1
|
Chen D, Zhuang Z, Huang M, Huang Y, Yan Y, Zhang Y, Lin Y, Jin X, Wang Y, Huang J, Xu W, Pan J, Wang H, Huang F, Liao K, Cheng M, Zhu Z, Bai Y, Niu Z, Zhang Z, Xiang Y, Wei X, Yang T, Zeng T, Dong Y, Lei Y, Sun Y, Wang J, Yang H, Sun Y, Cao G, Poo M, Liu L, Naumann RK, Xu C, Wang Z, Xu X, Liu S. Genomic evolution reshapes cell-type diversification in the amniote brain. Dev Cell 2025:S1534-5807(25)00252-7. [PMID: 40367951 DOI: 10.1016/j.devcel.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Over 320 million years of evolution, amniotes have developed complex brains and cognition through largely unexplored genetic and gene expression mechanisms. We created a comprehensive single-cell atlas of over 1.3 million cells from the telencephalon and cerebellum of turtles, zebra finches, pigeons, mice, and macaques, employing single-cell resolution spatial transcriptomics to validate gene expression patterns across species. Our study identifies significant species-specific variations in cell types, highlighting their conservation and diversification in evolution. We found pronounced differences in telencephalon excitatory neurons (EXs) and cerebellar cell types between birds and mammals. Birds predominantly express SLC17A6 in EX, whereas mammals express SLC17A7 in the neocortex and SLC17A6 elsewhere, possibly due to loss of function of SLC17A7 in birds. Additionally, we identified a bird-specific Purkinje cell subtype (SVIL+), implicating the lysine-specific demethylase 11 (LSD1)/KDM1A pathway in learning and circadian rhythms and containing numerous positively selected genes, which suggests an evolutionary optimization of cerebellar functions for ecological and behavioral adaptation. Our findings elucidate the complex interplay between genetic evolution and environmental adaptation, underscoring the role of genetic diversification in the development of specialized cell types across amniotes.
Collapse
Affiliation(s)
- Duoyuan Chen
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yuting Yan
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanru Zhang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Xiaoying Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jinfeng Huang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Kuo Liao
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Zhiwei Niu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ze Zhang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Zeng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yuliang Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Wang
- BGI Research, Hangzhou 310030, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muming Poo
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Robert K Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China.
| | - Chun Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
2
|
Gedman GL, Kimball TH, Atkinson LL, Factor D, Vojtova G, Farias-Virgens M, Wright TF, White SA. CHIRP-Seq: FOXP2 transcriptional targets in zebra finch brain include numerous speech and language-related genes. BMC Neurosci 2025; 26:29. [PMID: 40281419 PMCID: PMC12032786 DOI: 10.1186/s12868-025-00948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Vocal learning is a rare, convergent trait that is fundamental to both human speech and birdsong. The Forkhead Box P2 (FOXP2) transcription factor appears necessary for both types of learned signals, as human mutations in FOXP2 result in speech deficits, and disrupting its expression in zebra finches impairs male-specific song learning. In juvenile and adult male finches, striatal FOXP2 mRNA and protein decline acutely within song-dedicated neurons during singing, indicating that its transcriptional targets are also behaviorally regulated. The identities of these targets in songbirds, and whether they differ across sex, development and/or behavioral conditions, are largely unknown. RESULTS Here we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to identify genomic sites bound by FOXP2 in male and female, juvenile and adult, and singing and non-singing birds. Our results suggest robust FOXP2 binding concentrated in putative promoter regions of genes. The number of genes likely to be bound by FOXP2 varied across conditions, suggesting specialized roles of the candidate targets related to sex, age, and behavioral state. We interrogated these binding targets both bioinformatically, with comparisons to previous studies, and biochemically, with immunohistochemistry using an antibody for a putative target gene. Gene ontology analyses revealed enrichment for human speech- and language-related functions in males only, consistent with the sexual dimorphism of song learning in this species. Fewer such targets were found in juveniles relative to adults, suggesting an expansion of this regulatory network with maturation. The fewest speech-related targets were found in the singing condition, consistent with the well-documented singing-driven down-regulation of FOXP2 in the songbird striatum. CONCLUSIONS Overall, these data provide an initial catalog of the regulatory landscape of FOXP2 in an avian vocal learner, offering dozens of target genes for future study and providing insight into the molecular underpinnings of vocal learning.
Collapse
Affiliation(s)
- Gregory L Gedman
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Todd H Kimball
- Interdepartmental Program in Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lee L Atkinson
- Interdepartmental Program in Neuroscience, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Daniella Factor
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gabriela Vojtova
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Madza Farias-Virgens
- Interdepartmental Program in Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy F Wright
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Stephanie A White
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Pan T, Miao J, Sun K, Nie H, Luscombe NM, Li W, Zhang S, Yang L, Wang H, Zhou Y, Tu G, Shu Y, Zhang B, Wu X. Genomic insights and the conservation potential of captive breeding: The case of Chinese alligator. SCIENCE ADVANCES 2025; 11:eadm7980. [PMID: 40173227 PMCID: PMC11963981 DOI: 10.1126/sciadv.adm7980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Despite 40 years of conservation of the critically endangered Chinese alligator (Alligator sinensis), the genomic underpinnings of its status remained uncharted. Genome sequencing data of 244 individuals uncovered relatively low overall genomic diversity/heterozygosity and long runs of homozygosity, with captive populations exhibiting higher heterozygosity and smaller inbreeding coefficients compared to wild individuals. The decreased level of inbreeding in the captive population demonstrates the contribution of the large captive breeding population. The estimated recent effective population size was around a few dozen. To combat challenges of inbreeding depression and reduced adaptability, we used genome-wide SNP-based kinship analysis on captive populations to enable a genome-informed breeding program that minimizes inbreeding. Long-term field monitoring revealed that the Chinese government greatly advanced the conservation of A. sinensis through conservation measures and reintroduction programs. Our research enriches the understanding of the Chinese alligator's genetic landscape, offering invaluable genomic resources for breeding and conservation strategies.
Collapse
Affiliation(s)
- Tao Pan
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Jiashun Miao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, China
| | - Ke Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Haitao Nie
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Nicholas M. Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Wengang Li
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Song Zhang
- Anhui Research Center of Chinese Alligator Reproduction, Xuancheng, Anhui 242000, China
| | - Liuyang Yang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Huan Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| | - Yongkang Zhou
- Anhui Research Center of Chinese Alligator Reproduction, Xuancheng, Anhui 242000, China
| | - Genjun Tu
- Anhui Research Center of Chinese Alligator Reproduction, Xuancheng, Anhui 242000, China
| | - Yilin Shu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Baowei Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaobing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
- Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, Wuhu, Anhui 241000, China
| |
Collapse
|
4
|
Zamudio-Beltrán LE, Bossu CM, Bueno-Hernández AA, Dunn PO, Sly ND, Rayne C, Anderson EC, Hernández-Baños BE, Ruegg KC. Parallel and convergent evolution in genes underlying seasonal migration. Evol Lett 2025; 9:189-208. [PMID: 40191407 PMCID: PMC11968193 DOI: 10.1093/evlett/qrae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 04/09/2025] Open
Abstract
Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration.
Collapse
Affiliation(s)
- Luz E Zamudio-Beltrán
- Facultad de Estudios Superiores Zaragoza, UNAM, Mexico City, Mexico
- Facultad de Ciencias, UNAM, Mexico City, Mexico
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Peter O Dunn
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Nicholas D Sly
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Christine Rayne
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
5
|
Irwin D, Bensch S, Charlebois C, David G, Geraldes A, Gupta SK, Harr B, Holt P, Irwin JH, Ivanitskii VV, Marova IM, Niu Y, Seneviratne S, Singh A, Wu Y, Zhang S, Price TD. The Distribution and Dispersal of Large Haploblocks in a Superspecies. Mol Ecol 2025:e17731. [PMID: 40091860 DOI: 10.1111/mec.17731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
Haploblocks are regions of the genome that coalesce to an ancestor as a single unit. Differentiated haplotypes in these regions can result from the accumulation of mutational differences in low-recombination chromosomal regions, especially when selective sweeps occur within geographically structured populations. We introduce a method to identify large well-differentiated haploblock regions (LHBRs), based on the variance in standardised heterozygosity (ViSHet) of single nucleotide polymorphism (SNP) genotypes among individuals, calculated across a genomic region (500 SNPs in our case). We apply this method to the greenish warbler (Phylloscopus trochiloides) ring species, using a newly assembled reference genome and genotypes at more than 1 million SNPs among 257 individuals. Most chromosomes carry a single distinctive LHBR, containing 4-6 distinct haplotypes that are associated with geography, enabling detection of hybridisation events and transition zones between differentiated populations. LHBRs have exceptionally low within-haplotype nucleotide variation and moderately low between-haplotype nucleotide distance, suggesting their establishment through recurrent selective sweeps at varying geographic scales. Meiotic drive is potentially a powerful mechanism of producing such selective sweeps, and the LHBRs are likely to often represent centromeric regions where recombination is restricted. Links between populations enable introgression of favoured haplotypes and we identify one haploblock showing a highly discordant distribution compared to most of the genome, being present in two distantly separated geographic regions that are at similar latitudes in both east and central Asia. Our results set the stage for detailed studies of haploblocks, including their genomic location, gene content and contribution to reproductive isolation.
Collapse
Affiliation(s)
- Darren Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Caleigh Charlebois
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gabriel David
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Armando Geraldes
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Bettina Harr
- Max-Planck-Institut für Evolutionsbiologie, Germany
| | | | - Jessica H Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Irina M Marova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Sampath Seneviratne
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Ashutosh Singh
- Salim Ali Centre for Ornithology and Natural History, Coimbatore, India
| | - Yongjie Wu
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shangmingyu Zhang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Trevor D Price
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Gyllenhaal EF, Andersen MJ, Moyle RG, Manthey JD. Island size shapes genomic diversity in a great speciator (Aves: Zosterops). Biol Lett 2025; 21:20240692. [PMID: 40037528 PMCID: PMC11879625 DOI: 10.1098/rsbl.2024.0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Islands have long represented natural laboratories for studying many aspects of ecology and evolutionary biology, from speciation to community assembly. One aspect that has been well documented is the correlation between island size and taxonomic diversity, likely due to decreased complexity and population size on small islands. This same logic can apply to genetic diversity, which should predictably decrease with effective population size. The island size-diversity correlation has received support over the years but often focuses on single metrics of genetic diversity. Here, we use Zosterops white-eyes in the Solomon Islands to study the correlation between island size and various metrics related to genetic diversity, including runs of homozygosity and fixation of transposable elements. We find that almost all these metrics strongly correlate with island size, and in turn with each other. We infer that island size is independently correlated with these different variables, demonstrating that population size impacts genomic metrics of diversity in a variety of ways across temporal and hierarchical scales.
Collapse
Affiliation(s)
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| | - Robert G. Moyle
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Joseph D. Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Martinez A, Diaz Jr RE, Grand Pre CA, Hedrick BP, Schachner ER. The lungs of the finch: three-dimensional pulmonary anatomy of the zebra finch ( Taeniopygia castanotis). Philos Trans R Soc Lond B Biol Sci 2025; 380:20230420. [PMID: 40010384 PMCID: PMC12077219 DOI: 10.1098/rstb.2023.0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 02/28/2025] Open
Abstract
The avian respiratory system has been an area of biological interest for centuries, with zebra finches (Taeniopygia castanotis) emerging in recent decades as a primary avian model organism popularized across numerous disciplines. The pulmonary system of birds is unique in that air moves unidirectionally through the gas-exchanging lung, and previous works have suggested anatomical constraints within the bronchial network that may be coupled to the inspiratory valving mechanism in Aves. We used µCT-based segmented models to visualize and describe the morphology of the zebra finch lower respiratory system and to examine intra- and interspecific differences of the bronchial tree with the phylogenetically and ecologically different African grey parrot (Psittacus erithacus). Here, we show that zebra finches have highly variable lung and air sac morphology within individuals but generally do not diverge from the anatomical bauplan previously described for passerines. Additionally the parabronchi in the zebra finch lung are arranged into isolated segments between secondary bronchi, which has not been described and may be coupled with airflow patterns in this species. Both zebra finches and African grey parrots show constrained interostial distances and robust, caudally directed third ventrobronchi that may play an unexplored role in the unidirectional airflow patterns of birds.This article is part of the theme issue 'Biology of the avian respiratory system: development, evolutionary morphology, function and clinical considerations'.
Collapse
Affiliation(s)
- Aracely Martinez
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA70112, USA
| | - Raul E. Diaz Jr
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA90032, USA
| | - Clinton A. Grand Pre
- Department of Anatomical Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY11794, USA
| | - Brandon P. Hedrick
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY14853, USA
| | - Emma R. Schachner
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL32608, USA
| |
Collapse
|
8
|
Edwards SV, Fang B, Khost D, Kolyfetis GE, Cheek RG, DeRaad DA, Chen N, Fitzpatrick JW, McCormack JE, Funk WC, Ghalambor CK, Garrison E, Guarracino A, Li H, Sackton TB. Comparative population pangenomes reveal unexpected complexity and fitness effects of structural variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637762. [PMID: 39990470 PMCID: PMC11844517 DOI: 10.1101/2025.02.11.637762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Structural variants (SVs) are widespread in vertebrate genomes, yet their evolutionary dynamics remain poorly understood. Using 45 long-read de novo genome assemblies and pangenome tools, we analyze SVs within three closely related species of North American jays (Aphelocoma, scrub-jays) displaying a 60-fold range in effective population size. We find rapid evolution of genome architecture, including ~100 Mb variation in genome size driven by dynamic satellite landscapes with unexpectedly long (> 10 kb) repeat units and widespread variation in gene content, influencing gene expression. SVs exhibit slightly deleterious dynamics modulated by variant length and population size, with strong evidence of adaptive fixation only in large populations. Our results demonstrate how population size shapes the distribution of SVs and the importance of pangenomes to characterizing genomic diversity.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 2138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 2138, USA
| | - Bohao Fang
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 2138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 2138, USA
| | - Danielle Khost
- Informatics Group, Harvard University, 52 Oxford St, Cambridge, MA, 2138, USA
| | - George E Kolyfetis
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 2138, USA
| | - Rebecca G Cheek
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Devon A DeRaad
- Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd, Los Angeles, CA, 90041, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, 477 Hutchison Hall, Box 270211, Rochester, NY, 14627, USA
| | - John W Fitzpatrick
- Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, 14850, USA
| | - John E. McCormack
- Moore Laboratory of Zoology, Occidental College, 1600 Campus Rd, Los Angeles, CA, 90041, USA
| | - W. Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523, USA
| | - Cameron K Ghalambor
- Department of Biology, Norwegian University of Science and Technology, Høgskoleringen 5, Realfagbygget D1-137, Trondheim, 7491, Norway
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN, 38163, USA
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S. Manassas Street, Memphis, TN, 38163, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, 450 Brookline Ave, Mailstop: CLSB 11007, Boston, MA, 2215
| | - Timothy B Sackton
- Informatics Group, Harvard University, 52 Oxford St, Cambridge, MA, 2138, USA
| |
Collapse
|
9
|
Schield DR, Carter JK, Scordato ESC, Levin II, Wilkins MR, Mueller SA, Gompert Z, Nosil P, Wolf JBW, Safran RJ. Sexual selection promotes reproductive isolation in barn swallows. Science 2024; 386:eadj8766. [PMID: 39666856 DOI: 10.1126/science.adj8766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 12/14/2024]
Abstract
Despite the well-known effects of sexual selection on phenotypes, links between this evolutionary process and reproductive isolation, genomic divergence, and speciation have been difficult to establish. We unravel the genetic basis of sexually selected plumage traits to investigate their effects on reproductive isolation in barn swallows. The genetic architecture of sexual traits is characterized by 12 loci on two autosomes and the Z chromosome. Sexual trait loci exhibit signatures of divergent selection in geographic isolation and barriers to gene flow in secondary contact. Linkage disequilibrium between these genes has been maintained by selection in hybrid zones beyond what would be expected under admixture alone. Our findings reveal that selection on coupled sexual trait loci promotes reproductive isolation, providing key empirical evidence for the role of sexual selection in speciation.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Javan K Carter
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, USA
| | - Iris I Levin
- Department of Biology, Kenyon College, Gambier, OH, USA
| | - Matthew R Wilkins
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Galactic Polymath Education Studio, Minneapolis, MN, USA
| | - Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | - Patrik Nosil
- CEFE, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rebecca J Safran
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
10
|
Liang X, Yang S, Wang D, Knief U. Characterization and distribution of de novo mutations in the zebra finch. Commun Biol 2024; 7:1243. [PMID: 39358581 PMCID: PMC11447093 DOI: 10.1038/s42003-024-06945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Germline de novo mutations (DNMs) provide the raw material for evolution. The DNM rate varies considerably between species, sexes and chromosomes. Here, we identify DNMs in the zebra finch (Taeniopygia guttata) across 16 parent-offspring trios using two genome assemblies of different quality. Using an independent genotyping assay, we validate 82% of the 150 candidate DNMs. DNM rates are consistent between both assemblies, with estimates of 6.14 × 10-9 and 6.36 × 10-9 per site per generation. We observe a strong paternal bias in DNM rates (male-to-female ratio ɑ ≈ 4), but this bias is in transition mutations only, leading to a transition-to-transversion ratio of 3.18 and 3.57. Finally, we find that DNMs tend to be randomly distributed across chromosomes, not associated with recombination hotspots or genic regions. However, the sex chromosome chrZ shows a roughly fourfold increased DNM rate compared to autosomes, which is more than the expected increase due to chrZ spending two-thirds of its time in males. Overall, our results further enhance our understanding of DNMs in passerine songbirds.
Collapse
Affiliation(s)
- Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daiping Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ulrich Knief
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Nikelski E, Rubtsov AS, Irwin D. A sex chromosome polymorphism maintains divergent plumage phenotypes between extensively hybridizing yellowhammers (Emberiza citrinella) and pine buntings (E. leucocephalos). Mol Ecol 2024; 33:e17526. [PMID: 39258972 DOI: 10.1111/mec.17526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
Under allopatric speciation, populations of a species become isolated by a geographic barrier and develop reproductive isolation through genetic differentiation. When populations meet in secondary contact, the strength of evolved reproductive barriers determines the extent of hybridization and whether the populations will continue to diverge or merge together. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are avian sister species that diverged in allopatry on either side of Eurasia during the Pleistocene glaciations. Though they differ greatly in plumage and form distinct genetic clusters in allopatry, these taxa show negligible mitochondrial DNA differentiation and hybridize extensively where they overlap in central Siberia, lending uncertainty to the state of reproductive isolation in the system. To assess the strength of reproductive barriers between taxa, we examined genomic differentiation across the system. We found that extensive admixture has occurred in sympatry, indicating that reproductive barriers between taxa are weak. We also identified a putative Z chromosome inversion region that underlies plumage variation in the system, with the 'pine bunting' haplotype showing dominance over the 'yellowhammer' haplotype. Our results suggest that yellowhammers and pine buntings are currently at a crossroads and that evolutionary forces may push this system towards either continued differentiation or population merging. However, even if these taxa merge, recombination suppression between putative chromosome Z inversion haplotypes may maintain divergent plumage phenotypes within the system. In this way, our findings highlight the important role hybridization plays in increasing the genetic and phenotypic variation as well as the evolvability of a system.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
McAuley JB, Servin B, Burnett HA, Brekke C, Peters L, Hagen IJ, Niskanen AK, Ringsby TH, Husby A, Jensen H, Johnston SE. The Genetic Architecture of Recombination Rates is Polygenic and Differs Between the Sexes in Wild House Sparrows (Passer domesticus). Mol Biol Evol 2024; 41:msae179. [PMID: 39183719 PMCID: PMC11385585 DOI: 10.1093/molbev/msae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
Meiotic recombination through chromosomal crossing-over is a fundamental feature of sex and an important driver of genomic diversity. It ensures proper disjunction, allows increased selection responses, and prevents mutation accumulation; however, it is also mutagenic and can break up favorable haplotypes. This cost-benefit dynamic is likely to vary depending on mechanistic and evolutionary contexts, and indeed, recombination rates show huge variation in nature. Identifying the genetic architecture of this variation is key to understanding its causes and consequences. Here, we investigate individual recombination rate variation in wild house sparrows (Passer domesticus). We integrate genomic and pedigree data to identify autosomal crossover counts (ACCs) and intrachromosomal allelic shuffling (r¯intra) in 13,056 gametes transmitted from 2,653 individuals to their offspring. Females had 1.37 times higher ACC, and 1.55 times higher r¯intra than males. ACC and r¯intra were heritable in females and males (ACC h2 = 0.23 and 0.11; r¯intra h2 = 0.12 and 0.14), but cross-sex additive genetic correlations were low (rA = 0.29 and 0.32 for ACC and r¯intra). Conditional bivariate analyses showed that all measures remained heritable after accounting for genetic values in the opposite sex, indicating that sex-specific ACC and r¯intra can evolve somewhat independently. Genome-wide models showed that ACC and r¯intra are polygenic and driven by many small-effect loci, many of which are likely to act in trans as global recombination modifiers. Our findings show that recombination rates of females and males can have different evolutionary potential in wild birds, providing a compelling mechanism for the evolution of sexual dimorphism in recombination.
Collapse
Affiliation(s)
- John B McAuley
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bertrand Servin
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Hamish A Burnett
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Cathrine Brekke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Lucy Peters
- Génétique Physiologie et Systèmes d'Elevage (GenPhySE), Université de Toulouse, INRAE, ENVT, Castanet Tolosan 31326, France
| | - Ingerid J Hagen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Alina K Niskanen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Ecology and Genetics Research Unit, University of Oulu, Oulu 90014, Finland
| | - Thor Harald Ringsby
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Arild Husby
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala 75236, Sweden
| | - Henrik Jensen
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
13
|
Wang S, Wu L, Zhu Q, Wu J, Tang S, Zhao Y, Cheng Y, Zhang D, Qiao G, Zhang R, Lei F. Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones. BIOLOGY 2024; 13:643. [PMID: 39194581 DOI: 10.3390/biology13080643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
A secondary contact zone (SCZ) is an area where incipient species or divergent populations may meet, mate, and hybridize. Due to the diverse patterns of interspecific hybridization, SCZs function as field labs for illuminating the on-going evolutionary processes of speciation and the establishment of reproductive isolation. Interspecific hybridization is widely present in avian populations, making them an ideal system for SCZ studies. This review exhaustively summarizes the variations in unique traits within avian SCZs (vocalization, plumage, beak, and migratory traits) and the various movement patterns of SCZs observed in previous publications. It also highlights several potential future research directions in the genomic era, such as the relationship between phenotypic and genomic differentiation in SCZs, the genomic basis of trait differentiation, SCZs shared by multiple species, and accurate predictive models for forecasting future movements under climate change and human disturbances. This review aims to provide a more comprehensive understanding of speciation processes and offers a theoretical foundation for species conservation.
Collapse
Affiliation(s)
- Shangyu Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianghui Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiahao Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalin Cheng
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dezhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runzhi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Byerly PA, Kearns AM, Welch A, Ochirbat ME, Marra PP, Wilson A, Campana MG, Fleischer RC. Museum genomics provide insight into the extinction of a specialist North American warbler species. Sci Rep 2024; 14:17047. [PMID: 39048633 PMCID: PMC11269716 DOI: 10.1038/s41598-024-67595-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Museum genomics provide an opportunity to investigate population demographics of extinct species, especially valuable when research prior to extinction was minimal. The Bachman's warbler (Vermivora bachmanii) is hypothesized to have gone extinct due to loss of its specialized habitat. However, little is known about other potential contributing factors such as natural rarity or changes to connectivity following habitat fragmentation. We examined mitochondrial DNA (mtDNA) and genome-wide SNPs using specimens collected from breeding and migration sites across the range of the Bachman's warbler. We found no signals of strong population structuring across the breeding range of Bachman's warblers in both mtDNA and genome-wide SNPs. Thus, long-term population isolation did not appear to be a significant contributor to the extinction of the Bachman's warbler. Instead, our findings support the theory that Bachman's warblers underwent a rapid decline likely driven by habitat destruction, which may have been exacerbated by the natural rarity, habitat specificity and low genetic diversity of the species.
Collapse
Affiliation(s)
- Paige A Byerly
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA.
| | - Anna M Kearns
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Andreanna Welch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Margad-Erdene Ochirbat
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Peter P Marra
- Department of Biology and McCourt School of Public Policy, Georgetown University, 37th and O Streets NW, Washington, DC, 20057, USA
| | - Amy Wilson
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| |
Collapse
|
15
|
Gyllenhaal EF, Brady SS, DeCicco LH, Naikatini A, Hime PM, Manthey JD, Kelly J, Moyle RG, Andersen MJ. Waves of Colonization and Gene Flow in a Great Speciator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.18.603796. [PMID: 39091784 PMCID: PMC11291091 DOI: 10.1101/2024.07.18.603796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Secondary contact between previously allopatric lineages offers a test of reproductive isolating mechanisms that may have accrued in isolation. Such instances of contact can produce stable hybrid zones-where reproductive isolation can further develop via reinforcement or phenotypic displacement-or result in the lineages merging. Ongoing secondary contact is most visible in continental systems, where steady input from parental taxa can occur readily. In oceanic island systems, however, secondary contact between closely related species of birds is relatively rare. When observed on sufficiently small islands, relative to population size, secondary contact likely represents a recent phenomenon. Here, we examine the dynamics of a group of birds whose apparent widespread hybridization influenced Ernst Mayr's foundational work on allopatric speciation: the whistlers of Fiji (Aves: Pachycephala). We demonstrate two clear instances of secondary contact within the Fijian archipelago, one resulting in a hybrid zone on a larger island, and the other resulting in a wholly admixed population on a smaller, adjacent island. We leveraged low genome-wide divergence in the hybrid zone to pinpoint a single genomic region associated with observed phenotypic differences. We use genomic data to present a new hypothesis that emphasizes rapid plumage evolution and post-divergence gene flow.
Collapse
Affiliation(s)
- Ethan F. Gyllenhaal
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Serina S. Brady
- Carnegie Museum of Natural History, Pittsburgh, Pennsylvania, USA
| | - Lucas H. DeCicco
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | | | - Paul M. Hime
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Present Address: McDonnell Genome Institute and Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Joseph D. Manthey
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - John Kelly
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Robert G. Moyle
- Biodiversity Institute and Natural History Museum, University of Kansas, Lawrence, Kansas, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
| | - Michael J. Andersen
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
16
|
Sigeman H, Downing PA, Zhang H, Hansson B. The rate of W chromosome degeneration across multiple avian neo-sex chromosomes. Sci Rep 2024; 14:16548. [PMID: 39020011 PMCID: PMC11255319 DOI: 10.1038/s41598-024-66470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 07/01/2024] [Indexed: 07/19/2024] Open
Abstract
When sex chromosomes evolve recombination suppression, the sex-limited chromosome (Y/W) commonly degenerate by losing functional genes. The rate of Y/W degeneration is believed to slow down over time as the most essential genes are maintained by purifying selection, but supporting data are scarce especially for ZW systems. Here, we study W degeneration in Sylvioidea songbirds where multiple autosomal translocations to the sex chromosomes, and multiple recombination suppression events causing separate evolutionary strata, have occurred during the last ~ 28.1-4.5 million years (Myr). We show that the translocated regions have maintained 68.3-97.7% of their original gene content, compared to only 4.2% on the much older ancestral W chromosome. By mapping W gene losses onto a dated phylogeny, we estimate an average gene loss rate of 1.0% per Myr, with only moderate variation between four independent lineages. Consistent with previous studies, evolutionarily constrained and haploinsufficient genes were preferentially maintained on W. However, the gene loss rate did not show any consistent association with strata age or with the number of W genes at strata formation. Our study provides a unique account on the pace of W gene loss and reinforces the significance of purifying selection in maintaining essential genes on sex chromosomes.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland.
| | - Philip A Downing
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
17
|
Gedman GL, Kimball TH, Atkinson LL, Factor D, Vojtova G, Farias-Virgens M, Wright TF, White SA. CHIRP-Seq: FoxP2 transcriptional targets in zebra finch brain include numerous speech and language-related genes. RESEARCH SQUARE 2024:rs.3.rs-4542378. [PMID: 38978588 PMCID: PMC11230500 DOI: 10.21203/rs.3.rs-4542378/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Vocal learning is a rare, convergent trait that is fundamental to both human speech and birdsong. The Forkhead Box P2 (FoxP2) transcription factor appears necessary for both types of learned signals, as human mutations in FoxP2 result in speech deficits, and disrupting its expression in zebra finches impairs male-specific song learning. In juvenile and adult male finches, striatal FoxP2 mRNA and protein decline acutely within song-dedicated neurons during singing, indicating that its transcriptional targets are also behaviorally regulated. The identities of these targets in songbirds, and whether they differ across sex, development and/or behavioral conditions, are largely unknown. Results Here we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to identify genomic sites bound by FoxP2 in male and female, juvenile and adult, and singing and non-singing birds. Our results suggest robust FoxP2 binding concentrated in putative promoter regions of genes. The number of genes likely to be bound by FoxP2 varied across conditions, suggesting specialized roles of the candidate targets related to sex, age, and behavioral state. We validated these binding targets both bioinformatically, with comparisons to previous studies and biochemically, with immunohistochemistry using an antibody for a putative target gene. Gene ontology analyses revealed enrichment for human speech- and language-related functions in males only, consistent with the sexual dimorphism of song learning in this species. Fewer such targets were found in juveniles relative to adults, suggesting an expansion of this regulatory network with maturation. The fewest speech-related targets were found in the singing condition, consistent with the well-documented singing-driven down-regulation of FoxP2 in the songbird striatum. Conclusions Overall, these data provide an initial catalog of the regulatory landscape of FoxP2 in an avian vocal learner, offering dozens of target genes for future study and providing insight into the molecular underpinnings of vocal learning.
Collapse
|
18
|
Kraft FLH, Crino OL, Adeniran-Obey SO, Moraney RA, Clayton DF, George JM, Buchanan KL. Parental developmental experience affects vocal learning in offspring. Sci Rep 2024; 14:13787. [PMID: 38877207 PMCID: PMC11178867 DOI: 10.1038/s41598-024-64520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Cultural and genetic inheritance combine to enable rapid changes in trait expression, but their relative importance in determining trait expression across generations is not clear. Birdsong is a socially learned cognitive trait that is subject to both cultural and genetic inheritance, as well as being affected by early developmental conditions. We sought to test whether early-life conditions in one generation can affect song acquisition in the next generation. We exposed one generation (F1) of nestlings to elevated corticosterone (CORT) levels, allowed them to breed freely as adults, and quantified their son's (F2) ability to copy the song of their social father. We also quantified the neurogenetic response to song playback through immediate early gene (IEG) expression in the auditory forebrain. F2 males with only one corticosterone-treated parent copied their social father's song less accurately than males with two control parents. Expression of ARC in caudomedial nidopallium (NCM) correlated with father-son song similarity, and patterns of expression levels of several IEGs in caudomedial mesopallium (CMM) in response to father song playback differed between control F2 sons and those with a CORT-treated father only. This is the first study to demonstrate that developmental conditions can affect social learning and neurogenetic responses in a subsequent generation.
Collapse
Affiliation(s)
- Fanny-Linn H Kraft
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia.
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Ondi L Crino
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | | | - Raven A Moraney
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - David F Clayton
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Julia M George
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
19
|
Martin CA, Sheppard EC, Ali HAA, Illera JC, Suh A, Spurgin LG, Richardson DS. Genomic landscapes of divergence among island bird populations: Evidence of parallel adaptation but at different loci? Mol Ecol 2024; 33:e17365. [PMID: 38733214 DOI: 10.1111/mec.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/01/2024] [Indexed: 05/13/2024]
Abstract
When populations colonise new environments, they may be exposed to novel selection pressures but also suffer from extensive genetic drift due to founder effects, small population sizes and limited interpopulation gene flow. Genomic approaches enable us to study how these factors drive divergence, and disentangle neutral effects from differentiation at specific loci due to selection. Here, we investigate patterns of genetic diversity and divergence using whole-genome resequencing (>22× coverage) in Berthelot's pipit (Anthus berthelotii), a passerine endemic to the islands of three north Atlantic archipelagos. Strong environmental gradients, including in pathogen pressure, across populations in the species range, make it an excellent system in which to explore traits important in adaptation and/or incipient speciation. First, we quantify how genomic divergence accumulates across the speciation continuum, that is, among Berthelot's pipit populations, between sub species across archipelagos, and between Berthelot's pipit and its mainland ancestor, the tawny pipit (Anthus campestris). Across these colonisation timeframes (2.1 million-ca. 8000 years ago), we identify highly differentiated loci within genomic islands of divergence and conclude that the observed distributions align with expectations for non-neutral divergence. Characteristic signatures of selection are identified in loci associated with craniofacial/bone and eye development, metabolism and immune response between population comparisons. Interestingly, we find limited evidence for repeated divergence of the same loci across the colonisation range but do identify different loci putatively associated with the same biological traits in different populations, likely due to parallel adaptation. Incipient speciation across these island populations, in which founder effects and selective pressures are strong, may therefore be repeatedly associated with morphology, metabolism and immune defence.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Hisham A A Ali
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, UK
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
20
|
Edwards SV, Cloutier A, Cockburn G, Driver R, Grayson P, Katoh K, Baldwin MW, Sackton TB, Baker AJ. A nuclear genome assembly of an extinct flightless bird, the little bush moa. SCIENCE ADVANCES 2024; 10:eadj6823. [PMID: 38781323 PMCID: PMC11809649 DOI: 10.1126/sciadv.adj6823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
We present a draft genome of the little bush moa (Anomalopteryx didiformis)-one of approximately nine species of extinct flightless birds from Aotearoa, New Zealand-using ancient DNA recovered from a fossil bone from the South Island. We recover a complete mitochondrial genome at 249.9× depth of coverage and almost 900 megabases of a male moa nuclear genome at ~4 to 5× coverage, with sequence contiguity sufficient to identify more than 85% of avian universal single-copy orthologs. We describe a diverse landscape of transposable elements and satellite repeats, estimate a long-term effective population size of ~240,000, identify a diverse suite of olfactory receptor genes and an opsin repertoire with sensitivity in the ultraviolet range, show that the wingless moa phenotype is likely not attributable to gene loss or pseudogenization, and identify potential function-altering coding sequence variants in moa that could be synthesized for future functional assays. This genomic resource should support further studies of avian evolution and morphological divergence.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Glenn Cockburn
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Robert Driver
- Department of Biology, East Carolina University, E 5th Street, Greenville, NC 27605, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Kazutaka Katoh
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Maude W. Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Timothy B. Sackton
- Informatics Group, Harvard University, 38 Oxford Street, Cambridge, MA 02138, USA
| | - Allan J. Baker
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, ON M5S 3B2, Canada
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, ON M5S 2C6, Canada
| |
Collapse
|
21
|
Dayal S, Chaubey D, Joshi DC, Ranmale S, Pillai B. Noncoding RNAs: Emerging regulators of behavioral complexity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1847. [PMID: 38702948 DOI: 10.1002/wrna.1847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/06/2024]
Abstract
The mammalian genome encodes thousands of non-coding RNAs (ncRNAs), ranging in size from about 20 nucleotides (microRNAs or miRNAs) to kilobases (long non-coding RNAs or lncRNAs). ncRNAs contribute to a layer of gene regulation that could explain the evolution of massive phenotypic complexity even as the number of protein-coding genes remains unaltered. We propose that low conservation, poor expression, and highly restricted spatiotemporal expression patterns-conventionally considered ncRNAs may affect behavior through direct, rapid, and often sustained regulation of gene expression at the transcriptional, post-transcriptional, or translational levels. Besides these direct roles, their effect during neurodevelopment may manifest as behavioral changes later in the organism's life, especially when exposed to environmental cues like stress and seasonal changes. The lncRNAs affect behavior through diverse mechanisms like sponging of miRNAs, recruitment of chromatin modifiers, and regulation of alternative splicing. We highlight the need for synthesis between rigorously designed behavioral paradigms in model organisms and the wide diversity of behaviors documented by ethologists through field studies on organisms exquisitely adapted to their environmental niche. Comparative genomics and the latest advancements in transcriptomics provide an unprecedented scope for merging field and lab studies on model and non-model organisms to shed light on the role of ncRNAs in driving the behavioral responses of individuals and groups. We touch upon the technical challenges and contentious issues that must be resolved to fully understand the role of ncRNAs in regulating complex behavioral traits. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sanovar Dayal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Divya Chaubey
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dheeraj Chandra Joshi
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Samruddhi Ranmale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Beena Pillai
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
22
|
Zheng W, Gojobori J, Suh A, Satta Y. Different Host-Endogenous Retrovirus Relationships between Mammals and Birds Reflected in Genome-Wide Evolutionary Interaction Patterns. Genome Biol Evol 2024; 16:evae065. [PMID: 38527852 PMCID: PMC11005779 DOI: 10.1093/gbe/evae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/25/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Mammals and birds differ largely in their average endogenous retrovirus loads, namely the proportion of endogenous retrovirus in the genome. The host-endogenous retrovirus relationships, including conflict and co-option, have been hypothesized among the causes of this difference. However, there has not been studies about the genomic evolutionary signal of constant host-endogenous retrovirus interactions in a long-term scale and how such interactions could lead to the endogenous retrovirus load difference. Through a phylogeny-controlled correlation analysis on ∼5,000 genes between the dN/dS ratio of each gene and the load of endogenous retrovirus in 12 mammals and 21 birds, separately, we detected genes that may have evolved in association with endogenous retrovirus loads. Birds have a higher proportion of genes with strong correlation between dN/dS and the endogenous retrovirus load than mammals. Strong evidence of association is found between the dN/dS of the coding gene for leucine-rich repeat-containing protein 23 and endogenous retrovirus load in birds. Gene set enrichment analysis shows that gene silencing rather than immunity and DNA recombination may have a larger contribution to the association between dN/dS and the endogenous retrovirus load for both mammals and birds. The above results together showing different evolutionary patterns between bird and mammal genes can partially explain the apparently lower endogenous retrovirus loads of birds, while gene silencing may be a universal mechanism that plays a remarkable role in the evolutionary interaction between the host and endogenous retrovirus. In summary, our study presents signals that the host genes might have driven or responded to endogenous retrovirus load changes in long-term evolution.
Collapse
Affiliation(s)
- Wanjing Zheng
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Gojobori
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| | - Alexander Suh
- Department of Organismal Biology—Systematic Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala 75236, Sweden
- School of Biological Sciences—Organisms and the Environment, University of East Anglia, Norwich, UK
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
- Research Center for Integrative Evolutionary Science, SOKENDAI (The Graduate University for Advanced Studies), Kanagawa 240-0193, Japan
| |
Collapse
|
23
|
Benham PM, Cicero C, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, King BL, Thomas WK, Kovach AI, Nachman MW, Bowie RCK. Remarkably High Repeat Content in the Genomes of Sparrows: The Importance of Genome Assembly Completeness for Transposable Element Discovery. Genome Biol Evol 2024; 16:evae067. [PMID: 38566597 PMCID: PMC11088854 DOI: 10.1093/gbe/evae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Sheppard EC, Martin CA, Armstrong C, González-Quevedo C, Illera JC, Suh A, Spurgin LG, Richardson DS. Genotype-environment associations reveal genes potentially linked to avian malaria infection in populations of an endemic island bird. Mol Ecol 2024; 33:e17329. [PMID: 38533805 DOI: 10.1111/mec.17329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.
Collapse
Affiliation(s)
| | - Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Claire Armstrong
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | - Catalina González-Quevedo
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Grupo Ecología y Evolución de Vertebrados, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo, University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
25
|
Saatoglu D, Lundregan SL, Fetterplace E, Goedert D, Husby A, Niskanen AK, Muff S, Jensen H. The genetic basis of dispersal in a vertebrate metapopulation. Mol Ecol 2024; 33:e17295. [PMID: 38396362 DOI: 10.1111/mec.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Dispersal affects evolutionary processes by changing population size and genetic composition, influencing the viability and persistence of populations. Investigating which mechanisms underlie variation in dispersal phenotypes and whether populations harbour adaptive potential for dispersal is crucial to understanding the eco-evolutionary dynamics of this important trait. Here, we investigate the genetic architecture of dispersal among successfully recruited individuals in an insular metapopulation of house sparrows. We use an extensive long-term individual-based ecological data set and high-density single-nucleotide polymorphism (SNP) genotypes for over 2500 individuals. We conducted a genome-wide association study (GWAS), and found a relationship between dispersal probability and a SNP located near genes known to regulate circadian rhythm, glycogenesis and exercise performance, among other functions. However, this SNP only explained 3.8% of variance, suggesting that dispersal is a polygenic trait. We then used an animal model to estimate heritable genetic variation (σA 2 ), which composes 10% of the total variation in dispersal probability. Finally, we investigated differences in σA 2 across populations occupying ecologically relevant habitat types (farm vs. non-farm) using a genetic groups animal model. We found different adaptive potentials across habitats, with higher mean breeding value, σA 2 , and heritability for the habitat presenting lower dispersal rates, suggesting also different roles of environmental variation. Our results suggest a complex genetic architecture of dispersal and demonstrate that adaptive potential may be environment dependent in key eco-evolutionary traits. The eco-evolutionary implications of such environment dependence and consequent spatial variation are likely to become ever more important with the increased fragmentation and loss of suitable habitats for many natural populations.
Collapse
Affiliation(s)
- Dilan Saatoglu
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sarah L Lundregan
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Evelyn Fetterplace
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Debora Goedert
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arild Husby
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alina K Niskanen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Stefanie Muff
- Department of Mathematical Sciences, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
26
|
Maclary ET, Holt C, Concepcion GT, Sović I, Vickrey AI, Yandell M, Kronenberg Z, Shapiro MD. Assembly and annotation of 2 high-quality columbid reference genomes from sequencing of a Columba livia × Columba guinea F1 hybrid. G3 (BETHESDA, MD.) 2024; 14:jkad280. [PMID: 38066578 PMCID: PMC10849363 DOI: 10.1093/g3journal/jkad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Pigeons and doves (family Columbidae) are one of the most diverse extant avian lineages, and many species have served as key models for evolutionary genomics, developmental biology, physiology, and behavioral studies. Building genomic resources for columbids is essential to further many of these studies. Here, we present high-quality genome assemblies and annotations for 2 columbid species, Columba livia and Columba guinea. We simultaneously assembled C. livia and C. guinea genomes from long-read sequencing of a single F1 hybrid individual. The new C. livia genome assembly (Cliv_3) shows improved completeness and contiguity relative to Cliv_2.1, with an annotation incorporating long-read IsoSeq data for more accurate gene models. Intensive selective breeding of C. livia has given rise to hundreds of breeds with diverse morphological and behavioral characteristics, and Cliv_3 offers improved tools for mapping the genomic architecture of interesting traits. The C. guinea genome assembly is the first for this species and is a new resource for avian comparative genomics. Together, these assemblies and annotations provide improved resources for functional studies of columbids and avian comparative genomics in general.
Collapse
Affiliation(s)
- Emily T Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Ivan Sović
- Pacific Biosciences, Menlo Park, CA 94025, USA
- Digital BioLogic d.o.o, Ivanić-Grad 10310, Croatia
| | - Anna I Vickrey
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Michael D Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
27
|
Kuttiyarthu Veetil N, Cedraz de Oliveira H, Gomez-Samblas M, Divín D, Melepat B, Voukali E, Świderská Z, Krajzingrová T, Těšický M, Jung F, Beneš V, Madsen O, Vinkler M. Peripheral inflammation-induced changes in songbird brain gene expression: 3' mRNA transcriptomic approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105106. [PMID: 38013114 DOI: 10.1016/j.dci.2023.105106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
Species-specific neural inflammation can be induced by profound immune signalling from periphery to brain. Recent advances in transcriptomics offer cost-effective approaches to study this regulation. In a population of captive zebra finch (Taeniopygia guttata), we compare the differential gene expression patterns in lipopolysaccharide (LPS)-triggered peripheral inflammation revealed by RNA-seq and QuantSeq. The RNA-seq approach identified more differentially expressed genes but failed to detect any inflammatory markers. In contrast, QuantSeq results identified specific expression changes in the genes regulating inflammation. Next, we adopted QuantSeq to relate peripheral and brain transcriptomes. We identified subtle changes in the brain gene expression during the peripheral inflammation (e.g. up-regulation in AVD-like and ACOD1 expression) and detected co-structure between the peripheral and brain inflammation. Our results suggest benefits of the 3'end transcriptomics for association studies between peripheral and neural inflammation in genetically heterogeneous models and identify potential targets for the future brain research in birds.
Collapse
Affiliation(s)
- Nithya Kuttiyarthu Veetil
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Haniel Cedraz de Oliveira
- Wageningen University and Research, Department of Animal Sciences, Animal Breeding and Genomics, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands; Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil.
| | - Mercedes Gomez-Samblas
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic; Granada University, Science faculty, Department of Parasitology, CP:18071, Granada, Granada, Spain.
| | - Daniel Divín
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Balraj Melepat
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Eleni Voukali
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Tereza Krajzingrová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Martin Těšický
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| | - Ferris Jung
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Vladimír Beneš
- EMBL, Genomics Core Facility, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - Ole Madsen
- Wageningen University and Research, Department of Animal Sciences, Animal Breeding and Genomics, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, 128 43, Prague, Czech Republic.
| |
Collapse
|
28
|
Askelson KK, Spellman GM, Irwin D. Genomic divergence and introgression between cryptic species of a widespread North American songbird. Mol Ecol 2023; 32:6839-6853. [PMID: 37916530 DOI: 10.1111/mec.17169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 09/20/2023] [Indexed: 11/03/2023]
Abstract
Analysis of genomic variation among related populations can sometimes reveal distinct species that were previously undescribed due to similar morphological appearances, and close examination of such cases can provide much insight regarding speciation. Genomic data can also reveal the role of reticulate evolution in differentiation and speciation. White-breasted nuthatches (Sitta carolinensis) are widely distributed North American songbirds that are currently classified as a single species but have been suspected to represent a case of cryptic speciation. Previous genetic analyses suggested four divergent groups, but it was unclear whether these represented multiple reproductively isolated species. Using extensive genomic sampling of over 350 white-breasted nuthatches from across North America and a new chromosome-level reference genome, we asked if white-breasted nuthatches are comprised of multiple species and whether introgression has occurred between divergent populations. Genomic variation of over 300,000 loci revealed four highly differentiated populations (Pacific, n = 45; Eastern, n = 23; Rocky Mountains North, n = 138; and Rocky Mountains South, n = 150) with geographic ranges that are adjacent. We observed a moderate degree of admixture between Rocky Mountain populations but only a small number of hybrids between the Rockies and the Eastern population. The rarity of hybrids together with high levels of differentiation between populations is supportive of populations having some level of reproductive isolation. Between populations, we show evidence for introgression from a divergent ghost lineage of white-breasted nuthatches into the Rocky Mountains South population, which is otherwise closely related to Rocky Mountains North. We conclude that white-breasted nuthatches are best considered at least three species and that ghost lineage introgression has contributed to differentiation between the two Rocky Mountain populations. White-breasted nuthatches provide a dramatic case of morphological similarity despite high genomic differentiation, and the varying levels of reproductive isolation among the four groups provide an example of the speciation continuum.
Collapse
Affiliation(s)
- Kenneth K Askelson
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth M Spellman
- Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA
| | - Darren Irwin
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Maclary ET, Holt C, Concepcion GT, Sović I, Vickrey AI, Yandell M, Kronenberg Z, Shapiro MD. Assembly and annotation of two high-quality columbid reference genomes from sequencing of a Columba livia x Columba guinea F 1 hybrid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561892. [PMID: 37873124 PMCID: PMC10592783 DOI: 10.1101/2023.10.11.561892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Pigeons and doves (family Columbidae) are one of the most diverse extant avian lineages, and many species have served as key models for evolutionary genomics, developmental biology, physiology, and behavioral studies. Building genomic resources for colubids is essential to further many of these studies. Here, we present high-quality genome assemblies and annotations for two columbid species, Columba livia and C. guinea. We simultaneously assembled C. livia and C. guinea genomes from long-read sequencing of a single F1 hybrid individual. The new C. livia genome assembly (Cliv_3) shows improved completeness and contiguity relative to Cliv_2.1, with an annotation incorporating long-read IsoSeq data for more accurate gene models. Intensive selective breeding of C. livia has given rise to hundreds of breeds with diverse morphological and behavioral characteristics, and Cliv_3 offers improved tools for mapping the genomic architecture of interesting traits. The C. guinea genome assembly is the first for this species and is a new resource for avian comparative genomics. Together, these assemblies and annotations provide improved resources for functional studies of columbids and avian comparative genomics in general.
Collapse
Affiliation(s)
- Emily T. Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Carson Holt
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Ivan Sović
- Pacific Biosciences, Menlo Park, CA, USA
- Digital BioLogic d.o.o, Ivanić-Grad, Croatia
| | - Anna I. Vickrey
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
30
|
Borodin PM. Germline-restricted chromosomes of the songbirds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:641-650. [PMID: 38023808 PMCID: PMC10643108 DOI: 10.18699/vjgb-23-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Germline-restricted chromosomes (GRCs) are present in the genomes of germline cells and absent from somatic cells. A GRC is found in all species of the songbirds (Passeri) and in none of the other bird orders studied to date. This indicates that GRC originated in the common ancestor of the songbirds. The germline-restricted chromosome is permanently absent from somatic cells of the songbird, while female germline cells usually contain two copies of GRC and male ones have one copy. In females, GRCs undergo synapsis and restricted recombination in their terminal regions during meiotic prophase. In males, it is almost always eliminated from spermatocytes. Thus, GRC is inherited almost exclusively through the maternal lineage. The germline-restricted chromosome is a necessary genomic element in the germline cells of songbirds. To date, the GRC genetic composition has been studied in four species only. Some GRC genes are actively expressed in female and male gonads, controlling the development of germline cells and synthesis of the proteins involved in the organization of meiotic chromosomes. Songbird species vary in GRC size and genetic composition. The GRC of each bird species consists of amplified and modified copies of genes from the basic genome of that species. The level of homology between GRCs of different species is relatively low, indicating a high rate of genetic evolution of this chromosome. Transmission through the maternal lineage and suppression of the recombination contribute significantly to the accelerated evolution of GRCs. One may suggest that the rapid coordinated evolution between the GRC genes and the genes of the basic genome in the songbirds might be responsible for the explosive speciation and adaptive radiation of this most species-rich and diverse infraorder of birds.
Collapse
Affiliation(s)
- P M Borodin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
31
|
Jackson LR, Lopez MS, Alward B. Breaking Through the Bottleneck: Krogh's Principle in Behavioral Neuroendocrinology and the Potential of Gene Editing. Integr Comp Biol 2023; 63:428-443. [PMID: 37312279 PMCID: PMC10445420 DOI: 10.1093/icb/icad068] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
In 1929, August Krogh wrote that for every question in biology, there is a species or collection of species in which pursuing such questions is the most appropriate for achieving the deepest insights. Referred to as "Krogh's Principle," these words are a guiding force for many biologists. In practice, Krogh's principle might guide a biologist interested in studying bi-parental care to choose not to use lab mice, in which the female does most of the parenting, but instead study species in which bi-parental care is present and clearly observable, such as in certain poison dart frogs. This approach to pursuing biological questions has been fruitful, with more in-depth insights achievable with new technologies. However, up until recently, an important limitation of Krogh's principle for biologists interested in the functions of certain genes, was certain techniques were only available for a few traditional model organisms such as lab mice, fruit flies (Drosophila melanogaster), zebrafish (Danio rerio) and C. elegans (Caenorhabditis elegans), in which testing the functions of molecular systems on biological processes can be achieved using genetic knockout (KO) and transgenic technology. These methods are typically more precise than other approaches (e.g., pharmacology) commonly used in nontraditional model organisms to address similar questions. Therefore, some of the most in-depth insights into our understanding of the molecular control of these mechanisms have come from a small number of genetically tractable species. Recent advances in gene editing technology such as CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats)/Cas9 gene editing as a laboratory tool has changed the insights achievable for biologists applying Krogh's principle. In this review, we will provide a brief summary on how some researchers of nontraditional model organisms have been able to achieve different levels of experimental precision with limited genetic tractability in their non-traditional model organism in the field of behavioral neuroendocrinology, a field in which understanding tissue and brain-region specific actions of molecules of interest has been a major goal. Then, we will highlight the exciting potential of Krogh's principle using discoveries made in a popular model species of social behavior, the African cichlid fish Astatotilapia burtoni. Specifically, we will focus on insights gained from studies of the control of social status by sex steroid hormones (androgens and estrogens) in A. burtoni that originated during field observations during the 1970s, and have recently culminated in novel insights from CRISPR/Cas9 gene editing in laboratory studies. Our review highlighting discoveries in A. burtoni may function as a roadmap for others using Krogh's principle aiming to incorporate gene editing into their research program. Gene editing is thus a powerful complimentary laboratory tool researchers can use to yield novel insights into understanding the molecular mechanisms of physiology and behavior in non-traditional model organisms.
Collapse
Affiliation(s)
- Lillian R Jackson
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Mariana S Lopez
- Department of Psychology, University of Houston, Houston, TX 77204USA
| | - Beau Alward
- Department of Psychology, University of Houston, Houston, TX 77204USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004USA
| |
Collapse
|
32
|
Benham PM, Cicero C, DeRaad DA, McCormack JE, Wayne RK, Escalona M, Beraut E, Marimuthu MPA, Nguyen O, Nachman MW, Bowie RCK. A highly contiguous reference genome for the Steller's jay (Cyanocitta stelleri). J Hered 2023; 114:549-560. [PMID: 37395718 PMCID: PMC10445514 DOI: 10.1093/jhered/esad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023] Open
Abstract
The Steller's jay is a familiar bird of western forests from Alaska south to Nicaragua. Here, we report a draft reference assembly for the species generated from PacBio HiFi long-read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 352 scaffolds totaling 1.16 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 7.8 Mb, scaffold N50 of 25.8 Mb, and BUSCO completeness score of 97.2%. Repetitive elements span 16.6% of the genome including nearly 90% of the W chromosome. Compared with high-quality assemblies from other members of the family Corvidae, the Steller's jay genome contains a larger proportion of repetitive elements than 4 crow species (Corvus), but a lower proportion of repetitive elements than the California scrub-jay (Aphelocoma californica). This reference genome will serve as an essential resource for future studies on speciation, local adaptation, phylogeography, and conservation genetics in this species of significant biological interest.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | - John E McCormack
- Moore Laboratory of Zoology, Occidental College, Los Angeles, CA, United States
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
33
|
Gable SM, Mendez JM, Bushroe NA, Wilson A, Byars MI, Tollis M. The State of Squamate Genomics: Past, Present, and Future of Genome Research in the Most Speciose Terrestrial Vertebrate Order. Genes (Basel) 2023; 14:1387. [PMID: 37510292 PMCID: PMC10379679 DOI: 10.3390/genes14071387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Squamates include more than 11,000 extant species of lizards, snakes, and amphisbaenians, and display a dazzling diversity of phenotypes across their over 200-million-year evolutionary history on Earth. Here, we introduce and define squamates (Order Squamata) and review the history and promise of genomic investigations into the patterns and processes governing squamate evolution, given recent technological advances in DNA sequencing, genome assembly, and evolutionary analysis. We survey the most recently available whole genome assemblies for squamates, including the taxonomic distribution of available squamate genomes, and assess their quality metrics and usefulness for research. We then focus on disagreements in squamate phylogenetic inference, how methods of high-throughput phylogenomics affect these inferences, and demonstrate the promise of whole genomes to settle or sustain persistent phylogenetic arguments for squamates. We review the role transposable elements play in vertebrate evolution, methods of transposable element annotation and analysis, and further demonstrate that through the understanding of the diversity, abundance, and activity of transposable elements in squamate genomes, squamates can be an ideal model for the evolution of genome size and structure in vertebrates. We discuss how squamate genomes can contribute to other areas of biological research such as venom systems, studies of phenotypic evolution, and sex determination. Because they represent more than 30% of the living species of amniote, squamates deserve a genome consortium on par with recent efforts for other amniotes (i.e., mammals and birds) that aim to sequence most of the extant families in a clade.
Collapse
Affiliation(s)
- Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jasmine M Mendez
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicholas A Bushroe
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Wilson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Michael I Byars
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
34
|
Benham PM, Cicero C, Escalona M, Beraut E, Marimuthu MPA, Nguyen O, Nachman MW, Bowie RCK. A highly contiguous genome assembly for the California quail (Callipepla californica). J Hered 2023; 114:418-427. [PMID: 36763048 PMCID: PMC10287149 DOI: 10.1093/jhered/esad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
The California quail (Callipepla californica) is an iconic native bird of scrub and oak woodlands in California and the Baja Peninsula of Mexico. Here, we report a draft reference assembly for the species generated from PacBio HiFi long read and Omni-C chromatin-proximity sequencing data as part of the California Conservation Genomics Project (CCGP). Sequenced reads were assembled into 321 scaffolds totaling 1.08 Gb in length. Assembly metrics indicate a highly contiguous and complete assembly with a contig N50 of 5.5 Mb, scaffold N50 of 19.4 Mb, and BUSCO completeness score of 96.5%. Transposable elements (TEs) occupy 16.5% of the genome, more than previous Odontophoridae quail assemblies but in line with estimates of TE content for recent long-read assemblies of chicken and Peking duck. Together these metrics indicate that the present assembly is more complete than prior reference assemblies generated for Odontophoridae quail. This reference will serve as an essential resource for studies on local adaptation, phylogeography, and conservation genetics in this species of significant biological and recreational interest.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA, United States
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, United States
| |
Collapse
|
35
|
Colquitt BM, Li K, Green F, Veline R, Brainard MS. Neural circuit-wide analysis of changes to gene expression during deafening-induced birdsong destabilization. eLife 2023; 12:e85970. [PMID: 37284822 PMCID: PMC10259477 DOI: 10.7554/elife.85970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/17/2023] [Indexed: 06/08/2023] Open
Abstract
Sensory feedback is required for the stable execution of learned motor skills, and its loss can severely disrupt motor performance. The neural mechanisms that mediate sensorimotor stability have been extensively studied at systems and physiological levels, yet relatively little is known about how disruptions to sensory input alter the molecular properties of associated motor systems. Songbird courtship song, a model for skilled behavior, is a learned and highly structured vocalization that is destabilized following deafening. Here, we sought to determine how the loss of auditory feedback modifies gene expression and its coordination across the birdsong sensorimotor circuit. To facilitate this system-wide analysis of transcriptional responses, we developed a gene expression profiling approach that enables the construction of hundreds of spatially-defined RNA-sequencing libraries. Using this method, we found that deafening preferentially alters gene expression across birdsong neural circuitry relative to surrounding areas, particularly in premotor and striatal regions. Genes with altered expression are associated with synaptic transmission, neuronal spines, and neuromodulation and show a bias toward expression in glutamatergic neurons and Pvalb/Sst-class GABAergic interneurons. We also found that connected song regions exhibit correlations in gene expression that were reduced in deafened birds relative to hearing birds, suggesting that song destabilization alters the inter-region coordination of transcriptional states. Finally, lesioning LMAN, a forebrain afferent of RA required for deafening-induced song plasticity, had the largest effect on groups of genes that were also most affected by deafening. Combined, this integrated transcriptomics analysis demonstrates that the loss of peripheral sensory input drives a distributed gene expression response throughout associated sensorimotor neural circuitry and identifies specific candidate molecular and cellular mechanisms that support the stability and plasticity of learned motor skills.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly Li
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Foad Green
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert Veline
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| | - Michael S Brainard
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Physiology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
36
|
Zemel BM, Nevue AA, Tavares LES, Dagostin A, Lovell PV, Jin DZ, Mello CV, von Gersdorff H. Motor cortex analogue neurons in songbirds utilize Kv3 channels to generate ultranarrow spikes. eLife 2023; 12:e81992. [PMID: 37158590 PMCID: PMC10241522 DOI: 10.7554/elife.81992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Complex motor skills in vertebrates require specialized upper motor neurons with precise action potential (AP) firing. To examine how diverse populations of upper motor neurons subserve distinct functions and the specific repertoire of ion channels involved, we conducted a thorough study of the excitability of upper motor neurons controlling somatic motor function in the zebra finch. We found that robustus arcopallialis projection neurons (RAPNs), key command neurons for song production, exhibit ultranarrow spikes and higher firing rates compared to neurons controlling non-vocal somatic motor functions (dorsal intermediate arcopallium [AId] neurons). Pharmacological and molecular data indicate that this striking difference is associated with the higher expression in RAPNs of high threshold, fast-activating voltage-gated Kv3 channels, that likely contain Kv3.1 (KCNC1) subunits. The spike waveform and Kv3.1 expression in RAPNs mirror properties of Betz cells, specialized upper motor neurons involved in fine digit control in humans and other primates but absent in rodents. Our study thus provides evidence that songbirds and primates have convergently evolved the use of Kv3.1 to ensure precise, rapid AP firing in upper motor neurons controlling fast and complex motor skills.
Collapse
Affiliation(s)
- Benjamin M Zemel
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Leonardo ES Tavares
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Andre Dagostin
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
| | - Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Dezhe Z Jin
- Department of Physics, Pennsylvania State UniversityUniversity ParkUnited States
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science UniversityPortlandUnited States
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Health and Science UniversityPortlandUnited States
- Oregon Hearing Research Center, Oregon Health and Science UniversityPortlandUnited States
| |
Collapse
|
37
|
Gershman A, Hauck Q, Dick M, Jamison JM, Tassia M, Agirrezabala X, Muhammad S, Ali R, Workman RE, Valle M, Wong GW, Welch KC, Timp W. Genomic insights into metabolic flux in hummingbirds. Genome Res 2023; 33:703-714. [PMID: 37156619 PMCID: PMC10317124 DOI: 10.1101/gr.276779.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Quinn Hauck
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Morag Dick
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Jerrica M Jamison
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Michael Tassia
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xabier Agirrezabala
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Saad Muhammad
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Raafay Ali
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kenneth C Welch
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
38
|
Mizushima S, Sasanami T, Ono T, Kuroiwa A. Current Approaches to and the Application of Intracytoplasmic Sperm Injection (ICSI) for Avian Genome Editing. Genes (Basel) 2023; 14:genes14030757. [PMID: 36981028 PMCID: PMC10048369 DOI: 10.3390/genes14030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Poultry are one of the most valuable resources for human society. They are also recognized as a powerful experimental animal for basic research on embryogenesis. Demands for the supply of low-allergen eggs and bioreactors have increased with the development of programmable genome editing technology. The CRISPR/Cas9 system has recently been used to produce transgenic animals and various animals in the agricultural industry and has also been successfully adopted for the modification of chicken and quail genomes. In this review, we describe the successful establishment of genome-edited lines combined with germline chimera production systems mediated by primordial germ cells and by viral infection in poultry. The avian intracytoplasmic sperm injection (ICSI) system that we previously established and recent advances in ICSI for genome editing are also summarized.
Collapse
Affiliation(s)
- Shusei Mizushima
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Tomohiro Sasanami
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Tamao Ono
- Matsumoto Dental University, 1780 Gobara, Hiro-oka, Shiojiri 399-0781, Nagano, Japan
| | - Asato Kuroiwa
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
39
|
Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions. Genetica 2023:10.1007/s10709-023-00185-x. [PMID: 36940055 DOI: 10.1007/s10709-023-00185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.
Collapse
|
40
|
Zuccolo A, Mfarrej S, Celii M, Mussurova S, Rivera LF, Llaca V, Mohammed N, Pain A, Alrefaei AF, Alrefaei AF, Wing RA. The gyrfalcon (Falco rusticolus) genome. G3 (BETHESDA, MD.) 2023; 13:6972330. [PMID: 36611193 PMCID: PMC9997569 DOI: 10.1093/g3journal/jkad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023]
Abstract
High-quality genome assemblies are characterized by high-sequence contiguity, completeness, and a low error rate, thus providing the basis for a wide array of studies focusing on natural species ecology, conservation, evolution, and population genomics. To provide this valuable resource for conservation projects and comparative genomics studies on gyrfalcon (Falco rusticolus), we sequenced and assembled the genome of this species using third-generation sequencing strategies and optical maps. Here, we describe a highly contiguous and complete genome assembly comprising 20 scaffolds and 13 contigs with a total size of 1.193 Gbp, including 8,064 complete Benchmarking Universal Single-Copy Orthologs (BUSCOs) of the total 8,338 BUSCO groups present in the library aves_odb10. Of these BUSCO genes, 96.7% were complete, 96.1% were present as a single copy, and 0.6% were duplicated. Furthermore, 0.8% of BUSCO genes were fragmented and 2.5% (210) were missing. A de novo search for transposable elements (TEs) identified 5,716 TEs that masked 7.61% of the F. rusticolus genome assembly when combined with publicly available TE collections. Long interspersed nuclear elements, in particular, the element Chicken-repeat 1 (CR1), were the most abundant TEs in the F. rusticolus genome. A de novo first-pass gene annotation was performed using 293,349 PacBio Iso-Seq transcripts and 496,195 transcripts derived from the assembly of 42,429,525 Illumina PE RNA-seq reads. In all, 19,602 putative genes, of which 59.31% were functionally characterized and associated with Gene Ontology terms, were annotated. A comparison of the gyrfalcon genome assembly with the publicly available assemblies of the domestic chicken (Gallus gallus), zebra finch (Taeniopygia guttata), and hummingbird (Calypte anna) revealed several genome rearrangements. In particular, nine putative chromosome fusions were identified in the gyrfalcon genome assembly compared with those in the G. gallus genome assembly. This genome assembly, its annotation for TEs and genes, and the comparative analyses presented, complement and strength the base of high-quality genome assemblies and associated resources available for comparative studies focusing on the evolution, ecology, and conservation of Aves.
Collapse
Affiliation(s)
- Andrea Zuccolo
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy
| | - Sara Mfarrej
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | - Mirko Celii
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luis F Rivera
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Victor Llaca
- Research and Development, Corteva Agriscience, Johnston, IA 50131, USA
| | - Nahed Mohammed
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arnab Pain
- King Abdullah University of Science and Technology (KAUST), Pathogen Genomics Laboratory, Biological and Environmental Science and Engineering (BESE), Thuwal-Jeddah 23955-6900, Saudi Arabia
| | | | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rod A Wing
- Center for Desert Agriculture (CDA), Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.,School of Plant Sciences, Arizona Genomics Institute, University of Arizona, 24 Tucson, Arizona 85721, USA
| |
Collapse
|
41
|
Kunchala SR, van Dijk A, Veldhuizen EJA, Donnellan SC, Haagsman HP, Orgeig S. Avian surfactant protein (SP)-A2 first arose in an early tetrapod before the divergence of amphibians and gradually lost the collagen domain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104582. [PMID: 36306971 DOI: 10.1016/j.dci.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The air-liquid interface of the mammalian lung is lined with pulmonary surfactants, a mixture of specific proteins and lipids that serve a dual purpose-enabling air-breathing and protection against pathogens. In mammals, surfactant proteins A (SP-A) and D (SP -D) are involved in innate defence of the lung. Birds seem to lack the SP-D gene, but possess SP-A2, an additional SP-A-like gene. Here we investigated the evolution of the SP-A and SP-D genes using computational gene prediction, homology, simulation modelling and phylogeny with published avian and other vertebrate genomes. PCR was used to confirm the identity and expression of SP-A analogues in various tissue homogenates of zebra finch and turkey. In silico analysis confirmed the absence of SP-D-like genes in all 47 published avian genomes. Zebra finch and turkey SP-A1 and SP-A2 sequences, confirmed by PCR of lung homogenates, were compared with sequenced and in silico predicted vertebrate homologs to construct a phylogenetic tree. The collagen domain of avian SP-A1, especially that of zebra finch, was dramatically shorter than that of mammalian SP-A. Amphibian and reptilian genomes also contain avian-like SP-A2 protein sequences with a collagen domain. NCBI Gnomon-predicted avian and alligator SP-A2 proteins all lacked the collagen domain completely. Both avian SP-A1 and SP-A2 sequences form separate clades, which are most closely related to their closest relatives, the alligators. The C-terminal carbohydrate recognition domain (CRD) of zebra finch SP-A1 was structurally almost identical to that of rat SP-A. In fact, the CRD of SP-A is highly conserved among all the vertebrates. Birds retained a truncated version of mammalian type SP-A1 as well as a non-collagenous C-type lectin, designated SP-A2, while losing the large collagenous SP-D lectin, reflecting their evolutionary trajectory towards a unidirectional respiratory system. In the context of zoonotic infections, how these evolutionary changes affect avian pulmonary surface protection is not clear.
Collapse
Affiliation(s)
- Srinivasa Reddy Kunchala
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia
| | - Albert van Dijk
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | | | - Henk P Haagsman
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sandra Orgeig
- Centre for Cancer Diagnostics and Therapeutics, UniSA Cancer Research Institute, UniSA Clinical and Health Sciences, University of South Australia, SA, 5001, Australia.
| |
Collapse
|
42
|
Smith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, et alSmith J, Alfieri JM, Anthony N, Arensburger P, Athrey GN, Balacco J, Balic A, Bardou P, Barela P, Bigot Y, Blackmon H, Borodin PM, Carroll R, Casono MC, Charles M, Cheng H, Chiodi M, Cigan L, Coghill LM, Crooijmans R, Das N, Davey S, Davidian A, Degalez F, Dekkers JM, Derks M, Diack AB, Djikeng A, Drechsler Y, Dyomin A, Fedrigo O, Fiddaman SR, Formenti G, Frantz LA, Fulton JE, Gaginskaya E, Galkina S, Gallardo RA, Geibel J, Gheyas AA, Godinez CJP, Goodell A, Graves JA, Griffin DK, Haase B, Han JL, Hanotte O, Henderson LJ, Hou ZC, Howe K, Huynh L, Ilatsia E, Jarvis ED, Johnson SM, Kaufman J, Kelly T, Kemp S, Kern C, Keroack JH, Klopp C, Lagarrigue S, Lamont SJ, Lange M, Lanke A, Larkin DM, Larson G, Layos JKN, Lebrasseur O, Malinovskaya LP, Martin RJ, Martin Cerezo ML, Mason AS, McCarthy FM, McGrew MJ, Mountcastle J, Muhonja CK, Muir W, Muret K, Murphy TD, Ng'ang'a I, Nishibori M, O'Connor RE, Ogugo M, Okimoto R, Ouko O, Patel HR, Perini F, Pigozzi MI, Potter KC, Price PD, Reimer C, Rice ES, Rocos N, Rogers TF, Saelao P, Schauer J, Schnabel RD, Schneider VA, Simianer H, Smith A, Stevens MP, Stiers K, Tiambo CK, Tixier-Boichard M, Torgasheva AA, Tracey A, Tregaskes CA, Vervelde L, Wang Y, Warren WC, Waters PD, Webb D, Weigend S, Wolc A, Wright AE, Wright D, Wu Z, Yamagata M, Yang C, Yin ZT, Young MC, Zhang G, Zhao B, Zhou H. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet Genome Res 2023; 162:405-528. [PMID: 36716736 PMCID: PMC11835228 DOI: 10.1159/000529376] [Show More Authors] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - James M. Alfieri
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Peter Arensburger
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Giridhar N. Athrey
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Poultry Science, Texas A&M University, College Station, Texas, USA
| | | | - Adam Balic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Philippe Bardou
- Université de Toulouse, INRAE, ENVT, GenPhySE, Sigenae, Castanet Tolosan, France
| | | | - Yves Bigot
- PRC, UMR INRAE 0085, CNRS 7247, Centre INRAE Val de Loire, Nouzilly, France
| | - Heath Blackmon
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Pavel M. Borodin
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rachel Carroll
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Mathieu Charles
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Hans Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | | | | | - Lyndon M. Coghill
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Richard Crooijmans
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Sean Davey
- University of Arizona, Tucson, Arizona, USA
| | - Asya Davidian
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Fabien Degalez
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Jack M. Dekkers
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Martijn Derks
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Abigail B. Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Appolinaire Djikeng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Alexander Dyomin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Laurent A.F. Frantz
- Queen Mary University of London, Bethnal Green, London, UK
- Palaeogenomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Janet E. Fulton
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Elena Gaginskaya
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Rodrigo A. Gallardo
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Johannes Geibel
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Almas A. Gheyas
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Cyrill John P. Godinez
- Department of Animal Science, College of Agriculture and Food Science, Visayas State University, Baybay City, Philippines
| | | | - Jennifer A.M. Graves
- Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | | | | | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
- Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, UK
| | - Lindsay J. Henderson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | - Lan Huynh
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Evans Ilatsia
- Dairy Research Institute, Kenya Agricultural and Livestock Organization, Naivasha, Kenya
| | | | | | - Jim Kaufman
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Terra Kelly
- School of Veterinary Medicine, University of California, Davis, California, USA
- Department of Animal Science, University of California, Davis, California, USA
| | - Steve Kemp
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Colin Kern
- Feed the Future Innovation Lab for Genomics to Improve Poultry, University of California, Davis, California, USA
| | | | - Christophe Klopp
- Department of Animal Science, Iowa State University, Ames, Iowa, USA
| | - Sandrine Lagarrigue
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Susan J. Lamont
- Department of Animal Science, University of California, Davis, California, USA
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
| | - Margaret Lange
- Centre for Tropical Livestock Genetics and Health (CTLGH) − The Roslin Institute, Edinburgh, UK
| | - Anika Lanke
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, California, USA
| | - Denis M. Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, The University of Oxford, Oxford, UK
| | - John King N. Layos
- College of Agriculture and Forestry, Capiz State University, Mambusao, Philippines
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse (CAGT), CNRS UMR 5288, Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lyubov P. Malinovskaya
- Department of Cytology and Genetics, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Rebecca J. Martin
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | | | | | | | - Michael J. McGrew
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | | | - Christine Kamidi Muhonja
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - William Muir
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Kévin Muret
- Université Paris-Saclay, Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Terence D. Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | | | - Moses Ogugo
- Centre for Tropical Livestock Genetics and Health (CTLGH) − ILRI, Nairobi, Kenya
| | - Ron Okimoto
- Cobb-Vantress, Siloam Springs, Arkansas, USA
| | - Ochieng Ouko
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | - Hardip R. Patel
- The John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Francesco Perini
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - María Ines Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Peter D. Price
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christian Reimer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Edward S. Rice
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Nicolas Rocos
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, Michigan, USA
| | - Thea F. Rogers
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, California, USA
- Veterinary Pest Genetics Research Unit, USDA, Kerrville, Texas, USA
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
| | - Robert D. Schnabel
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Valerie A. Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Henner Simianer
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Adrian Smith
- Department of Zoology, University of Oxford, Oxford, UK
| | - Mark P. Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Kyle Stiers
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri, USA
| | | | | | - Anna A. Torgasheva
- Department of Molecular Genetics, Cell Biology and Bioinformatics, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alan Tracey
- University Paris-Saclay, INRAE, AgroParisTech, GABI, Sigenae, Jouy-en-Josas, France
| | - Clive A. Tregaskes
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
- Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Lonneke Vervelde
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Ying Wang
- Department of Animal Science, University of California, Davis, California, USA
| | - Wesley C. Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, New South Wales, Australia
| | - David Webb
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt, Germany
- Center for Integrated Breeding Research, University of Göttingen, Göttingen, Germany
| | - Anna Wolc
- INRAE, MIAT UR875, Sigenae, Castanet Tolosan, France
- Hy-Line International, Research and Development, Dallas Center, Iowa, USA
| | - Alison E. Wright
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dominic Wright
- AVIAN Behavioural Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, UK
| | - Masahito Yamagata
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhong-Tao Yin
- Department of Animal Sciences, Data Science and Informatics Institute, University of Missouri, Columbia, Missouri, USA
| | | | - Guojie Zhang
- Center for Evolutionary and Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bingru Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
43
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
44
|
Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Mol Ecol 2023; 32:1972-1989. [PMID: 36704917 DOI: 10.1111/mec.16865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Genomes retain evidence of the demographic history and evolutionary forces that have shaped populations and drive speciation. Across island systems, contemporary patterns of genetic diversity reflect population demography, including colonization events, bottlenecks, gene flow and genetic drift. Here, we investigate genome-wide diversity and the distribution of runs of homozygosity (ROH) using whole-genome resequencing of individuals (>22× coverage) from six populations across three archipelagos of Berthelot's pipit (Anthus berthelotii)-a passerine that has recently undergone island speciation. We show the most dramatic reduction in diversity occurs between the mainland sister species (the tawny pipit) and Berthelot's pipit and is lowest in the populations that have experienced sequential bottlenecks (i.e., the Madeiran and Selvagens populations). Pairwise sequential Markovian coalescent (PSMC) analyses estimated that Berthelot's pipit diverged from its sister species ~2 million years ago, with the Madeiran archipelago founded 50,000 years ago, and the Selvagens colonized 8000 years ago. We identify many long ROH (>1 Mb) in these most recently colonized populations. Population expansion within the last 100 years may have eroded long ROH in the Madeiran archipelago, resulting in a prevalence of short ROH (<1 Mb). However, the extensive long and short ROH detected in the Selvagens suggest strong recent inbreeding and bottleneck effects, with as much as 38% of the autosomes consisting of ROH >250 kb. These findings highlight the importance of demographic history, as well as selection and genetic drift, in shaping contemporary patterns of genomic diversity across diverging populations.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | | | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
45
|
Nikelski E, Rubtsov AS, Irwin D. High heterogeneity in genomic differentiation between phenotypically divergent songbirds: a test of mitonuclear co-introgression. Heredity (Edinb) 2023; 130:1-13. [PMID: 36463372 PMCID: PMC9814147 DOI: 10.1038/s41437-022-00580-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Comparisons of genomic variation among closely related species often show more differentiation in mitochondrial DNA (mtDNA) and sex chromosomes than in autosomes, a pattern expected due to the differing effective population sizes and evolutionary dynamics of these genomic components. Yet, introgression can cause species pairs to deviate dramatically from general differentiation trends. The yellowhammer (Emberiza citrinella) and pine bunting (E. leucocephalos) are hybridizing avian sister species that differ greatly in appearance and moderately in nuclear DNA, but that show no mtDNA differentiation. This discordance is best explained by adaptive mtDNA introgression-a process that can select for co-introgression at nuclear genes with mitochondrial functions (mitonuclear genes). To better understand these discordant differentiation patterns and characterize nuclear differentiation in this system, we investigated genome-wide differentiation between allopatric yellowhammers and pine buntings and compared it to what was seen previously in mtDNA. We found significant nuclear differentiation that was highly heterogeneous across the genome, with a particularly wide differentiation peak on the sex chromosome Z. We further investigated mitonuclear gene co-introgression between yellowhammers and pine buntings and found support for this process in the direction of pine buntings into yellowhammers. Genomic signals indicative of co-introgression were common in mitonuclear genes coding for subunits of the mitoribosome and electron transport chain complexes. Such introgression of mitochondrial DNA and mitonuclear genes provides a possible explanation for the patterns of high genomic heterogeneity in genomic differentiation seen among some species groups.
Collapse
Affiliation(s)
- Ellen Nikelski
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada.
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada.
| | | | - Darren Irwin
- Department of Zoology, and Biodiversity Research Centre, 6270 University Blvd., University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Woo C, Kumari P, Eo KY, Lee WS, Kimura J, Yamamoto N. Combining vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing to investigate the diet of the leopard cat (Prionailurus bengalensis) in Korea. PLoS One 2023; 18:e0281245. [PMID: 36719887 PMCID: PMC9888693 DOI: 10.1371/journal.pone.0281245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/18/2023] [Indexed: 02/01/2023] Open
Abstract
The leopard cat (Prionailurus bengalensis), an endangered species in South Korea, is a small feline widely distributed in Asia. Here, we investigated the diet of leopard cats in the inland areas of Korea by examining their fecal contents using vertebrate mitochondrial 12S rRNA gene sequencing and shotgun metagenomic sequencing. Shotgun metagenomic sequencing revealed that the feces were rich in DNA not only of vertebrates but also of arthropods and plants, but care should be taken when using shotgun metagenomic sequencing to identify vertebrates at low taxonomic levels (e.g., genus level), as it was often erroneous. Meanwhile, vertebrate mitochondrial 12S rRNA gene sequencing was found to be accurate in the genus-level identification, as the genera identified were consistent with the Korean fauna. We found that small mammals such as murids were their main prey. By using these two sequencing methods in combination, this study demonstrated that accurate information about the overall dietary content and vertebrate prey of leopard cats could be obtained. We expect that the continued community efforts to expand the genome database of wildlife, including vertebrates, will alleviate the problem of erroneous identification of prey at low taxonomic levels by shotgun metagenomic sequencing in the near future.
Collapse
Affiliation(s)
- Cheolwoon Woo
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Priyanka Kumari
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Kyung Yeon Eo
- Department of Animal Health and Welfare, College of Healthcare and Biotechnology, Semyung University, Jecheon, Republic of Korea
| | - Woo-Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| | - Junpei Kimura
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Naomichi Yamamoto
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
47
|
Barros CP, Derks MFL, Mohr J, Wood BJ, Crooijmans RPMA, Megens HJ, Bink MCAM, Groenen MAM. A new haplotype-resolved turkey genome to enable turkey genetics and genomics research. Gigascience 2022; 12:giad051. [PMID: 37489751 PMCID: PMC10360393 DOI: 10.1093/gigascience/giad051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/12/2022] [Accepted: 06/27/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND The domesticated turkey (Meleagris gallopavo) is a species of significant agricultural importance and is the second largest contributor, behind broiler chickens, to world poultry meat production. The previous genome is of draft quality and partly based on the chicken (Gallus gallus) genome. A high-quality reference genome of M. gallopavo is essential for turkey genomics and genetics research and the breeding industry. RESULTS By adopting the trio-binning approach, we were able to assemble a high-quality chromosome-level F1 assembly and 2 parental haplotype assemblies, leveraging long-read technologies and genome-wide chromatin interaction data (Hi-C). From a total of 40 chromosomes (2n = 80), we captured 35 chromosomes in a single scaffold, showing much improved genome completeness and continuity compared to the old assembly build. The 3 assemblies are of higher quality than the previous draft quality assembly and comparable to the chicken assemblies (GRCg7) shown by the largest contig N50 (26.6 Mb) and comparable BUSCO gene set completeness scores (96-97%). Comparative analyses confirm a previously identified large inversion of around 19 Mbp on the Z chromosome not found in other Galliformes. Structural variation between the parent haplotypes was identified, which poses potential new target genes for breeding. CONCLUSIONS We contribute a new high-quality turkey genome at the chromosome level, benefiting turkey genetics and other avian genomics research as well as the turkey breeding industry.
Collapse
Affiliation(s)
- Carolina P Barros
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Martijn F L Derks
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Jeff Mohr
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
| | - Benjamin J Wood
- Hybrid Turkeys, 650 Riverbend Drive Suite C, Kitchener, ON N2K 3S2, Canada
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | | | - Hendrik-Jan Megens
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| | - Marco C A M Bink
- Hendrix Genetics Research, Technology & Services, Boxmeer, AC 5830, The Netherlands
| | - Martien A M Groenen
- Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, The Netherlands
| |
Collapse
|
48
|
Toomey MB, Marques CI, Araújo PM, Huang D, Zhong S, Liu Y, Schreiner GD, Myers CA, Pereira P, Afonso S, Andrade P, Gazda MA, Lopes RJ, Viegas I, Koch RE, Haynes ME, Smith DJ, Ogawa Y, Murphy D, Kopec RE, Parichy DM, Carneiro M, Corbo JC. A mechanism for red coloration in vertebrates. Curr Biol 2022; 32:4201-4214.e12. [PMID: 36049480 PMCID: PMC9588406 DOI: 10.1016/j.cub.2022.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Red coloration is a salient feature of the natural world. Many vertebrates produce red color by converting dietary yellow carotenoids into red ketocarotenoids via an unknown mechanism. Here, we show that two enzymes, cytochrome P450 2J19 (CYP2J19) and 3-hydroxybutyrate dehydrogenase 1-like (BDH1L), are sufficient to catalyze this conversion. In birds, both enzymes are expressed at the sites of ketocarotenoid biosynthesis (feather follicles and red cone photoreceptors), and genetic evidence implicates these enzymes in yellow/red color variation in feathers. In fish, the homologs of CYP2J19 and BDH1L are required for ketocarotenoid production, and we show that these enzymes are sufficient to produce ketocarotenoids in cell culture and when ectopically expressed in fish skin. Finally, we demonstrate that the red-cone-enriched tetratricopeptide repeat protein 39B (TTC39B) enhances ketocarotenoid production when co-expressed with CYP2J19 and BDH1L. The discovery of this mechanism of ketocarotenoid biosynthesis has major implications for understanding the evolution of color diversity in vertebrates.
Collapse
Affiliation(s)
- Matthew B Toomey
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA.
| | - Cristiana I Marques
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Pedro M Araújo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Coimbra, Portugal
| | - Delai Huang
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Siqiong Zhong
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - Yu Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen D Schreiner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Connie A Myers
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Paulo Pereira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Małgorzata A Gazda
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal
| | - Ricardo J Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal; MHNC-UP, Natural History and Science Museum of the University of Porto, Porto, Portugal
| | - Ivan Viegas
- University of Coimbra, Centre for Functional Ecology, Department of Life Sciences, Coimbra, Portugal
| | - Rebecca E Koch
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Maureen E Haynes
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Dustin J Smith
- Department of Biological Science, University of Tulsa, Tulsa, OK, USA
| | - Yohey Ogawa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel E Kopec
- Program in Human Nutrition, Department of Human Sciences, Ohio State University, Columbus, OH, USA
| | - David M Parichy
- Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal.
| | - Joseph C Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
49
|
Kim J, Lee C, Ko BJ, Yoo DA, Won S, Phillippy AM, Fedrigo O, Zhang G, Howe K, Wood J, Durbin R, Formenti G, Brown S, Cantin L, Mello CV, Cho S, Rhie A, Kim H, Jarvis ED. False gene and chromosome losses in genome assemblies caused by GC content variation and repeats. Genome Biol 2022; 23:204. [PMID: 36167554 PMCID: PMC9516821 DOI: 10.1186/s13059-022-02765-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many short-read genome assemblies have been found to be incomplete and contain mis-assemblies. The Vertebrate Genomes Project has been producing new reference genome assemblies with an emphasis on being as complete and error-free as possible, which requires utilizing long reads, long-range scaffolding data, new assembly algorithms, and manual curation. A more thorough evaluation of the recent references relative to prior assemblies can provide a detailed overview of the types and magnitude of improvements. RESULTS Here we evaluate new vertebrate genome references relative to the previous assemblies for the same species and, in two cases, the same individuals, including a mammal (platypus), two birds (zebra finch, Anna's hummingbird), and a fish (climbing perch). We find that up to 11% of genomic sequence is entirely missing in the previous assemblies. In the Vertebrate Genomes Project zebra finch assembly, we identify eight new GC- and repeat-rich micro-chromosomes with high gene density. The impact of missing sequences is biased towards GC-rich 5'-proximal promoters and 5' exon regions of protein-coding genes and long non-coding RNAs. Between 26 and 60% of genes include structural or sequence errors that could lead to misunderstanding of their function when using the previous genome assemblies. CONCLUSIONS Our findings reveal novel regulatory landscapes and protein coding sequences that have been greatly underestimated in previous assemblies and are now present in the Vertebrate Genomes Project reference genomes.
Collapse
Affiliation(s)
- Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Sohyoung Won
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen, 518083, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | | | | | - Richard Durbin
- Wellcome Sanger Institute, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Giulio Formenti
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Samara Brown
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Lindsey Cantin
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
- eGnome, Inc, Seoul, Republic of Korea.
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York City, USA.
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York City, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
50
|
Ko BJ, Lee C, Kim J, Rhie A, Yoo DA, Howe K, Wood J, Cho S, Brown S, Formenti G, Jarvis ED, Kim H. Widespread false gene gains caused by duplication errors in genome assemblies. Genome Biol 2022; 23:205. [PMID: 36167596 PMCID: PMC9516828 DOI: 10.1186/s13059-022-02764-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2022] [Indexed: 12/22/2022] Open
Abstract
Background False duplications in genome assemblies lead to false biological conclusions. We quantified false duplications in popularly used previous genome assemblies for platypus, zebra finch, and Anna’s Hummingbird, and their new counterparts of the same species generated by the Vertebrate Genomes Project, of which the Vertebrate Genomes Project pipeline attempted to eliminate false duplications through haplotype phasing and purging. These assemblies are among the first generated by the Vertebrate Genomes Project where there was a prior chromosomal level reference assembly to compare with. Results Whole genome alignments revealed that 4 to 16% of the sequences are falsely duplicated in the previous assemblies, impacting hundreds to thousands of genes. These lead to overestimated gene family expansions. The main source of the false duplications is heterotype duplications, where the haplotype sequences were relatively more divergent than other parts of the genome leading the assembly algorithms to classify them as separate genes or genomic regions. A minor source is sequencing errors. Ancient ATP nucleotide binding gene families have a higher prevalence of false duplications compared to other gene families. Although present in a smaller proportion, we observe false duplications remaining in the Vertebrate Genomes Project assemblies that can be identified and purged. Conclusions This study highlights the need for more advanced assembly methods that better separate haplotypes and sequence errors, and the need for cautious analyses on gene gains. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02764-1.
Collapse
Affiliation(s)
- Byung June Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Juwan Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - Dong Ahn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | | | | | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Samara Brown
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Giulio Formenti
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Laboratory of the Neurogenetics of Language, The Rockefeller University, New York, NY, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|