1
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Cheng A, Wang J, Li J, Wang J, Xu M, Chen H, Zhang P. S-Nitrosylation of p39 promotes its degradation and contributes to synaptic dysfunction induced by β-amyloid peptide. Commun Biol 2024; 7:1113. [PMID: 39256547 PMCID: PMC11387606 DOI: 10.1038/s42003-024-06832-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive decline, is increasingly recognized as a disorder marked by synaptic loss and dysfunction. Despite this understanding, the underlying pathophysiological mechanisms contributing to synaptic impairment remain largely unknown. In this study, we elucidate a previously undiscovered signaling pathway wherein the S-nitrosylation of the Cdk5 activator p39, a post-translational modification involving the addition of nitric oxide to protein cysteine residues, plays a crucial role in synaptic dysfunction associated with AD. Our investigation reveals heightened p39 S-nitrosylation in the brain of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model of AD. Additionally, soluble amyloid-β oligomers (Aβ), implicated in synaptic loss in AD, induce p39 S-nitrosylation in cultured neurons. Notably, we uncover that p39 protein level is regulated by S-nitrosylation, with nitric oxide S-nitrosylating p39 at Cys265 and subsequently promoting its degradation. Furthermore, our study demonstrates that S-nitrosylation of p39 at Cys265 significantly contributes to amyloid-β (Aβ) peptide-induced dendrite retraction and spine loss. Collectively, our findings highlight S-nitrosylation of p39 as a novel aberrant redox protein modification involved in the pathogenesis of AD, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Aobing Cheng
- Department of Anesthesiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Jingyi Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mufan Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Peng Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emotions and Affective Disorders(LEAD), Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Frontiers Science Center of Cellular Homeostasis and Human Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Kim YJ, Kim K, Lee Y, Min HW, Ko YH, Lee BR, Hur KH, Kim SK, Lee SY, Jang CG. The mutated cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2 S968F) regulates cocaine-induced reward behaviour and plasticity in the nucleus accumbens. Br J Pharmacol 2024; 181:3327-3345. [PMID: 38751203 DOI: 10.1111/bph.16427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Cytoplasmic fragile X messenger ribonucleoprotein 1 (FMR1)-interacting protein 2 (CYFIP2), as a component of the Wiskott-Aldrich syndrome protein family verprolin-homologous protein (WAVE) regulatory complex, is involved in actin polymerization, contributing to neuronal development and structural plasticity. Mutating serine-968 to phenylalanine (S968F) in CYFIP2 causes an altered cocaine response in mice. The neuronal mechanisms underlying this response remain unknown. EXPERIMENTAL APPROACH We performed cocaine reward-related behavioural tests and examined changes in synaptic protein phenotypes and neuronal morphology in the nucleus accumbens (NAc), using CYFIP2 S968F knock-in mice to investigate the role of CYFIP2 in regulating cocaine reward. KEY RESULTS CYFIP2 S968F mutation attenuated cocaine-induced behavioural sensitization and conditioned place preference. Cocaine-induced c-Fos was not observed in the NAc of CYFIP2 S968F knock-in mice. However, c-Fos induction was still evident in the medial prefrontal cortex (mPFC). CYFIP2 S968F mutation altered cocaine-associated CYFIP2 signalling, glutamatergic protein expression and synaptic density in the NAc following cocaine exposure. To further determine the role of CYFIP2 in NAc neuronal activity and the mPFC projecting to the NAc activity-mediating reward response, we used optogenetic tools to stimulate the NAc or mPFC-NAc pathway and observed that optogenetic activation of the NAc or mPFC-NAc pathway induced reward-related behaviours. This effect was not observed in the S968F mutation in CYFIP2. CONCLUSION AND IMPLICATIONS These results suggest that CYFIP2 plays a role in controlling cocaine-mediated neuronal function and structural plasticity in the NAc, and that CYFIP2 could serve as a target for regulating cocaine reward.
Collapse
Affiliation(s)
- Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyungin Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hee-Won Min
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
4
|
Du WW, Zhou C, Yang H, Wen S, Chen Y, Chen EX, Yang XH, Li F, Du KY, Yuan H, Ye T, Qadir J, Yang BB. Aggravated Ulcerative Colitis via circNlgn-Mediated Suppression of Nuclear Actin Polymerization. RESEARCH (WASHINGTON, D.C.) 2024; 7:0441. [PMID: 39183944 PMCID: PMC11342054 DOI: 10.34133/research.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024]
Abstract
Colitis is a chronic bowel disease characterized by damage to the lining of the large intestine, with its precise underlying causes remaining incompletely understood. In this study, we provide evidence that circular RNA circNlgn plays a pivotal role in promoting the development of colitis. Colitis patients produce significant higher levels of circNlgn. Transgenic mice expressing circNlgn exhibit heightened susceptibility to colitis development and progression, primarily attributed to the presence of the protein isoform Nlgn173 encoded by circNlgn. Nlgn173 undergoes translocation into cell nuclei, where it interacts with actin, impeding the binding of actin-related protein 2 and 3 (Arp2/3) complex to actin molecules. Consequently, this leads to a reduction in actin polymerization. Mechanistically, Nlgn173 enhances tyrosine-53 phosphorylation of nuclear actin, diminishing its capacity to interact with the Arp2/3 complex and causing a decrease in filamentous actin levels. These alterations in actin dynamics result in inhibited cell cycle progression, increased apoptosis, and decreased proliferation of colonic epithelial cells, thereby exacerbating colitis development and progression. In contrast, the silencing of circNlgn or the targeted inhibition of Nlgn173 translation and nuclear translocation leads to the promotion of nuclear actin polymerization, enhanced cell survival, and reduced apoptosis and ultimately improves the outcome of colitis in vivo. Interestingly, nuclear actin polymerization is highly related with expression of PIAS3, which modulates signal transducer and activator of transcription 3 and NF-κB activity in colitis. Strategies such as circNlgn knockdown and targeting nuclear actin polymerization of the colonic epithelium may explore a novel avenue for acute ulcerative colitis clinical intervention.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Chi Zhou
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Colorectal Surgery,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,
Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer,
Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hui Yang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuoyang Wen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Yu Chen
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Eric X. Chen
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Xiuwei H. Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine,
University of Kentucky, Lexington, KY, USA
| | - Feiya Li
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Kevin Y. Du
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Hui Yuan
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Ting Ye
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Javeria Qadir
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Burton B. Yang
- Sunnybrook Research Institute,
Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Vandael D, Vints K, Baatsen P, Śliwińska MA, Gabarre S, De Groef L, Moons L, Rybakin V, Gounko NV. Cdk5-dependent rapid formation and stabilization of dendritic spines by corticotropin-releasing factor. Transl Psychiatry 2024; 14:29. [PMID: 38233378 PMCID: PMC10794228 DOI: 10.1038/s41398-024-02749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/24/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The neuropeptide corticotropin-releasing factor (CRF) exerts a pivotal role in modulating neuronal activity in the mammalian brain. The effects of CRF exhibit notable variations, depending on factors such as duration of exposure, concentration, and anatomical location. In the CA1 region of the hippocampus, the impact of CRF is dichotomous: chronic exposure to CRF impairs synapse formation and dendritic integrity, whereas brief exposure enhances synapse formation and plasticity. In the current study, we demonstrate long-term effects of acute CRF on the density and stability of mature mushroom spines ex vivo. We establish that both CRF receptors are present in this hippocampal region, and we pinpoint their precise subcellular localization within synapses by electron microscopy. Furthermore, both in vivo and ex vivo data collectively demonstrate that a transient surge of CRF in the CA1 activates the cyclin-dependent kinase 5 (Cdk5)-pathway. This activation leads to a notable augmentation in CRF-dependent spine formation. Overall, these data suggest that upon acute release of CRF in the CA1-SR synapse, both CRF-Rs can be activated and promote synaptic plasticity via activating different downstream signaling pathways, such as the Cdk5-pathway.
Collapse
Affiliation(s)
- Dorien Vandael
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Katlijn Vints
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Pieter Baatsen
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Małgorzata A Śliwińska
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sergio Gabarre
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Lies De Groef
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Naamsestraat 61 box 2464, 3000, Leuven, Belgium
| | - Lieve Moons
- KU Leuven, Leuven Brain Institute, Department of Biology, Animal Physiology and Neurobiology Division, Naamsestraat 61 box 2464, 3000, Leuven, Belgium
| | - Vasily Rybakin
- National University of Singapore, Department of Microbiology and Immunology, Yng Loo Lin School of Medicine, and Immunology Program, 5 Science Drive 2, Blk MD4, 117545, Singapore, Singapore
| | - Natalia V Gounko
- VIB-KU Leuven Center for Brain & Disease Research, Electron Microscopy Platform & VIB-Bioimaging Core, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
- KU Leuven Department of Neurosciences, Leuven Brain Institute, O&N5 Herestraat 49 box 602, 3000, Leuven, Belgium.
| |
Collapse
|
6
|
Peng X, Wellard N, Ghosh A, Troakes C, Giese KP. Different dysregulations of CYFIP1 and CYFIP2 in distinct types of dementia. Brain Res Bull 2024; 206:110849. [PMID: 38128786 DOI: 10.1016/j.brainresbull.2023.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
In humans, the cytoplasmic FMR1 interacting protein (CYFIP) family consists of two members, namely CYFIP1 and CYFIP2. Both CYFIP1 and CYFIP2 function in the WAVE regulatory complex (WRC), which regulates actin polymerization. Additionally, these two proteins form a posttranscriptional regulatory complex with the fragile X mental retardation protein (FMRP), which suppresses mRNA translation. Thus, CYFIP1 and CYFIP2 are important signalling regulators at synapses, and mutations in their genes are associated with neurodevelopmental and neuropsychiatric disorders, including intellectual disabilities. Moreover, dysregulation of the CYFIP protein family is involved in Alzheimer's disease (AD). However, the relevance of the CYFIP family in other dementias is largely unknown. Here, we compared CYFIP1/2 protein levels in the post-mortem hippocampus from patients with AD, dementia with Lewy bodies (DLB), vascular dementia (VaD) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). Consistent with previous findings, CYFIP2 was reduced in AD hippocampus. In DLB and VaD hippocampus, the protein level of CYFIP2 and CYFIP1 was unaltered. Finally, an increase in the protein level of both CYFIP1 and CYFIP2 was noted in FTLD-TDP hippocampus. These findings reveal that the protein levels of the CYFIP family is distinct in different types of dementia, suggesting that the pathogenesis of these neurodegenerative disorders has divergent impacts on hippocampal synaptic function.
Collapse
Affiliation(s)
- Xianhui Peng
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Natalie Wellard
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Anshua Ghosh
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom
| | - K Peter Giese
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, London SE5 9NU, United Kingdom.
| |
Collapse
|
7
|
Jeong J, Han W, Hong E, Pandey S, Li Y, Lu W, Roche KW. Regulation of NLGN3 and the Synaptic Rho-GEF Signaling Pathway by CDK5. J Neurosci 2023; 43:7264-7275. [PMID: 37699715 PMCID: PMC10621767 DOI: 10.1523/jneurosci.2309-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.
Collapse
Affiliation(s)
- Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wenyan Han
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Eunhye Hong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Saurabh Pandey
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
8
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
9
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Weng W, Gu X, Yang Y, Zhang Q, Deng Q, Zhou J, Cheng J, Zhu MX, Feng J, Huang O, Li Y. N-terminal α-amino SUMOylation of cofilin-1 is critical for its regulation of actin depolymerization. Nat Commun 2023; 14:5688. [PMID: 37709794 PMCID: PMC10502023 DOI: 10.1038/s41467-023-41520-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO) typically conjugates to target proteins through isopeptide linkage to the ε-amino group of lysine residues. This posttranslational modification (PTM) plays pivotal roles in modulating protein function. Cofilins are key regulators of actin cytoskeleton dynamics and are well-known to undergo several different PTMs. Here, we show that cofilin-1 is conjugated by SUMO1 both in vitro and in vivo. Using mass spectrometry and biochemical and genetic approaches, we identify the N-terminal α-amino group as the SUMO-conjugation site of cofilin-1. Common to conventional SUMOylation is that the N-α-SUMOylation of cofilin-1 is also mediated by SUMO activating (E1), conjugating (E2), and ligating (E3) enzymes and reversed by the SUMO deconjugating enzyme, SENP1. Specific to the N-α-SUMOylation is the physical association of the E1 enzyme to the substrate, cofilin-1. Using F-actin co-sedimentation and actin depolymerization assays in vitro and fluorescence staining of actin filaments in cells, we show that the N-α-SUMOylation promotes cofilin-1 binding to F-actin and cofilin-induced actin depolymerization. This covalent conjugation by SUMO at the N-α amino group of cofilin-1, rather than at an internal lysine(s), serves as an essential PTM to tune cofilin-1 function during regulation of actin dynamics.
Collapse
Affiliation(s)
- Weiji Weng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaokun Gu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yang Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinke Cheng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Junfeng Feng
- Brain Injury Centre, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Shanghai Institute of Head Trauma, Shanghai, 200127, China.
| | - Ou Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
11
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
12
|
Cyclin Y regulates spatial learning and memory flexibility through distinct control of the actin pathway. Mol Psychiatry 2023; 28:1351-1364. [PMID: 36434054 PMCID: PMC10005959 DOI: 10.1038/s41380-022-01877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Spatial learning and memory flexibility are known to require long-term potentiation (LTP) and long-term depression (LTD), respectively, on a cellular basis. We previously showed that cyclin Y (CCNY), a synapse-remodeling cyclin, is a novel actin-binding protein and an inhibitory regulator of functional and structural LTP in vitro. In this study, we report that Ccny knockout (KO) mice exhibit enhanced LTP and weak LTD at Schaffer collateral-CA1 synapses in the hippocampus. In accordance with enhanced LTP, Ccny KO mice showed improved spatial learning and memory. However, although previous studies reported that normal LTD is necessary for memory flexibility, Ccny KO mice intriguingly showed improved memory flexibility, suggesting that weak LTD could exert memory flexibility when combined with enhanced LTP. At the molecular level, CCNY modulated spatial learning and memory flexibility by distinctively affecting the cofilin-actin signaling pathway in the hippocampus. Specifically, CCNY inhibited cofilin activation by original learning, but reversed such inhibition by reversal learning. Furthermore, viral-mediated overexpression of a phosphomimetic cofilin-S3E in hippocampal CA1 regions enhanced LTP, weakened LTD, and improved spatial learning and memory flexibility, thus mirroring the phenotype of Ccny KO mice. In contrast, the overexpression of a non-phosphorylatable cofilin-S3A in hippocampal CA1 regions of Ccny KO mice reversed the synaptic plasticity, spatial learning, and memory flexibility phenotypes observed in Ccny KO mice. Altogether, our findings demonstrate that LTP and LTD cooperatively regulate memory flexibility. Moreover, CCNY suppresses LTP while facilitating LTD in the hippocampus and negatively regulates spatial learning and memory flexibility through the control of cofilin-actin signaling, proposing CCNY as a learning regulator modulating both memorizing and forgetting processes.
Collapse
|
13
|
Yao W, Zhou P, Yan Q, Wu X, Xia Y, Li W, Li X, Zhu F. ERVWE1 Reduces Hippocampal Neuron Density and Impairs Dendritic Spine Morphology through Inhibiting Wnt/JNK Non-Canonical Pathway via miR-141-3p in Schizophrenia. Viruses 2023; 15:168. [PMID: 36680208 PMCID: PMC9863209 DOI: 10.3390/v15010168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancestral germline infections by exogenous retroviruses. Human endogenous retroviruses W family envelope gene (HERV-W env, also called ERVWE1), located on chromosome 7q21-22, encodes an envelope glycoprotein from the HERV-W family. Mounting evidence suggests that aberrant expression of ERVWE1 involves the etiology of schizophrenia. Moreover, the genetic and morphological studies indicate that dendritic spine deficits may contribute to the onset of schizophrenia. Here, we reported that ERVWE1 changed the density and morphology of the dendritic spine through inhibiting Wingless-type (Wnt)/c-Jun N-terminal kinases (JNK) non-canonical pathway via miR-141-3p in schizophrenia. In this paper, we found elevated levels of miR-141-3p and a significant positive correlation with ERVWE1 in schizophrenia. Moreover, serum Wnt5a and actin-related protein 2 (Arp2) levels decreased and demonstrated a significant negative correlation with ERVWE1 in schizophrenia. In vitro experiments disclosed that ERVWE1 up-regulated miR-141-3p expression by interacting with transcription factor (TF) Yin Yang 1 (YY1). YY1 modulated miR-141-3p expression by binding to its promoter. The luciferase assay revealed that YY1 enhanced the promoter activity of miR-141-3p. Using the miRNA target prediction databases and luciferase reporter assays, we demonstrated that miR-141-3p targeted Wnt5a at its 3' untranslated region (3' UTR). Furthermore, ERVWE1 suppressed the expression of Arp2 through non-canonical pathway, Wnt5a/JNK signaling pathway. In addition, ERVWE1 inhibited Wnt5a/JNK/Arp2 signal pathway through miR-141-3p. Finally, functional assays showed that ERVWE1 induced the abnormalities in hippocampal neuron morphology and spine density through inhibiting Wnt/JNK non-canonical pathway via miR-141-3p in schizophrenia. Our findings indicated that miR-141-3p, Wnt5a, and Arp2 might be potential clinical blood-based biomarkers or therapeutic targets for schizophrenia. Our work also provided new insight into the role of ERVWE1 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiujin Yan
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Biomolecular condensate assembly of nArgBP2 tunes its functionality to manifest the structural plasticity of dendritic spines. Exp Mol Med 2023; 55:108-119. [PMID: 36599935 PMCID: PMC9898538 DOI: 10.1038/s12276-022-00918-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023] Open
Abstract
nArgBP2, a candidate gene for intellectual disability, is a postsynaptic protein critical for dendritic spine development and morphogenesis, and its knockdown (KD) in developing neurons severely impairs spine-bearing excitatory synapse formation. Surprisingly, nArgBP2 KD in mature neurons did not cause morphological defects in the existing spines at rest, raising questions of how it functions in mature neurons. We found that unlike its inaction at rest, nArgBP2 KD completely inhibited the enlargement of dendritic spines during chemically induced long-term potentiation (cLTP) in mature neurons. We further found that nArgBP2 forms condensates in dendritic spines and that these condensates are dispersed by cLTP, which spatiotemporally coincides with spine head enlargement. Condensates with CaMKII phosphorylation-deficient mutant or CaMKII inhibition are neither dispersed nor accompanied by spine enlargement during cLTP. We found that nArgBP2 condensates in spines exhibited liquid-like properties, and in heterologous and in vitro expression systems, nArgBP2 undergoes liquid-liquid phase separation via multivalent intermolecular interactions between SH3 domains and proline-rich domains. It also forms coacervates with CaMKIIα, which is rapidly dissembled by calcium/CaMKIIα-dependent phosphorylation. We further showed that the interaction between nArgBP2 and WAVE1 competes with nArgBP2 phase separation and that blocking the nArgBP2-WAVE1 interaction prevents spine enlargement during cLTP. Together, our results suggest that nArgBP2 at rest is confined to the condensates but is released by CaMKIIα-mediated phosphorylation during synaptic plasticity, which regulates its timely interaction with WAVE1 to induce spine head enlargement in mature neurons.
Collapse
|
15
|
Xu L, Yang L, Wu Y, Wan X, Tang X, Xu Y, Chen Q, Liu Y, Liu S. Rac1/PAK1 signaling contributes to bone cancer pain by Regulation dendritic spine remodeling in rats. Mol Pain 2023; 19:17448069231161031. [PMID: 36938611 PMCID: PMC10028669 DOI: 10.1177/17448069231161031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bone cancer pain (BCP) is severe chronic pain caused by tumor metastasis to the bones, often resulting in significant skeletal remodeling and fractures. Currently, there is no curative treatment. Therefore, insight into the underlying mechanisms could guide the development of mechanism-based therapeutic strategies for BCP. We speculated that Rac1/PAK1 signaling plays a critical role in the development of BCP. Tumor cells implantation (TCI) into the tibial cavity resulted in bone cancer-associated mechanical allodynia. Golgi staining revealed changes in the excitatory synaptic structure of WDR (Wide-dynamic range) neurons in the spinal cord, including increased postsynaptic density (PSD) length and thickness, and width of the cleft. Behavioral and western blotting test revealed that the development and persistence of pain correlated with Rac1/PAK1 signaling activation in primary sensory neurons. Intrathecal injection of NSC23766, a Rac1 inhibitor, reduced the persistence of BCP as well as reversed the remodeling of dendrites. Therefore, we concluded that activation of the Rac1/PAK1 signaling pathway in the spinal cord plays an important role in the development of BCP through remodeling of dendritic spines. Modulation of the Rac1/PAK1 pathway may be a potential strategy for BCP treatment.
Collapse
Affiliation(s)
- Lingfei Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Long Yang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
| | - Yan Wu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Xinxin Wan
- Department of Anesthesiology, Nanjing Drum Tower
Hospital, Jiangsu, China
| | - Xihui Tang
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuqing Xu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Qingsong Chen
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| | - Yuepeng Liu
- Institute of Xuzhou Medical
Science, Jiangsu, China
| | - Su Liu
- Jiangsu Province Key Laboratory of
Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia
Application Technology, NMPA Key Laboratory for Research and Evaluation of
Narcotic and Psychotropic Drugs, Xuzhou Medical
University, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou
Medical University, Jiangsu, China
| |
Collapse
|
16
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
17
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|
18
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
19
|
Ji Y, Koch D, González Delgado J, Günther M, Witte OW, Kessels MM, Frahm C, Qualmann B. Poststroke dendritic arbor regrowth requires the actin nucleator Cobl. PLoS Biol 2021; 19:e3001399. [PMID: 34898601 PMCID: PMC8699704 DOI: 10.1371/journal.pbio.3001399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/23/2021] [Accepted: 11/16/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic stroke is a major cause of death and long-term disability. We demonstrate that middle cerebral artery occlusion (MCAO) in mice leads to a strong decline in dendritic arborization of penumbral neurons. These defects were subsequently repaired by an ipsilateral recovery process requiring the actin nucleator Cobl. Ischemic stroke and excitotoxicity, caused by calpain-mediated proteolysis, significantly reduced Cobl levels. In an apparently unique manner among excitotoxicity-affected proteins, this Cobl decline was rapidly restored by increased mRNA expression and Cobl then played a pivotal role in poststroke dendritic arbor repair in peri-infarct areas. In Cobl knockout (KO) mice, the dendritic repair window determined to span day 2 to 4 poststroke in wild-type (WT) strikingly passed without any dendritic regrowth. Instead, Cobl KO penumbral neurons of the primary motor cortex continued to show the dendritic impairments caused by stroke. Our results thereby highlight a powerful poststroke recovery process and identified causal molecular mechanisms critical during poststroke repair. Ischemic stroke is a major cause of death and long-term disability. This study reveals that, in mice, stroke-induced damage to dendritic arborization in the area around an infarct is rapidly repaired via dendritic regrowth; this plasticity requires the actin nucleator Cobl.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Dennis Koch
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Jule González Delgado
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
| | - Madlen Günther
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michael M. Kessels
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Christiane Frahm
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital–Friedrich Schiller University Jena, Jena, Germany
- * E-mail: (MMK); (CF); (BQ)
| |
Collapse
|
20
|
Zhang H, Ben Zablah Y, Zhang H, Jia Z. Rho Signaling in Synaptic Plasticity, Memory, and Brain Disorders. Front Cell Dev Biol 2021; 9:729076. [PMID: 34671600 PMCID: PMC8520953 DOI: 10.3389/fcell.2021.729076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Memory impairments are associated with many brain disorders such as autism, Alzheimer's disease, and depression. Forming memories involves modifications of synaptic transmission and spine morphology. The Rho family small GTPases are key regulators of synaptic plasticity by affecting various downstream molecules to remodel the actin cytoskeleton. In this paper, we will review recent studies on the roles of Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. We will also discuss the involvement of Rho signaling in spine morphology, the structural basis of synaptic plasticity and memory formation. Finally, we will review the association between brain disorders and abnormalities of Rho function. It is expected that studying Rho signaling at the synapse will contribute to the understanding of how memory is formed and disrupted in diseases.
Collapse
Affiliation(s)
- Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Walker CK, Herskowitz JH. Dendritic Spines: Mediators of Cognitive Resilience in Aging and Alzheimer's Disease. Neuroscientist 2021; 27:487-505. [PMID: 32812494 PMCID: PMC8130863 DOI: 10.1177/1073858420945964] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cognitive resilience is often defined as the ability to remain cognitively normal in the face of insults to the brain. These insults can include disease pathology, such as plaques and tangles associated with Alzheimer's disease, stroke, traumatic brain injury, or other lesions. Factors such as physical or mental activity and genetics may contribute to cognitive resilience, but the neurobiological underpinnings remain ill-defined. Emerging evidence suggests that dendritic spine structural plasticity is one plausible mechanism. In this review, we highlight the basic structure and function of dendritic spines and discuss how spine density and morphology change in aging and Alzheimer's disease. We note evidence that spine plasticity mediates resilience to stress, and we tackle dendritic spines in the context of cognitive resilience to Alzheimer's disease. Finally, we examine how lifestyle and genetic factors may influence dendritic spine plasticity to promote cognitive resilience before discussing evidence for actin regulatory kinases as therapeutic targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Courtney K. Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, USA
| |
Collapse
|
22
|
Nakamura T, Oh CK, Zhang X, Tannenbaum SR, Lipton SA. Protein Transnitrosylation Signaling Networks Contribute to Inflammaging and Neurodegenerative Disorders. Antioxid Redox Signal 2021; 35:531-550. [PMID: 33957758 PMCID: PMC8388249 DOI: 10.1089/ars.2021.0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Significance: Physiological concentrations of nitric oxide (NO•) and related reactive nitrogen species (RNS) mediate multiple signaling pathways in the nervous system. During inflammaging (chronic low-grade inflammation associated with aging) and in neurodegenerative diseases, excessive RNS contribute to synaptic and neuronal loss. "NO signaling" in both health and disease is largely mediated through protein S-nitrosylation (SNO), a redox-based posttranslational modification with "NO" (possibly in the form of nitrosonium cation [NO+]) reacting with cysteine thiol (or, more properly, thiolate anion [R-S-]). Recent Advances: Emerging evidence suggests that S-nitrosylation occurs predominantly via transnitros(yl)ation. Mechanistically, the reaction involves thiolate anion, as a nucleophile, performing a reversible nucleophilic attack on a nitroso nitrogen to form an SNO-protein adduct. Prior studies identified transnitrosylation reactions between glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-nuclear proteins, thioredoxin-caspase-3, and X-linked inhibitor of apoptosis (XIAP)-caspase-3. Recently, we discovered that enzymes previously thought to act in completely disparate biochemical pathways can transnitrosylate one another during inflammaging in an unexpected manner to mediate neurodegeneration. Accordingly, we reported a concerted tricomponent transnitrosylation network from Uch-L1-to-Cdk5-to-Drp1 that mediates synaptic damage in Alzheimer's disease. Critical Issues: Transnitrosylation represents a critical chemical mechanism for transduction of redox-mediated events to distinct subsets of proteins. Although thousands of thiol-containing proteins undergo S-nitrosylation, how transnitrosylation regulates a myriad of neuronal attributes is just now being uncovered. In this review, we highlight recent progress in the study of the chemical biology of transnitrosylation between proteins as a mechanism of disease. Future Directions: We discuss future areas of study of protein transnitrosylation that link our understanding of aging, inflammation, and neurodegenerative diseases. Antioxid. Redox Signal. 35, 531-550.
Collapse
Affiliation(s)
- Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Chang-Ki Oh
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stuart A Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, California, USA.,Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
23
|
Zhao A, Zhou R, Gu Q, Liu M, Zhang B, Huang J, Yang B, Yao R, Wang J, Lv H, Wang J, Shen Y, Wang H, Chen X. Trio exome sequencing identified a novel de novo WASF1 missense variant leading to recurrent site substitution in a Chinese patient with developmental delay, microcephaly, and early-onset seizures: A mutational hotspot p.Trp161 and literature review. Clin Chim Acta 2021; 523:10-18. [PMID: 34478686 DOI: 10.1016/j.cca.2021.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 08/28/2021] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurodevelopmental disorder with absent language and variable seizures (NEDALVS, OMIM # 618707) is a newly described autosomal dominant condition caused by heterozygous de novo mutation in WASF1 gene. WASF1 is a key component of the WAVE regulatory complex (WRC) required for actin polymerization. So far, only 3 distinct truncating variants clustering at the WCA domain, 3 missense variants localized to the meander region and a copy number variant (CNV) of WASF1 have been identified among 11 NEDALVS cases previously reported. CASE REPORT We report a pediatric patient carrying novel de novo heterozygous missense variant (NM_003931.2: c.481T > C, p.Trp161Arg) in WASF1 gene. During the first hospitalization at age of 5.5 months, the patient was initially diagnosed with infantile spasms, developmental delay (DD) and microcephaly due to nodding-like epileptic spasms in clusters and hypsarrhythmia on video-electroencephalography, lacking head control and body rollover, and abnormal head circumference 39 cm (<-2SD). The genetic diagnosis with a causal WASF1 variant detected by trio exome sequencing indicated the rare NEDALVS. LITERATURE REVIEW All the reported NEDALVS cases published in the PubMed English literature were reviewed to summarize the genetic and phenotypic spectrum of this novel disorder. CONCLUSION We describe the third patient with a recurrently mutated amino acid site at p.Trp161 in WASF1, currently the 12th patient with NEDALVS. This hotspot missense variant and the truncating variants in WASF1 lead to similar phenotypic patterns with core features of severe DD/ID, and seizures, hypotonia, and microcephaly frequently observed. Our finding expands the WASF1 mutation spectrum and confirms the de novo hotspot missense variant at p.Trp161, further supporting the association of the novel NEDALVS with WASF1 gene and the actin regulatory pathway.
Collapse
Affiliation(s)
- Arman Zhao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| | - Rui Zhou
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Min Liu
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Jing Huang
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Bin Yang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Pudong New District, Shanghai 200127, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Pudong New District, Shanghai 200127, China.
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China
| | - Yiping Shen
- Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, Guangxi, China; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, United States.
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China; Department of Clinical Laboratory, Children's Hospital of Wujiang District, Suzhou, 169 Park Road, Wujiang District, Suzhou 215234, Jiangsu, China.
| | - Xuqin Chen
- Department of Neurology, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou Industrial Park, Suzhou 215025, Jiangsu, China.
| |
Collapse
|
24
|
Cornelius J, Rottner K, Korte M, Michaelsen-Preusse K. Cortactin Contributes to Activity-Dependent Modulation of Spine Actin Dynamics and Spatial Memory Formation. Cells 2021; 10:cells10071835. [PMID: 34360003 PMCID: PMC8303107 DOI: 10.3390/cells10071835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/21/2023] Open
Abstract
Postsynaptic structures on excitatory neurons, dendritic spines, are actin-rich. It is well known that actin-binding proteins regulate actin dynamics and by this means orchestrate structural plasticity during the development of the brain, as well as synaptic plasticity mediating learning and memory processes. The actin-binding protein cortactin is localized to pre- and postsynaptic structures and translocates in a stimulus-dependent manner between spines and the dendritic compartment, thereby indicating a crucial role for synaptic plasticity and neuronal function. While it is known that cortactin directly binds F-actin, the Arp2/3 complex important for actin nucleation and branching as well as other factors involved in synaptic plasticity processes, its precise role in modulating actin remodeling in neurons needs to be deciphered. In this study, we characterized the general neuronal function of cortactin in knockout mice. Interestingly, we found that the loss of cortactin leads to deficits in hippocampus-dependent spatial memory formation. This impairment is correlated with a prominent dysregulation of functional and structural plasticity. Additional evidence shows impaired long-term potentiation in cortactin knockout mice together with a complete absence of structural spine plasticity. These phenotypes might at least in part be explained by alterations in the activity-dependent modulation of synaptic actin in cortactin-deficient neurons.
Collapse
Affiliation(s)
- Jonas Cornelius
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
| | - Klemens Rottner
- Research Group Molecular Cell Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- Division of Molecular Cell Biology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany; (J.C.); (M.K.)
- Correspondence:
| |
Collapse
|
25
|
Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells 2021; 10:cells10071795. [PMID: 34359964 PMCID: PMC8305626 DOI: 10.3390/cells10071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.
Collapse
|
26
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
27
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
28
|
Esparza-Moltó PB, Romero-Carramiñana I, Núñez de Arenas C, Pereira MP, Blanco N, Pardo B, Bates GR, Sánchez-Castillo C, Artuch R, Murphy MP, Esteban JA, Cuezva JM. Generation of mitochondrial reactive oxygen species is controlled by ATPase inhibitory factor 1 and regulates cognition. PLoS Biol 2021; 19:e3001252. [PMID: 33983919 PMCID: PMC8148373 DOI: 10.1371/journal.pbio.3001252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/25/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial ATP synthase emerges as key hub of cellular functions controlling the production of ATP, cellular signaling, and fate. It is regulated by the ATPase inhibitory factor 1 (IF1), which is highly abundant in neurons. Herein, we ablated or overexpressed IF1 in mouse neurons to show that IF1 dose defines the fraction of active/inactive enzyme in vivo, thereby controlling mitochondrial function and the production of mitochondrial reactive oxygen species (mtROS). Transcriptomic, proteomic, and metabolomic analyses indicate that IF1 dose regulates mitochondrial metabolism, synaptic function, and cognition. Ablation of IF1 impairs memory, whereas synaptic transmission and learning are enhanced by IF1 overexpression. Mechanistically, quenching the IF1-mediated increase in mtROS production in mice overexpressing IF1 reduces the increased synaptic transmission and obliterates the learning advantage afforded by the higher IF1 content. Overall, IF1 plays a key role in neuronal function by regulating the fraction of ATP synthase responsible for mitohormetic mtROS signaling.
Collapse
Affiliation(s)
- Pau B. Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Cristina Núñez de Arenas
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Marta P. Pereira
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Noelia Blanco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Beatriz Pardo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Georgina R. Bates
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carla Sánchez-Castillo
- Unidad de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Departamento de Bioquímica Clínica, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - José A. Esteban
- Unidad de Neuropatología Molecular, Centro de Biología Molecular Severo Ochoa, Madrid, Spain
| | - José M. Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
29
|
Conditional RAC1 knockout in motor neurons restores H-reflex rate-dependent depression after spinal cord injury. Sci Rep 2021; 11:7838. [PMID: 33837249 PMCID: PMC8035187 DOI: 10.1038/s41598-021-87476-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/30/2021] [Indexed: 12/27/2022] Open
Abstract
A major complication with spinal cord injury (SCI) is the development of spasticity, a clinical symptom of hyperexcitability within the spinal H-reflex pathway. We have previously demonstrated a common structural motif of dendritic spine dysgenesis associated with hyperexcitability disorders after injury or disease insults to the CNS. Here, we used an adeno-associated viral (AAV)-mediated Cre-Lox system to knockout Rac1 protein expression in motor neurons after SCI. Three weeks after AAV9-Cre delivery into the soleus/gastrocnemius of Rac1-“floxed” adult mice to retrogradely infect spinal alpha-motor neurons, we observed significant restoration of RDD and reduced H-reflex excitability in SCI animals. Additionally, viral-mediated Rac1 knockdown reduced presence of dendritic spine dysgenesis on motor neurons. In control SCI animals without Rac1 knockout, we continued to observe abnormal dendritic spine morphology associated with hyperexcitability disorder, including an increase in mature, mushroom dendritic spines, and an increase in overall spine length and spine head size. Taken together, our results demonstrate that viral-mediated disruption of Rac1 expression in ventral horn motor neurons can mitigate dendritic spine morphological correlates of neuronal hyperexcitability, and reverse hyperreflexia associated with spasticity after SCI. Finally, our findings provide evidence of a putative mechanistic relationship between motor neuron dendritic spine dysgenesis and SCI-induced spasticity.
Collapse
|
30
|
Ghaffari K, Pierce LX, Roufaeil M, Gibson I, Tae K, Sahoo S, Cantrell JR, Andersson O, Lau J, Sakaguchi TF. NCK-associated protein 1 like (nckap1l) minor splice variant regulates intrahepatic biliary network morphogenesis. PLoS Genet 2021; 17:e1009402. [PMID: 33739979 PMCID: PMC8032155 DOI: 10.1371/journal.pgen.1009402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/08/2021] [Accepted: 02/09/2021] [Indexed: 11/18/2022] Open
Abstract
Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in the nckap1l gene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediated nckap1l deletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver of nckap1l mutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show that nckap1l genetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that although nckap1l was previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
Collapse
Affiliation(s)
- Kimia Ghaffari
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lain X. Pierce
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Maria Roufaeil
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Isabel Gibson
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Kevin Tae
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Saswat Sahoo
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James R. Cantrell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jasmine Lau
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Takuya F. Sakaguchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sahasrabudhe A, Begum F, Guevara CA, Morrison C, Hsiao K, Kezunovic N, Bozdagi-Gunal O, Benson DL. Cyfip1 Regulates SynGAP1 at Hippocampal Synapses. Front Synaptic Neurosci 2021; 12:581714. [PMID: 33613257 PMCID: PMC7892963 DOI: 10.3389/fnsyn.2020.581714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, copy number variations in CYFIP1 appear to have sweeping physiological and structural consequences in the brain, either producing or altering the severity of intellectual disability, autism, and schizophrenia. Independently, SynGAP1 haploinsufficiency produces intellectual disability and, frequently, autism. Cyfip1 inhibits protein translation and promotes actin polymerization, and SynGAP1 is a synaptically localized Ras/Rap GAP. While these proteins are clearly distinct, studies investigating their functions in mice have shown that each regulates the maturation of synapses in the hippocampus and haploinsufficiency for either produces an exaggerated form of mGluR-dependent long-term depression, suggesting that some signaling pathways converge. In this study, we examined how Cyfip1 haploinsufficiency impacts SynGAP1 levels and localization, as well as potential sites for mechanistic interaction in mouse hippocampus. The data show that synaptic, but not total, levels of SynGAP1 in Cyfip1 +/- mice were abnormally low during early postnatal development and in adults. This may be in response to a shift in the balance of kinases that activate SynGAP1 as levels of Cdk5 were reduced and those of activated CaMKII were maintained in Cyfip1 +/- mice compared to wild-type mice. Alternatively, this could reflect altered actin dynamics as Rac1 activity in Cyfip1 +/- hippocampus was boosted significantly compared to wild-type mice, and levels of synaptic F-actin were generally enhanced due in part to an increase in the activity of the WAVE regulatory complex. Decreased synaptic SynGAP1 coupled with a CaMKII-mediated bias toward Rap1 inactivation at synapses is also consistent with increased levels of synaptic GluA2, increased AMPA receptor-mediated responses to stimulation, and increased levels of synaptic mGluR1/5 compared to wild-type mice. Collectively, our data suggest that Cyfip1 regulates SynGAP1 and the two proteins work coordinately at synapses to appropriately direct actin polymerization and GAP activity.
Collapse
Affiliation(s)
- Abhishek Sahasrabudhe
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Fatema Begum
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Christopher A Guevara
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States.,Graduate School of Biomedical Sciences, New York, NY, United States
| | - Chenel Morrison
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Kuangfu Hsiao
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Nebojsa Kezunovic
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| | - Ozlem Bozdagi-Gunal
- Department of Psychiatry, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Deanna L Benson
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, Friedman Brain Institute, New York, NY, United States
| |
Collapse
|
32
|
Sculpting Dendritic Spines during Initiation and Maintenance of Neuropathic Pain. J Neurosci 2021; 40:7578-7589. [PMID: 32998955 DOI: 10.1523/jneurosci.1664-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence has established a firm role for synaptic plasticity in the pathogenesis of neuropathic pain. Recent advances have highlighted the importance of dendritic spine remodeling in driving synaptic plasticity within the CNS. Identifying the molecular players underlying neuropathic pain induced structural and functional maladaptation is therefore critical to understanding its pathophysiology. This process of dynamic reorganization happens in unique phases that have diverse pathologic underpinnings in the initiation and maintenance of neuropathic pain. Recent evidence suggests that pharmacological targeting of specific proteins during distinct phases of neuropathic pain development produces enhanced antinociception. These findings outline a potential new paradigm for targeted treatment and the development of novel therapies for neuropathic pain. We present a concise review of the role of dendritic spines in neuropathic pain and outline the potential for modulation of spine dynamics by targeting two proteins, srGAP3 and Rac1, critically involved in the regulation of the actin cytoskeleton.
Collapse
|
33
|
Alexander CJ, Barzik M, Fujiwara I, Remmert K, Wang YX, Petralia RS, Friedman TB, Hammer JA. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J 2021; 35:e21092. [PMID: 33378124 PMCID: PMC8357457 DOI: 10.1096/fj.202001449r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is β-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, β-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with β-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of β-Pix's GEF activity.
Collapse
Affiliation(s)
- Christopher J Alexander
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD, USA
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD, NIH, Betheda, MD, USA
| | | | | | - John A Hammer
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
34
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Abstract
The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.
Collapse
Affiliation(s)
| | - Robert H Insall
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
36
|
UPF2 leads to degradation of dendritically targeted mRNAs to regulate synaptic plasticity and cognitive function. Mol Psychiatry 2020; 25:3360-3379. [PMID: 31636381 PMCID: PMC7566522 DOI: 10.1038/s41380-019-0547-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022]
Abstract
Synaptic plasticity requires a tight control of mRNA levels in dendrites. RNA translation and degradation pathways have been recently linked to neurodevelopmental and neuropsychiatric diseases, suggesting a role for RNA regulation in synaptic plasticity and cognition. While the local translation of specific mRNAs has been implicated in synaptic plasticity, the tightly controlled mechanisms that regulate local quantity of specific mRNAs remain poorly understood. Despite being the only RNA regulatory pathway that is associated with multiple mental illnesses, the nonsense-mediated mRNA decay (NMD) pathway presents an unexplored regulatory mechanism for synaptic function and plasticity. Here, we show that neuron-specific disruption of UPF2, an NMD component, in adulthood attenuates learning, memory, spine density, synaptic plasticity (L-LTP), and potentiates perseverative/repetitive behavior in mice. We report that the NMD pathway operates within dendrites to regulate Glutamate Receptor 1 (GLUR1) surface levels. Specifically, UPF2 modulates the internalization of GLUR1 and promotes its local synthesis in dendrites. We identified neuronal Prkag3 mRNA as a mechanistic substrate for NMD that contributes to the UPF2-mediated regulation of GLUR1 by limiting total GLUR1 levels. These data establish that UPF2 regulates synaptic plasticity, cognition, and local protein synthesis in dendrites, providing fundamental insight into the neuron-specific function of NMD within the brain.
Collapse
|
37
|
Sulistomo HW, Nemoto T, Kage Y, Fujii H, Uchida T, Takamiya K, Sumimoto H, Kataoka H, Bito H, Takeya R. Fhod3 Controls the Dendritic Spine Morphology of Specific Subpopulations of Pyramidal Neurons in the Mouse Cerebral Cortex. Cereb Cortex 2020; 31:2205-2219. [PMID: 33251537 DOI: 10.1093/cercor/bhaa355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/25/2023] Open
Abstract
Changes in the shape and size of the dendritic spines are critical for synaptic transmission. These morphological changes depend on dynamic assembly of the actin cytoskeleton and occur differently in various types of neurons. However, how the actin dynamics are regulated in a neuronal cell type-specific manner remains largely unknown. We show that Fhod3, a member of the formin family proteins that mediate F-actin assembly, controls the dendritic spine morphogenesis of specific subpopulations of cerebrocortical pyramidal neurons. Fhod3 is expressed specifically in excitatory pyramidal neurons within layers II/III and V of restricted areas of the mouse cerebral cortex. Immunohistochemical and biochemical analyses revealed the accumulation of Fhod3 in postsynaptic spines. Although targeted deletion of Fhod3 in the brain did not lead to any defects in the gross or histological appearance of the brain, the dendritic spines in pyramidal neurons within presumptive Fhod3-positive areas were morphologically abnormal. In primary cultures prepared from the Fhod3-depleted cortex, defects in spine morphology were only detected in Fhod3 promoter-active cells, a small population of pyramidal neurons, and not in Fhod3 promoter-negative pyramidal neurons. Thus, Fhod3 plays a crucial role in dendritic spine morphogenesis only in a specific population of pyramidal neurons in a cell type-specific manner.
Collapse
Affiliation(s)
- Hikmawan Wahyu Sulistomo
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Taku Uchida
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Kogo Takamiya
- Department of Integrative Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Hideki Sumimoto
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Hiroaki Kataoka
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
38
|
Antipsychotic Drugs Reverse MK801-Inhibited Cell Migration and F-actin Condensation by Modulating the Rho Signaling Pathway in B35 Cells. Behav Neurol 2020. [DOI: 10.1155/2020/4163274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background and Aim. MK801-induced psychotic symptoms and also the Ras homolog family member A (RhoA) expression and cell division control protein 42 (cdc42) mRNA modulation in the rat brain have been investigated. Antipsychotic drugs (APDs) have been reported to induce Rho GDP-dissociation inhibitor (RhoGDI) pathway regulation related to cytoskeleton reorganization in neuronal cells. It will be necessary to clarify the effects of APDs on MK801-induced RhoGDI signaling regulation in neuronal cells. Methods. B35 neuronal cells were treated with MK801 for 7 days then treated with MK801 in combination with haloperidol or clozapine for a further 7 days. Cell migration, F-actin condensation, and RhoGDI signaling regulation were examined to investigate the regulatory effects of MK801, haloperidol, and clozapine in B35 neuronal cells. Results. MK801 reduced B35 cell migration, whereas both haloperidol and clozapine reversed the reduction in cell migration induced by MK801. Haloperidol and clozapine restored F-actin condensation after it was diminished by MK801 in B35 cell nuclei. MK801 increased the RhoGDI1 and RhoA expression, which was diminished by the addition of haloperidol and clozapine. MK801 reduced the CDC42 expression, which was restored by haloperidol and clozapine. MK801 reduced the Rho-associated coiled-coil containing protein kinase 1 (ROCK1), profilin1 (PFN1), and neuronal Wiskott–Aldrich Syndrome protein (N-WASP) expression, which was further reduced by haloperidol and clozapine. MK801 also increased the phosphorylated myosin light chain 2 (p-MLC2), postsynaptic density protein 95 (PSD-95), and c-jun expression, which was decreased by haloperidol and clozapine. p21 (RAC1-) activated kinase 1 (PAK1) expression was not affected by MK801.
Collapse
|
39
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
40
|
Clifton NE, Thomas KL, Wilkinson LS, Hall J, Trent S. FMRP and CYFIP1 at the Synapse and Their Role in Psychiatric Vulnerability. Complex Psychiatry 2020; 6:5-19. [PMID: 34883502 PMCID: PMC7673588 DOI: 10.1159/000506858] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
There is increasing awareness of the role genetic risk variants have in mediating vulnerability to psychiatric disorders such as schizophrenia and autism. Many of these risk variants encode synaptic proteins, influencing biological pathways of the postsynaptic density and, ultimately, synaptic plasticity. Fragile-X mental retardation 1 (FMR1) and cytoplasmic fragile-X mental retardation protein (FMRP)-interacting protein 1 (CYFIP1) contain 2 such examples of highly penetrant risk variants and encode synaptic proteins with shared functional significance. In this review, we discuss the biological actions of FMRP and CYFIP1, including their regulation of (i) protein synthesis and specifically FMRP targets, (ii) dendritic and spine morphology, and (iii) forms of synaptic plasticity such as long-term depression. We draw upon a range of preclinical studies that have used genetic dosage models of FMR1 and CYFIP1 to determine their biological function. In parallel, we discuss how clinical studies of fragile X syndrome or 15q11.2 deletion patients have informed our understanding of FMRP and CYFIP1, and highlight the latest psychiatric genomic findings that continue to implicate FMRP and CYFIP1. Lastly, we assess the current limitations in our understanding of FMRP and CYFIP1 biology and how they must be addressed before mechanism-led therapeutic strategies can be developed for psychiatric disorders.
Collapse
Affiliation(s)
- Nicholas E. Clifton
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kerrie L. Thomas
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Simon Trent
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
41
|
Tang Q, Schaks M, Koundinya N, Yang C, Pollard LW, Svitkina TM, Rottner K, Goode BL. WAVE1 and WAVE2 have distinct and overlapping roles in controlling actin assembly at the leading edge. Mol Biol Cell 2020; 31:2168-2178. [PMID: 32697617 PMCID: PMC7550694 DOI: 10.1091/mbc.e19-12-0705] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SCAR/WAVE proteins and Arp2/3 complex assemble branched actin networks at the leading edge. Two isoforms of SCAR/WAVE, WAVE1 and WAVE2, reside at the leading edge, yet it has remained unclear whether they perform similar or distinct roles. Further, there have been conflicting reports about the Arp2/3-independent biochemical activities of WAVE1 on actin filament elongation. To investigate this in vivo, we knocked out WAVE1 and WAVE2 genes, individually and together, in B16-F1 melanoma cells. We demonstrate that WAVE1 and WAVE2 are redundant for lamellipodia formation and motility. However, there is a significant decrease in the rate of leading edge actin extension in WAVE2 KO cells, and an increase in WAVE1 KO cells. The faster rates of actin extension in WAVE1 KO cells are offset by faster retrograde flow, and therefore do not translate into faster lamellipodium protrusion. Thus, WAVE1 restricts the rate of actin extension at the leading edge, and appears to couple actin networks to the membrane to drive protrusion. Overall, these results suggest that WAVE1 and WAVE2 have redundant roles in promoting Arp2/3-dependent actin nucleation and lamellipodia formation, but distinct roles in controlling actin network extension and harnessing network growth to cell protrusion.
Collapse
Affiliation(s)
- Qing Tang
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Matthias Schaks
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Neha Koundinya
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| |
Collapse
|
42
|
Wang Y, Zhao J, Guo FL, Gao X, Xie X, Liu S, Yang X, Yang X, Zhang L, Ye Y, Fan L, Wang J. Metformin Ameliorates Synaptic Defects in a Mouse Model of AD by Inhibiting Cdk5 Activity. Front Cell Neurosci 2020; 14:170. [PMID: 32670025 PMCID: PMC7327108 DOI: 10.3389/fncel.2020.00170] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that is activated by the neuron-specific activators p35/p39 and plays important roles in neuronal development, synaptic plasticity, and cognitive behavior. However, the proteolytic cleavage of p35 to p25 leads to prolonged and aberrant Cdk5 activation and results in synaptic depression, highly mimicking the early pathology of Alzheimer’s disease (AD). Therefore, Cdk5 inhibition is a potential promising strategy for AD drug development. Here in the present study, we showed that metformin, the most widely used drug for type 2 diabetes, suppressed Cdk5 hyper-activation and Cdk5-dependent tau hyper-phosphorylation in the APP/PS1 mouse hippocampus. We also identified the underlying molecular and cellular mechanism that metformin prevented Cdk5 hyper-activation by inhibiting the calpain-dependent cleavage of p35 into p25. Moreover, chronic metformin treatment rescued the core phenotypes in APP/PS1 mice as evidenced by restored spine density, surface GluA1 trafficking, Long-term potentiation (LTP) expression, and spatial memory. Altogether our study discovered an unidentified role of metformin in suppressing Cdk5 hyper-activation and thus preventing AD pathogenesis and suggested that metformin is a potential promising AD therapeutic drug.
Collapse
Affiliation(s)
- YaLi Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - JianHua Zhao
- Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - XiaHuan Gao
- Department of Pathology, People's Hospital of Tongchuan, Tongchuan, China
| | - Xine Xie
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - ShouQing Liu
- Department of Neurology, The Second Hospital of Jinhua, Jinhua, China
| | - Xin Yang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XinFeng Yang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LuYi Zhang
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - YuXiao Ye
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - LiBing Fan
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - JianGang Wang
- Key Laboratory for the Brain Research of Henan Province, Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
43
|
Costa JF, Dines M, Lamprecht R. The Role of Rac GTPase in Dendritic Spine Morphogenesis and Memory. Front Synaptic Neurosci 2020; 12:12. [PMID: 32362820 PMCID: PMC7182350 DOI: 10.3389/fnsyn.2020.00012] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to form memories in the brain is needed for daily functions, and its impairment is associated with human mental disorders. Evidence indicates that long-term memory (LTM)-related processes such as its consolidation, extinction and forgetting involve changes of synaptic efficacy produced by alterations in neural transmission and morphology. Modulation of the morphology and number of dendritic spines has been proposed to contribute to changes in neuronal transmission mediating such LTM-related processes. Rac GTPase activity is regulated by synaptic activation and it can affect spine morphology by controlling actin-regulatory proteins. Recent evidence shows that changes in Rac GTPase activity affect memory consolidation, extinction, erasure and forgetting and can affect spine morphology in brain areas that mediate these behaviors. Altered Rac GTPase activity is associated with abnormal spine morphology and brain disorders. By affecting Rac GTPase activity we can further understand the roles of spine morphogenesis in memory. Moreover, manipulation of Rac GTPase activity may serve as a therapeutic tool for the treatment of memory-related brain diseases.
Collapse
Affiliation(s)
| | | | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
44
|
Dynamic Phosphorylation and Dephosphorylation of Cyclase-Associated Protein 1 by Antagonistic Signaling through Cyclin-Dependent Kinase 5 and cAMP Are Critical for the Protein Functions in Actin Filament Disassembly and Cell Adhesion. Mol Cell Biol 2020; 40:MCB.00282-19. [PMID: 31791978 DOI: 10.1128/mcb.00282-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclase-associated protein 1 (CAP1) is a conserved actin-regulating protein that enhances actin filament dynamics and also regulates adhesion in mammalian cells. We previously found that phosphorylation at the Ser307/Ser309 tandem site controls its association with cofilin and actin and is important for CAP1 to regulate the actin cytoskeleton. Here, we report that transient Ser307/Ser309 phosphorylation is required for CAP1 function in both actin filament disassembly and cell adhesion. Both the phosphomimetic and the nonphosphorylatable CAP1 mutant, which resist transition between phosphorylated and dephosphorylated forms, had defects in rescuing the reduced rate of actin filament disassembly in the CAP1 knockdown HeLa cells. The phosphorylation mutants also had defects in alleviating the elevated focal adhesion kinase (FAK) activity and the enhanced focal adhesions in the knockdown cells. In dissecting further phosphoregulatory cell signals for CAP1, we found that cyclin-dependent kinase 5 (CDK5) phosphorylates both Ser307 and Ser309 residues, whereas cAMP signaling induces dephosphorylation at the tandem site, through its effectors protein kinase A (PKA) and exchange proteins directly activated by cAMP (Epac). No evidence supports an involvement of activated protein phosphatase in executing the dephosphorylation downstream from cAMP, whereas preventing CAP1 from accessing its kinase CDK5 appears to underlie CAP1 dephosphorylation induced by cAMP. Therefore, this study provides direct cellular evidence that transient phosphorylation is required for CAP1 functions in both actin filament turnover and adhesion, and the novel mechanistic insights substantially extend our knowledge of the cell signals that function in concert to regulate CAP1 by facilitating its transient phosphorylation.
Collapse
|
45
|
Long-term memory is maintained by continuous activity of Arp2/3 in lateral amygdala. Neurobiol Learn Mem 2019; 167:107115. [PMID: 31733301 DOI: 10.1016/j.nlm.2019.107115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/30/2019] [Accepted: 11/11/2019] [Indexed: 01/25/2023]
Abstract
Evidence indicates that long-term memory formation involves alterations in synaptic efficacy produced by modifications in neural transmission and morphology. However, it is not clear how such changes induced by learning, that encode memory, are maintained over long period of time to preserve long-term memory. It has been shown that the actin nucleating protein Arp2/3 is essential for supporting neuronal morphology and synaptic transmission. We therefore hypothesized that continuous Arp2/3 activity is needed to maintain long-term memory over time. To test this hypothesis we microinjected into lateral amygdala (LA) of rats CK-666, a specific inhibitor of Arp2/3, two days after fear conditioning and tested the effect on long-term fear memory maintenance a day afterward. We found that injection of CK-666 two days after training abolished fear conditioning memory. Fear conditioning could be formed when a control compound CK-689 was applied two days after training. Microinjection of CK-666 a day before fear conditioning training had no effect on fear conditioning learning and long-term memory formation. We revealed that Arp2/3 is also needed to maintain long-term conditioned taste aversion (CTA) memory in LA. Microinjection of CK-666 two days after CTA training impaired long-term memory tested a day afterwards. We conclude that continuous activity of Arp2/3 in LA is essential for the maintenance of long-term memory.
Collapse
|
46
|
Su CY, Yan RL, Hsu WH, Chu CT, Chang HC, Lai CC, Hsu HP, Chen HC. Phosphorylation of adducin-1 by cyclin-dependent kinase 5 is important for epidermal growth factor-induced cell migration. Sci Rep 2019; 9:13703. [PMID: 31548578 PMCID: PMC6757057 DOI: 10.1038/s41598-019-50275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is predominantly expressed in neuron and plays an important role in neuronal physiology. Increasing evidence also indicates that Cdk5 may contribute to malignant progression of some types of cancers; however, the underlying mechanism remains elusive. In this study, we found that Cdk5 directly phosphorylated the actin-binding protein adducin-1 (ADD1) at T724 in vitro and in intact cells. The capability of the phosphomimetic T724D mutant to bind to actin filaments was lower than that of wild type ADD1 and the T724A mutant. Cdk5 co-localized with ADD1 at the lamellipodia upon epidermal growth factor (EGF) stimulation. The increased lamellipodia formation and cell migration of human breast cancer cells MDA-MB-231 by EGF were accompanied by Cdk5 activation and increased phosphorylation of ADD1 at T724. Depletion of Cdk5 in MDA-MB-231 cells abrogated the effects of EGF on ADD1 T724 phosphorylation, lamellipodia formation, and cell migration. Likewise, depletion of ADD1 suppressed the effects of EGF on lamellipodia formation, cell migration, and invasion, all of which were restored by FLAG-ADD1 WT and the T724D mutant, but not the T724A mutant. Together, our results suggest that phosphorylation of ADD1 at T724 by Cdk5 is important for EGF-induced cell migration and invasion.
Collapse
Affiliation(s)
- Chia-Yi Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ruei-Liang Yan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsin Hsu
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Tung Chu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsuan-Chia Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hong-Chen Chen
- Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
47
|
Roesler MK, Lombino FL, Freitag S, Schweizer M, Hermans-Borgmeyer I, Schwarz JR, Kneussel M, Wagner W. Myosin XVI Regulates Actin Cytoskeleton Dynamics in Dendritic Spines of Purkinje Cells and Affects Presynaptic Organization. Front Cell Neurosci 2019; 13:330. [PMID: 31474830 PMCID: PMC6705222 DOI: 10.3389/fncel.2019.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/04/2019] [Indexed: 11/29/2022] Open
Abstract
The actin cytoskeleton is crucial for function and morphology of neuronal synapses. Moreover, altered regulation of the neuronal actin cytoskeleton has been implicated in neuropsychiatric diseases such as autism spectrum disorder (ASD). Myosin XVI is a neuronally expressed unconventional myosin known to bind the WAVE regulatory complex (WRC), a regulator of filamentous actin (F-actin) polymerization. Notably, the gene encoding the myosin’s heavy chain (MYO16) shows genetic association with neuropsychiatric disorders including ASD. Here, we investigated whether myosin XVI plays a role for actin cytoskeleton regulation in the dendritic spines of cerebellar Purkinje cells (PCs), a neuronal cell type crucial for motor learning, social cognition and vocalization. We provide evidence that both myosin XVI and the WRC component WAVE1 localize to PC spines. Fluorescence recovery after photobleaching (FRAP) analysis of GFP-actin in cultured PCs shows that Myo16 knockout as well as PC-specific Myo16 knockdown, lead to faster F-actin turnover in the dendritic spines of PCs. We also detect accelerated F-actin turnover upon interference with the WRC, and upon inhibition of Arp2/3 that drives formation of branched F-actin downstream of the WRC. In contrast, inhibition of formins that are responsible for polymerization of linear actin filaments does not cause faster F-actin turnover. Together, our data establish myosin XVI as a regulator of the postsynaptic actin cytoskeleton and suggest that it is an upstream activator of the WRC-Arp2/3 pathway in PC spines. Furthermore, ultra-structural and electrophysiological analyses of Myo16 knockout cerebellum reveals the presence of reduced numbers of synaptic vesicles at presynaptic terminals in the absence of the myosin. Therefore, we here define myosin XVI as an F-actin regulator important for presynaptic organization in the cerebellum.
Collapse
Affiliation(s)
- Mona Katrin Roesler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franco Luis Lombino
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Freitag
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Electron Microscopy Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jürgen R Schwarz
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Wagner
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
49
|
Chen Y, Milenkovic M, Horsfall W, Salahpour A, Soderling SH, Ramsey AJ. Restoring striatal WAVE-1 improves maze exploration performance of GluN1 knockdown mice. PLoS One 2018; 13:e0199341. [PMID: 30352064 PMCID: PMC6198945 DOI: 10.1371/journal.pone.0199341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.
Collapse
Affiliation(s)
- Yuxiao Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Scott H. Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
50
|
Ito Y, Carss KJ, Duarte ST, Hartley T, Keren B, Kurian MA, Marey I, Charles P, Mendonça C, Nava C, Pfundt R, Sanchis-Juan A, van Bokhoven H, van Essen A, van Ravenswaaij-Arts C, Boycott KM, Kernohan KD, Dyack S, Raymond FL, Aitman T, Bennett D, Caulfield M, Chinnery P, Gale D, Koziell A, Kuijpers TW, Laffan MA, Maher E, Markus HS, Morrell NW, Ouwehand WH, Perry DJ, Raymond FL, Roberts I, Smith KG, Thrasher A, Watkins H, Williamson C, Woods G, Ashford S, Bradley JR, Fletcher D, Hammerton T, James R, Kingston N, Penkett CJ, Stirrups K, Veltman M, Young T, Brown M, Clements-Brod N, Davis J, Dewhurst E, Dolling H, Erwood M, Frary A, Linger R, Martin JM, Papadia S, Rehnstrom K, Stark H, Allsup D, Austin S, Bakchoul T, Bariana TK, Bolton-Maggs P, Chalmers E, Collins J, Collins P, Erber WN, Everington T, Favier R, Freson K, Furie B, Gattens M, Gebhart J, Gomez K, Greene D, Greinacher A, Gresele P, Hart D, Heemskerk JW, Henskens Y, Kazmi R, Keeling D, Kelly AM, Lambert MP, Lentaigne C, Liesner R, Makris M, Mangles S, Mathias M, Millar CM, Mumford A, Nurden P, Payne J, Pasi J, Peerlinck K, Revel-Vilk S, Richards M, Rondina M, Roughley C, Schulman S, Schulze H, Scully M, Sivapalaratnam S, Stubbs M, Tait RC, Talks K, Thachil J, Toh CH, Turro E, Van Geet C, De Vries M, Warner TQ, Watson H, Westbury S, Furnell A, Mapeta R, Rayner-Matthews P, Simeoni I, Staines S, Stephens J, Watt C, Whitehorn D, Attwood A, Daugherty L, Deevi SV, Halmagyi C, Hu F, Matser V, Meacham S, Megy K, Shamardina O, Titterton C, Tuna S, Yu P, von Ziegenweldt J, Astle W, Bleda M, Carss KJ, Gräf S, Haimel M, Lango-Allen H, Richardson S, Calleja P, Rankin S, Turek W, Anderson J, Bryson C, Carmichael J, McJannet C, Stock S, Allen L, Ambegaonkar G, Armstrong R, Arno G, Bitner-Glindzicz M, Brady A, Canham N, Chitre M, Clement E, Clowes V, Deegan P, Deshpande C, Doffinger R, Firth H, Flinter F, French C, Gardham A, Ghali N, Gissen P, Grozeva D, Henderson R, Hensiek A, Holden S, Holder M, Holder S, Hurst J, Josifova D, Krishnakumar D, Kurian MA, Lees M, MacLaren R, Maw A, Mehta S, Michaelides M, Moore A, Murphy E, Park SM, Parker A, Patch C, Paterson J, Rankin J, Reid E, Rosser E, Sanchis-Juan A, Sandford R, Santra S, Scott R, Sohal A, Stein P, Thomas E, Thompson D, Tischkowitz M, Vogt J, Wakeling E, Wassmer E, Webster A, Ali S, Ali S, Boggard HJ, Church C, Coghlan G, Cookson V, Corris PA, Creaser-Myers A, DaCosta R, Dormand N, Eyries M, Gall H, Ghataorhe PK, Ghio S, Ghofrani A, Gibbs JSR, Girerd B, Greenhalgh A, Hadinnapola C, Houweling AC, Humbert M, in’t Veld AH, Kennedy F, Kiely DG, Kovacs G, Lawrie A, Ross RVM, Machado R, Masati L, Meehan S, Moledina S, Montani D, Othman S, Peacock AJ, Pepke-Zaba J, Pollock V, Polwarth G, Ranganathan L, Rhodes CJ, Rue-Albrecht K, Schotte G, Shipley D, Soubrier F, Southgate L, Scelsi L, Suntharalingam J, Tan Y, Toshner M, Treacy CM, Trembath R, Vonk Noordegraaf A, Walker S, Wanjiku I, Wharton J, Wilkins M, Wort SJ, Yates K, Alachkar H, Antrobus R, Arumugakani G, Bacchelli C, Baxendale H, Bethune C, Bibi S, Booth C, Browning M, Burns S, Chandra A, Cooper N, Davies S, Devlin L, Drewe E, Edgar D, Egner W, Ghurye R, Gilmour K, Goddard S, Gordins P, Grigoriadou S, Hackett S, Hague R, Harper L, Hayman G, Herwadkar A, Huissoon A, Jolles S, Kelleher P, Kumararatne D, Lear S, Longhurst H, Lorenzo L, Maimaris J, Manson A, McDermott E, Murng S, Nejentsev S, Noorani S, Oksenhendler E, Ponsford M, Qasim W, Quinti I, Richter A, Samarghitean C, Sargur R, Savic S, Seneviratne S, Sewell C, Staples E, Stauss H, Thaventhiran J, Thomas M, Welch S, Willcocks L, Yeatman N, Yong P, Ancliff P, Babbs C, Layton M, Louka E, McGowan S, Mead A, Roy N, Chambers J, Dixon P, Estiu C, Hague B, Marschall HU, Simpson M, Chong S, Emmerson I, Ginsberg L, Gosal D, Hadden R, Horvath R, Mahdi-Rogers M, Manzur A, Marshall A, Matthews E, McCarthy M, Reilly M, Renton T, Rice A, Themistocleous A, Vale T, Van Zuydam N, Walker S, Ormondroyd L, Hudson G, Wei W, Yu Wai Man P, Whitworth J, Afzal M, Colby E, Saleem M, Alavijeh OS, Cook HT, Johnson S, Levine AP, Wong EK, Tan R, Boycott KM, MacKenzie A, Majewski J, Brudno M, Bulman D, Dyment D. De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. Am J Hum Genet 2018; 103:144-153. [PMID: 29961568 PMCID: PMC6037130 DOI: 10.1016/j.ajhg.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022] Open
Abstract
Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability.
Collapse
|