1
|
Pommery Y, Koyabu D, Meguro F, Tu VT, Ngamprasertwong T, Wannaprasert T, Nojiri T, Wilson LAB. Prenatal growth patterns of the upper jaw complex with implications for laryngeal echolocation in bats. J Anat 2024. [PMID: 39463142 DOI: 10.1111/joa.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Craniofacial morphology is extremely diversified within bat phylogeny, however growth and development of the palate in bats remains unstudied. The formation of both midline and bilateral orofacial clefts in laryngeally echolocating bats, morphologically similar to the syndromic and non-syndromic cleft palate in humans, are not well understood. Developmental series of prenatal samples (n = 128) and adults (n = 10) of eight bat species (two pteropodids, four rhinolophoids, and two yangochiropterans), and two non-bat mammals (Mus musculus and Erinaceus amurensis), were CT-scanned and cranial bones forming the upper jaw complex were three-dimensionally visualised to assess whether differences in palate development can be observed across bat phylogeny. Volumetric data of bones composing the upper jaw complex were measured to quantify palate growth. The premaxilla is relatively reduced in bats compared to other mammals and its shape is heterogeneous depending on the presence and type of orofacial cleft across bat phylogeny. The palatine process of premaxillary bones is lacking in pteropodids and yangochiropterans, whereas the premaxilla is a mobile structure which is only in contact caudally with the maxilla by a fibrous membrane or suture in rhinolophoids. In all bats, maxillary bones progressively extend caudally and palatine bones, in some cases split into three branches, extend caudally so that they are completely fused to another one medially prior to the birth. Ossification of the vomer and fusion of the maxillary and palatine bones occur earlier in rhinolophoids than in pteropodids and yangochiropterans. The vomer ossifies bilaterally from two different ossification centres in yangochiropterans, which is uncommon in other bats and non-bat mammals. Analysis of ontogenetic allometric trajectories of the upper jaw complex revealed faster development of maxillary, vomer, and palatine bones in yangochiropterans compared to other bats, especially rhinolophoids. Ancestral state reconstruction revealed that yangochiropterans have a higher magnitude of change in ossification rate compared to other bats and E. amurensis a lower magnitude compared to M. musculus and bats. This study provides new evidence of heterochronic shifts in craniofacial development and growth across bat phylogeny that can improve understanding of the developmental differences characterising nasal and oral emission strategies.
Collapse
Affiliation(s)
- Yannick Pommery
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | | | - Thanakul Wannaprasert
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Taro Nojiri
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Laura A B Wilson
- School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Acton, Australian Capital Territory, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
- ARC Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Research School of Physics, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Nojiri T, Takechi M, Furutera T, Brualla NLM, Iseki S, Fukui D, Tu VT, Meguro F, Koyabu D. Development of the hyolaryngeal architecture in horseshoe bats: insights into the evolution of the pulse generation for laryngeal echolocation. EvoDevo 2024; 15:2. [PMID: 38326924 PMCID: PMC10851524 DOI: 10.1186/s13227-024-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan.
| | - Masaki Takechi
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Toshiko Furutera
- Graduate School of Medicine, Juntendo University, 2-2-1 Hongo, Bunkyo-Ku, Tokyo, 113-8421, Japan
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Nicolas L M Brualla
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Dai Fukui
- The University of Tokyo Fuji Iyashinomori Woodland Study Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 341-2 Yamanaka, Yamanakako, Yamanashi, 401-05013, Japan
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
| | - Fumiya Meguro
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan
| | - Daisuke Koyabu
- Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8549, Japan.
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China.
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-Shi, Ibaraki, 305-8550, Japan.
| |
Collapse
|
3
|
Hand SJ, Maugoust J, Beck RMD, Orliac MJ. A 50-million-year-old, three-dimensionally preserved bat skull supports an early origin for modern echolocation. Curr Biol 2023; 33:4624-4640.e21. [PMID: 37858341 DOI: 10.1016/j.cub.2023.09.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Bats are among the most recognizable, numerous, and widespread of all mammals. But much of their fossil record is missing, and bat origins remain poorly understood, as do the relationships of early to modern bats. Here, we describe a new early Eocene bat that helps bridge the gap between archaic stem bats and the hyperdiverse modern bat radiation of more than 1,460 living species. Recovered from ∼50 million-year-old cave sediments in the Quercy Phosphorites of southwestern France, Vielasia sigei's remains include a near-complete, three-dimensionally preserved skull-the oldest uncrushed bat cranium yet found. Phylogenetic analyses of a 2,665 craniodental character matrix, with and without 36.8 kb of DNA sequence data, place Vielasia outside modern bats, with total evidence tip-dating placing it sister to the crown clade. Vielasia retains the archaic dentition and skeletal features typical of early Eocene bats, but its inner ear shows specializations found in modern echolocating bats. These features, which include a petrosal only loosely attached to the basicranium, an expanded cochlea representing ∼25% basicranial width, and a long basilar membrane, collectively suggest that the kind of laryngeal echolocation used by most modern bats predates the crown radiation. At least 23 individuals of V. sigei are preserved together in a limestone cave deposit, indicating that cave roosting behavior had evolved in bats by the end of the early Eocene; this period saw the beginning of significant global climate cooling that may have been an evolutionary driver for bats to first congregate in caves.
Collapse
Affiliation(s)
- Suzanne J Hand
- ESSRC, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacob Maugoust
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK.
| | - Maeva J Orliac
- Institut des Sciences de l'Evolution, UMR 5554 CNRS, IRD, EPHE, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
4
|
Li Y, Jiao H, Sin SYW, Wang R, Rossiter SJ, Zhao H. Common ancestors of bats were omnivorous suggested by resurrection of ancestral sweet receptors. Sci Bull (Beijing) 2023; 68:1748-1751. [PMID: 37500405 DOI: 10.1016/j.scib.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Yingcan Li
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hengwu Jiao
- School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Ruiqi Wang
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Huabin Zhao
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau of the Ministry of Education, Frontier Science Center for Immunology and Metabolism, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Louzada NSV, Pessôa LM. External and Skeletal Morphology of Molossus fluminensis Lataste, 1891 (Chiroptera, Molossidae) with Notes on Quadrupedal Locomotion and Habitat Use. ACTA CHIROPTEROLOGICA 2023. [DOI: 10.3161/15081109acc2022.24.2.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nathália S. V. Louzada
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| | - Leila M. Pessôa
- Programa de Pós-Graduação em Biodiversidade e Biologia Evolutiva, Instituto de Biologia, CCS, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Brualla NLM, Wilson LAB, Doube M, Carter RT, McElligott AG, Koyabu D. The vocal apparatus: An understudied tool to reconstruct the evolutionary history of echolocation in bats? J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09647-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Zou W, Liang H, Wu P, Luo B, Zhou D, Liu W, Wu J, Fang L, Lei Y, Feng J. Correlated evolution of wing morphology and echolocation calls in bats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1031548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
IntroductionFlight and echolocation are two crucial behaviors associated with niche expansion in bats. Previous researches have attempted to explain the interspecific divergence in flight morphology and echolocation vocalizations in some bat groups from the perspective of foraging ecology. However, the relationship between wing morphology and echolocation vocalizations of bats remains obscure, especially in a phylogenetic context.ObjectivesHere, we aimed to assess the correlated evolution of wing morphology and echolocation calls in bats within a phylogenetic comparative framework.MethodsWe integrated the information on search-phrase echolocation call duration, peak frequency, relative wing loading, aspect ratio, and foraging guilds for 152 bat species belonging to 15 families. We quantified the association among wing morphology, echolocation call parameters, and foraging guilds using phylogeny-based comparative analyses.ResultsOur analyses revealed that wing morphology and echolocation call parameters depended on families and exhibited a marked phylogenetic signal. Peak frequency of the call was negatively correlated with relative wing loading and aspect ratio. Call duration was positively correlated with relative wing loading and aspect ratio among open-space aerial foragers, edge-space aerial foragers, edge-space trawling foragers, and narrow-space gleaning foragers. Wing morphology, call duration, and peak frequency were predicted by foraging guilds.ConclusionThese results demonstrate that adaptive response to foraging ecology has shaped the correlated evolution between flight morphology and echolocation calls in bats. Our findings expand the current knowledge regarding the link between morphology and vocalizations within the order Chiroptera.
Collapse
|
8
|
Snipes CCG, Carter RT. The hyoid as a sound conducting apparatus in laryngeally echolocating bats. J Anat 2022; 240:1020-1033. [PMID: 34927244 PMCID: PMC9119617 DOI: 10.1111/joa.13615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
The morphology of the stylohyal-tympanic bone articulation found in laryngeally echolocating bats is highly indicative of a function associated with signal production. One untested hypothesis is that this morphology allows the transfer of a sound signal from the larynx to the tympanic bones (auditory bulla) via the hyoid apparatus during signal production by the larynx. We used µCT data and finite element analysis to model the propagation of sound through the hyoid chain into the tympanic bones to test this hypothesis. We modeled sound pressure (dB) wave propagation from the basihyal to the tympanic bones, vibratory behavior (m) of the stylohyal-tympanic bone unit, and the stylohyal and tympanic bones when the stylohyal bone is allowed to pivot on the tympanic bone. Sound pressure wave propagation was modeled using the harmonic acoustics solver in ANSYS and vibratory behavior was modeled using coupled modal and harmonic response analyses in ANSYS. For both analyses (harmonic acoustics and harmonic response), the input excitation on the basihyal and thyrohyals was modeled as the estimated pressure (Pa) imposed by the collision of the vibrating thyroid cartilage of the larynx against these bones during signal production. Our models support the hypothesis that this stereotypical hyoid morphology found in laryngeally echolocating bats can transfer sound to the auditory bullae at an amplitude that is likely heard for the species Artibeus jamaicensis and Rhinolophus pusillus.
Collapse
|
9
|
A bibliometric analysis of research trends in bat echolocation studies between 1970 and 2021. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Usui K, Khannoon ER, Tokita M. Facial muscle modification associated with chiropteran noseleaf development: insights into the developmental basis of a movable rostral appendage in mammals. Dev Dyn 2022; 251:1368-1379. [DOI: 10.1002/dvdy.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Kaoru Usui
- Department of Biology, Faculty of Science Toho University, 2‐2‐1 Miyama, Funabashi Chiba JAPAN
| | - Eraqi R. Khannoon
- Biology Department College of Science, Taibah University, Al Madinah Al Munawwarah KSA
- Zoology Department, Faculty of Science Fayoum University Fayoum Egypt
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science Toho University, 2‐2‐1 Miyama, Funabashi Chiba JAPAN
| |
Collapse
|
11
|
Gardner NM, Dececchi TA. Flight and echolocation evolved once in Chiroptera: comments on ‘The evolution of flight in bats: a novel hypothesis’. Mamm Rev 2022. [DOI: 10.1111/mam.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Evolution of inner ear neuroanatomy of bats and implications for echolocation. Nature 2022; 602:449-454. [PMID: 35082447 DOI: 10.1038/s41586-021-04335-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022]
Abstract
Phylogenomics of bats suggests that their echolocation either evolved separately in the bat suborders Yinpterochiroptera and Yangochiroptera, or had a single origin in bat ancestors and was later lost in some yinpterochiropterans1-6. Hearing for echolocation behaviour depends on the inner ear, of which the spiral ganglion is an essential structure. Here we report the observation of highly derived structures of the spiral ganglion in yangochiropteran bats: a trans-otic ganglion with a wall-less Rosenthal's canal. This neuroanatomical arrangement permits a larger ganglion with more neurons, higher innervation density of neurons and denser clustering of cochlear nerve fascicles7-13. This differs from the plesiomorphic neuroanatomy of Yinpterochiroptera and non-chiropteran mammals. The osteological correlates of these derived ganglion features can now be traced into bat phylogeny, providing direct evidence of how Yangochiroptera differentiated from Yinpterochiroptera in spiral ganglion neuroanatomy. These features are highly variable across major clades and between species of Yangochiroptera, and in morphospace, exhibit much greater disparity in Yangochiroptera than Yinpterochiroptera. These highly variable ganglion features may be a neuroanatomical evolutionary driver for their diverse echolocating strategies4,14-17 and are associated with the explosive diversification of yangochiropterans, which include most bat families, genera and species.
Collapse
|
13
|
Ear anatomy traces a family tree for bats. Nature 2022; 602:387-388. [PMID: 35082432 DOI: 10.1038/d41586-022-00051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Greville LJS, Bueno LM, Pollock T, Faure PA. Quantification of Urinary Sex Steroids in the Big Brown Bat ( Eptesicus fuscus). Physiol Biochem Zool 2021; 95:22-34. [PMID: 34843427 DOI: 10.1086/717896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractBats (order Chiroptera) are the second largest group of mammals, diverging ~52.5 million years ago. Many species exhibit an unusual reproductive cycle and extreme longevity without reproductive senescence, yet steroid profiles exist for few bats. Big brown bats (Eptesicus fuscus) are temperate insectivores found throughout North America. They mate promiscuously in fall, store sperm during winter hibernation, and have delayed ovulation and fertilization in spring. Here, we report the first urinary steroid profile in bats by quantifying 17β-estradiol (E2) in captive male and female E. fuscus across their reproductive cycle. Male bats had higher urinary E2 levels than females, and adults had higher levels than yearlings following creatinine adjustment for hydration. In nonpregnant females, several seasonal differences in creatinine-adjusted and unadjusted urinary E2 levels were observed. Urinary E2 was higher in males than females in winter for both conditions and in autumn for creatinine-adjusted levels. We quantified progesterone (P4) in a subset of females. In nonpregnant females, urinary P4 was constant across seasons except for unadjusted levels, which were highest in the summer. In pregnant females, urinary E2 and P4 levels peaked beginning ~20 d before parturition, with both steroids returning to baseline in the following weeks. Knowing how urinary steroid levels fluctuate with age and sex and across the annual season is key to understanding reproductive cycling in bats. Our research furthers the potential for bats as a model for medical reproductive research. Moreover, it complements previous studies on the potential role of steroids in primer pheromonal effects in bats.
Collapse
|
15
|
Jones G. Sensory biology: Tree mice use echolocation. Curr Biol 2021; 31:R1074-R1076. [PMID: 34582812 DOI: 10.1016/j.cub.2021.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study demonstrates that soft-furred tree mice orientate by using echolocation, emitting ultrasonic broadband chirps. Remarkable convergent evolution with distantly related bats and dolphins in ear bone morphology and sensory genes is evident.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
16
|
Ketten DR, Simmons JA, Riquimaroux H, Simmons AM. Functional Analyses of Peripheral Auditory System Adaptations for Echolocation in Air vs. Water. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.661216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The similarity of acoustic tasks performed by odontocete (toothed whale) and microchiropteran (insectivorous bat) biosonar suggests they may have common ultrasonic signal reception and processing mechanisms. However, there are also significant media and prey dependent differences, notably speed of sound and wavelengths in air vs. water, that may be reflected in adaptations in their auditory systems and peak spectra of out-going signals for similarly sized prey. We examined the anatomy of the peripheral auditory system of two species of FM bat (big brown bat Eptesicus fuscus; Japanese house bat Pipistrellus abramus) and two toothed whales (harbor porpoise Phocoena phocoena; bottlenose dolphin Tursiops truncatus) using ultra high resolution (11–100 micron) isotropic voxel computed tomography (helical and microCT). Significant differences were found for oval and round window location, cochlear length, basilar membrane gradients, neural distributions, cochlear spiral morphometry and curvature, and basilar membrane suspension distributions. Length correlates with body mass, not hearing ranges. High and low frequency hearing range cut-offs correlate with basilar membrane thickness/width ratios and the cochlear radius of curvature. These features are predictive of high and low frequency hearing limits in all ears examined. The ears of the harbor porpoise, the highest frequency echolocator in the study, had significantly greater stiffness, higher basal basilar membrane ratios, and bilateral bony support for 60% of the basilar membrane length. The porpoise’s basilar membrane includes a “foveal” region with “stretched” frequency representation and relatively constant membrane thickness/width ratio values similar to those reported for some bat species. Both species of bats and the harbor porpoise displayed unusual stapedial input locations and low ratios of cochlear radii, specializations that may enhance higher ultrasonic frequency signal resolution and deter low frequency cochlear propagation.
Collapse
|
17
|
He K, Liu Q, Xu DM, Qi FY, Bai J, He SW, Chen P, Zhou X, Cai WZ, Chen ZZ, Liu Z, Jiang XL, Shi P. Echolocation in soft-furred tree mice. Science 2021; 372:372/6548/eaay1513. [PMID: 34140356 DOI: 10.1126/science.aay1513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/05/2020] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Echolocation is the use of reflected sound to sense features of the environment. Here, we show that soft-furred tree mice (Typhlomys) echolocate based on multiple independent lines of evidence. Behavioral experiments show that these mice can locate and avoid obstacles in darkness using hearing and ultrasonic pulses. The proximal portion of their stylohyal bone fuses with the tympanic bone, a form previously only seen in laryngeally echolocating bats. Further, we found convergence of hearing-related genes across the genome and of the echolocation-related gene prestin between soft-furred tree mice and echolocating mammals. Together, our findings suggest that soft-furred tree mice are capable of echolocation, and thus are a new lineage of echolocating mammals.
Collapse
Affiliation(s)
- Kai He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou 510515, China
| | - Qi Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Dong-Ming Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Fei-Yan Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Jing Bai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shui-Wang He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Peng Chen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Xin Zhou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Wan-Zhi Cai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650223, China
| | - Zhong-Zheng Chen
- School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Zhen Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Peng Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
18
|
Nojiri T, Fukui D, Werneburg I, Saitoh T, Endo H, Koyabu D. Embryonic staging of bats with special reference to Vespertilio sinensis and its cochlear development. Dev Dyn 2021; 250:1140-1159. [PMID: 33683772 DOI: 10.1002/dvdy.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND How bats deviate heterochronically from other mammals remains largely unresolved, reflecting the lack of a quantitative staging framework allowing comparison among species. The standard event system (SES) is an embryonic staging system allowing quantitative detection of interspecific developmental variations. Here, the first SES-based staging system for bats, using Asian parti-colored bat (Vespertilio sinensis) is introduced. General aspects of normal embryonic development and the three-dimensional development of the bat cochlea were described for the first time. Recoding the embryonic staging tables of 18 previously reported bat species and Mus musculus into the SES system, quantitative developmental comparisons were performed. RESULTS It was found that limb bud development of V. sinensis is relatively late among 19 bat species and late limb development is a shared trait of vespertilionid bats. The inner ear cochlear canal forms before the semicircular canal in V. sinensis while the cochlear canal forms after the semicircular canal in non-volant mammals. CONCLUSIONS The present approach using the SES system provides a powerful framework to detect the peculiarities of bat development. Incorporating the timing of gene expression patterns into the SES framework will further contribute to the understanding of the evolution of specialized features in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Furano, Hokkaido, Japan
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Paleoenvironment an der Eberhard Karls Universität, Tübingen, Germany.,Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Takashi Saitoh
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Nojiri T, Wilson LAB, López-Aguirre C, Tu VT, Kuratani S, Ito K, Higashiyama H, Son NT, Fukui D, Sadier A, Sears KE, Endo H, Kamihori S, Koyabu D. Embryonic evidence uncovers convergent origins of laryngeal echolocation in bats. Curr Biol 2021; 31:1353-1365.e3. [PMID: 33675700 DOI: 10.1016/j.cub.2020.12.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/15/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022]
Abstract
Bats are the second-most speciose group of mammals, comprising 20% of species diversity today. Their global explosion, representing one of the greatest adaptive radiations in mammalian history, is largely attributed to their ability of laryngeal echolocation and powered flight, which enabled them to conquer the night sky, a vast and hitherto unoccupied ecological niche. While there is consensus that powered flight evolved only once in the lineage, whether laryngeal echolocation has a single origin in bats or evolved multiple times independently remains disputed. Here, we present developmental evidence in support of laryngeal echolocation having multiple origins in bats. This is consistent with a non-echolocating bat ancestor and independent gain of echolocation in Yinpterochiroptera and Yangochiroptera, as well as the gain of primitive echolocation in the bat ancestor, followed by convergent evolution of laryngeal echolocation in Yinpterochiroptera and Yangochiroptera, with loss of primitive echolocation in pteropodids. Our comparative embryological investigations found that there is no developmental difference in the hearing apparatus between non-laryngeal echolocating bats (pteropodids) and terrestrial non-bat mammals. In contrast, the echolocation system is developed heterotopically and heterochronically in the two phylogenetically distant laryngeal echolocating bats (rhinolophoids and yangochiropterans), providing the first embryological evidence that the echolocation system evolved independently in these bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Laura A B Wilson
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Archaeology and Anthropology, The Australian National University, 44 Linnaeus Way, Acton, ACT 2601, Australia
| | - Camilo López-Aguirre
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minami, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kai Ito
- Department of Anatomy, Tissue and Cell Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nguyen Truong Son
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, No. 18, Hoang Quoc Viet road, Cau Giay district, Hanoi, Vietnam
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 9-61, Yamabe-Higashimachi, Furano, Hokkaido 079-1563, Japan
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 957246, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E. Young Drive, Los Angeles, CA 957246, USA
| | - Hideki Endo
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Satoshi Kamihori
- Aioi City Board of Education, 3-18-7 Asahi, Aioi 679-0031, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki 305-8550, Japan; Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
20
|
Nabi G, Wang Y, Lü L, Jiang C, Ahmad S, Wu Y, Li D. Bats and birds as viral reservoirs: A physiological and ecological perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142372. [PMID: 33254850 PMCID: PMC7505891 DOI: 10.1016/j.scitotenv.2020.142372] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
The birds (class Aves) and bats (order Chiroptera, class Mammalia) are well known natural reservoirs of a diverse range of viruses, including some zoonoses. The only extant volant vertebrates, bats and birds have undergone dramatic adaptive radiations that have allowed them to occupy diverse ecological niches and colonize most of the planet. However, few studies have compared the physiology and ecology of these ecologically, and medically, important taxa. Here, we review convergent traits in the physiology, immunology, flight-related ecology of birds and bats that might enable these taxa to act as viral reservoirs and asymptomatic carriers. Many species of birds and bats are well adapted to urban environments and may host more zoonotic pathogens than species that do not colonize anthropogenic habitats. These convergent traits in birds and bats and their ecological interactions with domestic animals and humans increase the potential risk of viral spillover transmission and facilitate the emergence of novel viruses that most likely sources of zoonoses with the potential to cause global pandemics.
Collapse
Affiliation(s)
- Ghulam Nabi
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Liang Lü
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chuan Jiang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shahid Ahmad
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yuefeng Wu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Dongming Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China.
| |
Collapse
|
21
|
Affiliation(s)
- Sophia C. Anderson
- School of Biology University of St Andrews Sir Harold Mitchell BuildingGreenside Place St AndrewsKY16 9THUK
| | - Graeme D. Ruxton
- School of Biology University of St Andrews Sir Harold Mitchell BuildingGreenside Place St AndrewsKY16 9THUK
| |
Collapse
|
22
|
Meng J, Mao F, Han G, Zheng X, Wang X, Wang Y. A comparative study on auditory and hyoid bones of Jurassic euharamiyidans and contrasting evidence for mammalian middle ear evolution. J Anat 2020; 236:50-71. [PMID: 31498899 PMCID: PMC6904648 DOI: 10.1111/joa.13083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/31/2022] Open
Abstract
The holotypes of euharamiyidan Arboroharamiya allinhopsoni and Arboroharamiya jenkinsi preserve the auditory and hyoid bones, respectively. With additional structures revealed by micro-computerized tomography (CT) and X-ray micro-computed laminography (CL), we provide a detailed description of these minuscule bones. The stapes in the two species of Arboroharamiya are similar in having a strong process for insertion of the stapedius muscle. The incus is similar in having an almond-shaped body and a slim short process, in addition to a robust stapedial process with a short lenticular process preserved in A. allinhopsoni. The plate-like ectotympanic in the two species of Arboroharamiya is similar and comparable to that of Qishou jizantang. The surangular in the two species has a fan-shaped body and a needle-shaped anterior process. The malleus, ectotympanic, and surangular are fully detached from the dentary and should have functioned exclusively for hearing. All the auditory bones of Arboroharamiya display unique features unknown in other mammaliaforms. Moreover, hyoid elements are found in the two species of Arboroharamiya and co-exist with the five auditory bones in the holotype of A. allinhopsoni. The element interpreted as the stylohyal is similar to the bone identified as the ectotympanic in Vilevolodon. We reconstruct the auditory apparatus of Arboroharamiya and compare it with that of Vilevolodon as well as those in extant mammals and basal mammaliaforms. The comparison shows diverse morphological patterns of the auditory region in mammaliaforms. In particular, those of Vilevolodon and Arboroharamiya differ significantly: the former has a mandibular middle ear, whereas the latter possesses a definitive mammalian middle ear. It is puzzling that the two sympatric and dentally similar taxa have such different auditory apparatuses. In light of the available evidence, we argue that the mandibular middle ear reconstructed in Vilevolodon encounters many problems, and the so-called ectotympanic in Vilevolodon may be interpreted as a stylohyal; thus, the dilemma can be resolved.
Collapse
Affiliation(s)
- Jin Meng
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Earth and Environmental SciencesGraduate CenterCity University of New YorkNew YorkNYUSA
| | - Fangyuan Mao
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| | - Gang Han
- Paleontology CenterBohai UniversityJinzhouChina
- Hainan Tropical Ocean UniversitySanyaChina
| | - Xiao‐Ting Zheng
- Institute of Geology and PaleontologyLinyi UniversityLinyiChina
- Shandong Tianyu Museum of NaturePingyiChina
| | - Xiao‐Li Wang
- Institute of Geology and PaleontologyLinyi UniversityLinyiChina
- Shandong Tianyu Museum of NaturePingyiChina
| | - Yuanqing Wang
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and PaleoanthropologyChinese Academy of SciencesBeijingChina
- CAS Center for Excellence in Life and PaleoenvironmentBeijingChina
| |
Collapse
|
23
|
Amador LI, Simmons NB, Giannini NP. Aerodynamic reconstruction of the primitive fossil bat Onychonycteris finneyi (Mammalia: Chiroptera). Biol Lett 2019; 15:20180857. [PMID: 30862309 DOI: 10.1098/rsbl.2018.0857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bats are the only mammals capable of powered flight. One of the oldest bats known from a complete skeleton is Onychonycteris finneyi from the Early Eocene (Green River Formation, Wyoming, 52.5 Ma). Estimated to weigh approximately 40 g, Onychonycteris exhibits the most primitive combination of characters thus far known for bats. Here, we reconstructed the aerofoil of the two known specimens, calculated basic aerodynamic variables and compared them with those of extant bats and gliding mammals. Onychonycteris appears in the edges of the morphospace for bats, underscoring the primitive conformation of its flight apparatus. Low aerodynamic efficiency is inferred for this extinct species as compared to any extant bat. When we estimated aerofoil variables in a model of Onychonycteris excluding the handwing, it closely approached the morphospace of extant gliding mammals. Addition of a handwing to the model lacking this structure results in a 2.3-fold increase in aspect ratio and a 28% decrease in wing loading, thus greatly enhancing aerodynamics. In the context of these models, the rapid evolution of the chiropteran handwing via genetically mediated developmental changes appears to have been a key transformation in the hypothesized transition from gliding to flapping in early bats.
Collapse
Affiliation(s)
- Lucila I Amador
- 1 Unidad Ejecutora Lillo: Fundación Miguel Lillo - CONICET , CP 4000 San Miguel de Tucumán, Argentina
| | - Nancy B Simmons
- 2 Department of Mammalogy, American Museum of Natural History , New York, NY 10024, USA
| | - Norberto P Giannini
- 1 Unidad Ejecutora Lillo: Fundación Miguel Lillo - CONICET , CP 4000 San Miguel de Tucumán, Argentina.,2 Department of Mammalogy, American Museum of Natural History , New York, NY 10024, USA.,3 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán , CP 4000 San Miguel de Tucumán, Argentina
| |
Collapse
|
24
|
Morales AE, Ruedi M, Field K, Carstens BC. Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats,
Myotis
*. Evolution 2019; 73:2263-2280. [DOI: 10.1111/evo.13849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Ariadna E. Morales
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
- Department of Mammalogy and Herpetology, Division of Vertebrate Zoology American Museum of Natural History New York New York 10024
| | - Manuel Ruedi
- Department of Mammalogy and Ornithology Natural History Museum of Geneva Geneva 1208 Switzerland
| | - Kathryn Field
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
| | - Bryan C. Carstens
- Department of Evolution, Ecology and Organismal Biology Ohio State University Columbus Ohio 43210
| |
Collapse
|
25
|
Abstract
Lepidoptera play key roles in many biological systems. Butterflies are hypothesized to have evolved contemporaneously with flowering plants, and moths are thought to have gained anti-bat defenses in response to echolocating predatory bats, but these hypotheses have largely gone untested. Using a transcriptomic, dated evolutionary tree of Lepidoptera, we demonstrate that the most recent common ancestor of Lepidoptera is considerably older than previously hypothesized. The oldest moths in crown Lepidoptera were present in the Carboniferous, some 300 million years ago, and began to diversify largely in synchrony with angiosperms. We show that multiple lineages of moths independently evolved hearing organs well before the origin of bats, rejecting the hypothesis that lepidopteran hearing organs arose in response to these predators. Butterflies and moths (Lepidoptera) are one of the major superradiations of insects, comprising nearly 160,000 described extant species. As herbivores, pollinators, and prey, Lepidoptera play a fundamental role in almost every terrestrial ecosystem. Lepidoptera are also indicators of environmental change and serve as models for research on mimicry and genetics. They have been central to the development of coevolutionary hypotheses, such as butterflies with flowering plants and moths’ evolutionary arms race with echolocating bats. However, these hypotheses have not been rigorously tested, because a robust lepidopteran phylogeny and timing of evolutionary novelties are lacking. To address these issues, we inferred a comprehensive phylogeny of Lepidoptera, using the largest dataset assembled for the order (2,098 orthologous protein-coding genes from transcriptomes of 186 species, representing nearly all superfamilies), and dated it with carefully evaluated synapomorphy-based fossils. The oldest members of the Lepidoptera crown group appeared in the Late Carboniferous (∼300 Ma) and fed on nonvascular land plants. Lepidoptera evolved the tube-like proboscis in the Middle Triassic (∼241 Ma), which allowed them to acquire nectar from flowering plants. This morphological innovation, along with other traits, likely promoted the extraordinary diversification of superfamily-level lepidopteran crown groups. The ancestor of butterflies was likely nocturnal, and our results indicate that butterflies became day-flying in the Late Cretaceous (∼98 Ma). Moth hearing organs arose multiple times before the evolutionary arms race between moths and bats, perhaps initially detecting a wide range of sound frequencies before being co-opted to specifically detect bat sonar. Our study provides an essential framework for future comparative studies on butterfly and moth evolution.
Collapse
|
26
|
Carter RT, Stuckey A, Adams RA. Ontogeny of the hyoid apparatus in Jamaican fruit bats (Chiroptera: Phyllostomidae) in unraveling the evolution of echolocation in bats. J Zool (1987) 2019. [DOI: 10.1111/jzo.12679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. T. Carter
- East Tennessee State University Johnson City TN USA
| | - A. Stuckey
- University of Tennessee Knoxville TN USA
| | - R. A. Adams
- University of Northern Colorado Greeley CO USA
| |
Collapse
|
27
|
Zhou CF, Bhullar BAS, Neander AI, Martin T, Luo ZX. New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones. Science 2019; 365:276-279. [DOI: 10.1126/science.aau9345] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Chang-Fu Zhou
- Paleontological Museum of Liaoning, Shenyang Normal University, Shenyang Liaoning 110034, China
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Bhart-Anjan S. Bhullar
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, CT 06511, USA
| | - April I. Neander
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| | - Thomas Martin
- Section Paleontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Zhe-Xi Luo
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
28
|
Hernández-Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Gimsing AL, Marina M, Millet M, Pelkonen O, Pieper S, Tiktak A, Tzoulaki I, Widenfalk A, Wolterink G, Russo D, Streissl F, Topping C. Scientific statement on the coverage of bats by the current pesticide risk assessment for birds and mammals. EFSA J 2019; 17:e05758. [PMID: 32626374 PMCID: PMC7009170 DOI: 10.2903/j.efsa.2019.5758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bats are an important group of mammals, frequently foraging in farmland and potentially exposed to pesticides. This statement considers whether the current risk assessment performed for birds and ground dwelling mammals exposed to pesticides is also protective of bats. Three main issues were addressed. Firstly, whether bats are toxicologically more or less sensitive than the most sensitive birds and mammals. Secondly, whether oral exposure of bats to pesticides is greater or lower than in ground dwelling mammals and birds. Thirdly, whether there are other important exposure routes relevant to bats. A large variation in toxicological sensitivity and no relationship between sensitivity of bats and bird or mammal test-species to pesticides could be found. In addition, bats have unique traits, such as echolocation and torpor which can be adversely affected by exposure to pesticides and which are not covered by the endpoints currently selected for wild mammal risk assessment. The current exposure assessment methodology was used for oral exposure and adapted to bats using bat-specific parameters. For oral exposure, it was concluded that for most standard risk assessment scenarios the current approach did not cover exposure of bats to pesticide residues in food. Calculations of potential dermal exposure for bats foraging during spraying operations suggest that this may be a very important exposure route. Dermal routes of exposure should be combined with inhalation and oral exposure. Based on the evidence compiled, the Panel concludes that bats are not adequately covered by the current risk assessment approach, and that there is a need to develop a bat-specific risk assessment scheme. In general, there was scarcity of data to assess the risks for bat exposed to pesticides. Recommendations for research are made, including identification of alternatives to laboratory testing of bats to assess toxicological effects.
Collapse
|
29
|
López-Aguirre C, Hand SJ, Koyabu D, Son NT, Wilson LAB. Postcranial heterochrony, modularity, integration and disparity in the prenatal ossification in bats (Chiroptera). BMC Evol Biol 2019; 19:75. [PMID: 30866800 PMCID: PMC6417144 DOI: 10.1186/s12862-019-1396-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/21/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Self-powered flight is one of the most energy-intensive types of locomotion found in vertebrates. It is also associated with a range of extreme morpho-physiological adaptations that evolved independently in three different vertebrate groups. Considering that development acts as a bridge between the genotype and phenotype on which selection acts, studying the ossification of the postcranium can potentially illuminate our understanding of bat flight evolution. However, the ontogenetic basis of vertebrate flight remains largely understudied. Advances in quantitative analysis of sequence heterochrony and morphogenetic growth have created novel approaches to study the developmental basis of diversification and the evolvability of skeletal morphogenesis. Assessing the presence of ontogenetic disparity, integration and modularity from an evolutionary approach allows assessing whether flight may have resulted in evolutionary differences in the magnitude and mode of development in bats. RESULTS We quantitatively compared the prenatal ossification of the postcranium (24 bones) between bats (14 species), non-volant mammals (11 species) and birds (14 species), combining for the first time prenatal sequence heterochrony and developmental growth data. Sequence heterochrony was found across groups, showing that bat postcranial development shares patterns found in other flying vertebrates but also those in non-volant mammals. In bats, modularity was found as an axial-appendicular partition, resembling a mammalian pattern of developmental modularity and suggesting flight did not repattern prenatal postcranial covariance in bats. CONCLUSIONS Combining prenatal data from 14 bat species, this study represents the most comprehensive quantitative analysis of chiropteran ossification to date. Heterochrony between the wing and leg in bats could reflect functional needs of the newborn, rather than ecological aspects of the adult. Bats share similarities with birds in the development of structures involved in flight (i.e. handwing and sternum), suggesting that flight altriciality and early ossification of pedal phalanges and sternum are common across flying vertebrates. These results indicate that the developmental modularity found in bats facilitates intramodular phenotypic diversification of the skeleton. Integration and disparity increased across developmental time in bats. We also found a delay in the ossification of highly adaptable and evolvable regions (e.g. handwing and sternum) that are directly associated with flight performance.
Collapse
Affiliation(s)
- Camilo López-Aguirre
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Suzanne J. Hand
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| | - Daisuke Koyabu
- University Museum, University of Tokyo, Tokyo, Japan
- Department of Humanities and Sciences, Musashino Art University, Tokyo, Japan
| | - Nguyen Truong Son
- Department of Vertebrate Zoology, Institute of Ecology and Biological Resources, Vietnam Academy of Sciences and Technology, Hanoi, Vietnam
- Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Hanoi, Vietnam
| | - Laura A. B. Wilson
- PANGEA Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
30
|
Comparative cochlear transcriptomics of echolocating bats provides new insights into different nervous activities of CF bat species. Sci Rep 2018; 8:15934. [PMID: 30374045 PMCID: PMC6206067 DOI: 10.1038/s41598-018-34333-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms used by echolocating bats to deal with different ultrasonic signals remain to be revealed. Here, we utilised RNA-Seq data to conduct comparative cochlear transcriptomics to assess the variation of gene expression among bats with three types of echolocation: constant-frequency (CF) bats, frequency-modulated (FM) bats and click bats. Our results suggest larger differences in gene expression between CF and click bats than between CF and FM bats and small differences between FM and click bats. We identified 426 and 1,504 differentially expressed genes (DEGs) by the different methods as functionally important for CF bats, in that they showed consistent upregulation in the cochlea of two CF bats, relative to the levels in click and FM bats. Subsequently, downstream GO and KEGG enrichment analyses indicated that both the 426 and 1,504 gene sets were associated with changes in nervous activities in the cochleae of CF bats. In addition, another set of 1,764 DEGs were identified to have crucial hearing related physiological functions for laryngeally echolocating bats. Our study provides a comprehensive overview of the genetic basis of differences among echolocating bats, revealing different nervous system activities during auditory perception in the cochlea particularly in CF bats.
Collapse
|
31
|
Flutter sensitivity in FM bats. Part II: amplitude modulation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:941-951. [PMID: 30242470 PMCID: PMC6208682 DOI: 10.1007/s00359-018-1292-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/12/2018] [Accepted: 09/16/2018] [Indexed: 11/05/2022]
Abstract
Bats use echolocation to detect targets such as insect prey. The echolocation call of frequency-modulating bats (FM bats) typically sweeps through a broad range of frequencies within a few milliseconds. The large bandwidth grants the bat high spatial acuity in depicting the target. However, the extremely short call duration and the overall low duty cycle of call emission impair the bat’s capability to detect e.g. target movement. Nonetheless, FM bats constitute more than 80% of all echolocating species and are able to navigate and forage in an environment full of moving targets. We used an auditory virtual reality approach to generate changes in echo amplitude reflective of fluttering insect wings independently from other confounding parameters. We show that the FM bat Phyllostomus discolor successfully detected these modulations in echo amplitude and that their performance increased with the rate of the modulation, mimicking faster insect wing-beats. The ability of FM bats to detect amplitude modulations of echoes suggests a release from the trade-off between spatial and temporal acuity and highlights the diversity of selective pressures working on the echolocation system of bats.
Collapse
|
32
|
Moyers Arévalo RL, Amador LI, Almeida FC, Giannini NP. Evolution of Body Mass in Bats: Insights from a Large Supermatrix Phylogeny. J MAMM EVOL 2018. [DOI: 10.1007/s10914-018-9447-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol 2018; 18:18. [PMID: 29890975 PMCID: PMC5996565 DOI: 10.1186/s12898-018-0174-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Abstract
Background Diversity patterns result from ecological to evolutionary processes operating at different spatial and temporal scales. Species trait variation determine the spatial scales at which organisms perceive the environment. Despite this knowledge, the coupling of all these factors to understand how diversity is structured is still deficient. Here, we review the role of ecological and evolutionary processes operating across different hierarchically spatial scales to shape diversity patterns of bats—the second largest mammal order and the only mammals with real flight capability. Main body We observed that flight development and its provision of increased dispersal ability influenced the diversification, life history, geographic distribution, and local interspecific interactions of bats, differently across multiple spatial scales. Niche packing combined with different flight, foraging and echolocation strategies and differential use of air space allowed the coexistence among bats as well as for an increased diversity supported by the environment. Considering distinct bat species distributions across space due to their functional characteristics, we assert that understanding such characteristics in Chiroptera improves the knowledge on ecological processes at different scales. We also point two main knowledge gaps that limit progress on the knowledge on scale-dependence of ecological and evolutionary processes in bats: a geographical bias, showing that research on bats is mainly done in the New World; and the lack of studies addressing the mesoscale (i.e. landscape and metacommunity scales). Conclusions We propose that it is essential to couple spatial scales and different zoogeographical regions along with their functional traits, to address bat diversity patterns and understand how they are distributed across the environment. Understanding how bats perceive space is a complex task: all bats can fly, but their perception of space varies with their biological traits. Electronic supplementary material The online version of this article (10.1186/s12898-018-0174-z) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Nojiri T, Werneburg I, Son NT, Tu VT, Sasaki T, Maekawa Y, Koyabu D. Prenatal cranial bone development of Thomas's horseshoe bat (Rhinolophus thomasi
): with special reference to petrosal morphology. J Morphol 2018. [DOI: 10.1002/jmor.20813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Taro Nojiri
- Division of Biosphere Science, Graduate School of Environmental Science; Hokkaido University, Kita-ku, Sapporo; Hokkaido 060-0810 Japan
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Paleoenvironment an der Eberhard Karls Universität, Sigwartstraße 10; Tübingen D-72076 Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12; Tübingen 72074 Germany
- Museum für Naturkunde, Leibniz-Institut für Evolutions- & Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43; Berlin 10115 Germany
| | - Nguyen Truong Son
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street; Hanoi Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet Street, Cau Giay; Hanoi Vietnam
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street; Hanoi Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet Street, Cau Giay; Hanoi Vietnam
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
| | - Yu Maekawa
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
| | - Daisuke Koyabu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
- Humanities and Sciences; Musashino Art University, Ogawacho 1-736, Kodaira; Tokyo 187-8505 Japan
| |
Collapse
|
35
|
Thiagavel J, Cechetto C, Santana SE, Jakobsen L, Warrant EJ, Ratcliffe JM. Auditory opportunity and visual constraint enabled the evolution of echolocation in bats. Nat Commun 2018; 9:98. [PMID: 29311648 PMCID: PMC5758785 DOI: 10.1038/s41467-017-02532-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 12/07/2017] [Indexed: 11/09/2022] Open
Abstract
Substantial evidence now supports the hypothesis that the common ancestor of bats was nocturnal and capable of both powered flight and laryngeal echolocation. This scenario entails a parallel sensory and biomechanical transition from a nonvolant, vision-reliant mammal to one capable of sonar and flight. Here we consider anatomical constraints and opportunities that led to a sonar rather than vision-based solution. We show that bats' common ancestor had eyes too small to allow for successful aerial hawking of flying insects at night, but an auditory brain design sufficient to afford echolocation. Further, we find that among extant predatory bats (all of which use laryngeal echolocation), those with putatively less sophisticated biosonar have relatively larger eyes than do more sophisticated echolocators. We contend that signs of ancient trade-offs between vision and echolocation persist today, and that non-echolocating, phytophagous pteropodid bats may retain some of the necessary foundations for biosonar.
Collapse
Affiliation(s)
- Jeneni Thiagavel
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada
| | - Clément Cechetto
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark
| | - Sharlene E Santana
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, 98195, USA
| | - Lasse Jakobsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark
| | - Eric J Warrant
- Department of Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| | - John M Ratcliffe
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S 3B2, Canada. .,Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense C, Denmark. .,Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada. .,Department of Natural History, Royal Ontario Museum, 100 Queens Park, Toronto, ON, M5S 2C6, Canada.
| |
Collapse
|
36
|
Lee WJ, Falk B, Chiu C, Krishnan A, Arbour JH, Moss CF. Tongue-driven sonar beam steering by a lingual-echolocating fruit bat. PLoS Biol 2017; 15:e2003148. [PMID: 29244805 PMCID: PMC5774845 DOI: 10.1371/journal.pbio.2003148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 01/19/2018] [Accepted: 11/22/2017] [Indexed: 11/19/2022] Open
Abstract
Animals enhance sensory acquisition from a specific direction by movements of head, ears, or eyes. As active sensing animals, echolocating bats also aim their directional sonar beam to selectively “illuminate” a confined volume of space, facilitating efficient information processing by reducing echo interference and clutter. Such sonar beam control is generally achieved by head movements or shape changes of the sound-emitting mouth or nose. However, lingual-echolocating Egyptian fruit bats, Rousettus aegyptiacus, which produce sound by clicking their tongue, can dramatically change beam direction at very short temporal intervals without visible morphological changes. The mechanism supporting this capability has remained a mystery. Here, we measured signals from free-flying Egyptian fruit bats and discovered a systematic angular sweep of beam focus across increasing frequency. This unusual signal structure has not been observed in other animals and cannot be explained by the conventional and widely-used “piston model” that describes the emission pattern of other bat species. Through modeling, we show that the observed beam features can be captured by an array of tongue-driven sound sources located along the side of the mouth, and that the sonar beam direction can be steered parsimoniously by inducing changes to the pattern of phase differences through moving tongue location. The effects are broadly similar to those found in a phased array—an engineering design widely found in human-made sonar systems that enables beam direction changes without changes in the physical transducer assembly. Our study reveals an intriguing parallel between biology and human engineering in solving problems in fundamentally similar ways. It is well known that animals move their eyes, ears, and heads towards stimuli of interest to selectively gather information in complex environments. Interestingly, lingual-echolocating fruit bats, which generate sonar signals for object localization by clicking their tongues, can rapidly switch the direction of the sonar beam without changing head aim or mouth shape. The mechanism underlying this capability has intrigued scientists and engineers alike. In this study, we used a combination of experimental measurements and theoretical modeling to solve this mystery. We discovered that the focus of this bat’s sound beam shifts systematically across a range of angles as the sonar frequency increases. This unusual multi-frequency structure can be captured by modeling the sound emission as an array of sound sources located along the side of the mouth and driven by the clicking tongue. Changing only the position of the tongue in this model can steer the sonar beam in different directions, showing an effect broadly similar to that found in a human-made sonar phased array—a design that enables changing beam direction without changing the physical transducer assembly. Our study thus reveals an intriguing parallel between biology and human engineering, which arrived at fundamentally similar solutions to the same problem.
Collapse
Affiliation(s)
- Wu-Jung Lee
- Applied Physics Laboratory, University of Washington, Seattle, Washington, United States of America
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Benjamin Falk
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Chen Chiu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anand Krishnan
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
- Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Jessica H. Arbour
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Cynthia F. Moss
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
37
|
How the Land Became the Locus of Major Evolutionary Innovations. Curr Biol 2017; 27:3178-3182.e1. [DOI: 10.1016/j.cub.2017.08.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 11/23/2022]
|
38
|
Ter Hofstede HM, Ratcliffe JM. Evolutionary escalation: the bat-moth arms race. ACTA ACUST UNITED AC 2017; 219:1589-602. [PMID: 27252453 DOI: 10.1242/jeb.086686] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Echolocation in bats and high-frequency hearing in their insect prey make bats and insects an ideal system for studying the sensory ecology and neuroethology of predator-prey interactions. Here, we review the evolutionary history of bats and eared insects, focusing on the insect order Lepidoptera, and consider the evidence for antipredator adaptations and predator counter-adaptations. Ears evolved in a remarkable number of body locations across insects, with the original selection pressure for ears differing between groups. Although cause and effect are difficult to determine, correlations between hearing and life history strategies in moths provide evidence for how these two variables influence each other. We consider life history variables such as size, sex, circadian and seasonal activity patterns, geographic range and the composition of sympatric bat communities. We also review hypotheses on the neural basis for anti-predator behaviours (such as evasive flight and sound production) in moths. It is assumed that these prey adaptations would select for counter-adaptations in predatory bats. We suggest two levels of support for classifying bat traits as counter-adaptations: traits that allow bats to eat more eared prey than expected based on their availability in the environment provide a low level of support for counter-adaptations, whereas traits that have no other plausible explanation for their origination and maintenance than capturing defended prey constitute a high level of support. Specific predator counter-adaptations include calling at frequencies outside the sensitivity range of most eared prey, changing the pattern and frequency of echolocation calls during prey pursuit, and quiet, or 'stealth', echolocation.
Collapse
Affiliation(s)
- Hannah M Ter Hofstede
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - John M Ratcliffe
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada L5L 1C6
| |
Collapse
|
39
|
Phylogenetic analysis of landmark data and the morphological evolution of cranial shape and diets in species of Myotis (Chiroptera: Vespertilionidae). ZOOMORPHOLOGY 2017. [DOI: 10.1007/s00435-017-0345-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Wang Z, Zhu T, Xue H, Fang N, Zhang J, Zhang L, Pang J, Teeling EC, Zhang S. Prenatal development supports a single origin of laryngeal echolocation in bats. Nat Ecol Evol 2017; 1:21. [DOI: 10.1038/s41559-016-0021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/25/2016] [Indexed: 11/09/2022]
|
41
|
Fossil evidence of the avian vocal organ from the Mesozoic. Nature 2016; 538:502-505. [PMID: 27732575 DOI: 10.1038/nature19852] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/15/2016] [Indexed: 11/09/2022]
Abstract
From complex songs to simple honks, birds produce sounds using a unique vocal organ called the syrinx. Located close to the heart at the tracheobronchial junction, vocal folds or membranes attached to modified mineralized rings vibrate to produce sound. Syringeal components were not thought to commonly enter the fossil record, and the few reported fossilized parts of the syrinx are geologically young (from the Pleistocene and Holocene (approximately 2.5 million years ago to the present)). The only known older syrinx is an Eocene specimen that was not described or illustrated. Data on the relationship between soft tissue structures and syringeal three-dimensional geometry are also exceptionally limited. Here we describe the first remains, to our knowledge, of a fossil syrinx from the Mesozoic Era, which are preserved in three dimensions in a specimen from the Late Cretaceous (approximately 66 to 69 million years ago) of Antarctica. With both cranial and postcranial remains, the new Vegavis iaai specimen is the most complete to be recovered from a part of the radiation of living birds (Aves). Enhanced-contrast X-ray computed tomography (CT) of syrinx structure in twelve extant non-passerine birds, as well as CT imaging of the Vegavis and Eocene syrinxes, informs both the reconstruction of ancestral states in birds and properties of the vocal organ in the extinct species. Fused rings in Vegavis form a well-mineralized pessulus, a derived neognath bird feature, proposed to anchor enlarged vocal folds or labia. Left-right bronchial asymmetry, as seen in Vegavis, is only known in extant birds with two sets of vocal fold sound sources. The new data show the fossilization potential of the avian vocal organ and beg the question why these remains have not been found in other dinosaurs. The lack of other Mesozoic tracheobronchial remains, and the poorly mineralized condition in archosaurian taxa without a syrinx, may indicate that a complex syrinx was a late arising feature in the evolution of birds, well after the origin of flight and respiratory innovations.
Collapse
|
42
|
Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents. Neuroreport 2016; 27:923-8. [PMID: 27337384 DOI: 10.1097/wnr.0000000000000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.
Collapse
|
43
|
Brunotte L, Beer M, Horie M, Schwemmle M. Chiropteran influenza viruses: flu from bats or a relic from the past? Curr Opin Virol 2016; 16:114-119. [PMID: 26947779 DOI: 10.1016/j.coviro.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/18/2016] [Indexed: 01/31/2023]
Abstract
The identification of influenza A-like genomic sequences in bats suggests the existence of distinct lineages of chiropteran influenza viruses in South and Central America. These viruses share similarities with conventional influenza A viruses but lack the canonical receptor-binding property and neuraminidase function. The inability to isolate infectious bat influenza viruses impeded further studies, however, reverse genetic analysis provided new insights into the molecular biology of these viruses. In this review, we highlight the recent developments in the field of the newly discovered bat-derived influenza A-like viruses. We also discuss whether bats are a neglected natural reservoir of influenza viruses, the risk associated with bat influenza viruses for humans and whether these viruses originate from the pool of avian IAV or vice versa.
Collapse
Affiliation(s)
- Linda Brunotte
- Institute of Molecular Virology, University of Muenster, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Germany
| | - Masayuki Horie
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Martin Schwemmle
- Institute of Virology, University Medical Center Freiburg, Germany
| |
Collapse
|
44
|
Integrating Ontogeny of Echolocation and Locomotion Gives Unique Insights into the Origin of Bats. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9324-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. BAT BIOACOUSTICS 2016. [DOI: 10.1007/978-1-4939-3527-7_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
46
|
Carter RT, Adams RA. Postnatal ontogeny of the cochlea and flight ability in Jamaican fruit bats (Phyllostomidae) with implications for the evolution of echolocation. J Anat 2015; 226:301-8. [PMID: 25831957 PMCID: PMC4386930 DOI: 10.1111/joa.12284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2015] [Indexed: 11/30/2022] Open
Abstract
Recent evidence has shown that the developmental emergence of echolocation calls in young bats follow an independent developmental pathway from other vocalizations and that adult-like echolocation call structure significantly precedes flight ability. These data in combination with new insights into the echolocation ability of some shrews suggest that the evolution of echolocation in bats may involve inheritance of a primitive sonar system that was modified to its current state, rather than the ad hoc evolution of echolocation in the earliest bats. Because the cochlea is crucial in the sensation of echoes returning from sonar pulses, we tracked changes in cochlear morphology during development that included the basilar membrane (BM) and secondary spiral lamina (SSL) along the length of the cochlea in relation to stages of flight ability in young bats. Our data show that the morphological prerequisite for sonar sensitivity of the cochlea significantly precedes the onset of flight in young bats and, in fact, development of this prerequisite is complete before parturition. In addition, there were no discernible changes in cochlear morphology with stages of flight development, demonstrating temporal asymmetry between the development of morphology associated with echo-pulse return sensitivity and volancy. These data further corroborate and support the hypothesis that adaptations for sonar and echolocation evolved before flight in mammals.
Collapse
|
47
|
A New Early Eocene (Ypresian) Bat from Pourcy, Paris Basin, France, with Comments on Patterns of Diversity in the Earliest Chiropterans. J MAMM EVOL 2015. [DOI: 10.1007/s10914-015-9286-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Fenton M, Ratcliffe J. Sensory Biology: Echolocation from Click to Call, Mouth to Wing. Curr Biol 2014; 24:R1160-2. [DOI: 10.1016/j.cub.2014.10.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Nonecholocating Fruit Bats Produce Biosonar Clicks with Their Wings. Curr Biol 2014; 24:2962-7. [DOI: 10.1016/j.cub.2014.10.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/20/2014] [Accepted: 10/29/2014] [Indexed: 11/23/2022]
|
50
|
deCatanzaro D, Pollock T, Greville LJ, Faure PA. Estradiol transfer from male big brown bats (Eptesicus fuscus) to the reproductive and brain tissues of cohabiting females, and its action as a pheromone. Gen Comp Endocrinol 2014; 208:126-33. [PMID: 25263951 DOI: 10.1016/j.ygcen.2014.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/12/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
The powerful estrogen, 17β-estradiol, has been found to pass from male excretions to the reproductive organs, brain, and other tissues of cohabiting females in laboratory mice. The current studies were designed to examine whether this phenomenon also occurs in big brown bats (Eptesicus fuscus), a mammal appropriate for testing cross-species generality because of its phylogenetic distance from mice. When tritiated estradiol ((3)H-E2) was administered directly on the nasal area of adult female bats, radioactivity was reliably observed in the uterus and ovaries, and also in the brain and other tissues. When (3)H-E2 was applied to the skin, radioactivity was observed in reproductive and other peripheral tissues. We injected male bats with minute quantities of (3)H-E2 and housed each of them directly with groups of adult females for 48h. We then measured radioactivity in male and female bat tissues. In each of several replications of one male housed with three females, radioactivity was reliably observed in the uterus of all females, and in many other tissues in almost every female. Measurement in the organs of males directly exposed to (3)H-E2 showed high levels of radioactivity in the testes and especially the epididymides. These data indicate that estradiol is transferred from males to females, likely via absorptions from males' excretions and potentially also via intravaginal exposure during mating. Given the potency of estradiol in regulating female reproductive physiology and behavior, our data strongly suggest the potential for pheromonal action whereby male mammals induce sexual receptivity and ovulation in females.
Collapse
Affiliation(s)
- Denys deCatanzaro
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - Tyler Pollock
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Lucas J Greville
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|