1
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024:10.1007/s11095-024-03783-2. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
2
|
Lanzetti L. Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer. Cell Death Differ 2024:10.1038/s41418-024-01402-6. [PMID: 39438765 DOI: 10.1038/s41418-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
By the time a tumor reaches clinical detectability, it contains around 108-109 cells. However, during tumor formation, significant cell loss occurs due to cell death. In some estimates, it could take up to a thousand cell generations, over a ~ 20-year life-span of a tumor, to reach clinical detectability, which would correspond to a "theoretical" generation of ~1030 cells. These rough calculations indicate that cancers are under negative selection. The fact that they thrive implies that they "evolve", and that their evolutionary trajectories are shaped by the pressure of the environment. Evolvability of a cancer is a function of its heterogeneity, which could be at the genetic, epigenetic, and ecological/microenvironmental levels [1]. These principles were summarized in a proposed classification in which Evo (evolutionary) and Eco (ecological) indexes are used to label cancers [1]. The Evo index addresses cancer cell-autonomous heterogeneity (genetic/epigenetic). The Eco index describes the ecological landscape (non-cell-autonomous) in terms of hazards to cancer survival and resources available. The reciprocal influence of Evo and Eco components is critical, as it can trigger self-sustaining loops that shape cancer evolvability [2]. Among the various hallmarks of cancer [3], metabolic alterations appear unique in that they intersect with both Evo and Eco components. This is partly because altered metabolism leads to the accumulation of oncometabolites. These oncometabolites have traditionally been viewed as mediators of non-cell-autonomous alterations in the cancer microenvironment. However, they are now increasingly recognized as inducers of genetic and epigenetic modifications. Thus, oncometabolites are uniquely positioned at the crossroads of genetic, epigenetic and ecological alterations in cancer. In this review, the mechanisms of action of oncometabolites will be summarized, together with their roles in the Evo and Eco phenotypic components of cancer evolvability. An evolutionary perspective of the impact of oncometabolites on the natural history of cancer will be presented.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Department of Oncology, University of Turin Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Str. Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy.
| |
Collapse
|
3
|
Wang P, Chen LL, Xiong Y, Ye D. Metabolite regulation of epigenetics in cancer. Cell Rep 2024; 43:114815. [PMID: 39368084 DOI: 10.1016/j.celrep.2024.114815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024] Open
Abstract
The catalytic activity of most epigenetic enzymes requires a metabolite produced by central carbon metabolism as a cofactor or (co-)substrate. The concentrations of these metabolites undergo dynamic changes in response to nutrient levels and environmental conditions, reprogramming metabolic processes and epigenetic landscapes. Abnormal accumulations of epigenetic modulatory metabolites resulting from mutations in metabolic enzymes contribute to tumorigenesis. In this review, we first present the concept that metabolite regulation of gene expression represents an evolutionarily conserved mechanism from prokaryotes to eukaryotes. We then review how individual metabolites affect epigenetic enzymes and cancer development. Lastly, we discuss the advancement of and opportunity for therapeutic targeting of metabolite-epigenetic regulation in cancer therapy.
Collapse
Affiliation(s)
- Pu Wang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China; Cullgen, Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA.
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Aydin B, Mamede I, Cardoso J, Deere J, Alvarez Y, Qiao S, Sharma VP, Scavuzzo MA, Donaldson GP, Guo CJ, Mucida D. Gut bacteria-derived succinate induces enteric nervous system regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618589. [PMID: 39463929 PMCID: PMC11507891 DOI: 10.1101/2024.10.15.618589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Enteric neurons control gut physiology by regulating peristalsis, nutrient absorption, and secretion 1 . Disruptions in microbial communities caused by antibiotics or enteric infections result in the loss of enteric neurons and long-term motility disorders 2-5 . However, the signals and underlying mechanisms of this microbiota-neuron communication are unknown. We studied the effects of microbiota on the recovery of the enteric nervous system after microbial dysbiosis caused by antibiotics. We found that both enteric neurons and glia are lost after antibiotic exposure, but recover when the pre-treatment microbiota is restored. Using murine gnotobiotic models and fecal metabolomics, we identified neurogenic bacterial species and their derived metabolite succinate as sufficient to rescue enteric neurons and glia. Unbiased single-nuclei RNA-seq analysis uncovered a novel neural precursor-like population marked by the expression of the neuronal gene Nav2. Genetic fate-mapping showed that Plp1+ enteric glia differentiate into neurons following antibiotic exposure. In contrast, Nav2+ neurons expand upon succinate treatment and indicate an alternative mode of neuronal regeneration under recovery conditions. Our findings highlight specific microbial species, metabolites, and the underlying cellular mechanisms involved in neuronal regeneration, with potential therapeutic implications for peripheral neuropathies.
Collapse
|
5
|
Wang F, Huynh PM, An YA. Mitochondrial Function and Dysfunction in White Adipocytes and Therapeutic Implications. Compr Physiol 2024; 14:5581-5640. [PMID: 39382163 DOI: 10.1002/cphy.c230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
For a long time, white adipocytes were thought to function as lipid storages due to the sizeable unilocular lipid droplet that occupies most of their space. However, recent discoveries have highlighted the critical role of white adipocytes in maintaining energy homeostasis and contributing to obesity and related metabolic diseases. These physiological and pathological functions depend heavily on the mitochondria that reside in white adipocytes. This article aims to provide an up-to-date overview of the recent research on the function and dysfunction of white adipocyte mitochondria. After briefly summarizing the fundamental aspects of mitochondrial biology, the article describes the protective role of functional mitochondria in white adipocyte and white adipose tissue health and various roles of dysfunctional mitochondria in unhealthy white adipocytes and obesity. Finally, the article emphasizes the importance of enhancing mitochondrial quantity and quality as a therapeutic avenue to correct mitochondrial dysfunction, promote white adipocyte browning, and ultimately improve obesity and its associated metabolic diseases. © 2024 American Physiological Society. Compr Physiol 14:5581-5640, 2024.
Collapse
Affiliation(s)
- Fenfen Wang
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Phu M Huynh
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| | - Yu A An
- Department of Anesthesiology, Critical Care, and Pain Medicine, Center for Perioperative Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Wang Y, Huang C, Wang X, Cheng R, Li X, Wang J, Zhang L, Li F, Wang H, Li X, Li Y, Xia Y, Cheng J, Pan X, Jia J, Xiao GD. Succinate Activates Uncoupling Protein 2 to Suppress Neuroinflammation and Confer Protection Following Intracerebral Hemorrhage. Antioxid Redox Signal 2024. [PMID: 39228046 DOI: 10.1089/ars.2024.0573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Aims: Succinate, a metabolite in the tricarboxylic acid cycle, is increasingly recognized to play essential roles in inflammation by functioning either as an intracellular or extracellular signaling molecule. However, the role and mechanisms of succinate in inflammation remain elusive. Here, we investigated the mechanism underlying the effects of succinate on neuroinflammation in intracerebral hemorrhage (ICH) models. Results: We unexpectedly found that succinate robustly inhibited neuroinflammation and conferred protection following ICH. Mechanistically, the oxidation of succinate by succinate dehydrogenase (SDH) drove reverse electron transport (RET) at mitochondrial complex I, leading to mitochondrial superoxide production in microglia. Complex I-derived superoxides, in turn, activated uncoupling protein 2 (UCP2). By using mice with specific deletion of UCP2 in microglia/macrophages, we showed that UCP2 was needed for succinate to inhibit neuroinflammation, confer protection, and activate downstream 5'-adenosine monophosphate-activated protein kinase (AMPK) following ICH. Moreover, knockdown of SDH, complex I, or AMPK abolished the therapeutic effects of succinate following ICH. Innovation and Conclusion: We provide evidence that driving complex I RET to activate UCP2 is a novel mechanism of succinate-mediated intracellular signaling and a mechanism underlying the inhibition of neuroinflammation by succinate.
Collapse
Affiliation(s)
- Yecheng Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Caiyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaoying Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Rong Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xue Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jiahao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fuhao Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hao Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xinyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yi Li
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yiqing Xia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaofan Pan
- Department of Neurology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jia Jia
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Guo-Dong Xiao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Liu Y, Zhou Z, Guan F, Han Z, Zhu C, Ye S, Yu X, Qiao A. Ligand Recognition and Activation Mechanism of the Alicarboxylic Acid Receptors. J Mol Biol 2024; 436:168795. [PMID: 39299383 DOI: 10.1016/j.jmb.2024.168795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Endogenous ligands for alicarboxylic acid receptors are important metabolic intermediates that play a significant role in regulating body energy and maintaining homeostasis. However, the molecular mechanism of alicarboxylate ligand-mediated counterpart receptors is currently unclear. We resolve the active state structure of HCA2-niacin, and the structural analysis explains the mechanism of niacin selectivity in the alicarboxylic acid receptors family. Homology modeling, molecular dynamics simulation and mutagenesis experiments reveal different ligand recognition modes and activation mechanisms of the alicarboxylic acid receptors, analyze the flexibility of the binding pocket and elucidate the important role of disulfide bonds on receptor activation and ligand binding. These more detailed molecular mechanisms further elucidate the relevant mechanisms of human metabolism and provide key clues for subsequent drug development of alicarboxylic acid receptors.
Collapse
Affiliation(s)
- Yanru Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Ziwei Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fenghui Guan
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, China
| | - Zhen Han
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China; Life Sciences Institute, Zhejiang University, Hangzhou, 310058 Zhejiang, China.
| | - Xuekui Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Cryo-Electron Microscopy Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Anna Qiao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
8
|
Cárdenas P, Nuñez-Allimant C, Silva K, Cid-Salinas C, León AC, Vallotton Z, Lorca RA, de Oliveira LCG, Casarini DE, Céspedes C, Prieto MC, Gonzalez AA. OXGR1-Dependent (Pro)Renin Receptor Upregulation in Collecting Ducts of the Clipped Kidney Contributes to Na + Balance in Goldblatt Hypertensive Mice. Int J Mol Sci 2024; 25:10045. [PMID: 39337535 PMCID: PMC11432382 DOI: 10.3390/ijms251810045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The two-kidney, one-clip (2K1C) Goldblatt rodent model elicits a reduction in renal blood flow (RBF) in the clipped kidney (CK). The reduced RBF and oxygen bio-ability causes the accumulation of the tricarboxylic cycle intermediary, α-ketoglutarate, which activates the oxoglutarate receptor-1 (OXGR1). In the kidney, OXGR1 is abundantly expressed in intercalated cells (ICs) of the collecting duct (CD), thus contributing to sodium transport and electrolyte balance. The (pro)renin receptor (PRR), a member of the renin-angiotensin system (RAS), is a key regulator of sodium reabsorption and blood pressure (BP) that is expressed in ICs. The PRR is upregulated in 2K1C rats. Here, we tested the hypothesis that chronic reduction in RBF in the CK leads to OXGR1-dependent PRR upregulation in the CD and alters sodium balance and BP in 2K1C mice. To determine the role of OXGR1 in regulating the PRR in the CDs during renovascular hypertension, we performed 2K1C Goldblatt surgery (clip = 0.13 mm internal gap, 14 days) in two groups of male mice: (1) mice treated with Montelukast (OXGR1 antagonist; 5 mg/Kg/day); (2) OXGR1-/- knockout mice. Wild-type and sham-operated mice were used as controls. After 14 days, 2K1C mice showed increased systolic BP (SBP) (108 ± 11 vs. control 82 ± 5 mmHg, p < 0.01) and a lower natriuretic response after the saline challenge test. The CK group showed upregulation of erythropoietin, augmented α-ketoglutarate, and increased PRR expression in the renal medulla. The CK of OXGR1 knockout mice and mice subjected to the OXGR1 antagonist elicited impaired PRR upregulation, attenuated SBP, and better natriuretic responses. In 2K1C mice, the effect of reduced RBF on the OXGR1-dependent PRR upregulation in the CK may contribute to the anti-natriuretic and increased SBP responses.
Collapse
MESH Headings
- Animals
- Mice
- Kidney Tubules, Collecting/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Male
- Up-Regulation
- Sodium/metabolism
- Hypertension, Renovascular/metabolism
- Hypertension, Renovascular/genetics
- Blood Pressure
- Mice, Knockout
- Prorenin Receptor
- Kidney/metabolism
- Disease Models, Animal
- Renin-Angiotensin System
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, Purinergic P2
Collapse
Affiliation(s)
- Pilar Cárdenas
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Camila Nuñez-Allimant
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Katherin Silva
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Catalina Cid-Salinas
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Allison C. León
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| | - Zoe Vallotton
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (Z.V.); (M.C.P.)
| | - Ramón A. Lorca
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Lilian Caroline Gonçalves de Oliveira
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (L.C.G.d.O.); (D.E.C.)
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil; (L.C.G.d.O.); (D.E.C.)
| | - Carlos Céspedes
- Faculty of Medicine and Science, Universidad San Sebastián, Santiago 7510602, Chile;
| | - Minolfa C. Prieto
- Department of Physiology, Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA; (Z.V.); (M.C.P.)
| | - Alexis A. Gonzalez
- Institute of Chemistry, Pontificia Universidad Catoólica de Valparaióso, Valparaióso 2340000, Chile; (P.C.); (C.N.-A.); (K.S.); (C.C.-S.); (A.C.L.)
| |
Collapse
|
9
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Wang T, Tang W, Zhu X, Lv Z, Chen J, Li Y, Sun X, Lv H, Gu Q, Li F, Wang J. Molecular activation and G protein coupling selectivity of human succinate receptor SUCR1. Cell Res 2024; 34:590-593. [PMID: 38744983 PMCID: PMC11291631 DOI: 10.1038/s41422-024-00968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Tianxin Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenqin Tang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Zhenyu Lv
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Jiayan Chen
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yongze Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Haoyu Lv
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Quanchang Gu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
| | - Fahui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China.
| | - Jiangyun Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
11
|
Li C, Liu H, Li J, He X, Zhu H, Fu W, Xu HE. Molecular basis of ligand recognition and activation of the human succinate receptor SUCR1. Cell Res 2024; 34:594-596. [PMID: 38834763 PMCID: PMC11291503 DOI: 10.1038/s41422-024-00984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024] Open
Affiliation(s)
- Changyao Li
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Heng Liu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingru Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xinheng He
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Zhu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Fu
- School of Pharmacy, Fudan University, Shanghai, China.
| | - H Eric Xu
- The CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Chang CCJ, Liu B, Liebmann JM, Cioffi GA, Winn BJ. Glaucoma and the Human Microbiome. J Glaucoma 2024; 33:529-538. [PMID: 38809163 DOI: 10.1097/ijg.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW To explore a view of the human microbiome as an interconnected, functional, dynamic system that may be linked to the pathogenesis and progression of glaucoma. METHODS A literature review was undertaken that included publications from 1966 to 2023. RESULTS Bacterial lipopolysaccharides (LPS) activate toll-like receptors (TLR) and mediate the human immune response. The LPS-TLR4 pathway is a potential avenue for the ocular, gut, and oral microbiomes to interface and/or influence ocular disease. Studies of gut dysbiosis have shown that alterations in the healthy microbiota can predispose the host to immune-mediated inflammatory and neurodegenerative conditions, while oral and ocular surface dysbiosis has been correlated with glaucoma. While developmental exposure to commensal microflora has shown to be necessary for the autoimmune and neurodegenerative responses to elevated intraocular pressure to take place, commensal bacterial products like short-chain fatty acids have regulatory effects protective against glaucoma. SUMMARY Alterations to human microbiotas have been associated with changes in intestinal permeability, gene regulation, immune cell differentiation, and neural functioning, which may predispose the host to glaucoma. Select microbes have been highlighted for their potential contributions to glaucoma disease progression or protection, raising the potential for microbiota-based treatment modalities. Current topical glaucoma treatments may disrupt the ocular surface microbiota, potentially having ramifications on host health. Further study of the relationships between human microbiome and glaucoma is needed.
Collapse
Affiliation(s)
| | - Benjamin Liu
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | | | | | - Bryan J Winn
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
13
|
Liu A, Liu Y, Zhang W, Ye RD. Structural insights into ligand recognition and activation of the succinate receptor SUCNR1. Cell Rep 2024; 43:114381. [PMID: 38923454 DOI: 10.1016/j.celrep.2024.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, a citric acid cycle intermediate, serves important functions in energy homeostasis and metabolic regulation. Extracellular succinate acts as a stress signal through succinate receptor (SUCNR1), a class A G protein-coupled receptor. Research on succinate signaling is hampered by the lack of high-resolution structures of the agonist-bound receptor. We present cryoelectron microscopy (cryo-EM) structures of SUCNR1-Gi complexes bound to succinate and its non-metabolite derivative cis-epoxysuccinate. Key determinants for the recognition of succinate in cis conformation include R2817.39 and Y832.64, while Y301.39 and R993.29 participate in the binding of both succinate and cis-epoxysuccinate. Extracellular loop 2, through F175ECL2 in its β-hairpin, forms a hydrogen bond with succinate and caps the binding pocket. At the receptor-Gi interface, agonist binding induces the rearrangement of a hydrophobic network on transmembrane (TM)5 and TM6, leading to TM signaling through TM3 and TM7. These findings extend our understanding of succinate recognition by SUCNR1, aiding the development of therapeutics for the succinate receptor.
Collapse
Affiliation(s)
- Aijun Liu
- Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan, Guangdong 523326, China; Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China.
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China
| | - Weijia Zhang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China; The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
14
|
Abalenikhina YV, Isayeva MO, Mylnikov PY, Shchulkin AV, Yakusheva EN. Mechanism of Stimulation of Myogenesis under the Action of Succinic Acid through the Succinate Receptor SUCNR1. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1325-1335. [PMID: 39218028 DOI: 10.1134/s0006297924070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Effect of succinic acid on the processes of myogenesis was investigated in the study with the cells of C2C12 line. In the concentration range 10-1000 µM, succinic acid stimulated the process of myogenic differentiation, increasing the levels of myogenesis factors MyoD (at all stages of myogenesis) and myogenin (at the stage of terminal differentiation). Presence of the succinate receptors SUCNR1 was revealed in the C2C12 cells using Western blotting, level of which decreased during myogenesis. When succinic acid was added to the cells, the level of intracellular succinate did not change significantly and decreased during myogenic differentiation. Using a specific Gai protein inhibitor, pertussis toxin, it was found that stimulation of myogenesis in the C2C12 cells under the action of succinic acid is realized through SUCNR1-Gai interaction.
Collapse
|
15
|
Wang Y, Xiu Z, Qu K, Wang L, Wang H, Yu Y. Trailblazing in adjuvant research: succinate's uncharted territory with neutrophils. Am J Physiol Cell Physiol 2024; 327:C1-C10. [PMID: 38708521 DOI: 10.1152/ajpcell.00129.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
The purpose of this study is to investigate the previously unknown connection that succinate has with neutrophils in the setting of adjuvant-mediated immunological enhancement. It has been discovered that succinates stimulate the recruitment of neutrophils in immunization sites, which in turn induces the expression of what is known as neutrophil-derived B cell-activating factor (BAFF). Further amplification of vaccine-induced antibody responses is provided via the succinate receptor 1-interferon regulatory factor 5 (SUCNR1-IRF5)-BAFF signaling pathway, which provides insights into a unique mechanism for immunological enhancement.NEW & NOTEWORTHY This study explores the role of succinate as a vaccine adjuvant, revealing its capacity to enhance neutrophil recruitment at immunization sites, which boosts B cell activation through the succinate receptor 1-interferon regulatory factor 5-B cell-activating factor (SUCNR1-IRF5-BAFF) signaling pathway. Results demonstrate succinate's potential to amplify vaccine-induced antibody responses, highlighting its significance in immunological enhancement and offering new insights into the adjuvant mechanisms of action, particularly in neutrophil-mediated immune responses.
Collapse
Affiliation(s)
- Yangyang Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Zhiming Xiu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Kuo Qu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Liying Wang
- Department of Molecular Biology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, People's Republic of China
| | - Yongli Yu
- Department of Immunology, College of Basic Medical Sciences, Norman Bethune Health Science Center, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
16
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
17
|
Jin C, Chen H, Xie L, Zhou Y, Liu LL, Wu J. GPCRs involved in metabolic diseases: pharmacotherapeutic development updates. Acta Pharmacol Sin 2024; 45:1321-1336. [PMID: 38326623 PMCID: PMC11192902 DOI: 10.1038/s41401-023-01215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/11/2023] [Indexed: 02/09/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are expressed in a variety of cell types and tissues, and activation of GPCRs is involved in enormous metabolic pathways, including nutrient synthesis, transportation, storage or insulin sensitivity, etc. This review intends to summarize the regulation of metabolic homeostasis and mechanisms by a series of GPCRs, such as GPR91, GPR55, GPR119, GPR109a, GPR142, GPR40, GPR41, GPR43 and GPR120. With deep understanding of GPCR's structure and signaling pathways, it is attempting to uncover the role of GPCRs in major metabolic diseases, including metabolic syndrome, diabetes, dyslipidemia and nonalcoholic steatohepatitis, for which the global prevalence has risen during last two decades. An extensive list of agonists and antagonists with their chemical structures in a nature of small molecular compounds for above-mentioned GPCRs is provided as pharmacologic candidates, and their preliminary data of preclinical studies are discussed. Moreover, their beneficial effects in correcting abnormalities of metabolic syndrome, diabetes and dyslipidemia are summarized when clinical trials have been undertaken. Thus, accumulating data suggest that these agonists or antagonists might become as new pharmacotherapeutic candidates for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
- College of Clinical Medicine, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li-Li Liu
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
18
|
He Y, Han Y, Zou L, Yao T, Zhang Y, Lv X, Jiang M, Long L, Li M, Cheng X, Jiang G, Peng Z, Tao L, Meng J, Xie W. Succinate promotes pulmonary fibrosis through GPR91 and predicts death in idiopathic pulmonary fibrosis. Sci Rep 2024; 14:14376. [PMID: 38909094 PMCID: PMC11193722 DOI: 10.1038/s41598-024-64844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is believed to be associated with a notable disruption of cellular energy metabolism. By detecting the changes of energy metabolites in the serum of patients with pulmonary fibrosis, we aimed to investigate the diagnostic and prognostic value of energy metabolites in IPF, and further elucidated the mechanism of their involvement in pulmonary fibrosis. Through metabolomics research, it was discovered that the TCA cycle intermediates changed dramatically in IPF patients. In another validation cohort of 55 patients with IPF compared to 19 healthy controls, it was found that succinate, an intermediate product of TCA cycle, has diagnostic and prognostic value in IPF. The cut-off levels of serum succinate were 98.36 μM for distinguishing IPF from healthy controls (sensitivity, 83.64%; specificity, 63.16%; likelihood ratio, 2.27, respectively). Moreover, a high serum succinate level was independently associated with higher rates of disease progression (OR 13.087, 95%CI (2.819-60.761)) and mortality (HR 3.418, 95% CI (1.308-8.927)). In addition, accumulation of succinate and increased expression of the succinate receptor GPR91 were found in both IPF patients and BLM mouse models of pulmonary fibrosis. Reducing succinate accumulation in BLM mice alleviated pulmonary fibrosis and 21d mortality, while exogenous administration of succinate can aggravate pulmonary fibrosis in BLM mice. Furthermore, GPR91 deficiency protected against lung fibrosis caused by BLM. In vitro, succinate promoted the activation of lung fibroblasts by activating ERK pathway through GPR91. In summary, succinate is a promising biomarker for diagnosis and prognosis of IPF. The accumulation of succinate may promote fibroblast activation through GPR91 and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yijun He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yuanyuan Han
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Lijun Zou
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Tingting Yao
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Mengyu Li
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xiaoyun Cheng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
- National International Collaborative Research Center for Medical Metabolomics, Changsha, China.
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
19
|
Sabadell-Basallote J, Astiarraga B, Castaño C, Ejarque M, Repollés-de-Dalmau M, Quesada I, Blanco J, Nuñez-Roa C, Rodríguez-Peña MM, Martínez L, De Jesus DF, Marroqui L, Bosch R, Montanya E, Sureda FX, Tura A, Mari A, Kulkarni RN, Vendrell J, Fernández-Veledo S. SUCNR1 regulates insulin secretion and glucose elevates the succinate response in people with prediabetes. J Clin Invest 2024; 134:e173214. [PMID: 38713514 PMCID: PMC11178533 DOI: 10.1172/jci173214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/26/2024] [Indexed: 05/09/2024] Open
Abstract
Pancreatic β-cell dysfunction is a key feature of type 2 diabetes, and novel regulators of insulin secretion are desirable. Here we report that the succinate receptor (SUCNR1) is expressed in β-cells and is up-regulated in hyperglycemic states in mice and humans. We found that succinate acts as a hormone-like metabolite and stimulates insulin secretion via a SUCNR1-Gq-PKC-dependent mechanism in human β-cells. Mice with β-cell-specific Sucnr1 deficiency exhibit impaired glucose tolerance and insulin secretion on a high-fat diet, indicating that SUCNR1 is essential for preserving insulin secretion in diet-induced insulin resistance. Patients with impaired glucose tolerance show an enhanced nutritional-related succinate response, which correlates with the potentiation of insulin secretion during intravenous glucose administration. These data demonstrate that the succinate/SUCNR1 axis is activated by high glucose and identify a GPCR-mediated amplifying pathway for insulin secretion relevant to the hyperinsulinemia of prediabetic states.
Collapse
Affiliation(s)
- Joan Sabadell-Basallote
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Brenno Astiarraga
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Carlos Castaño
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Miriam Ejarque
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Maria Repollés-de-Dalmau
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Jordi Blanco
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
| | - Catalina Nuñez-Roa
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - M-Mar Rodríguez-Peña
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Laia Martínez
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Dario F De Jesus
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Ramon Bosch
- Unitat de Recerca, Hospital Universitari Joan XXIII, Insitut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Eduard Montanya
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, ELCHE, Spain
| | - Francesc X Sureda
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Andrea Tura
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, United States of America
| | - Joan Vendrell
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| | - Sonia Fernández-Veledo
- Unitat de Recerca, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain
| |
Collapse
|
20
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
21
|
Dash SP, Gupta S, Sarangi PP. Monocytes and macrophages: Origin, homing, differentiation, and functionality during inflammation. Heliyon 2024; 10:e29686. [PMID: 38681642 PMCID: PMC11046129 DOI: 10.1016/j.heliyon.2024.e29686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Shiba Prasad Dash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P. Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
22
|
Zhang C, Du Z, Gao Y, Lim KS, Zhou W, Huang H, He H, Xiao J, Xu D, Li Q. Methionine secreted by tumor-associated pericytes supports cancer stem cells in clear cell renal carcinoma. Cell Metab 2024; 36:778-792.e10. [PMID: 38378000 DOI: 10.1016/j.cmet.2024.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Here, we identify a subset of vascular pericytes, defined by expression of platelet-derived growth factor receptor beta (PDGFR-β) and G-protein-coupled receptor 91 (GPR91), that promote tumorigenesis and tyrosine kinase inhibitors (TKIs) resistance by functioning as the primary methionine source for cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC). Tumor-cell-derived succinate binds to GPR91 on pericyte to activate autophagy for methionine production. CSCs use methionine to create stabilizing N6-methyladenosine in ATPase-family-AAA-domain-containing 2 (ATAD2) mRNA, and the resulting ATAD2 protein complexes with SRY-box transcription factor 9 to assemble super enhancers and thereby dictate its target genes that feature prominently in CSCs. Targeting PDGFR-β+GPR91+ pericytes with specific GRP91 antagonists reduce intratumoral methionine level, eliminate CSCs, and enhance TKIs sensitivity. These results unraveled the mechanisms by which PDGFR-β+GPR91+ pericytes provide supportive niche for CSCs and could be used to develop targets for treating ccRCC.
Collapse
Affiliation(s)
- ChuanJie Zhang
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - ZunGuo Du
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pathology, HuaShan Hospital, Fudan University, Shanghai 200040, China
| | - Yi Gao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kiat Shenq Lim
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - WenJie Zhou
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - HongChao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Xiao
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - DanFeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
23
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
24
|
Yang Y, Cui BB, Li J, Shan JJ, Xu J, Zhang CY, Wei XT, Zhu RR, Wang JY. Tricarboxylic acid cycle metabolites: new players in macrophage. Inflamm Res 2024:10.1007/s00011-024-01853-0. [PMID: 38498178 DOI: 10.1007/s00011-024-01853-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 03/20/2024] Open
Abstract
Metabolic remodeling is a key feature of macrophage activation and polarization. Recent studies have demonstrated the role of tricarboxylic acid (TCA) cycle metabolites in the innate immune system. In the current review, we summarize recent advances in the metabolic reprogramming of the TCA cycle during macrophage activation and polarization and address the effects of these metabolites in modulating macrophage function. Deciphering the crosstalk between the TCA cycle and the immune response might provide novel potential targets for the intervention of immune reactions and favor the development of new strategies for the treatment of infection, inflammation, and cancer.
Collapse
Affiliation(s)
- Ying Yang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bing-Bing Cui
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jian Li
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiao-Jiao Shan
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jun Xu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Cheng-Yong Zhang
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Xiao-Tong Wei
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ri-Ran Zhu
- Department of Pharmacy, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Jing-Yi Wang
- Department of Hematology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Hematology, Health Commission of Shandong Province, Jinan, 250014, China.
| |
Collapse
|
25
|
Shenol A, Lückmann M, Trauelsen M, Lambrughi M, Tiberti M, Papaleo E, Frimurer TM, Schwartz TW. Molecular dynamics-based identification of binding pathways and two distinct high-affinity sites for succinate in succinate receptor 1/GPR91. Mol Cell 2024; 84:955-966.e4. [PMID: 38325379 DOI: 10.1016/j.molcel.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.
Collapse
Affiliation(s)
- Aslihan Shenol
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lückmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Trauelsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
26
|
Reddy A, Winther S, Tran N, Xiao H, Jakob J, Garrity R, Smith A, Ordonez M, Laznik-Bogoslavski D, Rothstein JD, Mills EL, Chouchani ET. Monocarboxylate transporters facilitate succinate uptake into brown adipocytes. Nat Metab 2024; 6:567-577. [PMID: 38378996 DOI: 10.1038/s42255-024-00981-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Uptake of circulating succinate by brown adipose tissue (BAT) and beige fat elevates whole-body energy expenditure, counteracts obesity and antagonizes systemic tissue inflammation in mice. The plasma membrane transporters that facilitate succinate uptake in these adipocytes remain undefined. Here we elucidate a mechanism underlying succinate import into BAT via monocarboxylate transporters (MCTs). We show that succinate transport is strongly dependent on the proportion that is present in the monocarboxylate form. MCTs facilitate monocarboxylate succinate uptake, which is promoted by alkalinization of the cytosol driven by adrenoreceptor stimulation. In brown adipocytes, we show that MCT1 primarily facilitates succinate import. In male mice, we show that both acute pharmacological inhibition of MCT1 and congenital depletion of MCT1 decrease succinate uptake into BAT and consequent catabolism. In sum, we define a mechanism of succinate uptake in BAT that underlies its protective activity in mouse models of metabolic disease.
Collapse
Affiliation(s)
- Anita Reddy
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sally Winther
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Josefine Jakob
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arianne Smith
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Tejero J, Lazure F, Gomes AP. Methylmalonic acid in aging and disease. Trends Endocrinol Metab 2024; 35:188-200. [PMID: 38030482 PMCID: PMC10939937 DOI: 10.1016/j.tem.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Metabolic byproducts have conventionally been disregarded as waste products without functions. In this opinion article, we bring to light the multifaceted role of methylmalonic acid (MMA), a byproduct of the propionate metabolism pathway mostly commonly known as a clinical biomarker of vitamin B12 deficiency. MMA is normally present at low levels in the body, but increased levels can come from different sources, such as vitamin B12 deficiency, genetic mutations in enzymes related to the propionate pathway, the gut microbiota, and aggressive cancers. Here, we describe the diverse metabolic and signaling functions of MMA and discuss the consequences of increased MMA levels, such as during the aging process, for several age-related human pathologies.
Collapse
Affiliation(s)
- Joanne Tejero
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Felicia Lazure
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
28
|
Fernández-Veledo S, Marsal-Beltran A, Vendrell J. Type 2 diabetes and succinate: unmasking an age-old molecule. Diabetologia 2024; 67:430-442. [PMID: 38182909 PMCID: PMC10844351 DOI: 10.1007/s00125-023-06063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 01/07/2024]
Abstract
Beyond their conventional roles in intracellular energy production, some traditional metabolites also function as extracellular messengers that activate cell-surface G-protein-coupled receptors (GPCRs) akin to hormones and neurotransmitters. These signalling metabolites, often derived from nutrients, the gut microbiota or the host's intermediary metabolism, are now acknowledged as key regulators of various metabolic and immune responses. This review delves into the multi-dimensional aspects of succinate, a dual metabolite with roots in both the mitochondria and microbiome. It also connects the dots between succinate's role in the Krebs cycle, mitochondrial respiration, and its double-edge function as a signalling transmitter within and outside the cell. We aim to provide an overview of the role of the succinate-succinate receptor 1 (SUCNR1) axis in diabetes, discussing the potential use of succinate as a biomarker and the novel prospect of targeting SUCNR1 to manage complications associated with diabetes. We further propose strategies to manipulate the succinate-SUCNR1 axis for better diabetes management; this includes pharmacological modulation of SUCNR1 and innovative approaches to manage succinate concentrations, such as succinate administration and indirect strategies, like microbiota modulation. The dual nature of succinate, both in terms of origins and roles, offers a rich landscape for understanding the intricate connections within metabolic diseases, like diabetes, and indicates promising pathways for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sonia Fernández-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- Universitat Rovira I Virgili (URV), Reus, Spain.
| | - Anna Marsal-Beltran
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira I Virgili (URV), Reus, Spain
| | - Joan Vendrell
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV)-CERCA, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Universitat Rovira I Virgili (URV), Reus, Spain
| |
Collapse
|
29
|
Jobe A, Vijayan R. Orphan G protein-coupled receptors: the ongoing search for a home. Front Pharmacol 2024; 15:1349097. [PMID: 38495099 PMCID: PMC10941346 DOI: 10.3389/fphar.2024.1349097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
G protein-coupled receptors (GPCRs) make up the largest receptor superfamily, accounting for 4% of protein-coding genes. Despite the prevalence of such transmembrane receptors, a significant number remain orphans, lacking identified endogenous ligands. Since their conception, the reverse pharmacology approach has been used to characterize such receptors. However, the multifaceted and nuanced nature of GPCR signaling poses a great challenge to their pharmacological elucidation. Considering their therapeutic relevance, the search for native orphan GPCR ligands continues. Despite limited structural input in terms of 3D crystallized structures, with advances in machine-learning approaches, there has been great progress with respect to accurate ligand prediction. Though such an approach proves valuable given that ligand scarcity is the greatest hurdle to orphan GPCR deorphanization, the future pairings of the remaining orphan GPCRs may not necessarily take a one-size-fits-all approach but should be more comprehensive in accounting for numerous nuanced possibilities to cover the full spectrum of GPCR signaling.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
30
|
Zhang Y, Tian XL, Li JQ, Wu DS, Li Q, Chen B. Mitochondrial dysfunction affects hepatic immune and metabolic remodeling in patients with hepatitis B virus-related acute-on-chronic liver failure. World J Gastroenterol 2024; 30:881-900. [PMID: 38516248 PMCID: PMC10950637 DOI: 10.3748/wjg.v30.i8.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 01/23/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Immune dysregulation and metabolic derangement have been recognized as key factors that contribute to the progression of hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). However, the mechanisms underlying immune and metabolic derangement in patients with advanced HBV-ACLF are unclear. AIM To identify the bioenergetic alterations in the liver of patients with HBV-ACLF causing hepatic immune dysregulation and metabolic disorders. METHODS Liver samples were collected from 16 healthy donors (HDs) and 17 advanced HBV-ACLF patients who were eligible for liver transplantation. The mitochondrial ultrastructure, metabolic characteristics, and immune microenvironment of the liver were assessed. More focus was given to organic acid metabolism as well as the function and subpopulations of macrophages in patients with HBV-ACLF. RESULTS Compared with HDs, there was extensive hepatocyte necrosis, immune cell infiltration, and ductular reaction in patients with ACLF. In patients, the liver suffered severe hypoxia, as evidenced by increased expression of hypoxia-inducible factor-1α. Swollen mitochondria and cristae were observed in the liver of patients. The number, length, width, and area of mitochondria were adaptively increased in hepatocytes. Targeted metabolomics analysis revealed that mitochondrial oxidative phosphorylation decreased, while anaerobic glycolysis was enhanced in patients with HBV-ACLF. These findings suggested that, to a greater extent, hepa-tocytes used the extra-mitochondrial glycolytic pathway as an energy source. Patients with HBV-ACLF had elevated levels of chemokine C-C motif ligand 2 in the liver homogenate, which stimulates peripheral monocyte infiltration into the liver. Characterization and functional analysis of macrophage subsets revealed that patients with ACLF had a high abundance of CD68+ HLA-DR+ macrophages and elevated levels of both interleukin-1β and transforming growth factor-β1 in their livers. The abundance of CD206+ CD163+ macrophages and expression of interleukin-10 decreased. The correlation analysis revealed that hepatic organic acid metabolites were closely associated with macrophage-derived cytokines/chemokines. CONCLUSION The results indicated that bioenergetic alteration driven by hypoxia and mitochondrial dysfunction affects hepatic immune and metabolic remodeling, leading to advanced HBV-ACLF. These findings highlight a new therapeutic target for improving the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Xiao-Ling Tian
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Jie-Qun Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Dong-Sheng Wu
- Department of Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| | - Qiang Li
- Department of Liver Transplant, Transplant Medical Research Center, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, China
| | - Bin Chen
- Department of Hepatology, Institute of Hepatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410021, Hunan Province, China
| |
Collapse
|
31
|
Varney MJ, Benovic JL. The Role of G Protein-Coupled Receptors and Receptor Kinases in Pancreatic β-Cell Function and Diabetes. Pharmacol Rev 2024; 76:267-299. [PMID: 38351071 PMCID: PMC10877731 DOI: 10.1124/pharmrev.123.001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 02/16/2024] Open
Abstract
Type 2 diabetes (T2D) mellitus has emerged as a major global health concern that has accelerated in recent years due to poor diet and lifestyle. Afflicted individuals have high blood glucose levels that stem from the inability of the pancreas to make enough insulin to meet demand. Although medication can help to maintain normal blood glucose levels in individuals with chronic disease, many of these medicines are outdated, have severe side effects, and often become less efficacious over time, necessitating the need for insulin therapy. G protein-coupled receptors (GPCRs) regulate many physiologic processes, including blood glucose levels. In pancreatic β cells, GPCRs regulate β-cell growth, apoptosis, and insulin secretion, which are all critical in maintaining sufficient β-cell mass and insulin output to ensure euglycemia. In recent years, new insights into the signaling of incretin receptors and other GPCRs have underscored the potential of these receptors as desirable targets in the treatment of diabetes. The signaling of these receptors is modulated by GPCR kinases (GRKs) that phosphorylate agonist-activated GPCRs, marking the receptor for arrestin binding and internalization. Interestingly, genome-wide association studies using diabetic patient cohorts link the GRKs and arrestins with T2D. Moreover, recent reports show that GRKs and arrestins expressed in the β cell serve a critical role in the regulation of β-cell function, including β-cell growth and insulin secretion in both GPCR-dependent and -independent pathways. In this review, we describe recent insights into GPCR signaling and the importance of GRK function in modulating β-cell physiology. SIGNIFICANCE STATEMENT: Pancreatic β cells contain a diverse array of G protein-coupled receptors (GPCRs) that have been shown to improve β-cell function and survival, yet only a handful have been successfully targeted in the treatment of diabetes. This review discusses recent advances in our understanding of β-cell GPCR pharmacology and regulation by GPCR kinases while also highlighting the necessity of investigating islet-enriched GPCRs that have largely been unexplored to unveil novel treatment strategies.
Collapse
Affiliation(s)
- Matthew J Varney
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
32
|
Nakano H, Nakano A. The role of metabolism in cardiac development. Curr Top Dev Biol 2024; 156:201-243. [PMID: 38556424 DOI: 10.1016/bs.ctdb.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Metabolism is the fundamental process that sustains life. The heart, in particular, is an organ of high energy demand, and its energy substrates have been studied for more than a century. In recent years, there has been a growing interest in understanding the role of metabolism in the early differentiation of pluripotent stem cells and in cancer research. Studies have revealed that metabolic intermediates from glycolysis and the tricarboxylic acid cycle act as co-factors for intracellular signal transduction, playing crucial roles in regulating cell behaviors. Mitochondria, as the central hub of metabolism, are also under intensive investigation regarding the regulation of their dynamics. The metabolic environment of the fetus is intricately linked to the maternal metabolic status, and the impact of the mother's nutrition and metabolic health on fetal development is significant. For instance, it is well known that maternal diabetes increases the risk of cardiac and nervous system malformations in the fetus. Another notable example is the decrease in the risk of neural tube defects when pregnant women are supplemented with folic acid. These examples highlight the profound influence of the maternal metabolic environment on the fetal organ development program. Therefore, gaining insights into the metabolic environment within developing fetal organs is critical for deepening our understanding of normal organ development. This review aims to summarize recent findings that build upon the historical recognition of the environmental and metabolic factors involved in the developing embryo.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, CA, United States; Cardiology Division, Department of Medicine, UCLA, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, United States; Molecular Biology Institute, UCLA, Los Angeles, CA, United States; Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
33
|
Wang J, Li Z, Yang G, Fang C, Yin Y, Zheng Z, Wang H, Fang S, Dai J, Wang S, Yang S, Yu B. Pseudo-targeted metabolic profile differences between emergency patients with type 1 and type 2 myocardial infarction diagnosed by optical coherence tomography. Clin Chim Acta 2024; 554:117745. [PMID: 38185283 DOI: 10.1016/j.cca.2023.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND It is difficult to distinguish type 2 myocardial infarction (T2MI) from type 1 myocardial infarction (T1MI), although their management varies. OBJECTIVES Using optical coherence tomography (OCT) and pseudo-targeted metabolomics to identify biomarkers, investigate metabolic differences, and establish a T2MI subclassification. METHODS Among 1519 patients with MI, 97 T2MI patients are identified who are 1:1 matched with 97 T1MI patients after considering age, gender, ST-segment elevation, time from onset to coronary angiography, and hs-cTnI on admission by propensity score matching. Plasma pseudo-targeted metabolomics at baseline was determined. RESULTS The clinical characteristics of the two groups were comparable, while the T1MI showed more severe coronary lesions than T2MI according to OCT imaging. 90 differential metabolites were identified between the two groups, among 1027 endogenous metabolites in 20 classes. N-Acetyl-L-Leucine, free fatty acid (15:1), Thymidine-5'-triphosphate, Mevalonic acid 5-pyrophosphate, and five oligopeptides were candidate biomarkers (AUC ≥ 0.85) distinguishing T2MI from T1MI. 12 KEGG pathways showed significant differences, mainly involving amino acid, nucleotide, and their derivatives metabolism, and signaling pathways such as mTOR, cGMP-PKG, and cAMP. Other differences were observed in TCA cycle (P = 0.08) and ROS (P = 0.05). Proteolysis and coronary heart disease risk lipid level were lower in T2MI. T2MI had a decrease of differential abundance score in almost all the KEGG enrichment pathways. Furthermore, T2MI can be subdivided into three subtypes by hierarchical cluster analysis of AUCs with causes/triggers of T2MI. CONCLUSIONS There are significant metabolic profile differences between T1MI and T2MI. Several candidate metabolic biomarkers can effectively distinguish the two groups. CLINICAL TRIAL REGISTRATION ClinicalTrials. gov NCT03297164.
Collapse
Affiliation(s)
- Jifei Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhaoying Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Guang Yang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Chao Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yanwei Yin
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Zhilei Zheng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Hongwei Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shaohong Fang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Jiannan Dai
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shanjie Wang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Shuang Yang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Chen H, Jin C, Xie L, Wu J. Succinate as a signaling molecule in the mediation of liver diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166935. [PMID: 37976628 DOI: 10.1016/j.bbadis.2023.166935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Succinate, one of the intermediates of the tricarboxylic acid (TCA) cycle, plays an essential role in the metabolism of mitochondria and the production of energy, and is considered as a signaling molecule in metabolism as well as in initiation and progression of hepatic diseases. Of note, succinate activates a downstream signaling pathway through GPR91, and elicits a variety of intracellular responses, such as succinylation, production of reactive oxygen species (ROS), stabilization of hypoxia-inducible factor-1α (HIF-1α), and significant impact in cellular metabolism because of the pivotal role in the TCA cycle. Therefore, it is intriguing to deeply elucidate signaling mechanisms of succinate in hepatic fibrosis, metabolic reprogramming in inflammatory or immune responses, as well as carcinogenesis. This manuscript intends to review current understanding of succinate in mediating metabolism, inflammatory and immunologic reactions in liver diseases in order to establish molecular basis for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Cheng Jin
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; College of Clinical College, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai 200032, China.
| |
Collapse
|
35
|
Pu M, Zhang J, Hong F, Wang Y, Zhang C, Zeng Y, Fang Z, Qi W, Yang X, Gao G, Zhou T. The pathogenic role of succinate-SUCNR1: a critical function that induces renal fibrosis via M2 macrophage. Cell Commun Signal 2024; 22:78. [PMID: 38291510 PMCID: PMC10826041 DOI: 10.1186/s12964-024-01481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3β/β-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3β/β-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.
Collapse
Affiliation(s)
- Min Pu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Ultrasound, Chongqing Key Laboratory of Ultrasound, Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fuyan Hong
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chengwei Zhang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yongcheng Zeng
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Ti Zhou
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, China.
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
36
|
Kubatzky KF, Gao Y, Yu D. Post-translational modulation of cell signalling through protein succinylation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1260-1285. [PMID: 38213532 PMCID: PMC10776603 DOI: 10.37349/etat.2023.00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 01/13/2024] Open
Abstract
Cells need to adapt their activities to extra- and intracellular signalling cues. To translate a received extracellular signal, cells have specific receptors that transmit the signal to downstream proteins so that it can reach the nucleus to initiate or repress gene transcription. Post-translational modifications (PTMs) of proteins are reversible or irreversible chemical modifications that help to further modulate protein activity. The most commonly observed PTMs are the phosphorylation of serine, threonine, and tyrosine residues, followed by acetylation, glycosylation, and amidation. In addition to PTMs that involve the modification of a certain amino acid (phosphorylation, hydrophobic groups for membrane localisation, or chemical groups like acylation), or the conjugation of peptides (SUMOylation, NEDDylation), structural changes such as the formation of disulphide bridge, protein cleavage or splicing can also be classified as PTMs. Recently, it was discovered that metabolites from the tricarboxylic acid (TCA) cycle are not only intermediates that support cellular metabolism but can also modify lysine residues. This has been shown for acetate, succinate, and lactate, among others. Due to the importance of mitochondria for the overall fitness of organisms, the regulatory function of such PTMs is critical for protection from aging, neurodegeneration, or cardiovascular disease. Cancer cells and activated immune cells display a phenotype of accelerated metabolic activity known as the Warburg effect. This metabolic state is characterised by enhanced glycolysis, the use of the pentose phosphate pathway as well as a disruption of the TCA cycle, ultimately causing the accumulation of metabolites like citrate, succinate, and malate. Succinate can then serve as a signalling molecule by directly interacting with proteins, by binding to its G protein-coupled receptor 91 (GPR91) and by post-translationally modifying proteins through succinylation of lysine residues, respectively. This review is focus on the process of protein succinylation and its importance in health and disease.
Collapse
Affiliation(s)
- Katharina F. Kubatzky
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Yue Gao
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Dayoung Yu
- Department of Infectious Diseases, Medical Faculty Heidelberg, Medical Microbiology and Hygiene, Heidelberg University, 69120 Heidelberg, Germany
- Department of Infectious Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
37
|
Edosuyi O, Igbe I, Oyekan A. Fumarate and its downstream signalling pathways in the cardiorenal system: Recent insights and novel expositions in the etiology of hypertension. Eur J Pharmacol 2023; 961:176186. [PMID: 37944846 PMCID: PMC10843741 DOI: 10.1016/j.ejphar.2023.176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Hypertension, a risk factor for cardiorenal disease has a huge global health impact. Hence, there is a continuous search for new therapeutic targets and putative antihypertensive ligands. This search has transcended into the realm of mitochondrial metabolism which has been reported to underline the etiology of certain diseases, including hypertension. Recently, genetic alterations in the tricarboxylic acid (TCA) cycle enzyme, fumarase, which converts fumarate to malate, reportedly worsened salt-sensitive hypertension. These novel expositions shifted focus into the activity of TCA in the pathogenesis of hypertension. There is now evidence to show that a mechanistic link exists between blood pressure regulation and intermediaries in the TCA cycle involving fumarate metabolism. Fumarate has been reported to mediate the actions of endogenous ligands such as nitric oxide (NO), and hypoxia inducible factor (HIF)-1α. Similarly, there has been upregulation of protective genes such as nuclear erythroid factor 2 (Nrf2) and reduction in the expression of certain markers like kidney injury molecule 1 (KIM-1). There are reports of interactions with endogenous enzymes such as catalase (CAT) and renin via the activation of GPR91. Fumarate has also been shown to modulate the actions of renal ion channels and by extension, natriuresis. These actions of fumarate have conferred a reno- and cardio-protective effect in hypertension. This review evaluates the role of the TCA cycle, its mechanistic links, and significant contribution to blood pressure regulation with a view to understanding the possibility of a new pathological axis which may be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Osaze Edosuyi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, PMB 1154, Benin City, Nigeria; Center for Cardiovascular Diseases, Gray Hall Suites, Rm 256, College of Pharmacy & Health Sciences, Texas Southern University, 3100, Cleburne Street, Houston, TX, USA.
| | - Ighodaro Igbe
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, PMB 1154, Benin City, Nigeria
| | - Adebayo Oyekan
- Center for Cardiovascular Diseases, Gray Hall Suites, Rm 256, College of Pharmacy & Health Sciences, Texas Southern University, 3100, Cleburne Street, Houston, TX, USA
| |
Collapse
|
38
|
Chalifoux O, Faerman B, Mailloux RJ. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress. J Biol Chem 2023; 299:105399. [PMID: 37898400 PMCID: PMC10692731 DOI: 10.1016/j.jbc.2023.105399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) are vital entry points for monosaccharides and amino acids into the Krebs cycle and thus integral for mitochondrial bioenergetics. Both complexes produce mitochondrial hydrogen peroxide (mH2O2) and are deactivated by electrophiles. Here, we provide an update on the role of PDH and KGDH in mitochondrial redox balance and their function in facilitating metabolic reprogramming for the propagation of oxidative eustress signals in hepatocytes and how defects in these pathways can cause liver diseases. PDH and KGDH are known to account for ∼45% of the total mH2O2 formed by mitochondria and display rates of production several-fold higher than the canonical source complex I. This mH2O2 can also be formed by reverse electron transfer (RET) in vivo, which has been linked to metabolic dysfunctions that occur in pathogenesis. However, the controlled emission of mH2O2 from PDH and KGDH has been proposed to be fundamental for oxidative eustress signal propagation in several cellular contexts. Modification of PDH and KGDH with protein S-glutathionylation (PSSG) and S-nitrosylation (PSNO) adducts serves as a feedback inhibitor for mH2O2 production in response to glutathione (GSH) pool oxidation. PSSG and PSNO adduct formation also reprogram the Krebs cycle to generate metabolites vital for interorganelle and intercellular signaling. Defects in the redox modification of PDH and KGDH cause the over generation of mH2O2, resulting in oxidative distress and metabolic dysfunction-associated fatty liver disease (MAFLD). In aggregate, PDH and KGDH are essential platforms for emitting and receiving oxidative eustress signals.
Collapse
Affiliation(s)
- Olivia Chalifoux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ben Faerman
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- Faculty of Agricultural and Environmental Sciences, The School of Human Nutrition, McGill University, Ste.-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
39
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
40
|
Zhou Z, Chen J, Cui Y, Zhao R, Wang H, Yu R, Jin T, Guo J, Cong Y. Antihypertensive activity of different components of Veratrum alkaloids through metabonomic data analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155033. [PMID: 37647672 DOI: 10.1016/j.phymed.2023.155033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Hypertension is a serious global public health issue. Blood pressure (BP) is still not effectively controlled in about 20 - 30% of hypertensive patients. Therefore, it is imperative to develop new treatments for hypertension. Veratrum alkaloids were once used for the clinical treatment of hypertension, the mechanism of which is still unclear. It was gradually phased out due to adverse reactions. PURPOSE This study aimed to investigate the short-term and long-term hypotensive profiles of different components of Veratrum alkaloids in spontaneously hypertensive rats (SHRs) to unveil their mechanisms of action. RESULTS Total Veratrum alkaloid (V), component A (A), and veratramine (M) quickly decreased BP within 30 min of treatment, reduced renal and cardiovascular damage, and improved relevant biochemical indicators (nitric oxide [NO], endothelin-1 [ET-1], angiotensin II [Ang II)], noradrenaline [NE], etc) in SHRs to delay stroke occurrence. Thereinto, A exhibited excellent protective effects in cardiovascular disease. The metabolomic profiles of SHRs treated with V, A, and M were significantly different from those of SHRs treated with vehicle. Thirteen metabolites were identified as potential pharmacodynamic biomarkers. Through Kyoto Encyclopedia of Genes and Genomes analysis, V, A, and M-induced hypotension was mainly related to alterations in nicotinate and nicotinamide metabolism, GABAergic synapses, linoleic acid metabolism, ketone body synthesis and degradation, arginine and proline metabolism, and urea cycle, of which nicotinate and nicotinamide metabolism was the key metabolic pathway to relieve hypertension. CONCLUSION This work shows that A is an effective and promising antihypertensive agent for hypertension treatment to reduce BP and hypertensive target organ damage, which is mainly mediated through modulating nicotinate and nicotinamide metabolism, RAS, and NO-ET homeostasis.
Collapse
Affiliation(s)
- Zhaoli Zhou
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Juan Chen
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China; The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing 100141, China
| | - Yuzi Cui
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Rihong Zhao
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Hao Wang
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Rui Yu
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Tiantian Jin
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Jinggong Guo
- Center for Multi-Omics Research, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Yue Cong
- State key Laboratory of Antiviral Drugs, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng 475004, China.
| |
Collapse
|
41
|
Liu J, Xie Z, Fu J, Yu M, Wang T, Qi C, Liu P, Hui X, Wang D, Ding L, Zhang Q, Xie T, Xiao X. Quantitative profiling and diagnostic potential of one-carbon and central metabolism pools in MODY2 and T1DM. Diabetol Metab Syndr 2023; 15:206. [PMID: 37875989 PMCID: PMC10594937 DOI: 10.1186/s13098-023-01175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young type 2 (MODY2) is a rare genetic disorder characterized as mild fasting hyperglycemia with low risk of vascular complications caused by glucokinase gene mutation. This study aims to investigate metabolites alteration associated with MODY2, exploring possible mechanism underlying characteristic clinical manifestations and low cardiovascular risks of MODY2 and providing serum metabolite biomarkers to facilitating MODY2 diagnosis. METHODS Fasting serum samples from MODY2, type 1 diabetes (T1DM) and healthy individuals were collected. By using targeted metabolomics via liquid chromatography-tandem mass spectrometry platform, we quantified the metabolites involved in tricarboxylic acid (TCA) cycle and one-carbon metabolism. RESULTS Metabolomic profiling revealed significant difference of intermediates from central metabolism cycle, methionine cycle and several amino acids between MODY2 and T1DM groups. Among these, serum citrate, α-ketoglutaric acid, serine, glycine, glutamine and homocysteine were significantly elevated in MODY2 patients compared with T1DM patients; and compared with healthy subjects, malate and methionine levels were significantly increased in the two groups of diabetic patients. The correlation analysis with clinical indexes showed that α- ketoglutarate, serine, glycine, and glutamine were negatively correlated with blood glucose indicators including fasting blood glucose, HbA1c, and GA, while citrate was positively correlated with C-peptide. And homocysteine displayed positive correlation with HDL and negative with C-reactive protein, which shed light on the mechanism of mild symptoms and low risk of cardiovascular complications in MODY2 patients. A panel of 4 metabolites differentiated MODY2 from T1DM with AUC of 0.924, and a combination of clinical indices and metabolite also gained good diagnostic value with AUC 0.948. CONCLUSION In this research, we characterized the metabolite profiles of TCA cycle and one-carbon metabolism in MODY2 and T1DM and identified promising diagnostic biomarkers for MODY2. This study may provide novel insights into the pathogenesis and clinical manifestations of MODY2.
Collapse
Affiliation(s)
- Jieying Liu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Ziyan Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Junling Fu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Miao Yu
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Tong Wang
- Department of Endocrinology, The 305 Hospital of People's Liberation Army of China, Beijing, 100017, China
| | - Cuijuan Qi
- Department of Endocrinology, Hebei General Hospital, Hebei, 050051, China
| | - Peng Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiangyi Hui
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dongmei Wang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Lu Ding
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Qian Zhang
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
| | - Ting Xie
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xinhua Xiao
- China Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, P. R. China.
| |
Collapse
|
42
|
Zhang W, Lang R. Succinate metabolism: a promising therapeutic target for inflammation, ischemia/reperfusion injury and cancer. Front Cell Dev Biol 2023; 11:1266973. [PMID: 37808079 PMCID: PMC10556696 DOI: 10.3389/fcell.2023.1266973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023] Open
Abstract
Succinate serves as an essential circulating metabolite within the tricarboxylic acid (TCA) cycle and functions as a substrate for succinate dehydrogenase (SDH), thereby contributing to energy production in fundamental mitochondrial metabolic pathways. Aberrant changes in succinate concentrations have been associated with pathological states, including chronic inflammation, ischemia/reperfusion (IR) injury, and cancer, resulting from the exaggerated response of specific immune cells, thereby rendering it a central area of investigation. Recent studies have elucidated the pivotal involvement of succinate and SDH in immunity beyond metabolic processes, particularly in the context of cancer. Current scientific endeavors are concentrated on comprehending the functional repercussions of metabolic modifications, specifically pertaining to succinate and SDH, in immune cells operating within a hypoxic milieu. The efficacy of targeting succinate and SDH alterations to manipulate immune cell functions in hypoxia-related diseases have been demonstrated. Consequently, a comprehensive understanding of succinate's role in metabolism and the regulation of SDH is crucial for effectively targeting succinate and SDH as therapeutic interventions to influence the progression of specific diseases. This review provides a succinct overview of the latest advancements in comprehending the emerging functions of succinate and SDH in metabolic processes. Furthermore, it explores the involvement of succinate, an intermediary of the TCA cycle, in chronic inflammation, IR injury, and cancer, with particular emphasis on the mechanisms underlying succinate accumulation. This review critically assesses the potential of modulating succinate accumulation and metabolism within the hypoxic milieu as a means to combat various diseases. It explores potential targets for therapeutic interventions by focusing on succinate metabolism and the regulation of SDH in hypoxia-related disorders.
Collapse
Affiliation(s)
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
43
|
Afsar B, Afsar RE. Mitochondrial Damage and Hypertension: Another Dark Side of Sodium Excess. Curr Nutr Rep 2023; 12:495-507. [PMID: 37386238 DOI: 10.1007/s13668-023-00486-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE OF REVIEW Essential or primary hypertension (HT) is a worldwide health problem with no definitive cure. Although the exact pathogenesis of HT is not known, genetic factors, increased renin-angiotensin and sympathetic system activity, endothelial dysfunction, oxidative stress, and inflammation play a role in its development. Environmental factors such as sodium intake are also important for BP regulation, and excess sodium intake in the form of salt (NaCl, sodium chloride) increases blood pressure in salt-sensitive people. Excess salt intake increases extracellular volume, oxidative stress, inflammation, and endothelial dysfunction. Recent evidence suggests that increased salt intake also disturbs mitochondrial function both structurally and functionally which is important as mitochondrial dysfunction is associated with HT. In the current review, we have summarized the experimental and clinical data regarding the impact of salt intake on mitochondrial structure and function. RECENT FINDINGS Excess salt intake damage mitochondrial structure (e.g., shorter mitochondria with less cristae, increased mitochondrial fission, increased mitochondrial vacuolization). Functionally, high salt intake impairs mitochondrial oxidative phosphorylation and electron transport chain, ATP production, mitochondrial calcium homeostasis, mitochondrial membrane potential, and mitochondrial uncoupling protein function. Excess salt intake also increases mitochondrial oxidative stress and modifies Krebs cycle protein expressions. Studies have shown that high salt intake impairs mitochondrial structure and function. These maladaptive mitochondrial changes facilitate the development of HT especially in salt-sensitive individuals. High salt intake impairs many functional and structural components of mitochondria. These mitochondrial alterations along with increased salt intake promote the development of hypertension.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
44
|
Le CT, Nguyen G, Park SY, Dong HN, Cho YK, Lee JH, Im SS, Choi DH, Cho EH. Phloretin Ameliorates Succinate-Induced Liver Fibrosis by Regulating Hepatic Stellate Cells. Endocrinol Metab (Seoul) 2023; 38:395-405. [PMID: 37533177 PMCID: PMC10475967 DOI: 10.3803/enm.2023.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGRUOUND Hepatic stellate cells (HSCs) are the major cells which play a pivotal role in liver fibrosis. During injury, extracellular stimulators can induce HSCs transdifferentiated into active form. Phloretin showed its ability to protect the liver from injury, so in this research we would like to investigate the effect of phloretin on succinate-induced HSCs activation in vitro and liver fibrosis in vivo study. METHODS In in vitro, succinate was used to induce HSCs activation, and then the effect of phloretin on activated HSCs was examined. In in vivo, succinate was used to generated liver fibrosis in mouse and phloretin co-treated to check its protection on the liver. RESULTS Phloretin can reduce the increase of fibrogenic markers and inhibits the proliferation, migration, and contraction caused by succinate in in vitro experiments. Moreover, an upregulation of proteins associated with aerobic glycolysis occurred during the activation of HSCs, which was attenuated by phloretin treatment. In in vivo experiments, intraperitoneal injection of phloretin decreased expression of fibrotic and glycolytic markers in the livers of mice with sodium succinate diet-induced liver fibrosis. These results suggest that aerobic glycolysis plays critical role in activation of HSCs and succinate can induce liver fibrosis in mice, whereas phloretin has therapeutic potential for treating hepatic fibrosis. CONCLUSION Intraperitoneal injection of phloretin attenuated succinate-induced hepatic fibrosis and alleviates the succinate-induced HSCs activation.
Collapse
Affiliation(s)
- Cong Thuc Le
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Giang Nguyen
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - So Young Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Hanh Nguyen Dong
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, Korea
| | - Dae-Hee Choi
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| |
Collapse
|
45
|
Xu J, Yang Y, Li X, Ding S, Zheng L, Xiong C, Yang Y. Pleiotropic activities of succinate: The interplay between gut microbiota and cardiovascular diseases. IMETA 2023; 2:e124. [PMID: 38867936 PMCID: PMC10989957 DOI: 10.1002/imt2.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant contributor to global mortality, imposing a substantial burden and emphasizing the urgent need for disease control to save lives and prevent disability. With advancements in technology and scientific research, novel mechanisms underlying CVDs have been uncovered, leading to the exploration of promising treatment targets aimed at reducing the global burden of the disease. One of the most intriguing findings is the relationship between CVDs and gut microbiota, challenging the traditional understanding of CVDs mechanisms and introducing the concept of the gut-heart axis. The gut microbiota, through changes in microbial compositions and functions, plays a crucial role in influencing local and systemic effects on host physiology and disease development, with its metabolites acting as key regulators. In previous studies, we have emphasized the importance of specific metabolites such as betaine, putrescine, trimethylamine oxide, and N,N,N-trimethyl-5-aminovaleric acid in the potential treatment of CVDs. Particularly noteworthy is the gut microbiota-associated metabolite succinate, which has garnered significant attention due to its involvement in various pathophysiological pathways closely related to CVDs pathogenesis, including immunoinflammatory responses, oxidative stress, and energy metabolism. Furthermore, we have identified succinate as a potential biomarker, highlighting its therapeutic feasibility in managing aortic dissection and aneurysm. This review aims to comprehensively outline the characteristics of succinate, including its biosynthetic process, summarize the current evidence linking it to CVDs causation, and emphasize the host-microbial crosstalk involved in modulating CVDs. The insights presented here offer a novel paradigm for future management and control of CVDs.
Collapse
Affiliation(s)
- Jing Xu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yicheng Yang
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Li
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain ProtectionThe Capital Medical UniversityBeijingChina
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science CenterPeking UniversityBeijingChina
| | - Changming Xiong
- Respiratory and Pulmonary Vascular Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejin Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
46
|
Sell EA, Tan LH, Lin C, Bosso JV, Palmer JN, Adappa ND, Lee RJ, Kohanski MA, Reed DR, Cohen NA. Microbial metabolite succinate activates solitary chemosensory cells in the human sinonasal epithelium. Int Forum Allergy Rhinol 2023; 13:1525-1534. [PMID: 36565436 DOI: 10.1002/alr.23104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Succinate, although most famous for its role in the Krebs cycle, can be released extracellularly as a signal of cellular distress, particularly in situations of metabolic stress and inflammation. Solitary chemosensory cells (SCCs) express SUCNR1, the succinate receptor, and modulate type 2 inflammatory responses in helminth and protozoal infections in the small intestine. SCCs are the dominant epithelial source of interleukin-25, as well as an important source of cysteinyl leukotrienes in the airway, and have been implicated as upstream agents in type 2 inflammation in chronic rhinosinusitis (CRS) and asthma. METHODS In this study, we used scRNAseq analysis, live cell imaging of intracellular calcium from primary sinonasal air-liquid interface (ALI) cultures from 1 donor, and measure antimicrobial peptide release from 5 donors to demonstrate preliminary evidence suggesting that succinate can act as a stimulant of SCCs in the human sinonasal epithelium. RESULTS Results from scRNAseq analysis show that approximately 10% of the SCC/ionocyte cluster of cells expressed SUCNR1 as well as a small population of immune cells. Using live cell imaging of intracellular calcium, we also demonstrate that clusters of cells on primary sinonasal ALI cultures initiated calcium-mediated signaling in response to succinate stimulation. Furthermore, we present evidence that primary sinonasal ALI cultures treated with succinate had increased levels of apical beta-defensin 2, an antimicrobial peptide, compared to treatment with a control solution. CONCLUSION Overall, these findings demonstrate the need for further investigation into the activation of the sinonasal epithelium by succinate in the pathogenesis of CRS.
Collapse
Affiliation(s)
- Elizabeth A Sell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Li Hui Tan
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA
| | - John V Bosso
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James N Palmer
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nithin D Adappa
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Robert J Lee
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael A Kohanski
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Noam A Cohen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Division of Rhinology, Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Monell Chemical Senses Center, Philadelphia, PA
- Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA
| |
Collapse
|
47
|
Zhang T, Peng JT, Klair A, Dickinson AJ. Non-canonical and developmental roles of the TCA cycle in plants. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102382. [PMID: 37210789 PMCID: PMC10524895 DOI: 10.1016/j.pbi.2023.102382] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023]
Abstract
Over recent years, our understanding of the tricarboxylic acid cycle (TCAC) in living organisms has expanded beyond its canonical role in cellular energy production. In plants, TCAC metabolites and related enzymes have important roles in physiology, including vacuolar function, chelation of metals and nutrients, photorespiration, and redox regulation. Research in other organisms, including animals, has demonstrated unexpected functions of the TCAC metabolites in a number of biological processes, including signaling, epigenetic regulation, and cell differentiation. Here, we review the recent progress in discovery of non-canonical roles of the TCAC. We then discuss research on these metabolites in the context of plant development, with a focus on research related to tissue-specific functions of the TCAC. Additionally, we review research describing connections between TCAC metabolites and phytohormone signaling pathways. Overall, we discuss the opportunities and challenges in discovering new functions of TCAC metabolites in plants.
Collapse
Affiliation(s)
- Tao Zhang
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Jesus T Peng
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Amman Klair
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Alexandra J Dickinson
- Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
48
|
Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, Mannara F, Solsona-Vilarrasa E, García-Ruiz C, Fernández-Checa JC, Casals G, Rodríguez-Revenga L, Álvarez-Mora MI, Arteche-López A, Díaz de Bustamante A, Calvo R, Pujol A, Azkargorta M, Elortza F, Malagelada C, Pinyol R, Huguet-Pradell J, Melgar-Lesmes P, Jiménez W, Morales-Ruiz M. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int 2023; 43:1822-1836. [PMID: 37312667 DOI: 10.1111/liv.15640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Rodriguez-Vita
- Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leticia Pérez-Sisqués
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - José C Fernández-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Álvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | | | - Rosa Calvo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona. School of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Anna Pujol
- Unidad de Animales Transgénicos UAT-CBATEG, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Cristina Malagelada
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Júlia Huguet-Pradell
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Goetzman E, Gong Z, Zhang B, Muzumdar R. Complex II Biology in Aging, Health, and Disease. Antioxidants (Basel) 2023; 12:1477. [PMID: 37508015 PMCID: PMC10376733 DOI: 10.3390/antiox12071477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is associated with a decline in mitochondrial function which may contribute to age-related diseases such as neurodegeneration, cancer, and cardiovascular diseases. Recently, mitochondrial Complex II has emerged as an important player in the aging process. Mitochondrial Complex II converts succinate to fumarate and plays an essential role in both the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). The dysfunction of Complex II not only limits mitochondrial energy production; it may also promote oxidative stress, contributing, over time, to cellular damage, aging, and disease. Intriguingly, succinate, the substrate for Complex II which accumulates during mitochondrial dysfunction, has been shown to have widespread effects as a signaling molecule. Here, we review recent advances related to understanding the function of Complex II, succinate signaling, and their combined roles in aging and aging-related diseases.
Collapse
Affiliation(s)
- Eric Goetzman
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Bob Zhang
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
50
|
Duncan EM, Vita L, Dibnah B, Hudson BD. Metabolite-sensing GPCRs controlling interactions between adipose tissue and inflammation. Front Endocrinol (Lausanne) 2023; 14:1197102. [PMID: 37484963 PMCID: PMC10357040 DOI: 10.3389/fendo.2023.1197102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
Metabolic disorders including obesity, diabetes and non-alcoholic steatohepatitis are a group of conditions characterised by chronic low-grade inflammation of metabolic tissues. There is now a growing appreciation that various metabolites released from adipose tissue serve as key signalling mediators, influencing this interaction with inflammation. G protein-coupled receptors (GPCRs) are the largest family of signal transduction proteins and most historically successful drug targets. The signalling pathways for several key adipose metabolites are mediated through GPCRs expressed both on the adipocytes themselves and on infiltrating macrophages. These include three main groups of GPCRs: the FFA4 receptor, which is activated by long chain free fatty acids; the HCA2 and HCA3 receptors, activated by hydroxy carboxylic acids; and the succinate receptor. Understanding the roles these metabolites and their receptors play in metabolic-immune interactions is critical to establishing how these GPCRs may be exploited for the treatment of metabolic disorders.
Collapse
|