachos IS, Niewczas M, Mooney D, Veves A. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. Biomaterials 2022; 288:121692. [PMID: 35934520 PMCID: PMC9977170 DOI: 10.1016/j.biomaterials.2022.121692] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Diabetic foot ulceration is a devastating diabetic complication with unmet needs. We explored the efficacy of calcium-crosslinked alginate dressings in topically delivering primary macrophages and their secretome to diabetic wounds. The alginate bandages had a microporous structure that enabled even cell loading with prolonged cell survival and egress following wound placement. In vitro experiments showed that we could successfully differentiate and polarize primary murine bone marrow derived monocytes into M0, M1, M2a and M2c defined states with distinct gene expression, surface protein and secretome profiles. The primary macrophages were delivered in the bandages, migrated within the wounds and were still present for as long as 16 days post-injury. In wounds of db/db mice, treatment with all macrophage subtypes and their secretome, when compared to control, accelerated wound healing. Bulk RNA sequencing analysis and multiplex protein quantification of wound lysates revealed that M2c macrophages conditioned media had the most impact in wound healing affecting processes like neurogenesis, while M1 conditioned media promoted keratinization and epidermal differentiation. Collectively, our results indicate that alginate dressings can serve as a delivery platform for topical treatment of diabetic wounds and that conditioned media from distinctly polarized macrophages is equally or more effective than their parental cells in advancing wound healing and could therefore be a promising and technically advantageous alternative to cell therapy.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sahar Rahmani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Sangmin Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Zhuqing Li
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antonio Lobao
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xanthi-Lida Katopodi
- Cancer Research Institute | HMS Initiative for RNA Medicine | Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peng Wang
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Salina Moon
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Ioannis S Vlachos
- Cancer Research Institute | HMS Initiative for RNA Medicine | Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monika Niewczas
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Guo W, Wu X, Wei W, Wang Y, Dai H. Mesoporous hollow Fe 3O 4 nanoparticles regulate the behavior of neuro-associated cells through induction of macrophage polarization in an alternating magnetic field. J Mater Chem B 2022; 10:5633-5643. [PMID: 35816162 DOI: 10.1039/d2tb00527a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Magnetic iron oxide nanoparticles have shown great research value in the field of nerve regeneration because of their characteristics of satisfactory material properties and their ability to be stimulated by an external magnetic field to enhance the function of all aspects. Nevertheless, the impact of magnetic iron oxide nanoparticles on nerve regeneration regulated by macrophage polarization has not been well studied, and it is also not clear whether the introduction of the magnetic field has a further effect. Therefore, mesoporous hollow Fe3O4 nanoparticles (MHFPs) were synthesized. We selected an alternating magnetic field (AMF) because it may confer a stronger effect on MHFPs as compared to a static magnetic field, and then explored the field's ability to induce macrophage polarization. Furthermore, the effects of this regulation on other neuro-associated cells were also explored. Our results suggest that MHFPs can efficiently induce polarization of macrophages at the concentration of 40 μg mL-1, upregulate the expression of related genes and cytokines, and further promote the proliferation of neural stem cells and the subsequent migration of vascular endothelial cells. These effects were significantly enhanced after the application of an AMF. This work also showed that the internalization of particles is the starting point for polarization regulation.
Collapse
Affiliation(s)
- Weiru Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China. .,Shenzhen Institute of Wuhan University of Technology, Shenzhen 51800, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China. .,Shenzhen Institute of Wuhan University of Technology, Shenzhen 51800, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| |
Collapse
|
9
|
Hamrangsekachaee M, Baumann HJ, Pukale DD, Shriver LP, Leipzig ND. Investigating Mechanisms of Subcutaneous Preconditioning Incubation for Neural Stem Cell Embedded Hydrogels. ACS APPLIED BIO MATERIALS 2022; 5:2176-2184. [PMID: 35412793 DOI: 10.1021/acsabm.2c00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Stem cells are a vital component of regenerative medicine therapies, however, only a fraction of stem cells delivered to the central nervous system following injury survive the inflammatory environment. Previously, we showed that subcutaneous preconditioning of neural stem cell (NSC) embedded hydrogels for 28 days improved spinal cord injury (SCI) functional outcomes over controls. Here, we investigated the mechanism of subcutaneous preconditioning of NSC-embedded hydrogels, with and without the known neurogenic cue, interferon gamma (IFN-γ), for 3, 14, or 28 days to refine and identify subcutaneous preconditioning conditions by measurement of neurogenic markers and cytokines. Studying the preconditioning mechanism, we found that subcutaneous foreign body response (FBR) associated cytokines infiltrated the scaffold in groups with and without NSCs, with time point effects. A pro-inflammatory environment with upregulated interleukin (IL)-6, IL-10, macrophage inflammatory protein (MIP)-1, MIP-2, IFN-γ-inducible protein 10 (IP-10), tumor necrosis factor-α (TNF-α), and IL-12p70 was observed on day 3. By 14 and 28 days, there was an increase in pro-regenerative cytokines (IL-13, IL-4) along with pro-inflammatory markers IL-1β, IP-10, and RANTES (regulated on activation, normal T cell expressed, and secreted) potentially part of the mechanism that had an increased functional outcome in SCI. Coinciding with changes in cytokines, the macrophage population increased over time from 3 to 28 days, whereas neutrophils peaked at 3 days with a significant decrease at later time points. Expression of the neuronal marker βIII tubulin in differentiating NSCs was supported at 3 days in the presence of soluble and immobilized IFN-γ and at 14 days by immobilized IFN-γ only, but it was greatly attenuated in all conditions at 28 days, partially because of dilution via host cell infiltration. We conclude that subcutaneously incubating NSC seeded scaffolds for 3 or 14 days could act as host specific preconditioning through exposure to FBR while retaining βIII tubulin expression of NSCs to further improve the SCI functional outcome observed with 28 day subcutaneous incubation.
Collapse
Affiliation(s)
| | - Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States.,Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
10
|
Han FX, Zhang R, Yang XX, Ma SB, Hu SJ, Li B. Neuroprotective effect of aldose reductase knockout in a mouse model of spinal cord injury involves NF-κB pathway. Exp Brain Res 2022; 240:853-859. [PMID: 35066597 DOI: 10.1007/s00221-021-06223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Activated microglia/macrophages have either detrimental or beneficial effects on neural regeneration based on their functional polarized M1/M2 subsets. Aldose reductase (AR) has recently been shown to be a key component of the innate immune response. However, the mechanisms involved in AR and innate immune response remain unclear. In this study, wild-type (WT) or AR-deficiency (KO) mice were subjected to SCI by a spinal crush injury model. AR KO mice showed better locomotor recovery and smaller injury lesion areas after spinal cord crushing compared with WT mice. Here, we first demonstrated that AR deficiency repressed the expression level of inducible nitric oxide synthase (iNOS) induced by lipopolysaccharide (LPS) in vitro via the activation of autophagy. AR deficiency caused 4-hydroxy-2-(E)-nonenal (4-HNE) accumulation in LPS-induced macrophages. We also found that exogenous addition of low concentrations of 4-HNE in LPS-induced macrophages had the effect of promoting further activation of NF-κB pathway, whereas high concentrations of 4-HNE had inhibitory effects. Together, these results indicated that autophagy as a mechanism underlying AR and 4-HNE in LPS-induced macrophages.
Collapse
Affiliation(s)
- Fu-Xin Han
- Department of Neurosurgery, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, P. R. China
| | - Rui Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Xin-Xing Yang
- Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shan-Bo Ma
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shi-Jie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| | - Bing Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.
| |
Collapse
|
11
|
Dotan I, Yang J, Ikeda J, Roth Z, Pollock-Tahiri E, Desai H, Sivasubramaniyam T, Rehal S, Rapps J, Li YZ, Le H, Farber G, Alchami E, Xiao C, Karim S, Gronda M, Saikali MF, Tirosh A, Wagner KU, Genest J, Schimmer AD, Gupta V, Minden MD, Cummins CL, Lewis GF, Robbins C, Jongstra-Bilen J, Cybulsky M, Woo M. Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Commun Biol 2022; 5:132. [PMID: 35169231 PMCID: PMC8847578 DOI: 10.1038/s42003-022-03078-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition in which macrophages play a major role. Janus kinase 2 (JAK2) is a pivotal molecule in inflammatory and metabolic signaling, and Jak2V617F activating mutation has recently been implicated with enhancing clonal hematopoiesis and atherosclerosis. To determine the essential in vivo role of macrophage (M)-Jak2 in atherosclerosis, we generate atherosclerosis-prone ApoE-null mice deficient in M-Jak2. Contrary to our expectation, these mice exhibit increased plaque burden with no differences in macrophage proliferation, recruitment or bone marrow clonal expansion. Notably, M-Jak2-deficient bone marrow derived macrophages show a significant defect in cholesterol efflux. Pharmacologic JAK2 inhibition with ruxolitinib also leads to defects in cholesterol efflux and accelerates atherosclerosis. Liver X receptor agonist abolishes the efflux defect and attenuates the accelerated atherosclerosis that occurs with M-Jak2 deficiency. Macrophages of individuals with the Jak2V617F mutation show increased efflux which is normalized when treated with a JAK2 inhibitor. Together, M-Jak2-deficiency leads to accelerated atherosclerosis primarily through defects in cholesterol efflux from macrophages.
Collapse
Affiliation(s)
- Idit Dotan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Institute of Endocrinology, Beilinson Campus, Rabin Medical Center, Petach Tikva, Israel
| | - Jiaqi Yang
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Ziv Roth
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Canada
| | - Evan Pollock-Tahiri
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Harsh Desai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | | | - Sonia Rehal
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Josh Rapps
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Yu Zhe Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Helen Le
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Gedaliah Farber
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Edouard Alchami
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Changting Xiao
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Saraf Karim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Amit Tirosh
- Endocrine Cancer Genomics Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vikas Gupta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Clinton Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Jenny Jongstra-Bilen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada. .,Department of Immunology, University of Toronto, Toronto, Canada. .,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network and Sinai Health System, University of Toronto, Toronto, Canada.
| |
Collapse
|
12
|
Wang B, Chang M, Zhang R, Wo J, Wu B, Zhang H, Zhou Z, Li Z, Zhang F, Zhong C, Tang S, Yang S, Sun G. Spinal cord injury target-immunotherapy with TNF-α autoregulated and feedback-controlled human umbilical cord mesenchymal stem cell derived exosomes remodelled by CRISPR/Cas9 plasmid. BIOMATERIALS ADVANCES 2022; 133:112624. [PMID: 35525736 DOI: 10.1016/j.msec.2021.112624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
Human umbilical cord mesenchymal stem cell (hucMSC) derived exosomes (EXOs) have been investigated as a new treatment for spinal cord injury (SCI) because of their anti-inflammatory, anti-apoptotic, angiogenesis-promoting, and axonal regeneration properties. The CAQK peptide found in the brains of mice and humans after trauma has recently been found to specifically bind to the injured site after SCI. Thus, we developed a nanocarrier system called EXO-C@P based on hucMSC exosomes remodelled by the CRISPR/Cas9 plasmid to control inflammation and modified by the CAQK peptide. EXO-C@P was shown to effectively accumulate at the injury site and saturate the macrophages to significantly reduce the expression of inflammatory cytokines in a mouse model of SCI. Moreover, EXO-C@P treatment improved the performance of mice in behavioural assessments and upregulated soluble tumour necrosis factor receptor-1 (sTNFR1) in serum and at the trauma site after SCI surgery, but lowered the proportion of iNOS+ cells and the concentration of proinflammatory factors. In conclusion, EXO-C@P provides an effective alternative to multiple topical administration and drug delivery approaches for the treatment of SCI. STATEMENT OF SIGNIFICANCE: SCI is a serious disease characterised by a high incidence, high disability rate, and high medical costs, and has become a global medical problem. Several studies have shown that the inflammatory response is the critical inducer of secondary injury after SCI. The inflammatory cytokine TNF-α is considered to be one of the most significant therapeutic targets for autoimmune diseases. Antibodies targeting TNF-α and sTNFR1 are capable of neutralising free TNF-α. In this study, exosomes in the CRISPR/Cas9 system were used to establish stem cells with an autoregulated and feedback-controlled TNF-α response, with these cells secreting sTNFR1, which neutralised TNF-α and antagonised the inflammation stimulated by TNF-α. Moreover, the plasmid was combined with CAQK, which targeted the injury site and promoted the recovery of SCI function.
Collapse
Affiliation(s)
- Baocheng Wang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Minmin Chang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Renwen Zhang
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China
| | - Jin Wo
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Bowen Wu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Hua Zhang
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, China
| | - Zhigang Zhou
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Zhizhong Li
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Feng Zhang
- Intensive Care Unit, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Cheng Zhong
- The Affiliated Hospital (Jiangmen Traditional Chinese Medicine Hospital), Jinan University, Guangzhou 510632, China
| | - Shujie Tang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province 510632, China.
| | - Shuxian Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China; The Biomedical Translational Research Institute, Jinan University Faculty of Medical Science, Jinan University, Guangzhou 510632, China.
| | - Guodong Sun
- The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China; Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Buzoianu-Anguiano V, Torres-Llacsa M, Doncel-Pérez E. Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells 2021; 10:2783. [PMID: 34685763 PMCID: PMC8534338 DOI: 10.3390/cells10102783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aldynoglia are growth-promoting cells with a morphology similar to radial glia and share properties and markers with astrocytes and Schwann cells. They are distributed in several locations throughout the adult central nervous system, where the cells of the aldynoglia interact and respond to the signals of the immune cells. After spinal cord injury (SCI), the functions of resident aldynoglia, identified as ependymocytes, tanycytes, and ependymal stem cells (EpSCs) of the spinal cord are crucial for the regeneration of spinal neural tissue. These glial cells facilitate axonal regrowth and remyelination of injured axons. Here, we review the influence of M1 or M2 macrophage/microglia subpopulations on the fate of EpSCs during neuroinflammation and immune responses in the acute, subacute, and chronic phases after SCI.
Collapse
Affiliation(s)
| | - Mabel Torres-Llacsa
- Servicio de Radiología, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
14
|
Xiao Q, Guo T, Li J, Li L, Chen K, Zhou L, Wu W, So KF, Ramakrishna S, Liu B, Rong L, Chen G, Xing X, He L. Macrophage polarization induced by sustained release of 7,8-DHF from aligned PLLA fibers potentially for neural stem cell neurogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111415. [PMID: 33255017 DOI: 10.1016/j.msec.2020.111415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 01/06/2023]
Abstract
Neural stem cells (NSCs)-based regenerative medicine provides unprecedented therapeutic potential in neural insults. However, NSC-based neurogenesis is strongly influenced by the inflammatory environment after injury, which is mainly modulated by macrophages' secretion effects. In this study, we adopted poly L-lactic acid (PLLA) aligned fibers to guide macrophages elongating along the fiber directions and polarizing phenotypically toward anti-inflammatory M2 type. 7,8-DHF was loaded within the fibers with a sustained and controlled release pattern to promote the polarization of the macrophages and secretion of various anti-inflammatory factors. NSCs showed enhanced neuronal differentiation in the presence of the conditioned medium (CM) from M2 macrophages cultured on the 7,8-DHF-loaded PLLA aligned fibers. Moreover, M2-CM promoted neurogenesis by enhancing neurite outgrowth of NSC-derived neurons. In summary, we provided a novel therapeutic strategy for NSC neurogenesis by manipulating macrophage classification into anti-inflammatory M2 phenotypes with the 7,8-DHF-loaded PLLA aligned fibers, existing potential applications in treating neural injuries.
Collapse
Affiliation(s)
- Qiao Xiao
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Ting Guo
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Jun Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Liming Li
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Kaixin Chen
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Libing Zhou
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Wutian Wu
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510630, China
| | - Kwok-Fai So
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China
| | - Seeram Ramakrishna
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Bin Liu
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Limin Rong
- Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Guoqiang Chen
- The First People's Hospital of Foshan, Foshan 528000, Guangdong, China
| | - Xiwen Xing
- Department of Biotechnology, Key Laboratory of Virology of Guangzhou, College of Life Science and Technology, Jinan University, Guangzhou 510630, China.
| | - Liumin He
- MOE Joint International Research Laboratory of CNS Regeneration, Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou 510632, China; Department of Spine Surgery, The 3rd Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China.
| |
Collapse
|
15
|
Cheng YY, Ding YX, Bian GL, Chen LW, Yao XY, Lin YB, Wang Z, Chen BY. Reactive Astrocytes Display Pro-inflammatory Adaptability with Modulation of Notch-PI3K-AKT Signaling Pathway Under Inflammatory Stimulation. Neuroscience 2020; 440:130-145. [PMID: 32450294 DOI: 10.1016/j.neuroscience.2020.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/25/2023]
Abstract
Astrocytes are major glial cells critical in assisting the function of the central nervous system (CNS), but the functional changes and regulation mechanism of reactive astrocytes are still poorly understood in CNS diseases. In this study, mouse primary astrocytes were cultured, and inflammatory insult was performed to observe functional changes in astrocytes and the involvement of Notch-PI3K-AKT signaling activation through immunofluorescence, PCR, Western blot, CCK-8, and inhibition experiments. Notch downstream signal Hes-1 was clearly observed in the astrocytes, and Notch signal inhibitor GSI dose-dependently decreased the cleaved Notch-l level without an influence on cell viability. Inflammatory insult of lipopolysaccharide plus interferon-γ (LPS+IFNγ) induced an increase in pro-inflammatory cytokines, that is, iNOS, IL-1β, IL-6, and TNF, at the protein and mRNA levels in activated astrocytes, which was reduced or blocked by GSI treatment. The cell viability of the astrocytes did not show significant differences among different groups. While an increase in MyD88, NF-кB, and phosphor-NF-кB was confirmed, upregulation of PI3K, AKT, and phosphor-AKT was observed in the activated astrocytes with LPS+IFNγ insult and was reduced by GSI treatment. Inhibitor experiments showed that inhibition of Notch-PI3K-AKT signaling activation reduced the pro-inflammatory cytokine production triggered by LPS+IFNγ inflammatory insult. This study showed that the reactive astrocytes displayed pro-inflammatory adaptability through Notch-PI3K-AKT signaling activation in response to inflammatory stimulation, suggesting that the Notch-PI3K-AKT pathway in reactive astrocytes may serve as a promising target against CNS inflammatory disorders.
Collapse
Affiliation(s)
- Ying-Ying Cheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yin-Xiu Ding
- Department of Anatomy, Histology and Embryology, Ningxia Medical University, Yinchuan 750004, PR China
| | - Gan-Lan Bian
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liang-Wei Chen
- Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China; Department of Histology and Embryology, School of Medicine, College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Xin-Yi Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Ye-Bin Lin
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China; Institute of Neurosciences, Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| | - Bei-Yu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
16
|
HDAC8 Inhibition Reduces Lesional Iba-1+ Cell Infiltration after Spinal Cord Injury without Effects on Functional Recovery. Int J Mol Sci 2020; 21:ijms21124539. [PMID: 32630606 PMCID: PMC7352158 DOI: 10.3390/ijms21124539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/30/2022] Open
Abstract
Pan-histone deacetylase (HDAC) inhibition with valproic acid (VPA) has beneficial effects after spinal cord injury (SCI), although with side effects. We focused on specific HDAC8 inhibition, because it is known to reduce anti-inflammatory mediators produced by macrophages (Mφ). We hypothesized that HDAC8 inhibition improves functional recovery after SCI by reducing pro-inflammatory classically activated Mφ. Specific HDAC8 inhibition with PCI-34051 reduced the numbers of perilesional Mφ as measured by histological analyses, but did not improve functional recovery (Basso Mouse Scale). We could not reproduce the published improvement of functional recovery described in contusion SCI models using VPA in our T-cut hemisection SCI model. The presence of spared fibers might be the underlying reason for the conflicting data in different SCI models.
Collapse
|
17
|
M2 macrophages promote vasculogenesis during retinal neovascularization by regulating bone marrow-derived cells via SDF-1/VEGF. Cell Tissue Res 2020; 380:469-486. [PMID: 31989253 DOI: 10.1007/s00441-019-03166-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Macrophages promote vasculogenesis during retinal neovascularization (RNV) by increasing the recruitment and differentiation of bone marrow-derived cells (BMCs). Different subtypes of macrophages (M1 and M2 macrophages) are associated with RNV. However, the mechanism underlying the regulation of BMCs by different macrophage subtypes during RNV remains unclear. In the present study, we investigated the role and mechanism of action of different macrophage subtypes that regulate BMCs during the development of RNV. The retinal avascular area and neovascularization (NV) tuft area in M2 macrophage group in vivo were the largest compared to those in the control phosphate buffer saline (PBS), unpolarized-M0, and M1 macrophage groups. The number of recruited green fluorescent protein (GFP)-positive BMCs and the degree of differentiation of BMCs into CD31-positive endothelial cells (ECs) and alpha-smooth muscle actin (α-SMA)-positive smooth muscle cells (SMCs) were higher in the M2 macrophage group than in the other groups. M2-conditional medium (M2-CM) affected the in vitro migration and activation of bone marrow mesenchymal stem cells (BMSCs, a subset of BMCs) more than M1-CM. The expression of stromal cell-derived factor-1 (SDF-1) and vascular endothelial growth factor (VEGF) in M2 macrophages and BMSCs cultured with M2-CM was also higher than that in M1 macrophages and BMSCs cultured with M1-CM. Migration of BMSCs was reduced after inhibiting the SDF-1 signaling pathway. Our results indicate that M2 macrophages may express significantly higher levels of SDF-1 and VEGF than M1 macrophages, thus regulating the recruitment and differentiation of BMCs and further aggravating vasculogenesis during RNV.
Collapse
|
18
|
Sonn I, Nakamura M, Renault-Mihara F, Okano H. Polarization of Reactive Astrocytes in Response to Spinal Cord Injury is Enhanced by M2 Macrophage-Mediated Activation of Wnt/β-Catenin Pathway. Mol Neurobiol 2019; 57:1847-1862. [PMID: 31845093 DOI: 10.1007/s12035-019-01851-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023]
Abstract
Understanding the mechanisms of glial scar formation by reactive astrocytes is crucial for elaborating a therapeutic strategy to brain and spinal cord injury. However, the extrinsic mechanisms that drive the polarization of reactive astrocytes, the first step in glial scar formation, remain poorly understood. Here, using an in vitro chemotaxis assay as an experimental model for polarization, we observed that Il4-M2 macrophages are stronger inducers of reactive astrocytes' polarization, compared to naive or M1 macrophages. Then, we showed that both β1-integrin and Wnt/β-catenin pathways in astrocytes are required for this polarization in vitro and in vivo after spinal cord crush injury in mice. These findings provide molecular targets for manipulating the polarization of reactive astrocytes in order to potentially enhance the healing of SCI lesions.
Collapse
Affiliation(s)
- Iki Sonn
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| | - Francois Renault-Mihara
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University Graduate School of Medicine, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
19
|
Ma Y, Deng M, Liu M. Effect of Differently Polarized Macrophages on Proliferation and Differentiation of Ependymal Cells from Adult Spinal Cord. J Neurotrauma 2019; 36:2337-2347. [PMID: 30638124 DOI: 10.1089/neu.2018.6133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yonggang Ma
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Ming Deng
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Min Liu
- 2Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| |
Collapse
|
20
|
Draijer C, Penke LRK, Peters-Golden M. Distinctive Effects of GM-CSF and M-CSF on Proliferation and Polarization of Two Major Pulmonary Macrophage Populations. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:2700-2709. [PMID: 30867240 PMCID: PMC6478555 DOI: 10.4049/jimmunol.1801387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
GM-CSF is required for alveolar macrophage (AM) development shortly after birth and for maintenance of AM functions throughout life, whereas M-CSF is broadly important for macrophage differentiation and self-renewal. However, the comparative actions of GM-CSF and M-CSF on AMs are incompletely understood. Interstitial macrophages (IMs) constitute a second major pulmonary macrophage population. However, unlike AMs, IM responses to CSFs are largely unknown. Proliferation, phenotypic identity, and M1/M2 polarization are important attributes of all macrophage populations, and in this study, we compared their modulation by GM-CSF and M-CSF in murine primary AMs and IMs. CSFs increased the proliferation capacity and upregulated antiapoptotic gene expression in AMs but not IMs. GM-CSF, but not M-CSF, reinforced the cellular identity, as identified by surface markers, of both cell types. GM-CSF, but not M-CSF, increased the expression of both M1 and M2 markers exclusively in AMs. Finally, CSFs enhanced the IFN-γ- and IL-4-induced polarization ability of AMs but not IMs. These first (to our knowledge) data comparing effects on the two pulmonary macrophage populations demonstrate that the activating actions of GM-CSF and M-CSF on primary AMs are not conserved in primary IMs.
Collapse
Affiliation(s)
- Christina Draijer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Loka Raghu Kumar Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109; and
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
21
|
Zhang H, Zheng X, Ahmed W, Yao Y, Bai J, Chen Y, Gao C. Design and Applications of Cell-Selective Surfaces and Interfaces. Biomacromolecules 2018; 19:1746-1763. [PMID: 29665330 DOI: 10.1021/acs.biomac.8b00264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tissue regeneration involves versatile types of cells. The accumulation and disorganized behaviors of undesired cells impair the natural healing process, leading to uncontrolled immune response, restenosis, and/or fibrosis. Cell-selective surfaces and interfaces can have specific and positive effects on desired types of cells, allowing tissue regeneration with restored structures and functions. This review outlines the importance of surfaces and interfaces of biomaterials with cell-selective properties. The chemical and biological cues including peptides, antibodies, and other molecules, physical cues such as topography and elasticity, and physiological cues referring mainly to interactions between cells-cells and cell-chemokines or cytokines are effective modulators for achieving cell selectivity upon being applied into the design of biomaterials. Cell-selective biomaterials have also shown practical significance in tissue regeneration, in particular for endothelialization, nerve regeneration, capture of stem cells, and regeneration of tissues of multiple structures and functions.
Collapse
Affiliation(s)
- Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Wajiha Ahmed
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Jun Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Yicheng Chen
- Department of Urology, Sir Run-Run Shaw Hospital, College of Medicine , Zhejiang University , Hangzhou 310016 , China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
22
|
Yu Y, Wang D, Li H, Liu Y, Xiang Z, Wu J, Jing X. IPSC‑MSC inhibition assessment in Raw 264.7 cells following oxygen and glucose deprivation reveals a distinct function for cardiopulmonary resuscitation. Mol Med Rep 2018; 17:8212-8220. [PMID: 29658608 PMCID: PMC5983996 DOI: 10.3892/mmr.2018.8864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Hypoxia is a serious stress state. The nervous system is less tolerant to hypoxia, and cell death due to hypoxia is irreversible. With the incidence of cardiovascular disease gradually increasing, the sudden cardiac death rate is additionally increasing. Although cardiopulmonary resuscitation (CPR) is an important development, recovery is frequently poor. In a successful recovery population, ~40% of the population was in a vegetative state or subsequently succumbed to their condition, and ~20% had brain damage. Therefore, the recovery of the brain is of particular importance in CPR. Immune disorders are one of the major mechanisms of cerebral resuscitation following CPR. Studies have demonstrated that induced pluripotent stem cell-derived mesenchymal stem cells (IPSC-MSCs) have a strong immune regulatory effect during tissue repair and anti-inflammatory effects. IPSC-MSCs may inhibit the inflammatory response by means of the inflammatory reaction network to improve brain function following CPR, although the cellular and molecular mechanisms remain unclear. Macrophages are a bridge between innate immune and specific immune responses in the body; therefore, it was hypothesized that macrophages may be the important effector cell of the role of IPSC-MSCs in improving brain function following recovery of spontaneous respiration and circulation subsequent to cardiopulmonary resuscitation. In the present study, IPSC-MSCs were applied to the oxygen and glucose deprivation (OGD) model. It was observed that intervention with IPSC-MSCs was able to alter the polarization direction of macrophages. The difference in the proportions of M1 and M2 macrophages was statistically significant at 6, 12, 24 and 48 h (P=0.037, P<0.05) in the OGD + IPSC-MSCs group (M1, 33.48±5.6%; M2, 50.84±6.9%) and in the OGD group (M1, 83.55±7.3%; M2, 11.41±3.2%), and over time this trend was more obvious. The polarization direction of macrophages is associated with the neurogenic locus notch homolog protein 1 (Notch-1) signaling pathway. In conclusion, it was observed that IPSC-MSCs may be associated with altered macrophage polarization, which may be accomplished by inhibiting the Notch-1 signaling pathway.
Collapse
Affiliation(s)
- Yi Yu
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Li
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yujie Liu
- Department of Breast Surgery and Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhao Xiang
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Junlin Wu
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoli Jing
- Emergency Department, The First Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
23
|
Liu M, Deng M, Ma Y. Differently polarized macrophages affect the viability and growth of NSPCs by regulating the expression of PACAP. Neuropeptides 2017; 65:114-119. [PMID: 28751044 DOI: 10.1016/j.npep.2017.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/29/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023]
Abstract
UNLABELLED Objective To explore the influence of differently polarized macrophages, M1 or M2, to viability and growth of NSPCs and its possible mechanism, especially the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in it. METHOD Spinal cord-derived NSPCs were co-cultured with M1 or M2 through a transwell system. Growth of NSPCs in both groups was observed through an inverted microscope within 3days. NSPCs viability of each group, represented as intracellular ATP levels, was measured using the Cellular ATP Kit HTS following co-culture for 24h. PACAP levels in the co-cultured NSPCs was alleviated with immunofluorescence and Western blot analysis. RESULTS Morphologically NSPCs demonstrated a long spindle shape with short sprout on 3rd day when cultured together with M2. NSPCs cultured with M1 showed a small circle or oval shape with no obvious sprout. Expression of PACAP was observed in NSPCs co-cultured with M2 through immunofluorescence. In contrast, NSPCs did not demonstrate PACAP staining in the presence of M1 or cultured alone. PACAP in the NSPCs co-cultured with M2 was upregulated significantly compared with that co-cultured with M1 according to Western blot method. The relative ATP level of NSPCs co-cultured with M1 was markedly decreased while that with M2 was elevated significantly. That trend could be relieved by exogenous PACAP or PACAP 6-38. Viability change of NSPCs by M1/M2 correlated with apoptosis. CONCLUSION Differently polarized macrophages could affect the growth and viability of NSPCs by regulating the expression of PACAP.
Collapse
Affiliation(s)
- Min Liu
- Department of Immunology, School of Medicine, Wuhan University, Wuhan 430071, China
| | - Ming Deng
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan City 430060, China
| | - Yonggang Ma
- Department of Orthopaedics, Renmin Hospital, Wuhan University, Wuhan City 430060, China.
| |
Collapse
|
24
|
Yuan J, Ge H, Liu W, Zhu H, Chen Y, Zhang X, Yang Y, Yin Y, Chen W, Wu W, Yang Y, Lin J. M2 microglia promotes neurogenesis and oligodendrogenesis from neural stem/progenitor cells via the PPARγ signaling pathway. Oncotarget 2017; 8:19855-19865. [PMID: 28423639 PMCID: PMC5386728 DOI: 10.18632/oncotarget.15774] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) are an important source of cells for cell replacement therapy after nerve injury. How to induce NSPCs differentiation towards neurons and oligodendrocytes is a challenging issue in neuroscience research. In the present study, we polarized microglia into M1 and M2 phenotype, used their supernatants to induce NSPCs differentiation, and investigated the effects of different microglia phenotypes on NSPCs differentiation and their mechanisms. We discovered that, after exposure to M1 phenotype supernatant, NSPCs differentiated into fewer Tuj-1+ and Olig2+ cells, but more GFAP+ cells. Meanwhile, a significantly increased number of Tuj-1+ and Olig2+ cells and smaller number of GFAP+ cells were generated by M2 microglia supernatant-induced NSPCs differentiation. We also observed that 15d-PGJ2, an endogenous ligand of PPARγ, was elevated in M2 phenotype supernatant and could activate PPARγ expression in NSPCs, whereas use of the PPARγ inhibitor GW9662, could reduce the percentage of differentiated neurons and oligodendrocytes. Our study results confirm that M2 microglia supernatant can activate the PPARγ signaling pathway and promote neurogenesis and oligodendrogenesis from NSPCs differentiation. The present study provides a further theoretical basis for induction of NSPCs oriented differentiation.
Collapse
Affiliation(s)
- Jichao Yuan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.,Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hongfei Ge
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Liu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yaxing Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuan Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yang Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yi Yin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Weixiang Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wanjiang Wu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yunfeng Yang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Jiangkai Lin
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
25
|
Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, Zaviskova K, Dubisova J, Kubinova S, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant 2016; 26:585-603. [PMID: 27938489 DOI: 10.3727/096368916x693671] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three different sources of human stem cells-bone marrow-derived mesenchymal stem cells (BM-MSCs), neural progenitors (NPs) derived from immortalized spinal fetal cell line (SPC-01), and induced pluripotent stem cells (iPSCs)-were compared in the treatment of a balloon-induced spinal cord compression lesion in rats. One week after lesioning, the rats received either BM-MSCs (intrathecally) or NPs (SPC-01 cells or iPSC-NPs, both intraspinally), or saline. The rats were assessed for their locomotor skills (BBB, flat beam test, and rotarod). Morphometric analyses of spared white and gray matter, axonal sprouting, and glial scar formation, as well as qPCR and Luminex assay, were conducted to detect endogenous gene expression, while inflammatory cytokine levels were performed to evaluate the host tissue response to stem cell therapy. The highest locomotor recovery was observed in iPSC-NP-grafted animals, which also displayed the highest amount of preserved white and gray matter. Grafted iPSC-NPs and SPC-01 cells significantly increased the number of growth-associated protein 43 (GAP43+) axons, reduced astrogliosis, downregulated Casp3 expression, and increased IL-6 and IL-12 levels. hMSCs transiently decreased levels of inflammatory IL-2 and TNF-α. These findings correlate with the short survival of hMSCs, while NPs survived for 2 months and matured slowly into glia- and tissue-specific neuronal precursors. SPC-01 cells differentiated more in astroglial phenotypes with a dense structure of the implant, whereas iPSC-NPs displayed a more neuronal phenotype with a loose structure of the graft. We concluded that the BBB scores of iPSC-NP- and hMSC-injected rats were superior to the SPC-01-treated group. The iPSC-NP treatment of spinal cord injury (SCI) provided the highest recovery of locomotor function due to robust graft survival and its effect on tissue sparing, reduction of glial scarring, and increased axonal sprouting.
Collapse
|
26
|
Kabu S, Gao Y, Kwon BK, Labhasetwar V. Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J Control Release 2015; 219:141-154. [PMID: 26343846 DOI: 10.1016/j.jconrel.2015.08.060] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/31/2015] [Indexed: 12/28/2022]
Abstract
Spinal cord injury (SCI) results in devastating neurological and pathological consequences, causing major dysfunction to the motor, sensory, and autonomic systems. The primary traumatic injury to the spinal cord triggers a cascade of acute and chronic degenerative events, leading to further secondary injury. Many therapeutic strategies have been developed to potentially intervene in these progressive neurodegenerative events and minimize secondary damage to the spinal cord. Additionally, significant efforts have been directed toward regenerative therapies that may facilitate neuronal repair and establish connectivity across the injury site. Despite the promise that these approaches have shown in preclinical animal models of SCI, challenges with respect to successful clinical translation still remain. The factors that could have contributed to failure include important biologic and physiologic differences between the preclinical models and the human condition, study designs that do not mirror clinical reality, discrepancies in dosing and the timing of therapeutic interventions, and dose-limiting toxicity. With a better understanding of the pathobiology of events following acute SCI, developing integrated approaches aimed at preventing secondary damage and also facilitating neuroregenerative recovery is possible and hopefully will lead to effective treatments for this devastating injury. The focus of this review is to highlight the progress that has been made in drug therapies and delivery systems, and also cell-based and tissue engineering approaches for SCI.
Collapse
Affiliation(s)
- Shushi Kabu
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yue Gao
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K Kwon
- Department of Orthopaedics, International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada V5Z 1M9
| | - Vinod Labhasetwar
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|