1
|
Ryser R, Chase JM, Gauzens B, Häussler J, Hirt MR, Rosenbaum B, Brose U. Landscape configuration can flip species-area relationships in dynamic meta-food-webs. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230138. [PMID: 38913064 PMCID: PMC11391306 DOI: 10.1098/rstb.2023.0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 06/25/2024] Open
Abstract
Spatial and trophic processes profoundly influence biodiversity, yet ecological theories often treat them independently. The theory of island biogeography and related theories on metacommunities predict higher species richness with increasing area across islands or habitat patches. In contrast, food-web theory explores the effects of traits and network structure on coexistence within local communities. Exploring the mechanisms by which landscape configurations interact with food-web dynamics in shaping metacommunities is important for our understanding of biodiversity. Here, we use a meta-food-web model to explore the role of landscape configuration in determining species richness and show that when habitat patches are interconnected by dispersal, more species can persist on smaller islands than predicted by classical theory. When patch sizes are spatially aggregated, this effect flattens the slope of the species-area relationship. Surprisingly, when landscapes have random patch-size distributions, the slope of the species-area relationships can even flip and become negative. This could be explained by higher biomass densities of lower trophic levels that then support species occupying higher trophic levels, which only persist on small and well-connected patches. This highlights the importance of simultaneously considering landscape configuration and local food-web dynamics to understand drivers of species-area relationships in metacommunities.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute for Computer Science, Martin Luther University Halle-Wittenberg, Halle 06108, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Johanna Häussler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig 04103, Germany
- Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena 07743, Germany
| |
Collapse
|
2
|
Thompson MSA, Couce E, Schratzberger M, Lynam CP. Climate change affects the distribution of diversity across marine food webs. GLOBAL CHANGE BIOLOGY 2023; 29:6606-6619. [PMID: 37814904 PMCID: PMC10946503 DOI: 10.1111/gcb.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 10/11/2023]
Abstract
Many studies predict shifts in species distributions and community size composition in response to climate change, yet few have demonstrated how these changes will be distributed across marine food webs. We use Bayesian Additive Regression Trees to model how climate change will affect the habitat suitability of marine fish species across a range of body sizes and belonging to different feeding guilds, each with different habitat and feeding requirements in the northeast Atlantic shelf seas. Contrasting effects of climate change are predicted for feeding guilds, with spatially extensive decreases in the species richness of consumers lower in the food web (planktivores) but increases for those higher up (piscivores). Changing spatial patterns in predator-prey mass ratios and fish species size composition are also predicted for feeding guilds and across the fish assemblage. In combination, these changes could influence nutrient uptake and transformation, transfer efficiency and food web stability, and thus profoundly alter ecosystem structure and functioning.
Collapse
Affiliation(s)
- Murray S. A. Thompson
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Elena Couce
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Michaela Schratzberger
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| | - Christopher P. Lynam
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Lowestoft LaboratoryLowestoftUK
| |
Collapse
|
3
|
Ortiz E, Ramos-Jiliberto R, Arim M. Prey selection along a predators' body size gradient evidences the role of different trait-based mechanisms in food web organization. PLoS One 2023; 18:e0292374. [PMID: 37797081 PMCID: PMC10553361 DOI: 10.1371/journal.pone.0292374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
An increase in prey richness, prey size and predator trophic position with predator body size has been consistently reported as prime features of food web organization. These trends have been explained by non-exclusive mechanisms. First, the increase in energy demand with body size determines that larger predators must reduce prey selectivity for achieving the required number of resources, being consumption relationships independent of prey traits. Second, when consumption is restricted by gape limitation, small predators are constrained to select among small prey. However, this selection weakens over large predators, which progressively consume more and larger prey. Finally, the optimal foraging mechanism predicts that larger predators optimize their diet by selecting only large prey with high energy reward. Each one of these mechanisms can individually explain the increase in prey richness, prey size and predator trophic position with predator body size but their relative importance or the direct evidence for their combined role was seldom considered. Here we use the community assembly by trait selection (CATS) theory for evaluating the support for each one of these mechanisms based on the prey selection patterns that they predict. We analyzed how prey body size and trophic guild determine prey selection by predators of increasing body size in a killifish guild from a temporary pond system. Results support the combination of the three mechanisms to explain the structural trends in our food web, although their strength is contingent on prey trophic group. Overall, high energy prey are preferred by larger predators, and small predators select small prey of all trophic status. However, large predators prefer large primary producers and avoid large carnivorous prey, probably because of the inherent risk of consuming other carnivorous. Our study provides a mechanistic understanding of how predator traits determine the selection of prey traits affecting food web assembly.
Collapse
Affiliation(s)
- Esteban Ortiz
- Departamento de Ecología y Gestión Ambiental-Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| | | | - Matías Arim
- Departamento de Ecología y Gestión Ambiental-Centro Universitario Regional del Este, Universidad de la República, Maldonado, Uruguay
| |
Collapse
|
4
|
Glazier DS. The Relevance of Time in Biological Scaling. BIOLOGY 2023; 12:1084. [PMID: 37626969 PMCID: PMC10452035 DOI: 10.3390/biology12081084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Various phenotypic traits relate to the size of a living system in regular but often disproportionate (allometric) ways. These "biological scaling" relationships have been studied by biologists for over a century, but their causes remain hotly debated. Here, I focus on the patterns and possible causes of the body-mass scaling of the rates/durations of various biological processes and life-history events, i.e., the "pace of life". Many biologists have regarded the rate of metabolism or energy use as the master driver of the "pace of life" and its scaling with body size. Although this "energy perspective" has provided valuable insight, here I argue that a "time perspective" may be equally or even more important. I evaluate various major ways that time may be relevant in biological scaling, including as (1) an independent "fourth dimension" in biological dimensional analyses, (2) a universal "biological clock" that synchronizes various biological rates/durations, (3) a scaling method that uses various biological time periods (allochrony) as scaling metrics, rather than various measures of physical size (allometry), as traditionally performed, (4) an ultimate body-size-related constraint on the rates/timing of biological processes/events that is set by the inevitability of death, and (5) a geological "deep time" approach for viewing the evolution of biological scaling patterns. Although previously proposed universal four-dimensional space-time and "biological clock" views of biological scaling are problematic, novel approaches using allochronic analyses and time perspectives based on size-related rates of individual mortality and species origination/extinction may provide new valuable insights.
Collapse
|
5
|
Kalinkat G, Rall BC, Uiterwaal SF, Uszko W. Empirical evidence of type III functional responses and why it remains rare. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1033818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
More than 70 years after its introduction, the framework of resource density-dependent consumption rates, also known as predator-prey functional responses, remains a core concept in population and food web ecology. Initially, three types of responses were defined: linear (type I), hyperbolic (type II), and sigmoid (type III). Due to its potential to stabilize consumer-resource population dynamics, the sigmoid type III functional response immediately became a “holy grail” in population ecology. However, experimentally proving that type III functional responses exist, whether in controlled laboratory systems or in nature, was challenging. While theoretical and practical advances make identifying type III responses easier today, decades of research have brought only a limited number of studies that provide empirical evidence for type III response curves. Here, we review this evidence from laboratory- and field-based studies published during the last two decades. We found 107 studies that reported type III responses, but these studies ranged across various taxa, interaction types, and ecosystems. To put these studies into context, we also discuss the various biological mechanisms that may lead to the emergence of type III responses. We summarize how three different and mutually independent intricacies bedevil the empirical documentation of type III responses: (1) challenges in statistical modeling of functional responses, (2) inadequate resource density ranges and spacing, and (3) biologically meaningful and realistic design of experimental arenas. Finally, we provide guidelines on how the field should move forward based on these considerations.
Collapse
|
6
|
González C. Evolution of the concept of ecological integrity and its study through networks. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
7
|
Tian W, Zhang H, Wang Z, Tian Y, Huang T. Analysis on the stability of plankton in a food web with empirical organism body mass distribution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21327-21343. [PMID: 36269477 DOI: 10.1007/s11356-022-23696-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The mechanism supporting the stability of complex food webs is an important, yet still controversial issue in ecology. Integrating the bioenergetic model with a natural plankton food web with empirical organism body mass distribution, we studied the effects of taxa diversity, nutrient enrichment simulation and connectance on the stability of plankton, and the underlying mechanisms. The behavior and functions of plankton with different body masses in the system were also explored. The results showed that genus richness promoted the temporal stability of community but reduced that of population. Meanwhile, the effects of taxon extinction on community biomass and temporal stability depended on the body masses of those lost taxa. Enrichment decreased phytoplankton and zooplankton community stability directly by increasing the temporal variability of biomass and indirectly by reducing taxa diversity. Enrichment preferentially caused phytoplankton taxa with the highest individual biomass to go extinct and the ones with smaller to increase in biomass. The effects, as well as the underlying mechanisms of connectance on phytoplankton and zooplankton stability were different. High connectance promoted the persistence and biomasses of both zooplankton and small-bodied phytoplankton but reduced those of larger-bodied phytoplankton. The results and methodology in this research will be helpful in understanding and analyzing the stability of plankton communities.
Collapse
Affiliation(s)
- Wang Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, People's Republic of China.
| | - Zhongyu Wang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Yonglan Tian
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Tousheng Huang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, 102206, People's Republic of China
| |
Collapse
|
8
|
Giacomini HC. Metabolic responses of predators to prey density. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.980812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The metabolic cost of foraging is the dark energy of ecological systems. It is much harder to observe and to measure than its beneficial counterpart, prey consumption, yet it is not inconsequential for the dynamics of prey and predator populations. Here I define the metabolic response as the change in energy expenditure of predators in response to changes in prey density. It is analogous and intrinsically linked to the functional response, which is the change in consumption rate with prey density, as they are both shaped by adjustments in foraging activity. These adjustments are adaptive, ubiquitous in nature, and are implicitly assumed by models of predator–prey dynamics that impose consumption saturation in functional responses. By ignoring the associated metabolic responses, these models violate the principle of energy conservation and likely underestimate the strength of predator–prey interactions. Using analytical and numerical approaches, I show that missing this component of interaction has broad consequences for dynamical stability and for the robustness of ecosystems to persistent environmental or anthropogenic stressors. Negative metabolic responses – those resulting from decreases in foraging activity when more prey is available, and arguably the most common – lead to lower local stability of food webs and a faster pace of change in population sizes, including higher excitability, higher frequency of oscillations, and quicker return times to equilibrium when stable. They can also buffer the effects of press perturbations, such as harvesting, on target populations and on their prey through top-down trophic cascades, but are expected to magnify bottom-up cascades, including the effects of nutrient enrichment or the effects of altering lower trophic levels that can be caused by environmental forcing and climate change. These results have implications for any resource management approach that relies on models of food web dynamics, which is the case of many applications of ecosystem-based fisheries management. Finally, besides having their own individual effects, metabolic responses have the potential to greatly alter, or even invert, functional response-stability relationships, and therefore can be critical to an integral understanding of predation and its influence on population dynamics and persistence.
Collapse
|
9
|
Wootton KL, Curtsdotter A, Jonsson T, Banks HT, Bommarco R, Roslin T, Laubmeier AN. Beyond body size—new traits for new heights in trait-based modelling of predator-prey dynamics. PLoS One 2022; 17:e0251896. [PMID: 35862348 PMCID: PMC9302725 DOI: 10.1371/journal.pone.0251896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/03/2022] [Indexed: 11/22/2022] Open
Abstract
Food webs map feeding interactions among species, providing a valuable tool for understanding and predicting community dynamics. Using species’ body sizes is a promising avenue for parameterizing food-web models, but such approaches have not yet been able to fully recover observed community dynamics. Such discrepancies suggest that traits other than body size also play important roles. For example, differences in species’ use of microhabitat or non-consumptive effects of intraguild predators may affect dynamics in ways not captured by body size. In Laubmeier et al. (2018), we developed a dynamic food-web model incorporating microhabitat and non-consumptive predator effects in addition to body size, and used simulations to suggest an optimal sampling design of a mesocosm experiment to test the model. Here, we perform the mesocosm experiment to generate empirical time-series of insect herbivore and predator abundance dynamics. We minimize least squares error between the model and time-series to determine parameter values of four alternative models, which differ in terms of including vs excluding microhabitat use and non-consumptive predator-predator effects. We use both statistical and expert-knowledge criteria to compare the models and find including both microhabitat use and non-consumptive predator-predator effects best explains observed aphid and predator population dynamics, followed by the model including microhabitat alone. This ranking suggests that microhabitat plays a larger role in driving population dynamics than non-consumptive predator-predator effects, although both are clearly important. Our results illustrate the importance of additional traits alongside body size in driving trophic interactions. They also point to the need to consider trophic interactions and population dynamics in a wider community context, where non-trophic impacts can dramatically modify the interplay between multiple predators and prey. Overall, we demonstrate the potential for utilizing traits beyond body size to improve trait-based models and the value of iterative cycling between theory, data and experiment to hone current insights into how traits affect food-web dynamics.
Collapse
Affiliation(s)
- Kate L. Wootton
- Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden
- BioFrontiers Institute, University of Colorado, Boulder, Boulder, CO, United States of America
- * E-mail:
| | - Alva Curtsdotter
- Insect Ecology Lab, Zoology, The University of New England, Armidale, NSW, Australia
- EkoMod SpA, Comuna de Concon, Region de Valparaiso, Chile
| | - Tomas Jonsson
- Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden
- Ecological modelling group, University of Skövde, Skövde, Sweden
| | - H. T. Banks
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC, United States of America
| | - Riccardo Bommarco
- Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden
| | - Tomas Roslin
- Swedish University of Agricultural Sciences, Department of Ecology, Uppsala, Sweden
| | - Amanda N. Laubmeier
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
10
|
Daugaard U, Munch SB, Inauen D, Pennekamp F, Petchey OL. Forecasting in the face of ecological complexity: Number and strength of species interactions determine forecast skill in ecological communities. Ecol Lett 2022; 25:1974-1985. [PMID: 35831269 PMCID: PMC9540476 DOI: 10.1111/ele.14070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
The potential for forecasting the dynamics of ecological systems is currently unclear, with contrasting opinions regarding its feasibility due to ecological complexity. To investigate forecast skill within and across systems, we monitored a microbial system exposed to either constant or fluctuating temperatures in a 5-month-long laboratory experiment. We tested how forecasting of species abundances depends on the number and strength of interactions and on model size (number of predictors). We also tested how greater system complexity (i.e. the fluctuating temperatures) impacted these relations. We found that the more interactions a species had, the weaker these interactions were and the better its abundance was predicted. Forecast skill increased with model size. Greater system complexity decreased forecast skill for three out of eight species. These insights into how abundance prediction depends on the connectedness of the species within the system and on overall system complexity could improve species forecasting and monitoring.
Collapse
Affiliation(s)
- Uriah Daugaard
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Stephan B Munch
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - David Inauen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Frank Pennekamp
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Krauß A, Gross T, Drossel B. Master stability functions for metacommunities with two types of habitats. Phys Rev E 2022; 105:044310. [PMID: 35590669 DOI: 10.1103/physreve.105.044310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/12/2022] [Indexed: 06/15/2023]
Abstract
Current questions in ecology revolve around instabilities in the dynamics on spatial networks and particularly the effect of node heterogeneity. We extend the master stability function formalism to inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems also allows the investigation of certain types of dynamics on higher-order networks. Combined with the generalized modeling approach to study the linear stability of steady states, this is a powerful tool to numerically asses the stability of large ensembles of systems. We analyze the stability of ecological metacommunities with two distinct types of habitats analytically and numerically in order to identify several sets of conditions under which the dynamics can become stabilized by dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects in metapopulations. Specifically, we identify self-regulation and negative feedback loops between source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may be stable under certain conditions.
Collapse
Affiliation(s)
- Alexander Krauß
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thilo Gross
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, 26129 Oldenburg, Germany
- Alfred-Wegener-Institute for Marine and Polar Research, 27570 Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Barbara Drossel
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Wootton KL, Curtsdotter A, Roslin T, Bommarco R, Jonsson T. Towards a modular theory of trophic interactions. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kate L. Wootton
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Biofrontiers Institute University of Colorado Boulder CO USA
| | - Alva Curtsdotter
- Insect Ecology Lab, Zoology The University of New England Armidale NSW Australia
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Riccardo Bommarco
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Tomas Jonsson
- Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
- Ecological Modelling Group University of Skövde Skövde Sweden
| |
Collapse
|
13
|
Anderson KE, Fahimipour AK. Body size dependent dispersal influences stability in heterogeneous metacommunities. Sci Rep 2021; 11:17410. [PMID: 34465802 PMCID: PMC8408130 DOI: 10.1038/s41598-021-96629-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022] Open
Abstract
Body size affects key biological processes across the tree of life, with particular importance for food web dynamics and stability. Traits influencing movement capabilities depend strongly on body size, yet the effects of allometrically-structured dispersal on food web stability are less well understood than other demographic processes. Here we study the stability properties of spatially-arranged model food webs in which larger bodied species occupy higher trophic positions, while species’ body sizes also determine the rates at which they traverse spatial networks of heterogeneous habitat patches. Our analysis shows an apparent stabilizing effect of positive dispersal rate scaling with body size compared to negative scaling relationships or uniform dispersal. However, as the global coupling strength among patches increases, the benefits of positive body size-dispersal scaling disappear. A permutational analysis shows that breaking allometric dispersal hierarchies while preserving dispersal rate distributions rarely alters qualitative aspects of metacommunity stability. Taken together, these results suggest that the oft-predicted stabilizing effects of large mobile predators may, for some dimensions of ecological stability, be attributed to increased patch coupling per se, and not necessarily coupling by top trophic levels in particular.
Collapse
Affiliation(s)
- Kurt E Anderson
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.
| | - Ashkaan K Fahimipour
- Department of Computer Science, University of California, Davis, CA, USA.,Institute of Marine Sciences, University of California, Santa Cruz, CA, USA
| |
Collapse
|
14
|
Gatica A, Ochoa AC, Mangione AM. Potential predators of Dolichotis patagonum in the surroundings of its burrows, in Sierra de las Quijadas National Park, San Luis, Argentina. MAMMALIA 2021. [DOI: 10.1515/mammalia-2020-0194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Dolichotis patagonum (common name: mara) is a large sized rodent, endemic of Argentina, which raises its juveniles in burrows. It has recently been categorized as vulnerable. This is the first study to evaluate D. patagonum interactions with potential predators in the surroundings of the dens. We monitored 20 burrows, using camera-traps, with a total of 5644 camera-days, obtained over two years (2015 and 2016). Five potential predator species were detected (Lycalopex griseus, Puma concolor, Leopardus geoffroyi, Salvator sp. and Chaetophractus villosus). L. griseus and L. geoffroyi were the species with the highest frequency of visits. Both species were photographed attacking the juveniles. Four out of five potential predator species registered presented agonistic interactions with adults of mara. Overlap between all species analyzed and mara was low to moderate, and potential predator visits to the surrounding of the burrows did not vary according to the presence of juveniles. Our results suggest that in this system, predators behave as opportunistic predators of mara’s juveniles. Mara’s social and reproductive behavior varies along the distribution range of the species, therefore it is of great ecological value to analyze and understand the variations of its interactions with predators in different regions and environments.
Collapse
Affiliation(s)
- Ailin Gatica
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO) , CCT San Luis CONICET , Avenida Ejército de los Andes 950 (5700) , San Luis , Argentina
| | - Ana C. Ochoa
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO) , CCT San Luis CONICET , Avenida Ejército de los Andes 950 (5700) , San Luis , Argentina
- Departamento de Biología, Facultad de Química Bioquímica y Farmacia , Universidad Nacional de San Luis , San Luis , Argentina
| | - Antonio M. Mangione
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO) , CCT San Luis CONICET , Avenida Ejército de los Andes 950 (5700) , San Luis , Argentina
- Departamento de Biología, Facultad de Química Bioquímica y Farmacia , Universidad Nacional de San Luis , San Luis , Argentina
| |
Collapse
|
15
|
Potapov AM, Rozanova OL, Semenina EE, Leonov VD, Belyakova OI, Bogatyreva VY, Degtyarev MI, Esaulov AS, Korotkevich AY, Kudrin AA, Malysheva EA, Mazei YA, Tsurikov SM, Zuev AG, Tiunov AV. Size compartmentalization of energy channeling in terrestrial belowground food webs. Ecology 2021; 102:e03421. [PMID: 34086977 DOI: 10.1002/ecy.3421] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 11/05/2022]
Abstract
Size-structured food webs form integrated trophic systems where energy is channeled from small to large consumers. Empirical evidence suggests that size structure prevails in aquatic ecosystems, whereas in terrestrial food webs trophic position is largely independent of body size. Compartmentalization of energy channeling according to size classes of consumers was suggested as a mechanism that underpins functioning and stability of terrestrial food webs including those belowground, but their structure has not been empirically assessed across the whole size spectrum. Here we used stable isotope analysis and metabolic regressions to describe size structure and energy use in eight belowground communities with consumers spanning 12 orders of magnitude in living body mass, from protists to earthworms. We showed a negative correlation between trophic position and body mass in invertebrate communities and a remarkable nonlinearity in community metabolism and trophic positions across all size classes. Specifically, we found that the correlation between body mass and trophic level is positive in the small-sized (protists, nematodes, arthropods below 1 μg in body mass), neutral in the medium-sized (arthropods of 1 μg to 1 mg), and negative in the large-sized consumers (large arthropods, earthworms), suggesting that these groups form compartments with different trophic organization. Based on this pattern, we propose a concept of belowground food webs being composed of (1) size-structured micro-food web driving fast energy channeling and nutrient release, for example in microbial loop; (2) arthropod macro-food web with no clear correlation between body size and trophic level, hosting soil arthropod diversity and subsidizing aboveground predators; and (3) "trophic whales," sequestering energy in their large bodies and restricting its propagation to higher trophic levels in belowground food webs. The three size compartments are based on a similar set of basal resources, but contribute to different ecosystem-level functions and respond differently to variations in climate, soil characteristics and land use. We suggest that the widely used vision of resource-based energy channeling in belowground food webs can be complemented with size-based energy channeling, where ecosystem multifunctionality, biodiversity, and stability are supported by a balance across individual size compartments.
Collapse
Affiliation(s)
- Anton M Potapov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,J. F. Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Untere Karspüle 2, 37073, Goettingen, Germany
| | - Oksana L Rozanova
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Eugenia E Semenina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Vladislav D Leonov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Olga I Belyakova
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Varvara Yu Bogatyreva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Maxim I Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia
| | - Anton S Esaulov
- Penza State University, Krasnaya Street 40, Penza, 440068, Russia
| | - Anastasiya Yu Korotkevich
- Institute of Biology and Chemistry, Moscow State Pedagogical University, Kibalchicha Street 6k3, 129164, Moscow, Russia
| | - Alexey A Kudrin
- Institute of Biology of Komi Scientific Centre, Ural Branch of the Russian Academy of Sciences, Kommunisticheskaja 28, 167000, Syktyvkar, Russia
| | | | - Yuri A Mazei
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991, Moscow, Russia.,Faculty of Biology, Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, 517182, China
| | - Sergey M Tsurikov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Andrey G Zuev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| | - Alexei V Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, Russia
| |
Collapse
|
16
|
McLeod AM, Leroux SJ. Incorporating abiotic controls on animal movements in metacommunities. Ecology 2021; 102:e03365. [PMID: 33871056 DOI: 10.1002/ecy.3365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023]
Abstract
Local dynamics are influenced by regional processes. Meta-ecology, or the study of spatial flows of energy, materials, and species between local systems, is becoming increasingly concerned with accurate depictions of species movements and the impacts of this movement on landscape-level ecosystem function. Indeed, incorporating diverse types of movement is a major frontier in metacommunity theory. Here, we synthesize literature to demonstrate that the movement of organisms between patches is governed by the interplay between both a species' ability to move and the combined effects of landscape structure and physical flows (termed abiotic controls), which together we refer to as abiotic-dependent species connectivity. For example, two lakes that share geographic proximity may be inaccessible for mobile fish species because they lack a river connecting them (landscape structure), but wind currents may disperse insects between them (physical flows). Empirical evidence suggests that abiotic controls, such as ocean currents, lead to abiotic-dependent species connectivity and that, in nature, this type of connectivity is the rule rather than the exception. Based on this empirical evidence, we introduce a novel mathematical framework to demonstrate how species movement capabilities and abiotic conditions, can interact to influence metacommunity stability. We apply this framework to predict how incorporating abiotic-dependent species connectivity applies to classic empirical examples of aquatic, aquatic-terrestrial, and terrestrial experimental metacommunities. We demonstrate that incorporating abiotic-dependent species connectivity into metacommunity models can lead to a much broader range of dynamics than models previously predicted, including a wider range of metacommunity stability. Our framework fills critical gaps in our basic understanding of organismal movement across landscapes and provides testable predictions for how such common natural phenomena impact landscape-level ecosystem function. Finally, we present future perspectives for further development of meta-ecological theory from questions about fragmentation to ecosystems. Anthropogenic change is not only leading to habitat loss from the damming of rivers to denuding the landscape, but altering the physical flows that have historically connected communities. Thus, recognizing the importance of these processes in tandem with species' movement abilities is critical for predicting and preserving the structure and function of ecological communities.
Collapse
Affiliation(s)
- Anne M McLeod
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| |
Collapse
|
17
|
Nonaka E, Kuparinen A. A modified niche model for generating food webs with stage-structured consumers: The stabilizing effects of life-history stages on complex food webs. Ecol Evol 2021; 11:4101-4125. [PMID: 33976797 PMCID: PMC8093700 DOI: 10.1002/ece3.7309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/31/2021] [Indexed: 11/11/2022] Open
Abstract
Almost all organisms grow in size during their lifetime and switch diets, trophic positions, and interacting partners as they grow. Such ontogenetic development introduces life-history stages and flows of biomass between the stages through growth and reproduction. However, current research on complex food webs rarely considers life-history stages. The few previously proposed methods do not take full advantage of the existing food web structural models that can produce realistic food web topologies.We extended the niche model developed by Williams and Martinez (Nature, 2000, 404, 180-183) to generate food webs that included trophic species with a life-history stage structure. Our method aggregated trophic species based on niche overlap to form a life-history structured population; therefore, it largely preserved the topological structure of food webs generated by the niche model. We applied the theory of allometric predator-prey body mass ratio and parameterized an allometric bioenergetic model augmented with biomass flow between stages via growth and reproduction to study the effects of a stage structure on the stability of food webs.When life-history stages were linked via growth and reproduction, more food webs persisted, and persisting food webs tended to retain more trophic species. Topological differences between persisting linked and unlinked food webs were small to modest. The slopes of biomass spectra were lower, and weak interaction links were more prevalent in the linked food webs than the unlinked ones, suggesting that a life-history stage structure promotes characteristics that can enhance stability of complex food webs.Our results suggest a positive relationship between the complexity and stability of complex food webs. A life-history stage structure in food webs may play important roles in dynamics of and diversity in food webs.
Collapse
Affiliation(s)
- Etsuko Nonaka
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| | - Anna Kuparinen
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
18
|
Henriques JF, Lacava M, Guzmán C, Gavín-Centol MP, Ruiz-Lupión D, De Mas E, Magalhães S, Moya-Laraño J. The sources of variation for individual prey-to-predator size ratios. Heredity (Edinb) 2021; 126:684-694. [PMID: 33452465 PMCID: PMC8115045 DOI: 10.1038/s41437-020-00395-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.
Collapse
Affiliation(s)
- Jorge F. Henriques
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal ,grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Mariángeles Lacava
- grid.11630.350000000121657640CENUR Noreste Sede Rivera, Universidad de la República, Ituzaingó, 667 Rivera Uruguay
| | - Celeste Guzmán
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Maria Pilar Gavín-Centol
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Dolores Ruiz-Lupión
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Eva De Mas
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| | - Sara Magalhães
- grid.9983.b0000 0001 2181 4263cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jordi Moya-Laraño
- grid.466639.80000 0004 0547 1725Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, 04120-La Cañada De San Urbano, Almeria, Spain
| |
Collapse
|
19
|
Qiao F, Yang QF, Hou RX, Zhang KN, Li J, Ge F, Ouyang F. Moderately decreasing fertilizer in fields does not reduce populations of cereal aphids but maximizes fitness of parasitoids. Sci Rep 2021; 11:2517. [PMID: 33510226 PMCID: PMC7843967 DOI: 10.1038/s41598-021-81855-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
Examination of the tradeoff between the extent of decreasing nitrogen input and pest suppression is crucial for maintaining the balance between essential yield and an efficient, sustainable pest control strategy. In this study, an experiment with four manipulated nitrogen fertilizer levels (70, 140, 210, and 280 kg N ha−1 = conventional level) was conducted to explore the effects of decreasing nitrogen on cereal aphids (Sitobion avenae and Rhopalosiphum padi) (Hemiptera: Aphididae), Aphidiinae parasitoids (Hymenoptera: Braconidae: Aphidiinae), and body sizes of parasitoids. The results indicated that nitrogen application, in the range of 70–280 kg N ha−1, has the potential to impact the populations of cereal aphids and their parasitoids. However, both differences between densities of cereal aphids and their parasitoids in moderate (140–210 kg N ha−1) and those in high nitrogen input (280 kg N ha−1) were not significant, and the parasitism rate was also unaffected. A higher parasitism rate reduced population growth of the cereal aphid (S. avenae). Additionally, a moderate decrease of nitrogen fertilizer from 280 to 140–210 kg N ha−1 maximized the body sizes of Aphidiinae parasitoids, indicating that a moderate decrease of nitrogen fertilizer could facilitate biocontrol of cereal aphid by parasitoids in the near future. We conclude that a moderate decrease in nitrogen application, from 280 to 140–210 kg N ha−1, does not quantitatively impact the densities of cereal aphids or the parasitism rate but can qualitatively maximize the fitness of the parasitoids.
Collapse
Affiliation(s)
- Fei Qiao
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quan-Feng Yang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui-Xing Hou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Ning Zhang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fang Ouyang
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
20
|
Alteration of coastal productivity and artisanal fisheries interact to affect a marine food web. Sci Rep 2021; 11:1765. [PMID: 33469119 PMCID: PMC7815714 DOI: 10.1038/s41598-021-81392-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/29/2020] [Indexed: 01/29/2023] Open
Abstract
Top-down and bottom-up forces determine ecosystem function and dynamics. Fisheries as a top-down force can shorten and destabilize food webs, while effects driven by climate change can alter the bottom-up forces of primary productivity. We assessed the response of a highly-resolved intertidal food web to these two global change drivers, using network analysis and bioenergetic modelling. We quantified the relative importance of artisanal fisheries as another predator species, and evaluated the independent and combined effects of fisheries and changes in plankton productivity on food web dynamics. The food web was robust to the loss of all harvested species but sensitive to the decline in plankton productivity. Interestingly, fisheries dampened the negative impacts of decreasing plankton productivity on non-harvested species by reducing the predation pressure of harvested consumers on non-harvested resources, and reducing the interspecific competition between harvested and non-harvested basal species. In contrast, the decline in plankton productivity increased the sensitivity of harvested species to fishing by reducing the total productivity of the food web. Our results show that strategies for new scenarios caused by climate change are needed to protect marine ecosystems and the wellbeing of local communities dependent on their resources.
Collapse
|
21
|
McLeod AM, Leroux SJ. The multiple meanings of omnivory influence empirical, modular theory and whole food web stability relationships. J Anim Ecol 2020; 90:447-459. [PMID: 33073862 DOI: 10.1111/1365-2656.13378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 10/14/2020] [Indexed: 11/28/2022]
Abstract
The persistence of whole communities hinges on the presence of select interactions which act to stabilize communities making the identification of these keystone interactions critical. One potential candidate is omnivory, yet theoretical research on omnivory thus far has been dominated by a modular theory approach whereby an omnivore and consumer compete for a shared resource. Empirical research, however, has highlighted the presence of a broader suite of omnivory modules. Here, we integrate empirical data analysis and mathematical models to explore the influence of both omnivory module (including classic, multi-resource, higher level, mutual predation and cannibalism) and omnivore-resource interaction type on food web stability. We use six classic empirical food webs to examine the prevalence of the different types of omnivory, a multi-species consumer-resource model to determine the stability of these different kinds of omnivory within a module context, and finally extend these models to a 50 species, whole food web model to examine the influence of omnivory on whole food web persistence. Our results challenge the concept that omnivory is broadly stabilizing. In particular, we demonstrate that the impact of omnivory depends on the type of omnivory being examined with multi-resource omnivory having the largest correlation with whole food web persistence. Moreover, our results highlight that we need to exercise caution when scaling modular theory to whole food web theory. Cannibalism, for example, was the most persistent and stable omnivory module in the modular theory analysis, but only demonstrated a weak correlation with whole food web persistence. Lastly, our results demonstrate that the frequency of omnivory modules are more important for whole food web persistence than the frequency of omnivore-resource interactions. Together, these results demonstrate that the role of omnivory often depends both on the type of omnivory being examined and the food web within which it is nested. In whole food web models, omnivory acts less as a keystone interaction, rather, specific types of omnivory, particularly multi-resource omnivory, act as keystone modules. Future work integrating module and whole food web theory is critical for resolving the role of key interactions in food webs.
Collapse
Affiliation(s)
- Anne M McLeod
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
22
|
DeLong JP. Detecting the Signature of Body Mass Evolution in the Broad-Scale Architecture of Food Webs. Am Nat 2020; 196:443-453. [PMID: 32970468 DOI: 10.1086/710350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractBody mass-based links between predator and prey are fundamental to the architecture of food webs. These links determine who eats whom across trophic levels and strongly influence the population abundance, flow of energy, and stability properties of natural communities. Body mass links scale up to create predator-prey mass relationships across species, but the origin of these relationships is unclear. Here I show that predator-prey mass relationships are consistent with the idea that body mass evolves to maximize a dependable supply of resource uptake. I used a global database of ~2,100 predator-prey links and a mechanistic optimization model to correctly predict the slope of the predator-prey mass scaling relationships across species generally and for nine taxonomic subsets. The model also predicted cross-group variation in the heights of the body mass relationships, providing an integrated explanation for mass relationships and their variation across taxa. The results suggest that natural selection on body mass at the local scale is detectable in ecological organization at the macro scale.
Collapse
|
23
|
Cuthbert RN, Wasserman RJ, Dalu T, Kaiser H, Weyl OLF, Dick JTA, Sentis A, McCoy MW, Alexander ME. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol Evol 2020; 10:5946-5962. [PMID: 32607203 PMCID: PMC7319243 DOI: 10.1002/ece3.6332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 01/18/2023] Open
Abstract
Predation is a pervasive force that structures food webs and directly influences ecosystem functioning. The relative body sizes of predators and prey may be an important determinant of interaction strengths. However, studies quantifying the combined influence of intra- and interspecific variation in predator-prey body size ratios are lacking.We use a comparative functional response approach to examine interaction strengths between three size classes of invasive bluegill and largemouth bass toward three scaled size classes of their tilapia prey. We then quantify the influence of intra- and interspecific predator-prey body mass ratios on the scaling of attack rates and handling times.Type II functional responses were displayed by both predators across all predator and prey size classes. Largemouth bass consumed more than bluegill at small and intermediate predator size classes, while large predators of both species were more similar. Small prey were most vulnerable overall; however, differential attack rates among prey were emergent across predator sizes. For both bluegill and largemouth bass, small predators exhibited higher attack rates toward small and intermediate prey sizes, while larger predators exhibited greater attack rates toward large prey. Conversely, handling times increased with prey size, with small bluegill exhibiting particularly low feeding rates toward medium-large prey types. Attack rates for both predators peaked unimodally at intermediate predator-prey body mass ratios, while handling times generally shortened across increasing body mass ratios.We thus demonstrate effects of body size ratios on predator-prey interaction strengths between key fish species, with attack rates and handling times dependent on the relative sizes of predator-prey participants.Considerations for intra- and interspecific body size ratio effects are critical for predicting the strengths of interactions within ecosystems and may drive differential ecological impacts among invasive species as size ratios shift.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMARHelmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Ecology and Resource ManagementUniversity of VendaThohoyandouSouth Africa
| | - Horst Kaiser
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
| | - Olaf L. F. Weyl
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Jaimie T. A. Dick
- Institute for Global Food SecuritySchool of Biological SciencesQueen's University BelfastBelfastUK
| | - Arnaud Sentis
- INRAEAix Marseille UniversityUMR RECOVERAix‐en‐ProvenceFrance
| | | | - Mhairi E. Alexander
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Institute for Biomedical and Environmental Health ResearchSchool of Health and Life SciencesUniversity of the West of ScotlandPaisleyUK
- Department of Botany and ZoologyCentre for Invasion BiologyStellenbosch UniversityMatielandSouth Africa
| |
Collapse
|
24
|
Martinez ND. Allometric Trophic Networks From Individuals to Socio-Ecosystems: Consumer–Resource Theory of the Ecological Elephant in the Room. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
25
|
Hale KRS, Valdovinos FS, Martinez ND. Mutualism increases diversity, stability, and function of multiplex networks that integrate pollinators into food webs. Nat Commun 2020; 11:2182. [PMID: 32358490 PMCID: PMC7195475 DOI: 10.1038/s41467-020-15688-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Ecosystems are composed of complex networks of many species interacting in different ways. While ecologists have long studied food webs of feeding interactions, recent studies increasingly focus on mutualistic networks including plants that exchange food for reproductive services provided by animals such as pollinators. Here, we synthesize both types of consumer-resource interactions to better understand the controversial effects of mutualism on ecosystems at the species, guild, and whole-community levels. We find that consumer-resource mechanisms underlying plant-pollinator mutualisms can increase persistence, productivity, abundance, and temporal stability of both mutualists and non-mutualists in food webs. These effects strongly increase with floral reward productivity and are qualitatively robust to variation in the prevalence of mutualism and pollinators feeding upon resources in addition to rewards. This work advances the ability of mechanistic network theory to synthesize different types of interactions and illustrates how mutualism can enhance the diversity, stability, and function of complex ecosystems.
Collapse
Affiliation(s)
- Kayla R S Hale
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA.
| | - Fernanda S Valdovinos
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Ave, Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Weiser Hall Suite 700, 500 Church St, Ann Arbor, MI, 48109, USA
| | - Neo D Martinez
- School of Informatics, Computing, and Engineering, Indiana University, Room 302, 919 E. 10th Street, Bloomington, IN, 47408, USA
- Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, CA, 94703, USA
| |
Collapse
|
26
|
Cosset CCP, Gilroy JJ, Srinivasan U, Hethcoat MG, Edwards DP. Mass-abundance scaling in avian communities is maintained after tropical selective logging. Ecol Evol 2020; 10:2803-2812. [PMID: 32211157 PMCID: PMC7083669 DOI: 10.1002/ece3.6066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 11/10/2022] Open
Abstract
Selective logging dominates forested landscapes across the tropics. Despite the structural damage incurred, selectively logged forests typically retain more biodiversity than other forest disturbances. Most logging impact studies consider conventional metrics, like species richness, but these can conceal subtle biodiversity impacts. The mass-abundance relationship is an integral feature of ecological communities, describing the negative relationship between body mass and population abundance, where, in a system without anthropogenic influence, larger species are less abundant due to higher energy requirements. Changes in this relationship can indicate community structure and function changes.We investigated the impacts of selective logging on the mass-abundance scaling of avian communities by conducting a meta-analysis to examine its pantropical trend. We divide our analysis between studies using mist netting, sampling the understory avian community, and point counts, sampling the entire community.Across 19 mist-netting studies, we found no consistent effects of selective logging on mass-abundance scaling relative to primary forests, except for the omnivore guild where there were fewer larger-bodied species after logging. In eleven point-count studies, we found a more negative relationship in the whole community after logging, likely driven by the frugivore guild, showing a similar pattern.Limited effects of logging on mass-abundance scaling may suggest high species turnover in logged communities, with like-for-like replacement of lost species with similar-sized species. The increased negative mass-abundance relationship found in some logged communities could result from resource depletion, density compensation, or increased hunting; potentially indicating downstream impacts on ecosystem functions. Synthesis and applications. Our results suggest that size distributions of avian communities in logged forests are relatively robust to disturbance, potentially maintaining ecosystem processes in these forests, thus underscoring the high conservation value of logged tropical forests, indicating an urgent need to focus on their protection from further degradation and deforestation.
Collapse
Affiliation(s)
- Cindy C P Cosset
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - James J Gilroy
- School of Environmental Sciences University of East Anglia Norwich UK
| | - Umesh Srinivasan
- Program in Science, Technology and Environmental Policy Woodrow Wilson School for Public and International Affairs Princeton University Princeton NJ USA
| | - Matthew G Hethcoat
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
- School of Mathematics and Statistics University of Sheffield Sheffield UK
- Grantham Centre for Sustainable Futures University of Sheffield Sheffield UK
| | - David P Edwards
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| |
Collapse
|
27
|
Junker RR, Lechleitner MH, Kuppler J, Ohler LM. Interconnectedness of the Grinnellian and Eltonian Niche in Regional and Local Plant-Pollinator Communities. FRONTIERS IN PLANT SCIENCE 2019; 10:1371. [PMID: 31781136 PMCID: PMC6856639 DOI: 10.3389/fpls.2019.01371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 10/04/2019] [Indexed: 05/31/2023]
Abstract
Understanding the causes and consequences of coexistence and thus biodiversity is one of the most fundamental endeavors of ecology, which has been addressed by studying species' requirements and impacts - conceptualized as their Grinnellian and Eltonian niches. However, different niche types have been mostly studied in isolation and thus potential covariation between them remains unknown. Here we quantified the realized Grinnellian niche (environmental requirements), the fundamental (morphological phenotype) and realized Eltonian niche (role in networks) of plant and pollinator taxa at a local and regional scale to investigate the interconnectedness of these niche types. We found a strong and scale-independent co-variation of niche types suggesting that taxa specialized in environmental factors are also specialized in their position in trait spaces and their role in bipartite networks. The integration of niche types thus will help to detect the true causes for species distributions, interaction networks, as well as the taxonomic and functional diversity of communities.
Collapse
|
28
|
Wu CH, Holloway JD, Hill JK, Thomas CD, Chen IC, Ho CK. Reduced body sizes in climate-impacted Borneo moth assemblages are primarily explained by range shifts. Nat Commun 2019; 10:4612. [PMID: 31601806 PMCID: PMC6787050 DOI: 10.1038/s41467-019-12655-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Both community composition changes due to species redistribution and within-species size shifts may alter body-size structures under climate warming. Here we assess the relative contribution of these processes in community-level body-size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages of geometrid moths (>8000 individuals) on Mt. Kinabalu, Borneo, in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size restructuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which is accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming. Body size shifts under climate change may arise from species range shifts, intraspecific size shifts, or both. Here the authors show that body size reduction in moth assemblages on Mt. Kinabalu, Borneo, over 42 years are driven more by species range shifts than by within-species shrinkage.
Collapse
Affiliation(s)
- Chung-Huey Wu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Jeremy D Holloway
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK
| | - Jane K Hill
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Chris D Thomas
- Department of Biology, University of York, York, YO10 5DD, UK
| | - I-Ching Chen
- Department of Life Sciences, National Cheng Kung University, Tainan City, Taiwan.
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan. .,Department of Life Science, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|
29
|
Fischer SM, Huth A. An Approach to Study Species Persistence in Unconstrained Random Networks. Sci Rep 2019; 9:14110. [PMID: 31575980 PMCID: PMC6773691 DOI: 10.1038/s41598-019-50373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/21/2019] [Indexed: 11/19/2022] Open
Abstract
The connection between structure and stability of ecological networks has been widely studied in the last fifty years. A challenge that scientists continue to face is that in-depth mathematical model analysis is often difficult, unless the considered systems are specifically constrained. This makes it challenging to generalize results. Therefore, methods are needed that relax the required restrictions. Here, we introduce a novel heuristic approach that provides persistence estimates for random systems without limiting the admissible parameter range and system behaviour. We apply our approach to study persistence of species in random generalized Lotka-Volterra systems and present simulation results, which confirm the accuracy of our predictions. Our results suggest that persistence is mainly driven by the linkage density, whereby additional links can both favour and hinder persistence. In particular, we observed "persistence bistability", a rarely studied feature of random networks, leading to a dependency of persistence on initial species densities. Networks with this property exhibit tipping points, in which species loss can lead to a cascade of extinctions. The methods developed in this paper may facilitate the study of more general models and thereby provide a step forward towards a unifying framework of network architecture and stability.
Collapse
Affiliation(s)
- Samuel M Fischer
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| | - Andreas Huth
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Permoserstraße 15, 04318, Leipzig, Germany
- Institute of Environmental Systems Research, Osnabrück University, Barbarastraße 12, 49076, Osnabrück, Germany
- iDiv - German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
30
|
Terry JCD, Morris RJ, Bonsall MB. Interaction modifications lead to greater robustness than pairwise non-trophic effects in food webs. J Anim Ecol 2019; 88:1732-1742. [PMID: 31287921 PMCID: PMC6900167 DOI: 10.1111/1365-2656.13057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
Considerable emphasis has been placed recently on the importance of incorporating non-trophic effects into our understanding of ecological networks. Interaction modifications are well-established as generating strong non-trophic impacts by modulating the strength of interspecific interactions. For simplicity and comparison with direct interactions within a network context, the consequences of interaction modifications have often been described as direct pairwise interactions. The consequences of this assumption have not been examined in non-equilibrium settings where unexpected consequences of interaction modifications are most likely. To test the distinct dynamic nature of these "higher-order" effects, we directly compare, using dynamic simulations, the robustness to extinctions under perturbation of systems where interaction modifications are either explicitly modelled or represented by corresponding equivalent pairwise non-trophic interactions. Full, multi-species representations of interaction modifications resulted in a greater robustness to extinctions compared to equivalent pairwise effects. Explanations for this increased stability despite apparent greater dynamic complexity can be found in additional routes for dynamic feedbacks. Furthermore, interaction modifications changed the relative vulnerability of species to extinction from those trophically connected close to the perturbed species towards those receiving a large number of modifications. Future empirical and theoretical research into non-trophic effects should distinguish interaction modifications from direct pairwise effects in order to maximize information about the system dynamics. Interaction modifications have the potential to shift expectations of species vulnerability based exclusively on trophic networks.
Collapse
Affiliation(s)
| | - Rebecca J Morris
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Southampton, Southampton, UK
| | - Michael B Bonsall
- Department of Zoology, University of Oxford, Oxford, UK.,St. Peter's College, Oxford, UK
| |
Collapse
|
31
|
Pawar S, Dell AI, Lin T, Wieczynski DJ, Savage VM. Interaction Dimensionality Scales Up to Generate Bimodal Consumer-Resource Size-Ratio Distributions in Ecological Communities. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol 2019; 3:919-927. [PMID: 31110252 DOI: 10.1038/s41559-019-0899-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 04/10/2019] [Indexed: 11/09/2022]
Abstract
Predator-prey interactions in natural ecosystems generate complex food webs that have a simple universal body-size architecture where predators are systematically larger than their prey. Food-web theory shows that the highest predator-prey body-mass ratios found in natural food webs may be especially important because they create weak interactions with slow dynamics that stabilize communities against perturbations and maintain ecosystem functioning. Identifying these vital interactions in real communities typically requires arduous identification of interactions in complex food webs. Here, we overcome this obstacle by developing predator-trait models to predict average body-mass ratios based on a database comprising 290 food webs from freshwater, marine and terrestrial ecosystems across all continents. We analysed how species traits constrain body-size architecture by changing the slope of the predator-prey body-mass scaling. Across ecosystems, we found high body-mass ratios for predator groups with specific trait combinations including (1) small vertebrates and (2) large swimming or flying predators. Including the metabolic and movement types of predators increased the accuracy of predicting which species are engaged in high body-mass ratio interactions. We demonstrate that species traits explain striking patterns in the body-size architecture of natural food webs that underpin the stability and functioning of ecosystems, paving the way for community-level management of the most complex natural ecosystems.
Collapse
|
33
|
Zhao Q, Van den Brink PJ, Carpentier C, Wang YXG, Rodríguez-Sánchez P, Xu C, Vollbrecht S, Gillissen F, Vollebregt M, Wang S, De Laender F. Horizontal and vertical diversity jointly shape food web stability against small and large perturbations. Ecol Lett 2019; 22:1152-1162. [PMID: 31095883 PMCID: PMC6852190 DOI: 10.1111/ele.13282] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022]
Abstract
The biodiversity of food webs is composed of horizontal (i.e. within trophic levels) and vertical diversity (i.e. the number of trophic levels). Understanding their joint effect on stability is a key challenge. Theory mostly considers their individual effects and focuses on small perturbations near equilibrium in hypothetical food webs. Here, we study the joint effects of horizontal and vertical diversity on the stability of hypothetical (modelled) and empirical food webs. In modelled food webs, horizontal and vertical diversity increased and decreased stability, respectively, with a stronger positive effect of producer diversity on stability at higher consumer diversity. Experiments with an empirical plankton food web, where we manipulated horizontal and vertical diversity and measured stability from species interactions and from resilience against large perturbations, confirmed these predictions. Taken together, our findings highlight the need to conserve horizontal biodiversity at different trophic levels to ensure stability.
Collapse
Affiliation(s)
- Qinghua Zhao
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands.,Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Camille Carpentier
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Yingying X G Wang
- Resource Ecology Group, Wageningen University, Droevendaalsesteeg 3a, 6708 PB, Wageningen, The Netherlands
| | - Pablo Rodríguez-Sánchez
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Chi Xu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Silke Vollbrecht
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Frits Gillissen
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Marlies Vollebregt
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Frederik De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| |
Collapse
|
34
|
Guzman LM, Srivastava DS. Prey body mass and richness underlie the persistence of a top predator. Proc Biol Sci 2019; 286:20190622. [PMID: 31064301 DOI: 10.1098/rspb.2019.0622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predators and prey often differ in body mass. The ratio of predator to prey body mass influences the predator's functional response (how consumption varies with prey density), and therefore, the strength and stability of the predator-prey interaction. The persistence of food chains is maximized when prey species are neither too big nor too small relative to their predator. Nonetheless, we do not know if (i) food web persistence requires that all predator-prey body mass ratios are intermediate, nor (ii) if this constraint depends on prey diversity. We experimentally quantified the functional response for a single predator consuming prey species of different body masses. We used the resultant allometric functional response to parametrize a food web model. We found that predator persistence was maximized when the minimum prey size in the community was intermediate, but as prey diversity increased, the minimum body size could take a broader range of values. This last result occurs because of Jensen's inequality: the average handling time for multiple prey of different sizes is higher than the handling time of the average sized prey. Our results demonstrate that prey diversity mediates how differences between predators and prey in body mass determine food web stability.
Collapse
Affiliation(s)
- Laura Melissa Guzman
- 1 Department of Zoology, University of British Columbia , Vancouver, British Columbia , Canada V6T1Z4.,2 Biodiversity Research Centre, University of British Columbia , Vancouver, British Columbia , Canada V6T1Z4
| | - Diane S Srivastava
- 1 Department of Zoology, University of British Columbia , Vancouver, British Columbia , Canada V6T1Z4.,2 Biodiversity Research Centre, University of British Columbia , Vancouver, British Columbia , Canada V6T1Z4
| |
Collapse
|
35
|
Bland S, Valdovinos FS, Hutchings JA, Kuparinen A. The role of fish life histories in allometrically scaled food-web dynamics. Ecol Evol 2019; 9:3651-3660. [PMID: 30988900 PMCID: PMC6434563 DOI: 10.1002/ece3.4996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 11/10/2022] Open
Abstract
Body size determines key ecological and evolutionary processes of organisms. Therefore, organisms undergo extensive shifts in resources, competitors, and predators as they grow in body size. While empirical and theoretical evidence show that these size-dependent ontogenetic shifts vastly influence the structure and dynamics of populations, theory on how those ontogenetic shifts affect the structure and dynamics of ecological networks is still virtually absent.Here, we expand the Allometric Trophic Network (ATN) theory in the context of aquatic food webs to incorporate size-structure in the population dynamics of fish species. We do this by modifying a food web generating algorithm, the niche model, to produce food webs where different fish life-history stages are described as separate nodes which are connected through growth and reproduction. Then, we apply a bioenergetic model that uses the food webs and the body sizes generated by our niche model to evaluate the effect of incorporating life-history structure into food web dynamics.We show that the larger the body size of a fish species respective to the body size of its preys, the higher the biomass attained by the fish species and the greater the ecosystem stability. We also find that the larger the asymptotic body size attained by fish species the larger the total ecosystem biomass, a result that holds true for both the largest fish in the ecosystem and each fish species in the ecosystem.This work provides an expanded ATN theory that generates food webs with life-history structure for chosen species. Our work offers a systematic approach for disentangling the effects of increasing life-history complexity in food-web models.
Collapse
Affiliation(s)
| | - Fernanda S. Valdovinos
- Department of Ecology and Evolutionary BiologyUniversity of MichiganMichigan
- Center for the Study of Complex SystemsUniversity of MichiganMichigan
| | - Jeffrey A. Hutchings
- Department of BiologyDalhousie UniversityHalifaxNSCanada
- Institute of Marine ResearchFlødevigen Marine Research StationHisNorway
| | - Anna Kuparinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
36
|
Reum JCP, Holsman KK, Aydin KY, Blanchard JL, Jennings S. Energetically relevant predator-prey body mass ratios and their relationship with predator body size. Ecol Evol 2019; 9:201-211. [PMID: 30680107 PMCID: PMC6342185 DOI: 10.1002/ece3.4715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/03/2022] Open
Abstract
Food web structure and dynamics depend on relationships between body sizes of predators and their prey. Species-based and community-wide estimates of preferred and realized predator-prey mass ratios (PPMR) are required inputs to size-based size spectrum models of marine communities, food webs, and ecosystems. Here, we clarify differences between PPMR definitions in different size spectrum models, in particular differences between PPMR measurements weighting prey abundance in individual predators by biomass (r bio) and numbers (r num). We argue that the former weighting generates PPMR as usually conceptualized in equilibrium (static) size spectrum models while the latter usually applies to dynamic models. We use diet information from 170,689 individuals of 34 species of fish in Alaskan marine ecosystems to calculate both PPMR metrics. Using hierarchical models, we examine how explained variance in these metrics changed with predator body size, predator taxonomic resolution, and spatial resolution. In the hierarchical analysis, variance in both metrics emerged primarily at the species level and substantially less variance was associated with other (higher) taxonomic levels or with spatial resolution. This suggests that changes in species composition are the main drivers of community-wide mean PPMR. At all levels of analysis, relationships between weighted mean r bio or weighted mean r num and predator mass tended to be dome-shaped. Weighted mean r num values, for species and community-wide, were approximately an order of magnitude higher than weighted mean r bio, reflecting the consistent numeric dominance of small prey in predator diets. As well as increasing understanding of the drivers of variation in PPMR and providing estimates of PPMR in the north Pacific Ocean, our results demonstrate that that r bio or r num, as well as their corresponding weighted means for any defined group of predators, are not directly substitutable. When developing equilibrium size-based models based on bulk energy flux or comparing PPMR estimates derived from the relationship between body mass and trophic level with those based on diet analysis, weighted mean r bio is a more appropriate measure of PPMR. When calibrating preference PPMR in dynamic size spectrum models then weighted mean r num will be a more appropriate measure of PPMR.
Collapse
Affiliation(s)
- Jonathan C. P. Reum
- School of Aquatic and Fishery SciencesUniversity of Washington SeattleSeattleWashington
| | - Kirstin K. Holsman
- Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleWashington
| | - Kerim Y. Aydin
- Alaska Fisheries Science CenterNational Marine Fisheries Service, NOAASeattleWashington
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Simon Jennings
- International Council for the Exploration of the SeaKøbenhavn VDenmark
| |
Collapse
|
37
|
Thiel T, Brechtel A, Brückner A, Heethoff M, Drossel B. The effect of reservoir-based chemical defense on predator-prey dynamics. THEOR ECOL-NETH 2018. [DOI: 10.1007/s12080-018-0402-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Costa-Pereira R, Araújo MS, Olivier RDS, Souza FL, Rudolf VHW. Prey Limitation Drives Variation in Allometric Scaling of Predator-Prey Interactions. Am Nat 2018; 192:E139-E149. [DOI: 10.1086/698726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
Affiliation(s)
- Pierre Quévreux
- Sorbonne Universités, Sorbonne Paris Cité, Paris Diderot Univ Paris 07, CNRS, INRA, IRD, UPEC, Inst. d'Écologie et des Sciences de l'Environnement - Paris, iEES-Paris, 4 place Jussieu; FR-75252 Paris France
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Leipzig Germany
- Inst. of Biodiversity, Friedrich Schiller Univ. Jena; Jena Germany
| |
Collapse
|
40
|
Song C, Rohr RP, Saavedra S. A guideline to study the feasibility domain of multi-trophic and changing ecological communities. J Theor Biol 2018; 450:30-36. [DOI: 10.1016/j.jtbi.2018.04.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
|
41
|
Uusi-Heikkilä S, Perälä T, Kuparinen A. Species' ecological functionality alters the outcome of fish stocking success predicted by a food-web model. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180465. [PMID: 30225036 PMCID: PMC6124140 DOI: 10.1098/rsos.180465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/09/2018] [Indexed: 05/08/2023]
Abstract
Fish stocking is used worldwide in conservation and management, but its effects on food-web dynamics and ecosystem stability are poorly known. To better understand these effects and predict the outcomes of stocking, we used an empirically validated network model of a well-studied lake ecosystem. We simulate two stocking scenarios with two native fish species valuable for fishing. In the first scenario, we stock planktivorous fish (whitefish) larvae in the ecosystem. This leads to a 1% increase in adult whitefish biomasses and decreases the biomasses of the top predator (perch). In the second scenario, we also stock perch larvae in the ecosystem. This decreases the planktivorous whitefish and the oldest top predator age class biomasses, and destabilizes the ecosystem. Our results demonstrate that the effects of stocking depend on the species' position in the food web and thus cannot be assessed without considering interacting species. We further show that stocking can lead to undesired outcomes from both management and conservation perspectives. The gains of stocking can remain minor and have adverse effects on the entire ecosystem.
Collapse
Affiliation(s)
- Silva Uusi-Heikkilä
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
| | | | | |
Collapse
|
42
|
Coexistence of many species in random ecosystems. Nat Ecol Evol 2018; 2:1237-1242. [PMID: 29988167 DOI: 10.1038/s41559-018-0603-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/08/2018] [Indexed: 11/08/2022]
Abstract
Rich ecosystems harbour thousands of species interacting in tangled networks encompassing predation, mutualism and competition. Such widespread biodiversity is puzzling, because in ecological models it is exceedingly improbable for large communities to stably coexist. One aspect rarely considered in these models, however, is that coexisting species in natural communities are a selected portion of a much larger pool, which has been pruned by population dynamics. Here we compute the distribution of the number of species that can coexist when we start from a pool of species interacting randomly, and show that even in this case we can observe rich, stable communities. Interestingly, our results show that, once stability conditions are met, network structure has very little influence on the level of biodiversity attained. Our results identify the main drivers responsible for widespread coexistence in natural communities, providing a baseline for determining which structural aspects of empirical communities promote or hinder coexistence.
Collapse
|
43
|
Cirtwill AR, Eklöf A. Feeding environment and other traits shape species’ roles in marine food webs. Ecol Lett 2018; 21:875-884. [DOI: 10.1111/ele.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/18/2018] [Accepted: 03/04/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Alyssa R. Cirtwill
- Department of Physics; Chemistry and Biology (IFM) Linköping University; Linköping SE-581 83 Sweden
| | - Anna Eklöf
- Department of Physics; Chemistry and Biology (IFM) Linköping University; Linköping SE-581 83 Sweden
| |
Collapse
|
44
|
Jonsson T, Kaartinen R, Jonsson M, Bommarco R. Predictive power of food web models based on body size decreases with trophic complexity. Ecol Lett 2018; 21:702-712. [DOI: 10.1111/ele.12938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/18/2018] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Tomas Jonsson
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 SE-75007 Uppsala Sweden
- Ecological Modelling group; School of Bioscience; University of Skövde; Box 408 SE-54128 Skövde Sweden
| | - Riikka Kaartinen
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 SE-75007 Uppsala Sweden
| | - Mattias Jonsson
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 SE-75007 Uppsala Sweden
| | - Riccardo Bommarco
- Department of Ecology; Swedish University of Agricultural Sciences; Box 7044 SE-75007 Uppsala Sweden
| |
Collapse
|
45
|
Selection of trilateral continuums of life history strategies under food web interactions. Sci Rep 2018. [PMID: 29540759 PMCID: PMC5852047 DOI: 10.1038/s41598-018-22789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The study of life history strategies has a long history in ecology and evolution, but determining the underlying mechanisms driving the evolution of life history variation and its consequences for population regulation remains a major challenge. In this study, a food web model with constant environmental conditions was used to demonstrate how multi-species consumer–resource interactions (food-web interactions) can create variation in the duration of the adult stage, age of maturation, and fecundity among species. The model included three key ecological processes: size-dependent species interactions, energetics, and transition among developmental stages. Resultant patterns of life history variation were consistent with previous empirical observations of the life history strategies of aquatic organisms referred to as periodic, equilibrium, and opportunistic strategies (trilateral continuums of life history strategies). Results from the simulation model suggest that these three life history strategies can emerge from food web interactions even when abiotic environmental conditions are held constant.
Collapse
|
46
|
Microbial Eukaryotes: a Missing Link in Gut Microbiome Studies. mSystems 2018; 3:mSystems00201-17. [PMID: 29556538 PMCID: PMC5850078 DOI: 10.1128/msystems.00201-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022] Open
Abstract
Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. Human-associated microbial communities include prokaryotic and eukaryotic organisms across high-level clades of the tree of life. While advances in high-throughput sequencing technology allow for the study of diverse lineages, the vast majority of studies are limited to bacteria, and very little is known on how eukaryote microbes fit in the overall microbial ecology of the human gut. As recent studies consider eukaryotes in their surveys, it is becoming increasingly clear that eukaryotes play important ecological roles in the microbiome as well as in host health. In this perspective, we discuss new evidence on eukaryotes as fundamental species of the human gut and emphasize that future microbiome studies should characterize the multitrophic interactions between microeukaryotes, other microorganisms, and the host.
Collapse
|
47
|
Barnes AD, Jochum M, Lefcheck JS, Eisenhauer N, Scherber C, O'Connor MI, de Ruiter P, Brose U. Energy Flux: The Link between Multitrophic Biodiversity and Ecosystem Functioning. Trends Ecol Evol 2018; 33:186-197. [PMID: 29325921 DOI: 10.1016/j.tree.2017.12.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023]
Abstract
Relating biodiversity to ecosystem functioning in natural communities has become a paramount challenge as links between trophic complexity and multiple ecosystem functions become increasingly apparent. Yet, there is still no generalised approach to address such complexity in biodiversity-ecosystem functioning (BEF) studies. Energy flux dynamics in ecological networks provide the theoretical underpinning of multitrophic BEF relationships. Accordingly, we propose the quantification of energy fluxes in food webs as a powerful, universal tool for understanding ecosystem functioning in multitrophic systems spanning different ecological scales. Although the concept of energy flux in food webs is not novel, its application to BEF research remains virtually untapped, providing a framework to foster new discoveries into the determinants of ecosystem functioning in complex systems.
Collapse
Affiliation(s)
- Andrew D Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149 Münster, Germany.
| | - Malte Jochum
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Christoph Scherber
- Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149 Münster, Germany
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, Univ. of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Peter de Ruiter
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands; Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany; Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| |
Collapse
|
48
|
Jonsson T. Conditions for Eltonian Pyramids in Lotka-Volterra Food Chains. Sci Rep 2017; 7:10912. [PMID: 28883486 PMCID: PMC5589755 DOI: 10.1038/s41598-017-11204-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/15/2017] [Indexed: 11/28/2022] Open
Abstract
In ecological communities consumers (excluding parasites and parasitoids) are in general larger and less numerous than their resource. This results in a well-known observation known as 'Eltonian pyramids' or the 'pyramid of numbers', and metabolic arguments suggest that this pattern is independent of the number of trophic levels in a system. At the same time, Lotka-Volterra (LV) consumer-resource models are a frequently used tool to study many questions in community ecology, but their capacity to produce Eltonian pyramids has not been formally analysed. Here, I address this knowledge gap by investigating if and when LV food chain models give rise to Eltonian pyramids. I show that Eltonian pyramids are difficult to reproduce without density-dependent mortality in the consumers, unless biologically plausible relationships between mortality rate and interaction strength are taken into account.
Collapse
Affiliation(s)
- Tomas Jonsson
- Ecological Modeling Group, School of Bioscience, University of Skövde, Box 408, SE-541 28, Skövde, Sweden.
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
49
|
Lang B, Ehnes RB, Brose U, Rall BC. Temperature and consumer type dependencies of energy flows in natural communities. OIKOS 2017. [DOI: 10.1111/oik.04419] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Birgit Lang
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, DE-02826 Görlitz; Germany
| | - Roswitha B. Ehnes
- Dept of Ecology; Swedish Univ. of Agricultural Sciences; Uppsala Sweden
| | - Ulrich Brose
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig; Germany
- Inst. of Ecology, Friedrich Schiller Univ. Jena; Jena Germany
| | - Björn C. Rall
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig; Germany
- Inst. of Ecology, Friedrich Schiller Univ. Jena; Jena Germany
| |
Collapse
|
50
|
Sentis A, Binzer A, Boukal DS. Temperature-size responses alter food chain persistence across environmental gradients. Ecol Lett 2017; 20:852-862. [PMID: 28544190 DOI: 10.1111/ele.12779] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/15/2016] [Accepted: 04/03/2017] [Indexed: 01/17/2023]
Abstract
Body-size reduction is a ubiquitous response to global warming alongside changes in species phenology and distributions. However, ecological consequences of temperature-size (TS) responses for community persistence under environmental change remain largely unexplored. Here, we investigated the interactive effects of warming, enrichment, community size structure and TS responses on a three-species food chain using a temperature-dependent model with empirical parameterisation. We found that TS responses often increase community persistence, mainly by modifying consumer-resource size ratios and thereby altering interaction strengths and energetic efficiencies. However, the sign and magnitude of these effects vary with warming and enrichment levels, TS responses of constituent species, and community size structure. We predict that the consequences of TS responses are stronger in aquatic than in terrestrial ecosystems, especially when species show different TS responses. We conclude that considering the links between phenotypic plasticity, environmental drivers and species interactions is crucial to better predict global change impacts on ecosystem diversity and stability.
Collapse
Affiliation(s)
- Arnaud Sentis
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Biology Centre AS CR, vvi, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Unité Mixte de Recherche 5174 "Evolution et Diversité Biologique", Centre National de la Recherche Scientifique - Université de Toulouse III - Ecole Nationale Supérieure de Formation de l'Enseignement Agricole - Institut de Recherche pour le Développement, 31062, Toulouse, France
| | - Amrei Binzer
- Max Planck Institute for Evolutionary Biology, August Thienemann Str. 2, 24306, Plön, Germany.,Linköping University, SE-581 83, Linköping, Sweden
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.,Biology Centre AS CR, vvi, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|