1
|
Seo H, Hirota K, Ohta K. Molecular mechanisms of avian immunoglobulin gene diversification and prospect for industrial applications. Front Immunol 2024; 15:1453833. [PMID: 39346918 PMCID: PMC11427246 DOI: 10.3389/fimmu.2024.1453833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Poultry immunoglobulin genes undergo diversification through homologous recombination (HR) and somatic hypermutation (SHM). Most animals share a similar system in immunoglobulin diversification, with the rare exception that human and murine immunoglobulin genes diversify through V(D)J recombination. Poultry possesses only one functional variable gene for each immunoglobulin heavy (HC) and light chains (LC), with clusters of non-productive pseudogenes upstream. During the B cell development, the functional variable gene is overwritten by sequences from the pseudo-variable genes via a process known as gene conversion (GC), a kind of HR. Point mutations caused in the functional variable gene also contribute to immunoglobulin diversification. This review discusses the latest findings on the molecular mechanisms of antibody gene diversification in poultry, using chickens as a model. Additionally, it will outline how these basic research findings have recently been applied especially in the medical field.
Collapse
Affiliation(s)
- Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Barbulescu P, Chana CK, Wong MK, Ben Makhlouf I, Bruce JP, Feng Y, Keszei AFA, Wong C, Mohamad-Ramshan R, McGary LC, Kashem MA, Ceccarelli DF, Orlicky S, Fang Y, Kuang H, Mazhab-Jafari M, Pezo RC, Bhagwat AS, Pugh TJ, Gingras AC, Sicheri F, Martin A. FAM72A degrades UNG2 through the GID/CTLH complex to promote mutagenic repair during antibody maturation. Nat Commun 2024; 15:7541. [PMID: 39215025 PMCID: PMC11364545 DOI: 10.1038/s41467-024-52009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
A diverse antibody repertoire is essential for humoral immunity. Antibody diversification requires the introduction of deoxyuridine (dU) mutations within immunoglobulin genes to initiate somatic hypermutation (SHM) and class switch recombination (CSR). dUs are normally recognized and excised by the base excision repair (BER) protein uracil-DNA glycosylase 2 (UNG2). However, FAM72A downregulates UNG2 permitting dUs to persist and trigger SHM and CSR. How FAM72A promotes UNG2 degradation is unknown. Here, we show that FAM72A recruits a C-terminal to LisH (CTLH) E3 ligase complex to target UNG2 for proteasomal degradation. Deficiency in CTLH complex components result in elevated UNG2 and reduced SHM and CSR. Cryo-EM structural analysis reveals FAM72A directly binds to MKLN1 within the CTLH complex to recruit and ubiquitinate UNG2. Our study further suggests that FAM72A hijacks the CTLH complex to promote mutagenesis in cancer. These findings show that FAM72A is an E3 ligase substrate adaptor critical for humoral immunity and cancer development.
Collapse
Affiliation(s)
- Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Chetan K Chana
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Matthew K Wong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ines Ben Makhlouf
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jeffrey P Bruce
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alexander F A Keszei
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Cassandra Wong
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | | | - Laura C McGary
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Mohammad A Kashem
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Derek F Ceccarelli
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Yifei Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Huihui Kuang
- Cryo-Electron Microscopy Core, New York University School of Medicine, New York, NY, USA
| | - Mohammad Mazhab-Jafari
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | | | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Frank Sicheri
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Liu J, Zhang K, Zhang X, Guan F, Zeng H, Kubo M, Lee P, Candotti F, James LK, Camara NOS, Benlagha K, Lei J, Forsman H, Yang L, Xiao W, Liu Z, Liu C. Immunoglobulin class-switch recombination: Mechanism, regulation, and related diseases. MedComm (Beijing) 2024; 5:e662. [PMID: 39144468 PMCID: PMC11322596 DOI: 10.1002/mco2.662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 08/16/2024] Open
Abstract
Maturation of the secondary antibody repertoire requires class-switch recombination (CSR), which switches IgM to other immunoglobulins (Igs), and somatic hypermutation, which promotes the production of high-affinity antibodies. Following immune response or infection within the body, activation of T cell-dependent and T cell-independent antigens triggers the activation of activation-induced cytidine deaminase, initiating the CSR process. CSR has the capacity to modify the functional properties of antibodies, thereby contributing to the adaptive immune response in the organism. Ig CSR defects, characterized by an abnormal relative frequency of Ig isotypes, represent a rare form of primary immunodeficiency. Elucidating the molecular basis of Ig diversification is essential for a better understanding of diseases related to Ig CSR defects and could provide clues for clinical diagnosis and therapeutic approaches. Here, we review the most recent insights on the diversification of five Ig isotypes and choose several classic diseases, including hyper-IgM syndrome, Waldenström macroglobulinemia, hyper-IgD syndrome, selective IgA deficiency, hyper-IgE syndrome, multiple myeloma, and Burkitt lymphoma, to illustrate the mechanism of Ig CSR deficiency. The investigation into the underlying mechanism of Ig CSR holds significant potential for the advancement of increasingly precise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jia‐Chen Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Ke Zhang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Xu Zhang
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Fei Guan
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Hu Zeng
- Department of ImmunologyMayo Clinic College of Medicine and ScienceRochesterUSA
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama InstituteYokohamaJapan
| | - Pamela Lee
- Department of Paediatrics and Adolescent MedicineLKS Faculty of MedicineThe University of Hong KongHong KongChina
| | - Fabio Candotti
- Division of Immunology and AllergyLausanne University Hospital and University of LausanneLausanneSwitzerland
| | | | | | - Kamel Benlagha
- Institut de Recherche Saint‐LouisUniversité de ParisParisFrance
| | - Jia‐Hui Lei
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Huamei Forsman
- Department of Rheumatology and Inflammation ResearchInstitute of Medicine, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lu Yang
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| | - Wei Xiao
- Department of RespiratoryThe First Affiliated Hospital of Yangtze UniversityJingzhouChina
| | - Zheng Liu
- Department of Otolaryngology‐Head and Neck SurgeryTongji Hospital, Tongji Medical College, HuazhongUniversity of Science and TechnologyWuhanChina
| | - Chao‐Hong Liu
- Department of Pathogen BiologySchool of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
4
|
Zhao LL, Gu YX, Dong JH, Li XT, Pan HY, Xue CY, Liu Y, Zhou YL, Zhang XX. New G-Triplex DNA Dramatically Activates the Fluorescence of Thioflavin T and Acts as a Turn-On Fluorescent Sensor for Uracil-DNA Glycosylase Activity Detection. Anal Chem 2024; 96:8458-8466. [PMID: 38710075 DOI: 10.1021/acs.analchem.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
G-triplexes are G-rich oligonucleotides composed of three G-tracts and have absorbed much attention due to their potential biological functions and attractive performance in biosensing. Through the optimization of loop compositions, DNA lengths, and 5'-flanking bases of G-rich sequences, a new stable G-triplex sequence with 14 bases (G3-F15) was discovered to dramatically activate the fluorescence of Thioflavin T (ThT), a water-soluble fluorogenic dye. The fluorescence enhancement of ThT after binding with G3-F15 reached 3200 times, which was the strongest one by far among all of the G-rich sequences. The conformations of G3-F15 and G3-F15/ThT were studied by circular dichroism. The thermal stability measurements indicated that G3-F15 was a highly stable G-triplex structure. The conformations of G3-F15 and G3-F15/ThT in the presence of different metal cations were studied thoroughly by fluorescent spectroscopy, circular dichroism, and nuclear magnetic resonance. Furthermore, using the G3-F15/ThT complex as a fluorescent probe, a robust and simple turn-on fluorescent sensor for uracil-DNA glycosylase activity was developed. This study proposes a new systematic strategy to explore new functional G-rich sequences and their ligands, which will promote their applications in diagnosis, therapy, and biosensing.
Collapse
Affiliation(s)
- Ling-Li Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Xuan Gu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jia-Hui Dong
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hui-Yu Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Yu Xue
- Key Laboratory of Forensic Toxicology, Ministry of Public Security, Beijing 100191, China
| | - Ying Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ying-Lin Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Mu Y, Chen Z, Plummer JB, Zelazowska MA, Dong Q, Krug LT, McBride KM. UNG-RPA interaction governs the choice between high-fidelity and mutagenic uracil repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591927. [PMID: 38746347 PMCID: PMC11092621 DOI: 10.1101/2024.04.30.591927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Mammalian Uracil DNA glycosylase (UNG) removes uracils and initiates high-fidelity base excision repair to maintain genomic stability. During B cell development, activation-induced cytidine deaminase (AID) creates uracils that UNG processes in an error-prone fashion to accomplish immunoglobulin (Ig) somatic hypermutation (SHM) or class switch recombination (CSR). The mechanism that governs high-fidelity versus mutagenic uracil repair is not understood. The B cell tropic gammaherpesvirus (GHV) encodes a functional homolog of UNG that can process AID induced genomic uracils. GHVUNG does not support hypermutation, suggesting intrinsic properties of UNG influence repair outcome. Noting the structural divergence between the UNGs, we define the RPA interacting motif as the determinant of mutation outcome. UNG or RPA mutants unable to interact with each other, only support high-fidelity repair. In B cells, transversions at the Ig variable region are abated while CSR is supported. Thus UNG-RPA governs the generation of mutations and has implications for locus specific mutagenesis in B cells and deamination associated mutational signatures in cancer.
Collapse
|
6
|
Steele EJ, Franklin A, Lindley RA. Somatic mutation patterns at Ig and Non-Ig Loci. DNA Repair (Amst) 2024; 133:103607. [PMID: 38056368 DOI: 10.1016/j.dnarep.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The reverse transcriptase (RT) model of immunoglobulin (Ig) somatic hypermutation (SHM) has received insufficient scientific attention. This is understandable given that DNA deamination mediated by activation-induced deaminase (AID), the initiating step of Ig SHM, has dominated experiments since 2002. We summarise some key history of the RT Ig SHM model dating to 1987. For example, it is now established that DNA polymerase η, the sole DNA repair polymerase involved in post-replication short-patch repair, is an efficient cellular RT. This implies that it is potentially able to initiate target site reverse transcription by RNA-directed DNA repair at AID-induced lesions. Recently, DNA polymerase θ has also been shown to be an efficient cellular RT. Since DNA polymerase θ plays no significant role in Ig SHM, it could serve a similar RNA-dependent DNA polymerase role as DNA polymerase η at non-Ig loci in the putative RNA-templated nucleotide excision repair of bulky adducts and other mutagenic lesions on the transcribed strand. A major yet still poorly recognised consequence of the proposed RT process in Ig SHM is the generation of significant and characteristic strand-biased mutation signatures at both deoxyadenosine/deoxythymidine and deoxyguanosine/deoxycytidine base pairs. In this historical perspective, we highlight how diagnostic strand-biased mutation signatures are detected in vivo during SHM at both Ig loci in germinal centre B lymphocytes and non-Ig loci in cancer genomes. These strand-biased signatures have been significantly obscured by technical issues created by improper use of the polymerase chain reaction technique. A heightened awareness of this fact should contribute to better data interpretation and somatic mutation pattern recognition both at Ig and non-Ig loci.
Collapse
Affiliation(s)
- Edward J Steele
- Melville Analytics Pty Ltd, 2/102 Duke St, Kangaroo Point, Brisbane 4169, Qld, Australia.
| | - Andrew Franklin
- Novartis Pharmaceuticals UK Limited, The WestWorks Building, White City Place, 195 Wood Lane, W12 7FQ London, United Kingdom
| | - Robyn A Lindley
- GMDxgenomics, Suite 201, 697 Burke Rd, Camberwell, Melbourne 3124, Vic, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Vic, Australia
| |
Collapse
|
7
|
Jaiswal A, Roy R, Tamrakar A, Singh AK, Kar P, Kodgire P. Activation-induced cytidine deaminase an antibody diversification enzyme interacts with chromatin modifier UBN1 in B-cells. Sci Rep 2023; 13:19615. [PMID: 37949972 PMCID: PMC10638239 DOI: 10.1038/s41598-023-46448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key mediator of antibody diversification in activated B-cells by the process of somatic hypermutation (SHM) and class switch recombination (CSR). Targeting AID to the Ig genes requires transcription (initiation and elongation), enhancers, and its interaction with numerous factors. Furthermore, the HIRA chaperon complex, a regulator of chromatin architecture, is indispensable for SHM. The HIRA chaperon complex consists of UBN1, ASF1a, HIRA, and CABIN1 that deposit H3.3 onto the DNA, the SHM hallmark. We explored whether UBN1 interacts with AID using computational and in-vitro experiments. Interestingly, our in-silico studies, such as molecular docking and molecular dynamics simulation results, predict that AID interacts with UBN1. Subsequently, co-immunoprecipitation and pull-down experiments established interactions between UBN1 and AID inside B-cells. Additionally, a double immunofluorescence assay confirmed that AID and UBN1 were co-localized in the human and chicken B-cell lines. Moreover, proximity ligation assay studies validated that AID interacts with UBN1. Ours is the first report on the interaction of genome mutator enzyme AID with UBN1. Nevertheless, the fate of interaction between UBN1 and AID is yet to be explored in the context of SHM or CSR.
Collapse
Affiliation(s)
- Ankit Jaiswal
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Rajarshi Roy
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Anubhav Tamrakar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Amit Kumar Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Parimal Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India
| | - Prashant Kodgire
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, 453 552, India.
| |
Collapse
|
8
|
Bello A, Hirth G, Voigt S, Tepper S, Jungnickel B. Mechanism and regulation of secondary immunoglobulin diversification. Cell Cycle 2023; 22:2070-2087. [PMID: 37909747 PMCID: PMC10761156 DOI: 10.1080/15384101.2023.2275397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023] Open
Abstract
Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.
Collapse
Affiliation(s)
- Amanda Bello
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Gianna Hirth
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Stefanie Voigt
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Sandra Tepper
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
9
|
Jiao J, Lv Z, Wang Y, Fan L, Yang A. The off-target effects of AID in carcinogenesis. Front Immunol 2023; 14:1221528. [PMID: 37600817 PMCID: PMC10436223 DOI: 10.3389/fimmu.2023.1221528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) plays a crucial role in promoting B cell diversification through somatic hypermutation (SHM) and class switch recombination (CSR). While AID is primarily associated with the physiological function of humoral immune response, it has also been linked to the initiation and progression of lymphomas. Abnormalities in AID have been shown to disrupt gene networks and signaling pathways in both B-cell and T-cell lineage lymphoblastic leukemia, although the full extent of its role in carcinogenesis remains unclear. This review proposes an alternative role for AID and explores its off-target effects in regulating tumorigenesis. In this review, we first provide an overview of the physiological function of AID and its regulation. AID plays a crucial role in promoting B cell diversification through SHM and CSR. We then discuss the off-target effects of AID, which includes inducing mutations of non-Igs, epigenetic modification, and the alternative role as a cofactor. We also explore the networks that keep AID in line. Furthermore, we summarize the off-target effects of AID in autoimmune diseases and hematological neoplasms. Finally, we assess the off-target effects of AID in solid tumors. The primary focus of this review is to understand how and when AID targets specific gene loci and how this affects carcinogenesis. Overall, this review aims to provide a comprehensive understanding of the physiological and off-target effects of AID, which will contribute to the development of novel therapeutic strategies for autoimmune diseases, hematological neoplasms, and solid tumors.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yurong Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liye Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
10
|
Jeong SL, Zhang H, Yamaki S, Yang C, McKemy D, Lieber M, Pham P, Goodman M. Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization. Nucleic Acids Res 2022; 50:11738-11754. [PMID: 36321646 PMCID: PMC9723645 DOI: 10.1093/nar/gkac995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
We describe a purified biochemical system to produce monoclonal antibodies (Abs) in vitro using activation-induced deoxycytidine deaminase (AID) and DNA polymerase η (Polη) to diversify immunoglobulin variable gene (IgV) libraries within a phage display format. AID and Polη function during B-cell affinity maturation by catalyzing somatic hypermutation (SHM) of immunoglobulin variable genes (IgV) to generate high-affinity Abs. The IgV mutational motif specificities observed in vivo are conserved in vitro. IgV mutations occurred in antibody complementary determining regions (CDRs) and less frequently in framework (FW) regions. A unique feature of our system is the use of AID and Polη to perform repetitive affinity maturation on libraries reconstructed from a preceding selection step. We have obtained scFv Abs against human glucagon-like peptide-1 receptor (GLP-1R), a target in the treatment of type 2 diabetes, and VHH nanobodies targeting Fatty Acid Amide Hydrolase (FAAH), involved in chronic pain, and artemin, a neurotropic factor that regulates cold pain. A round of in vitro affinity maturation typically resulted in a 2- to 4-fold enhancement in Ab-Ag binding, demonstrating the utility of the system. We tested one of the affinity matured nanobodies and found that it reduced injury-induced cold pain in a mouse model.
Collapse
Affiliation(s)
- Soo Lim Jeong
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hongyu Zhang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shanni Yamaki
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Chenyu Yang
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - David D McKemy
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA,Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA
| | - Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Myron F Goodman
- To whom correspondence should be addressed. Tel: +1 213 740 5190; Fax: +1 213 821 1138;
| |
Collapse
|
11
|
Tan J, Forner J, Karcher D, Bock R. DNA base editing in nuclear and organellar genomes. Trends Genet 2022; 38:1147-1169. [PMID: 35853769 DOI: 10.1016/j.tig.2022.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 01/24/2023]
Abstract
Genome editing continues to revolutionize biological research. Due to its simplicity and flexibility, CRISPR/Cas-based editing has become the preferred technology in most systems. Cas nucleases tolerate fusion to large protein domains, thus allowing combination of their DNA recognition properties with new enzymatic activities. Fusion to nucleoside deaminase or reverse transcriptase domains has produced base editors and prime editors that, instead of generating double-strand breaks in the target sequence, induce site-specific alterations of single (or a few adjacent) nucleotides. The availability of protein-only genome editing reagents based on transcription activator-like effectors has enabled the extension of base editing to the genomes of chloroplasts and mitochondria. In this review, we summarize currently available base editing methods for nuclear and organellar genomes. We highlight recent advances with improving precision, specificity, and efficiency and discuss current limitations and future challenges. We also provide a brief overview of applications in agricultural biotechnology and gene therapy.
Collapse
Affiliation(s)
- Junjie Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Innovation Center for Genome Editing and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
12
|
Heterologous expression of hAID in E. coli leads to the production of a splice isoform of AID: hAIDδC, a mystery to be explored. Protein Expr Purif 2022; 199:106149. [PMID: 35952962 DOI: 10.1016/j.pep.2022.106149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
Abstract
Activation-induced cytidine deaminase (AID) is a key player that initiates antibody diversification in activated B-cell. AID mediates somatic hypermutation (SHM) and class switch recombination (CSR) via the deamination of cytosine to uracil at the Ig locus, resulting in the production of high-affinity antibodies. AID is predominantly restricted to Ig genes, whereas off-targeting of AID leads to lymphocyte-related malignancies. Interestingly, apart from FL-AID other splice isoforms of AID are highly expressed in the lymphocyte malignancies. In our study, we found that the heterologous expression of hAID-FL in E. coli cells produced two induced bands of hAID as demonstrated by SDS-PAGE and western blotting. Remarkably, peptide mapping data predicted that one band is hAID-FL and the other is its splice isoform, hAIDδE4a. To get an insight into why E. coli cells expressed hAID-FL and hAID variant, we mutated the 5' and 3' splice site of a putative intron of hAID, but it failed to produce only hAID-FL. Incidentally, hAID expressed with fusion partners also displayed two bands, and peptide mapping data strongly suggest that besides hAID-FL, the lower band showed a significant number of amino acids missing towards the C-terminal domain (named as hAIDδC). Our results are the first report to show that expression of recombinant hAID alone or irrespective of solubilization tags in E. coli cells produced hAID-FL and hAIDδC. It will be fascinating to explore the potential mechanism underlying the expression of hAIDδC from recombinant hAID plasmid in E. coli cells.
Collapse
|
13
|
Velázquez E, Álvarez B, Fernández LÁ, de Lorenzo V. Hypermutation of specific genomic loci of Pseudomonas putida for continuous evolution of target genes. Microb Biotechnol 2022; 15:2309-2323. [PMID: 35695013 PMCID: PMC9437889 DOI: 10.1111/1751-7915.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/04/2022] Open
Abstract
The ability of T7 RNA polymerase (RNAPT7 ) fusions to cytosine deaminases (CdA) for entering C➔T changes in any DNA segment downstream of a T7 promoter was exploited for hyperdiversification of defined genomic portions of Pseudomonas putida KT2440. To this end, test strains were constructed in which the chromosomally encoded pyrF gene (the prokaryotic homologue of yeast URA3) was flanked by T7 transcription initiation and termination signals and also carried plasmids expressing constitutively either high-activity (lamprey's) or low-activity (rat's) CdA-RNAPT7 fusions. The DNA segment-specific mutagenic action of these fusions was then tested in strains lacking or not uracil-DNA glycosylase (UDG), that is ∆ung/ung+ variants. The resulting diversification was measured by counting single nucleotide changes in clones resistant to 5-fluoroorotic acid (5FOA), which otherwise is transformed by wild-type PyrF into a toxic compound. Although the absence of UDG dramatically increased mutagenic rates with both CdA-RNAPT7 fusions, the most active variant - pmCDA1 - caused extensive appearance of 5FOA-resistant colonies in the wild-type strain not limited to C➔T but including also a range of other changes. Furthermore, the presence/absence of UDG activity swapped cytosine deamination preference between DNA strands. These qualities provided the basis of a robust system for continuous evolution of preset genomic portions of P. putida and beyond.
Collapse
Affiliation(s)
- Elena Velázquez
- Systems Biology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Beatriz Álvarez
- Microbiology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Luis Ángel Fernández
- Microbiology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología (CNB‐CSIC)28049MadridSpain
| |
Collapse
|
14
|
Zhou W, Yang J, Zhang Y, Hu X, Wang W. Current landscape of gene-editing technology in biomedicine: Applications, advantages, challenges, and perspectives. MedComm (Beijing) 2022; 3:e155. [PMID: 35845351 PMCID: PMC9283854 DOI: 10.1002/mco2.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
The expanding genome editing toolbox has revolutionized life science research ranging from the bench to the bedside. These "molecular scissors" have offered us unprecedented abilities to manipulate nucleic acid sequences precisely in living cells from diverse species. Continued advances in genome editing exponentially broaden our knowledge of human genetics, epigenetics, molecular biology, and pathology. Currently, gene editing-mediated therapies have led to impressive responses in patients with hematological diseases, including sickle cell disease and thalassemia. With the discovery of more efficient, precise and sophisticated gene-editing tools, more therapeutic gene-editing approaches will enter the clinic to treat various diseases, such as acquired immunodeficiency sydrome (AIDS), hematologic malignancies, and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These initial successes have spurred the further innovation and development of gene-editing technology. In this review, we will introduce the architecture and mechanism of the current gene-editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease-based tools and other protein-based DNA targeting systems, and we summarize the meaningful applications of diverse technologies in preclinical studies, focusing on the establishment of disease models and diagnostic techniques. Finally, we provide a comprehensive overview of clinical information using gene-editing therapeutics for treating various human diseases and emphasize the opportunities and challenges.
Collapse
Affiliation(s)
- Weilin Zhou
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Jinrong Yang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of HematologyHematology Research LaboratoryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanP. R. China
| | - Yalan Zhang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| | - Xiaoyi Hu
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
- Department of Gynecology and ObstetricsDevelopment and Related Disease of Women and Children Key Laboratory of Sichuan ProvinceKey Laboratory of Birth Defects and Related Diseases of Women and ChildrenMinistry of EducationWest China Second HospitalSichuan UniversityChengduP. R. China
| | - Wei Wang
- Department of BiotherapyyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduPeople's Republic of China
| |
Collapse
|
15
|
Abstract
Activation-induced cytidine deaminase (AID) initiates somatic hypermutation of immunoglobulin (Ig) gene variable regions and class switch recombination (CSR) of Ig heavy chain constant regions. Two decades of intensive research has greatly expanded our knowledge of how AID functions in peripheral B cells to optimize antibody responses against infections, while maintaining tight regulation of AID to restrain its activity to protect B cell genomic integrity. The many exciting recent advances in the field include: 1) the first description of AID's molecular structure, 2) remarkable advances in high throughput approaches that precisely track AID targeting genome-wide, and 3) the discovery that the cohesion-mediate loop extrusion mechanism [initially discovered in V(D)J recombination studies] also governs AID-medicated CSR. These advances have significantly advanced our understanding of AID's biochemical properties in vitro and AID's function and regulation in vivo. This mini review will discuss these recent discoveries and outline the challenges and questions that remain to be addressed.
Collapse
|
16
|
Sun J, Li C, Hu Y, Ding Y, Wu T. A structure change-induced fluorescent biosensor for uracil-DNA glycosylase activity detection based on the substrate preference of Lambda exonuclease. Talanta 2022; 243:123350. [DOI: 10.1016/j.talanta.2022.123350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 01/03/2023]
|
17
|
Heltzel JHM, Maul RW, Yang W, Gearhart PJ. Promoter Proximity Defines Mutation Window for V H and V Κ Genes Rearranged to Different J Genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2220-2226. [PMID: 35418469 PMCID: PMC9050841 DOI: 10.4049/jimmunol.2101002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/21/2022] [Indexed: 05/03/2023]
Abstract
Somatic hypermutation induced by activation-induced deaminase (AID) occurs at high densities between the Ig V gene promoter and intronic enhancer, which encompasses DNA encoding the rearranged V gene exon and J intron. It has been proposed that proximity between the promoter and enhancer defines the boundaries of mutation in V regions. However, depending on the J gene used, the distance between the promoter and enhancer is quite variable and may result in differential targeting around the V gene. To examine the effect of distance in mutation accumulation, we sequenced 320 clones containing different endogenous rearranged V genes in the IgH and Igκ loci from Peyer's patch B cells of mice. Clones were grouped by their use of different J genes. Distances between the V gene and enhancer ranged from ∼2.3 kb of intron DNA for rearrangements using J1, ∼2.0 kb for rearrangements using J2, ∼1.6 kb for rearrangements using J3 (H) or 4 (κ), and 1.1 kb for rearrangements using J4 (H) or 5 (κ). Strikingly, >90% of intron mutations occurred within 1 kb downstream of the J gene for both H and κ clones, regardless of which J gene was used. Thus, there is no evidence that the intron sequence or enhancer plays a role in determining the extent of mutation. The results indicate that V region intron mutations are targeted by their proximity to the promoter, suggesting they result from AID interactions with RNA polymerase II over a 1-kb region.
Collapse
Affiliation(s)
- Justin H M Heltzel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
18
|
IRF4 deficiency vulnerates B-cell progeny for leukemogenesis via somatically acquired Jak3 mutations conferring IL-7 hypersensitivity. Cell Death Differ 2022; 29:2163-2176. [PMID: 35459909 PMCID: PMC9613660 DOI: 10.1038/s41418-022-01005-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/13/2022] Open
Abstract
The processes leading from disturbed B-cell development to adult B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) remain poorly understood. Here, we describe Irf4−/− mice as prone to developing BCP-ALL with age. Irf4−/− preB-I cells exhibited impaired differentiation but enhanced proliferation in response to IL-7, along with reduced retention in the IL-7 providing bone marrow niche due to decreased CXCL12 responsiveness. Thus selected, preB-I cells acquired Jak3 mutations, probably following irregular AID activity, resulting in malignant transformation. We demonstrate heightened IL-7 sensitivity due to Jak3 mutants, devise a model to explain it, and describe structural and functional similarities to Jak2 mutations often occurring in human Ph-like ALL. Finally, targeting JAK signaling with Ruxolitinib in vivo prolonged survival of mice bearing established Irf4−/− leukemia. Intriguingly, organ infiltration including leukemic meningeosis was selectively reduced without affecting blood blast counts. In this work, we present spontaneous leukemogenesis following IRF4 deficiency with potential implications for high-risk BCP-ALL in adult humans.
Collapse
|
19
|
Wu L, Shukla V, Yadavalli AD, Dinesh RK, Xu D, Rao A, Schatz DG. HMCES protects immunoglobulin genes specifically from deletions during somatic hypermutation. Genes Dev 2022; 36:433-450. [PMID: 35450882 PMCID: PMC9067407 DOI: 10.1101/gad.349438.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/29/2022] [Indexed: 01/07/2023]
Abstract
Somatic hypermutation (SHM) produces point mutations in immunoglobulin (Ig) genes in B cells when uracils created by the activation-induced deaminase are processed in a mutagenic manner by enzymes of the base excision repair (BER) and mismatch repair (MMR) pathways. Such uracil processing creates DNA strand breaks and is susceptible to the generation of deleterious deletions. Here, we demonstrate that the DNA repair factor HMCES strongly suppresses deletions without significantly affecting other parameters of SHM in mouse and human B cells, thereby facilitating the production of antigen-specific antibodies. The deletion-prone repair pathway suppressed by HMCES operates downstream from the uracil glycosylase UNG and is mediated by the combined action of BER factor APE2 and MMR factors MSH2, MSH6, and EXO1. HMCES's ability to shield against deletions during SHM requires its capacity to form covalent cross-links with abasic sites, in sharp contrast to its DNA end-joining role in class switch recombination but analogous to its genome-stabilizing role during DNA replication. Our findings lead to a novel model for the protection of Ig gene integrity during SHM in which abasic site cross-linking by HMCES intercedes at a critical juncture during processing of vulnerable gapped DNA intermediates by BER and MMR enzymes.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California 92037, USA
| | | | - Ravi K Dinesh
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Dijin Xu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, California 92037, USA
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
- Consortium for Regenerative Medicine, La Jolla, California 92037, USA
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
20
|
Chen Y, Luo L, Deng L, Tian X, Chen S, Xu A, Yuan S. New Insights Into the Lineage-Specific Expansion and Functional Diversification of Lamprey AID/APOBEC Family. Front Immunol 2022; 13:822616. [PMID: 35359986 PMCID: PMC8962628 DOI: 10.3389/fimmu.2022.822616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The AID/APOBEC family which converts cytidine to uridine on RNA or DNA experienced dynamic expansion in primates in order to resist exogenous viruses and endogenous retrotransposons. Recently, expansion of AID/APOBEC-like homologs has also been observed in the extant jawless vertebrate lamprey. To reveal what causes such expansion and leads to the functional diversification of lamprey cytosine deaminases (CDAs), we reassessed the CDA genes in Lethenteron japonicum (Lj). We first confirmed the expansion of LjCDA1L1 (CDA1-like 1) genes and found the expression correlation of LjCDA2 and LjCDA1L2 with LjVLRs (variable lymphocyte receptors). Among up to 14 LjCDA1L1 proteins, LjCDA1L1_4a has an extremely high deamination activity on ssDNA and buDNA and, unexpectedly, on dsDNA. LjCDA1L1s can also restrict the infection of HSV-1 particles. Thus, the arms race between the host and pathogens along with the recruitment by VLR assembly may participate together to form a driving force in the expansion and diversification of the lamprey AID/APOBEC family.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingjie Luo
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lisi Deng
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Tian
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shangwu Chen
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anlong Xu
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| | - Shaochun Yuan
- Guangdong Key Laboratory of Pharmaceutical Functional Genes, Southern Laboratory of Ocean Science and Engineering (Zhuhai), State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Shaochun Yuan, ; Anlong Xu,
| |
Collapse
|
21
|
Sepúlveda-Yáñez JH, Alvarez Saravia D, Pilzecker B, van Schouwenburg PA, van den Burg M, Veelken H, Navarrete MA, Jacobs H, Koning MT. Tandem Substitutions in Somatic Hypermutation. Front Immunol 2022; 12:807015. [PMID: 35069591 PMCID: PMC8781386 DOI: 10.3389/fimmu.2021.807015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.
Collapse
Affiliation(s)
- Julieta H Sepúlveda-Yáñez
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
- School of Medicine, University of Magallanes, Punta Arenas, Chile
| | | | - Bas Pilzecker
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Mirjam van den Burg
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Marvyn T Koning
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Wang Y, Wang H, Jian Y, Luo Z, Shao H, Zhang W. Strategies for optimization of the CRISPR-based genome editing system for enhanced editing specificity. Hum Gene Ther 2021; 33:358-370. [PMID: 34963339 DOI: 10.1089/hum.2021.283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) system is inarguably the most valuable gene editing tool ever discovered. Currently, three classes of CRISPR-based genome editing systems have been developed for gene editing, including CRISPR/Cas nucleases, base editors (BEs) and prime editors (PEs). Ever-evolving CRISPR technology plays an important role in medicine; however, the biggest obstacle to its use in clinical practice is the induction of off-target effects (OTEs) during targeted editing. Therefore, continuous improvement and optimization of the CRISPR system for reduction of OTEs is a major focus in the field of CRISPR research. This review aims to provide a comprehensive guide for optimization of the CRISPR-based genome editing system.
Collapse
Affiliation(s)
- Yangmin Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Haozheng Wang
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Yingzhen Jian
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Zhongtao Luo
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Hongwei Shao
- Guangdong Pharmaceutical University, 71237, Guangzhou, Guangdong, China;
| | - Wenfeng Zhang
- Guangdong Pharmaceutical University, 71237, School of Biosciences and Biopharmaceutics , 28 E. Rd outside the City of Guangzhou University, Guangzhou, China, 510006;
| |
Collapse
|
23
|
Alexeeva M, Moen MN, Xu XM, Rasmussen A, Leiros I, Kirpekar F, Klungland A, Alsøe L, Nilsen H, Bjelland S. Intrinsic Strand-Incision Activity of Human UNG: Implications for Nick Generation in Immunoglobulin Gene Diversification. Front Immunol 2021; 12:762032. [PMID: 35003074 PMCID: PMC8730318 DOI: 10.3389/fimmu.2021.762032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022] Open
Abstract
Uracil arises in cellular DNA by cytosine (C) deamination and erroneous replicative incorporation of deoxyuridine monophosphate opposite adenine. The former generates C → thymine transition mutations if uracil is not removed by uracil-DNA glycosylase (UDG) and replaced by C by the base excision repair (BER) pathway. The primary human UDG is hUNG. During immunoglobulin gene diversification in activated B cells, targeted cytosine deamination by activation-induced cytidine deaminase followed by uracil excision by hUNG is important for class switch recombination (CSR) and somatic hypermutation by providing the substrate for DNA double-strand breaks and mutagenesis, respectively. However, considerable uncertainty remains regarding the mechanisms leading to DNA incision following uracil excision: based on the general BER scheme, apurinic/apyrimidinic (AP) endonuclease (APE1 and/or APE2) is believed to generate the strand break by incising the AP site generated by hUNG. We report here that hUNG may incise the DNA backbone subsequent to uracil excision resulting in a 3´-α,β-unsaturated aldehyde designated uracil-DNA incision product (UIP), and a 5´-phosphate. The formation of UIP accords with an elimination (E2) reaction where deprotonation of C2´ occurs via the formation of a C1´ enolate intermediate. UIP is removed from the 3´-end by hAPE1. This shows that the first two steps in uracil BER can be performed by hUNG, which might explain the significant residual CSR activity in cells deficient in APE1 and APE2.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Marivi Nabong Moen
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Xiang Ming Xu
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
| | - Anette Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ingar Leiros
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, Tromsø, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Lene Alsøe
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Department of Clinical Molecular Biology, University of Oslo, Oslo, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, Stavanger, Norway
- Section of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
- *Correspondence: Svein Bjelland, ; Hilde Nilsen,
| |
Collapse
|
24
|
Sepulveda-Yanez JH, Alvarez-Saravia D, Fernandez-Goycoolea J, Aldridge J, van Bergen CAM, Posthuma W, Uribe-Paredes R, Veelken H, Navarrete MA. Integration of Mutational Signature Analysis with 3D Chromatin Data Unveils Differential AID-Related Mutagenesis in Indolent Lymphomas. Int J Mol Sci 2021; 22:13015. [PMID: 34884820 PMCID: PMC8657711 DOI: 10.3390/ijms222313015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/20/2021] [Accepted: 11/29/2021] [Indexed: 01/19/2023] Open
Abstract
Activation-induced deaminase (AID) is required for somatic hypermutation in immunoglobulin genes, but also induces off-target mutations. Follicular lymphoma (FL) and chronic lymphocytic leukemia (CLL), the most frequent types of indolent B-cell tumors, are exposed to AID activity during lymphomagenesis. We designed a workflow integrating de novo mutational signatures extraction and fitting of COSMIC (Catalogue Of Somatic Mutations In Cancer) signatures, with tridimensional chromatin conformation data (Hi-C). We applied the workflow to exome sequencing data from lymphoma samples. In 33 FL and 30 CLL samples, 42% and 34% of the contextual mutations could be traced to a known AID motif. We demonstrate that both CLL and FL share mutational processes dominated by spontaneous deamination, failures in DNA repair, and AID activity. The processes had equiproportional distribution across active and nonactive chromatin compartments in CLL. In contrast, canonical AID activity and failures in DNA repair pathways in FL were significantly higher within the active chromatin compartment. Analysis of DNA repair genes revealed a higher prevalence of base excision repair gene mutations (p = 0.02) in FL than CLL. These data indicate that AID activity drives the genetic landscapes of FL and CLL. However, the final result of AID-induced mutagenesis differs between these lymphomas depending on chromatin compartmentalization and mutations in DNA repair pathways.
Collapse
MESH Headings
- Alleles
- Chromatin/metabolism
- Cytidine Deaminase/genetics
- DNA Mutational Analysis
- DNA Repair/genetics
- Databases, Genetic
- Gene Frequency
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/pathology
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Julieta H. Sepulveda-Yanez
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| | - Diego Alvarez-Saravia
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| | | | - Jacqueline Aldridge
- Department of Computer Engineering, University of Magallanes, Punta Arenas 6210427, Chile; (J.A.); (R.U.-P.)
| | - Cornelis A. M. van Bergen
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
| | - Ward Posthuma
- Department of Oncology, Reinier de Graaf Hospital, 2625 AD Delft, The Netherlands;
| | - Roberto Uribe-Paredes
- Department of Computer Engineering, University of Magallanes, Punta Arenas 6210427, Chile; (J.A.); (R.U.-P.)
| | - Hendrik Veelken
- Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (J.H.S.-Y.); (C.A.M.v.B.); (H.V.)
| | - Marcelo A. Navarrete
- School of Medicine, University of Magallanes, Punta Arenas 6210427, Chile;
- Centro Asistencial Docente y de Investigación, University of Magallanes, Punta Arenas 6210005, Chile
| |
Collapse
|
25
|
Que L, Li Y, Dainichi T, Kukimoto I, Nishiyama T, Nakano Y, Shima K, Suzuki T, Sato Y, Horike S, Aizaki H, Watashi K, Kato T, Aly HH, Watanabe N, Kabashima K, Wakae K, Muramatsu M. Interferon-gamma induced APOBEC3B contributes to Merkel cell polyomavirus genome mutagenesis in Merkel cell carcinoma. J Invest Dermatol 2021; 142:1793-1803.e11. [DOI: 10.1016/j.jid.2021.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
|
26
|
Feng Y, Li C, Stewart JA, Barbulescu P, Seija Desivo N, Álvarez-Quilón A, Pezo RC, Perera MLW, Chan K, Tong AHY, Mohamad-Ramshan R, Berru M, Nakib D, Li G, Kardar GA, Carlyle JR, Moffat J, Durocher D, Di Noia JM, Bhagwat AS, Martin A. FAM72A antagonizes UNG2 to promote mutagenic repair during antibody maturation. Nature 2021; 600:324-328. [PMID: 34819670 PMCID: PMC9425297 DOI: 10.1038/s41586-021-04144-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/14/2021] [Indexed: 11/09/2022]
Abstract
Activation-induced cytidine deaminase (AID) catalyses the deamination of deoxycytidines to deoxyuracils within immunoglobulin genes to induce somatic hypermutation and class-switch recombination1,2. AID-generated deoxyuracils are recognized and processed by subverted base-excision and mismatch repair pathways that ensure a mutagenic outcome in B cells3-6. However, why these DNA repair pathways do not accurately repair AID-induced lesions remains unknown. Here, using a genome-wide CRISPR screen, we show that FAM72A is a major determinant for the error-prone processing of deoxyuracils. Fam72a-deficient CH12F3-2 B cells and primary B cells from Fam72a-/- mice exhibit reduced class-switch recombination and somatic hypermutation frequencies at immunoglobulin and Bcl6 genes, and reduced genome-wide deoxyuracils. The somatic hypermutation spectrum in B cells from Fam72a-/- mice is opposite to that observed in mice deficient in uracil DNA glycosylase 2 (UNG2)7, which suggests that UNG2 is hyperactive in FAM72A-deficient cells. Indeed, FAM72A binds to UNG2, resulting in reduced levels of UNG2 protein in the G1 phase of the cell cycle, coinciding with peak AID activity. FAM72A therefore causes U·G mispairs to persist into S phase, leading to error-prone processing by mismatch repair. By disabling the DNA repair pathways that normally efficiently remove deoxyuracils from DNA, FAM72A enables AID to exert its full effects on antibody maturation. This work has implications in cancer, as the overexpression of FAM72A that is observed in many cancers8 could promote mutagenesis.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | | | - Philip Barbulescu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Noé Seija Desivo
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alejandro Álvarez-Quilón
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Rossanna C Pezo
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Nakib
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gavin Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Gholam Ali Kardar
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - James R Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Durocher
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Javier M Di Noia
- Institut de recherches cliniques de Montréal, Montreal, Quebec, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Ullah A, Mabood N, Maqbool M, Khan L, Ullah M. Cytidine deamination-induced perpetual immunity to SAR-CoV-2 infection is a potential new therapeutic target. Int J Med Sci 2021; 18:3788-3793. [PMID: 34790054 PMCID: PMC8579299 DOI: 10.7150/ijms.61779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022] Open
Abstract
As the world is racing to develop perpetual immunity to the SARS-CoV-2 virus. The emergence of new viral strains, together with vaccination and reinfections, are all contributing to a long-term immunity against the deadly virus that has taken over the world since its introduction to humans in late December 2019. The discovery that more than 95 percent of people who recovered from COVID-19 had long-lasting immunity and that asymptomatic people have a different immune response to SARS-CoV-2 than symptomatic people has shifted attention to how our immune system initiates such diverse responses. These findings have provided reason to believe that SARS-CoV-2 days are numbered. Hundreds of research papers have been published on the causes of long-lasting immune responses and variations in the numbers of different immune cell types in COVID 19 survivors, but the main reason of these differences has still not been adequately identified. In this article, we focus on the activation-induced cytidine deaminase (AID), which initiates molecular processes that allow our immune system to generate antibodies against SARS-CoV-2. To establish lasting immunity to SARS-CoV-2, we suggest that AID could be the key to unlocking it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
28
|
Ullah A, Mabood N, Maqbool M, Khan L, Khan M, Ullah M. SAR-CoV-2 infection, emerging new variants and the role of activation induced cytidine deaminase (AID) in lasting immunity. Saudi Pharm J 2021; 29:1181-1184. [PMID: 34566457 PMCID: PMC8452370 DOI: 10.1016/j.jsps.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
As the world faces a fourth COVID-19 spike, scientists are learning a lot more about the new SARS-CoV-2 strains that were previously unknown. Currently, the Delta versions of SARS-CoV-2 have become the prevalent strains in much of the world since it first appeared in India in late 2020. Researchers believe they have discovered why Delta has been so successful: those infected with it create significantly more virus than those infected with the original strain of SARS-CoV-2, making it extremely contagious. This has redirected the focus to how our immune system defends us from these various pathogens and initiates such varied responses. Hundreds of research papers have been published on the origins of long-lasting immune responses and disparities in the numbers of different immune cell types in COVID 19 survivors, but the primary architect of these discrepancies has yet to be discovered. In this essay, we will concentrate on the primary architect protein, activation induced cytidine deaminase (AID), which triggers molecular processes that allow our immune system to produce powerful antibodies and SARS-CoV-2 specific B cells, allowing us to outwit the virus. We believe that if we ever achieve permanent immunity to SARS-CoV-2 infection, AID will be the key to releasing it.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Neelam Mabood
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luqman Khan
- Cardiovascular Vascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Maria Khan
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| | - Mujib Ullah
- Department of Immunology and Transplantation, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
29
|
Nucleotide Pool Imbalance and Antibody Gene Diversification. Vaccines (Basel) 2021; 9:vaccines9101050. [PMID: 34696158 PMCID: PMC8538681 DOI: 10.3390/vaccines9101050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/10/2023] Open
Abstract
The availability and adequate balance of deoxyribonucleoside triphosphate (dNTP) is an important determinant of both the fidelity and the processivity of DNA polymerases. Therefore, maintaining an optimal balance of the dNTP pool is critical for genomic stability in replicating and quiescent cells. Since DNA synthesis is required not only in genomic replication but also in DNA damage repair and recombination, the abnormalities in the dNTP pool affect a wide range of chromosomal activities. The generation of antibody diversity relies on antigen-independent V(D)J recombination, as well as antigen-dependent somatic hypermutation and class switch recombination. These processes involve diverse sets of DNA polymerases, which are affected by the dNTP pool imbalances. This review discusses the role of the optimal dNTP pool balance in the diversification of antibody encoding genes.
Collapse
|
30
|
Böttcher K, Braunschmidt K, Hirth G, Schärich K, Klassert TE, Stock M, Sorgatz J, Fischer-Burkart S, Ullrich S, Frankenberger S, Kritsch D, Kosan C, Küppers R, Strobl LJ, Slevogt H, Zimber-Strobl U, Jungnickel B. Context-dependent regulation of immunoglobulin mutagenesis by p53. Mol Immunol 2021; 138:128-136. [PMID: 34392111 DOI: 10.1016/j.molimm.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
p53 plays a major role in genome maintenance. In addition to multiple p53 functions in the control of DNA repair, a regulation of DNA damage bypass via translesion synthesis has been implied in vitro. Somatic hypermutation of immunoglobulin genes for affinity maturation of antibody responses is based on aberrant translesion polymerase action and must be subject to stringent control to prevent genetic alterations and lymphomagenesis. When studying the role of p53 in somatic hypermutation in vivo, we found altered translesion polymerase-mediated A:T mutagenesis in mice lacking p53 in all organs, but notably not in mice with B cell-specific p53 inactivation, implying that p53 functions in non-B cells may alter mutagenesis in B cells. During class switch recombination, when p53 prevents formation of chromosomal translocations, we in addition detected a B cell-intrinsic role for p53 in altering G:C and A:T mutagenesis. Thus, p53 regulates translesion polymerase activity and shows differential activity during somatic hypermutation versus class switch recombination in vivo. Finally, p53 inhibition leads to increased somatic hypermutation in human B lymphoma cells. We conclude that loss of p53 function may promote genetic instability via multiple routes during antibody diversification in vivo.
Collapse
Affiliation(s)
- Katrin Böttcher
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Kerstin Braunschmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Gianna Hirth
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Karsten Schärich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Tilman E Klassert
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Magdalena Stock
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Janine Sorgatz
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Sabine Fischer-Burkart
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Steffen Ullrich
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Samantha Frankenberger
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Daniel Kritsch
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| | - Lothar J Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Hortense Slevogt
- Host Septomics, ZIK Septomics, Jena University Hospital, Jena, Germany.
| | - Ursula Zimber-Strobl
- Department of Gene Vectors, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany; Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.
| |
Collapse
|
31
|
Bello A, Jungnickel B. Impact of Chk1 dosage on somatic hypermutation in vivo. Immunol Cell Biol 2021; 99:879-893. [PMID: 34042197 DOI: 10.1111/imcb.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Checkpoint signaling in the context of a functional DNA damage response is crucial for the prevention of oncogenic transformation of cells. Our immune system, though, takes the risk of attenuated checkpoint responses during immunoglobulin diversification. B cells undergo continuous DNA damage and error-prone repair of their immunoglobulin genes during the process of somatic hypermutation. An accompanying attenuation of the DNA damage response via the ATR-Chk1 axis in B cells is believed to allow for a better DNA damage tolerance and for evasion of apoptosis, so as to ensure mutations to be passed on. We sought to determine whether the downregulation of Chk1 could also directly influence the process of hypermutation in vivo by altering the relative activity of error-prone DNA repair pathways. We analyzed the humoral response and the hypermutation process in mice whose B cells express reduced levels of the Chk1 protein. We found that Chk1 heterozygosity limits the accumulation of mutations in the immunoglobulin loci, likely by impacting on the survival of B cells as they accumulate DNA damage. Nevertheless, we unveiled an unanticipated role for Chk1 downregulation in favoring A/T mutagenesis at the antibody-variable regions during hypermutation. Even though immunoglobulin mutagenesis was found to be reduced, Chk1 signaling attenuation allows for sustained mutagenesis outside the immunoglobulin loci. Our study thus reveals that a proper Chk1 dosage is crucial for adequate somatic hypermutation in B cells.
Collapse
Affiliation(s)
- Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
32
|
Bagnara D, Tang C, Brown JR, Kasar S, Fernandes S, Colombo M, Vergani S, Mazzarello AN, Ghiotto F, Bruno S, Morabito F, Rai KR, Kolitz JE, Barrientos JC, Allen SL, Fais F, Scharff MD, MacCarthy T, Chiorazzi N. Post-Transformation IGHV-IGHD-IGHJ Mutations in Chronic Lymphocytic Leukemia B Cells: Implications for Mutational Mechanisms and Impact on Clinical Course. Front Oncol 2021; 11:640731. [PMID: 34113563 PMCID: PMC8186829 DOI: 10.3389/fonc.2021.640731] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Analyses of IGHV gene mutations in chronic lymphocytic leukemia (CLL) have had a major impact on the prognostication and treatment of this disease. A hallmark of IGHV-mutation status is that it very rarely changes clonally over time. Nevertheless, targeted and deep DNA sequencing of IGHV-IGHD-IGHJ regions has revealed intraclonal heterogeneity. We used a DNA sequencing approach that achieves considerable depth and minimizes artefacts and amplification bias to identify IGHV-IGHD-IGHJ subclones in patients with prolonged temporal follow-up. Our findings extend previous studies, revealing intraclonal IGHV-IGHD-IGHJ diversification in almost all CLL clones. Also, they indicate that some subclones with additional IGHV-IGHD-IGHJ mutations can become a large fraction of the leukemic burden, reaching numerical criteria for monoclonal B-cell lymphocytosis. Notably, the occurrence and complexity of post-transformation IGHV-IGHD-IGHJ heterogeneity and the expansion of diversified subclones are similar among U-CLL and M-CLL patients. The molecular characteristics of the mutations present in the parental, clinically dominant CLL clone (CDC) differed from those developing post-transformation (post-CDC). Post-CDC mutations exhibit significantly lower fractions of mutations bearing signatures of activation induced deaminase (AID) and of error-prone repair by Polη, and most of the mutations were not ascribable to those enzymes. Additionally, post-CDC mutations displayed a lower percentage of nucleotide transitions compared with transversions that was also not like the action of AID. Finally, the post-CDC mutations led to significantly lower ratios of replacement to silent mutations in VH CDRs and higher ratios in VH FRs, distributions different from mutations found in normal B-cell subsets undergoing an AID-mediated process. Based on these findings, we propose that post-transformation mutations in CLL cells either reflect a dysfunctional standard somatic mutational process or point to the action of another mutational process not previously associated with IG V gene loci. If the former option is the case, post-CDC mutations could lead to a lesser dependence on antigen dependent BCR signaling and potentially a greater influence of off-target, non-IG genomic mutations. Alternatively, the latter activity could add a new stimulatory survival/growth advantage mediated by the BCR through structurally altered FRs, such as that occurring by superantigen binding and stimulation.
Collapse
Affiliation(s)
- Davide Bagnara
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Jennifer R. Brown
- Chronic Lymphocytic Leukemia Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Siddha Kasar
- Chronic Lymphocytic Leukemia Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Stacey Fernandes
- Chronic Lymphocytic Leukemia Center, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Monica Colombo
- Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Vergani
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
| | - Andrea N. Mazzarello
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
| | - Fabio Ghiotto
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Fortunato Morabito
- Biotechnology Research Unit, Azienda Ospedaliera of Cosenza, Cosenza, Italy
- Hematology and Bone Marrow Transplant Unit, Hemato-Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel
| | - Kanti R. Rai
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jonathan E. Kolitz
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Jacqueline C. Barrientos
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Steven L. Allen
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Franco Fais
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Molecular Pathology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matthew D. Scharff
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Nicholas Chiorazzi
- The Feinstein Institutes for Medical Research, Institute for Molecular Medicine, Northwell Health, Manhasset, NY, United States
- Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
33
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
34
|
Baruah B, Deb ML. Catalyst-free and additive-free reactions enabling C-C bond formation: a journey towards a sustainable future. Org Biomol Chem 2021; 19:1191-1229. [PMID: 33480947 DOI: 10.1039/d0ob02149k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the catalyst- and additive-free C-C bond forming reactions reported mostly from the year 2005 to date. C-C bond forming reactions are highly important as large and complex organic molecules can be derived from simpler ones via these reactions. On the other hand, catalyst- and additive-free reactions are economical, environmentally friendly and less sensitive to air/moisture, allow easy separation of products and are operationally simple. Hence, a large number of research articles have been published in this area. Though a few reviews are available on the catalyst-free organic reactions, most of them were published a few years ago. The current review excludes catalysts as well as additives and is specific to only C-C bond formation. Besides many organic name reactions, catalyst/additive-free C-H functionalizations, coupling reactions and UV-visible-light-promoted reactions are also discussed. Undoubtedly, the contents of this review will motivate readers to do more novel work in this area which will accelerate the journey towards a sustainable future.
Collapse
Affiliation(s)
- Biswajita Baruah
- Department of Chemistry, Pandu College, Guwahati-12, Assam, India
| | | |
Collapse
|
35
|
Delgado P, Álvarez-Prado ÁF, Marina-Zárate E, Sernandez IV, Mur SM, de la Barrera J, Sanchez-Cabo F, Cañamero M, de Molina A, Belver L, de Yébenes VG, Ramiro AR. Interplay between UNG and AID governs intratumoral heterogeneity in mature B cell lymphoma. PLoS Genet 2020; 16:e1008960. [PMID: 33362210 PMCID: PMC7790409 DOI: 10.1371/journal.pgen.1008960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/07/2021] [Accepted: 11/08/2020] [Indexed: 12/11/2022] Open
Abstract
Most B cell lymphomas originate from B cells that have germinal center (GC) experience and bear chromosome translocations and numerous point mutations. GC B cells remodel their immunoglobulin (Ig) genes by somatic hypermutation (SHM) and class switch recombination (CSR) in their Ig genes. Activation Induced Deaminase (AID) initiates CSR and SHM by generating U:G mismatches on Ig DNA that can then be processed by Uracyl-N-glycosylase (UNG). AID promotes collateral damage in the form of chromosome translocations and off-target SHM, however, the exact contribution of AID activity to lymphoma generation and progression is not completely understood. Here we show using a conditional knock-in strategy that AID supra-activity alone is not sufficient to generate B cell transformation. In contrast, in the absence of UNG, AID supra-expression increases SHM and promotes lymphoma. Whole exome sequencing revealed that AID heavily contributes to lymphoma SHM, promoting subclonal variability and a wider range of oncogenic variants. Thus, our data provide direct evidence that UNG is a brake to AID-induced intratumoral heterogeneity and evolution of B cell lymphoma.
Collapse
Affiliation(s)
- Pilar Delgado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ángel F. Álvarez-Prado
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ester Marina-Zárate
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Isora V. Sernandez
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Sonia M. Mur
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Jorge de la Barrera
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Fátima Sanchez-Cabo
- Bioinformatics Unit. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - Antonio de Molina
- Comparative Medicine Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Laura Belver
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginia G. de Yébenes
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Almudena R. Ramiro
- B Lymphocyte Biology Lab. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
36
|
Lefranc MP, Lefranc G. Immunoglobulins or Antibodies: IMGT ® Bridging Genes, Structures and Functions. Biomedicines 2020; 8:E319. [PMID: 32878258 PMCID: PMC7555362 DOI: 10.3390/biomedicines8090319] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
IMGT®, the international ImMunoGeneTics® information system founded in 1989 by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science at the interface between immunogenetics and bioinformatics. For the first time, the immunoglobulin (IG) or antibody and T cell receptor (TR) genes were officially recognized as 'genes' as well as were conventional genes. This major breakthrough has allowed the entry, in genomic databases, of the IG and TR variable (V), diversity (D) and joining (J) genes and alleles of Homo sapiens and of other jawed vertebrate species, based on the CLASSIFICATION axiom. The second major breakthrough has been the IMGT unique numbering and the IMGT Collier de Perles for the V and constant (C) domains of the IG and TR and other proteins of the IG superfamily (IgSF), based on the NUMEROTATION axiom. IMGT-ONTOLOGY axioms and concepts bridge genes, sequences, structures and functions, between biological and computational spheres in the IMGT® system (Web resources, databases and tools). They provide the IMGT Scientific chart rules to identify, to describe and to analyse the IG complex molecular data, the huge diversity of repertoires, the genetic (alleles, allotypes, CNV) polymorphisms, the IG dual function (paratope/epitope, effector properties), the antibody humanization and engineering.
Collapse
Affiliation(s)
- Marie-Paule Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| | - Gérard Lefranc
- IMGT, The International ImMunoGeneTics Information System, Laboratoire d’ImmunoGénétique Moléculaire LIGM, Institut de Génétique Humaine IGH, Université de Montpellier UM, Centre National de la Recherche Scientifique CNRS, UMR 9002 CNRS-UM, 141 Rue de la Cardonille, CEDEX 5, 34396 Montpellier, France
| |
Collapse
|
37
|
The Development and Application of a Base Editor in Biomedicine. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2907623. [PMID: 32855962 PMCID: PMC7443245 DOI: 10.1155/2020/2907623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/15/2020] [Indexed: 12/26/2022]
Abstract
Using a base editor to generate monogenic disease models and correct pathogenic point mutations is a breakthrough technology for exploration and treatment of human diseases. As a burgeoning approach for genomic modification, the fused CRISPR/Cas9 with various deaminase separately has significantly increased the efficiency of producing a precise point mutation with minimal insertions or deletions (indels). Along with the flexibility and efficiency, a base editor has been widely used in many fields. This review discusses the recent development of a base editor, including evolution and advance, and highlights the applications and challenges in the field of gene therapy. Depending on rapid improvement and optimization of gene editing technology, the prospect of base editor is immeasurable.
Collapse
|
38
|
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 2020; 38:824-844. [PMID: 32572269 DOI: 10.1038/s41587-020-0561-9] [Citation(s) in RCA: 1199] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
The development of new CRISPR-Cas genome editing tools continues to drive major advances in the life sciences. Four classes of CRISPR-Cas-derived genome editing agents-nucleases, base editors, transposases/recombinases and prime editors-are currently available for modifying genomes in experimental systems. Some of these agents have also moved rapidly into the clinic. Each tool comes with its own capabilities and limitations, and major efforts have broadened their editing capabilities, expanded their targeting scope and improved editing specificity. We analyze key considerations when choosing genome editing agents and identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
39
|
Ling AK, Munro M, Chaudhary N, Li C, Berru M, Wu B, Durocher D, Martin A. SHLD2 promotes class switch recombination by preventing inactivating deletions within the Igh locus. EMBO Rep 2020; 21:e49823. [PMID: 32558186 DOI: 10.15252/embr.201949823] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
The newly identified shieldin complex, composed of SHLD1, SHLD2, SHLD3, and REV7, lies downstream of 53BP1 and acts to inhibit DNA resection and promote NHEJ. Here, we show that Shld2-/- mice have defective class switch recombination (CSR) and that loss of SHLD2 can suppress the embryonic lethality of a Brca1Δ11 mutation, highlighting its role as a key effector of 53BP1. Lymphocyte development and RAG1/2-mediated recombination were unaffected by SHLD2 deficiency. Interestingly, a significant fraction of Shld2-/- primary B-cells and 53BP1- and shieldin-deficient CH12F3-2 B-cells permanently lose expression of immunoglobulin upon induction of CSR; this population of Ig-negative cells is also seen in other NHEJ-deficient cells and to a much lesser extent in WT cells. This loss of Ig is due to recombination coupled with overactive resection and loss of coding exons in the downstream acceptor constant region. Collectively, these data show that SHLD2 is the key effector of 53BP1 and critical for CSR in vivo by suppressing large deletions within the Igh locus.
Collapse
Affiliation(s)
- Alexanda K Ling
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Meagan Munro
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Natasha Chaudhary
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Maribel Berru
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Brendan Wu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Bharat SS, Li S, Li J, Yan L, Xia L. Base editing in plants: Current status and challenges. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Feng Y, Seija N, Di Noia JM, Martin A. AID in Antibody Diversification: There and Back Again. Trends Immunol 2020; 41:586-600. [PMID: 32434680 PMCID: PMC7183997 DOI: 10.1016/j.it.2020.04.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/01/2023]
Abstract
Activation-Induced cytidine Deaminase (AID) initiates affinity maturation and isotype switching by deaminating deoxycytidines within immunoglobulin genes, leading to somatic hypermutation (SHM) and class switch recombination (CSR). AID thus potentiates the humoral response to clear pathogens. Marking the 20th anniversary of the discovery of AID, we review the current understanding of AID function. We discuss AID biochemistry and how error-free forms of DNA repair are co-opted to prioritize mutagenesis over accuracy during antibody diversification. We discuss the regulation of DNA double-strand break (DSB) repair pathways during CSR. We describe genomic targeting of AID as a multilayered process involving chromatin architecture, cis- and trans-acting factors, and determining mutagenesis – distinct from AID occupancy at loci that are spared from mutation. Subverted base excision repair (BER) and mismatch repair (MMR) pathways act concertedly to generate antibody sequence diversity during SHM. In CSR, DNA DSBs are repaired by the nonhomologous end-joining pathway involving the 53BP1–Rif1–Shieldin axis, and by an alternative end-joining pathway involving HMCES (5-Hydroxymethylcytosine binding, ES-cell-specific) that binds and protects resected DSB ends. Genomic targeting of AID appears to be multilayered, with inbuilt redundancy, but robust enough to ensure that most of the genome is spared from AID activity. Cis elements and genome topology act together with trans-acting factors involved in transcription and RNA processing to determine AID activity at specific Ig regions. Other loci sharing genomic and transcriptional features with the Ig are collaterally targeted during SHM and CSR.
Collapse
Affiliation(s)
- Yuqing Feng
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Noé Seija
- Institute de Recherches Cliniques de Montréal, Montréal, QC, Canada; Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Javier M Di Noia
- Institute de Recherches Cliniques de Montréal, Montréal, QC, Canada; Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada.
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
An enzyme-free and substrate-free electrochemical biosensor with robust porphyrin-based covalent-linked nanomaterial as nanoelectrocatalyst and efficient support for sensitive detection of uracil-DNA glycosylase. Biosens Bioelectron 2020; 154:112014. [DOI: 10.1016/j.bios.2020.112014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/25/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
|
43
|
Abstract
Base editing is emerging as a potent new strategy to achieve precise gene editing. By combining different nucleobase deaminases with Cas9 or Cpf1 proteins, several base editors have recently been developed to achieve targeted base conversions in different genomic contexts. Importantly, base editors have been successfully applied in animals, plants, and bacteria to induce precise substitutions at the single-base level with high efficiency. In this review, we summarize recent progress in the development and application of base editors and discuss some of the future directions of the technology.
Collapse
Affiliation(s)
- Bei Yang
- 1 Shanghai Institute for Advanced Immunochemical Studies and Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- 2 Chinese Academy of Sciences (CAS) Key Laboratory of Computational Biology, CAS-Max Planck Gesellschaft Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Jia Chen
- 3 School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,4 CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
44
|
Synthesis, characterization and application of a novel nanorod-structured organic–inorganic hybrid material as an efficient catalyst for the preparation of aminouracil derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04104-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
46
|
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49903-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: The good, the bad, and the ugly. J Biol Chem 2019; 295:905-913. [PMID: 31843970 DOI: 10.1074/jbc.rev119.011353] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An R-loop is a three-stranded nucleic acid structure that consists of a DNA:RNA hybrid and a displaced strand of DNA. R-loops occur frequently in genomes and have significant physiological importance. They play vital roles in regulating gene expression, DNA replication, and DNA and histone modifications. Several studies have uncovered that R-loops contribute to fundamental biological processes in various organisms. Paradoxically, although they do play essential positive functions required for important biological processes, they can also contribute to DNA damage and genome instability. Recent evidence suggests that R-loops are involved in a number of human diseases, including neurological disorders, cancer, and autoimmune diseases. This review focuses on the molecular basis for R-loop-mediated gene regulation and genomic instability and briefly discusses methods for identifying R-loops in vivo It also highlights recent studies indicating the role of R-loops in DNA double-strand break repair with an updated view of much-needed future goals in R-loop biology.
Collapse
Affiliation(s)
- Youssef A Hegazy
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | | | - Elizabeth J Tran
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907 .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
48
|
Tepper S, Mortusewicz O, Członka E, Bello A, Schmidt A, Jeschke J, Fischbach A, Pfeil I, Petersen-Mahrt SK, Mangerich A, Helleday T, Leonhardt H, Jungnickel B. Restriction of AID activity and somatic hypermutation by PARP-1. Nucleic Acids Res 2019; 47:7418-7429. [PMID: 31127309 PMCID: PMC6698665 DOI: 10.1093/nar/gkz466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/20/2022] Open
Abstract
Affinity maturation of the humoral immune response depends on somatic hypermutation (SHM) of immunoglobulin (Ig) genes, which is initiated by targeted lesion introduction by activation-induced deaminase (AID), followed by error-prone DNA repair. Stringent regulation of this process is essential to prevent genetic instability, but no negative feedback control has been identified to date. Here we show that poly(ADP-ribose) polymerase-1 (PARP-1) is a key factor restricting AID activity during somatic hypermutation. Poly(ADP-ribose) (PAR) chains formed at DNA breaks trigger AID-PAR association, thus preventing excessive DNA damage induction at sites of AID action. Accordingly, AID activity and somatic hypermutation at the Ig variable region is decreased by PARP-1 activity. In addition, PARP-1 regulates DNA lesion processing by affecting strand biased A:T mutagenesis. Our study establishes a novel function of the ancestral genome maintenance factor PARP-1 as a critical local feedback regulator of both AID activity and DNA repair during Ig gene diversification.
Collapse
Affiliation(s)
- Sandra Tepper
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Oliver Mortusewicz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany.,Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Ewelina Członka
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Angelika Schmidt
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Julia Jeschke
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany
| | - Arthur Fischbach
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Ines Pfeil
- Institute of Clinical Molecular Biology, Helmholtz Center Munich, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Svend K Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Aswin Mangerich
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Ludwig Maximilians University Munich, 82152 Planegg-Martinsried, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biology and Pharmacy, Friedrich Schiller University, 07745 Jena, Germany.,Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
49
|
Cortez LM, Brown AL, Dennis MA, Collins CD, Brown AJ, Mitchell D, Mertz TM, Roberts SA. APOBEC3A is a prominent cytidine deaminase in breast cancer. PLoS Genet 2019; 15:e1008545. [PMID: 31841499 PMCID: PMC6936861 DOI: 10.1371/journal.pgen.1008545] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/30/2019] [Accepted: 12/01/2019] [Indexed: 11/19/2022] Open
Abstract
APOBEC cytidine deaminases are the second-most prominent source of mutagenesis in sequenced tumors. Previous studies have proposed that APOBEC3B (A3B) is the major source of mutagenesis in breast cancer (BRCA). We show that APOBEC3A (A3A) is the only APOBEC whose expression correlates with APOBEC-induced mutation load and that A3A expression is responsible for cytidine deamination in multiple BRCA cell lines. Comparative analysis of A3A and A3B expression by qRT-PCR, RSEM-normalized RNA-seq, and unambiguous RNA-seq validated the use of RNA-seq to measure APOBEC expression, which indicates that A3A is the primary correlate with APOBEC-mutation load in primary BRCA tumors. We also demonstrate that A3A has >100-fold more cytidine deamination activity than A3B in the presence of cellular RNA, likely explaining why higher levels of A3B expression contributes less to mutagenesis in BRCA. Our findings identify A3A as a major source of cytidine deaminase activity in breast cancer cells and possibly a prominent contributor to the APOBEC mutation signature.
Collapse
Affiliation(s)
- Luis M. Cortez
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Amber L. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Madeline A. Dennis
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Christopher D. Collins
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Alexander J. Brown
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- School of Molecular Biosciences, Washington State University-Vancouver, Vancouver, WA, United States of America
| | - Debra Mitchell
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Tony M. Mertz
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Steven A. Roberts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
50
|
Heltzel JMH, Gearhart PJ. What Targets Somatic Hypermutation to the Immunoglobulin Loci? Viral Immunol 2019; 33:277-281. [PMID: 31770070 DOI: 10.1089/vim.2019.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the most profound enigmas in B cell biology is how activation-induced deaminase (AID) is targeted to a very small region of DNA in the immunoglobulin loci. Two specific regions are singled out: the variable region of 2 kb that contains rearranged genes on the heavy, κ light, and λ light chain loci, and the switch region of ∼4 kb that contains an extensive stretch of G:C rich DNA on the heavy chain locus. Transcription is required for AID recruitment; however, many genes are also highly transcribed and do not undergo the catastrophic mutagenesis that occurs in variable and switch regions. The DNA sequences of these regions cause RNA polymerase II to accumulate for an extended distance of 2-4 kb. The stalled polymerases then recruit the transcription cofactor Spt5, and AID, which deaminates cytosines to uracils in exposed transcription bubbles. Thus, the immunoglobulin loci are unique in that a favorable combination of DNA sequences and 3' transcription enhancers make them the perfect storm for AID-induced somatic hypermutation.
Collapse
Affiliation(s)
- Justin M H Heltzel
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|