1
|
Tao Y, Zhang S, Shi X, Dou H, Ao W, Pang B, Zhang Z, Xu X, Wang W, Liu B, Musi A. Evolution of CO 2 flux over 60 years: Identifying source and sink changes caused by eutrophication of Hulun Lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176052. [PMID: 39241885 DOI: 10.1016/j.scitotenv.2024.176052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Understanding the carbon cycling process and assessing the carbon sequestration potential in freshwater lakes relies heavily on their source-sink relationship. However, human activity and climate change have obscured the clarity of this relationship and its driving mechanisms, particularly in northern grassland lakes. This study focused on Hulun Lake, the largest grassland lake in northern China, to quantitatively analyze the carbon dioxide exchange flux (FCO2) at the water-air interface from 1963 to 2023. The analysis revealed significant seasonal, interannual, and decadal variations in the FCO2. Over the past 60 years, FCO2 varying significant in seasons and years has notably decreased, averaging 0.324 ± 0.106 gC·m-2·d-1. Notably, there was a qualitative change in FCO2 from "sink" (0.161 ± 0.109 gC·m-2·d-1) to "source" (-0.130 ± 0.087 gC·m-2·d-1)between 2019 and 2020. From 1963 to 2019, the lake acted as a CO2 source, releasing an average flux of 0.438 ± 0.111 gC·m-2·d-1. During this period, FCO2 was the highest in spring, followed by summer, and the lowest in autumn and winter when the lake was covered by ice. In 2020, the lake transitioned into a CO2 sink with an average FCO2 of -0.248 ± 0.042 gCm-2·d-1 from 2020 to 2023. During this period, FCO2 peaked in autumn, followed by summer and spring, and was lowest in winter when the lake was ice covered. A structural model equation (SEM) was employed to analyze the effects of various factors, including physical, chemical, and biological aspects, on FCO2 and the source-sink pattern of Hulun Lake. This study suggested that lake eutrophication, compounded by global warming, may be the primary driving force behind these changes. Rising temperatures and eutrophication enhanced the primary productivity of the lake. The amount of CO2 fixed through photosynthesis surpassed that emitted by respiration. Consequently, the eutrophication may alter the CO2 exchange pattern in Hulun Lake, shifting it from a "source" to a "sink".
Collapse
Affiliation(s)
- Yulong Tao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China; Inner Mongolia Hulun Lake Wetland Ecosystem National Observation and Research Station, Hulunbuir 021000, China
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huashan Dou
- Inner Mongolia Hulun Lake Wetland Ecosystem National Observation and Research Station, Hulunbuir 021000, China; Administration of Hulun Lake National Nature Reserve, Hulunbuir 021000, Inner Mongolia, China
| | - Wen Ao
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China; Inner Mongolia Hulun Lake Wetland Ecosystem National Observation and Research Station, Hulunbuir 021000, China
| | - Bo Pang
- Inner Mongolia Hulun Lake Wetland Ecosystem National Observation and Research Station, Hulunbuir 021000, China; Administration of Hulun Lake National Nature Reserve, Hulunbuir 021000, Inner Mongolia, China
| | - Zhaoyong Zhang
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir 021000, China; Inner Mongolia Hulun Lake Wetland Ecosystem National Observation and Research Station, Hulunbuir 021000, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Wenlin Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Bo Liu
- School of Geographical Science, Nantong University, Nantong 226019, China
| | - Ala Musi
- Hohhot General Survey of Natural Resources Center, China Geological Survey, Hohhot 010018, China
| |
Collapse
|
2
|
Mao X, Zhao H, Kattel G, Jiang G, Ji Y, Liu T, Yang J, Liu Z, Wang C, Zhao H, Liu L, Dong Q. Both nutrients and macrophytes regulate organic carbon burial: Insights from high-resolution spatiotemporal records of a large shallow lake (Baiyangdian) in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175239. [PMID: 39111439 DOI: 10.1016/j.scitotenv.2024.175239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Both ecological regime shifts and carbon cycling in lakes have been the subject of global debates in recent years. However, the direct linkage between them is poorly understood. Lake Baiyangdian, a representative large shallow lake with the coexistence of a macrophyte-dominated area (MDA) and an algae-dominated area (ADA) in eastern China, allowing better understanding of the relationship between regime shifts and organic carbon (OC) burial in lakes. On the basis of Bayesian isotopic mixing modelling of C/N ratios and δ13C values, the sediment OC is primarily of autochthonous origin. The mean OC burial rate (OCBR) was 39 g C m-2 yr-1 before eutrophication occurred in 1990 and increased approximately 2.7-fold to 106 g C m-2 yr-1 after eutrophication. Partial least squares path modelling revealed that this change can be largely attributed to enhanced primary productivity and rapid burial as a result of intensified human perturbation. In terms of spatial patterns, the OCBR was greater in the MDA than in the ADA, which may be related to the different burial and mineralization processes of debris from macrophytes and algae. It then deduced that a decrease in the OCBR and an increase in the mineralization rate might have occurred after a shift from a macrophyte-dominated state to an algae-dominated state. Our findings highlight that eutrophication generally increases OC burial by enhancing lake primary productivity. However, once nutrient levels reach a critical range, lake ecosystems may shift from a macrophyte-dominated state to an algae-dominated state, which can lead to a significant reduction in the carbon burial capacity of lakes. Therefore, more attention should be given to avoiding shifts in eutrophic lakes, as such shifts can alter carbon cycling.
Collapse
Affiliation(s)
- Xin Mao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China; Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang 050024, China
| | - Hongmei Zhao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China.
| | - Giri Kattel
- Department of Infrastructure Engineering, University of Melbourne, Melbourne 3010, Australia; Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Gaolei Jiang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Yunping Ji
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Taibei Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Jingsong Yang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Zhe Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Chengmin Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Hua Zhao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Linjing Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| | - Qiuyao Dong
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; Key Laboratory of Quaternary Chronology and Hydrological-Environment Evolution, China Geological Survey, Shijiazhuang 050061, China
| |
Collapse
|
3
|
Zhou C, Peng Y, Zhou M, Jia R, Liu H, Xu X, Chen L, Ma J, Kinouchi T, Wang G. Cyanobacteria decay alters CH 4 and CO 2 produced hotspots along vertical sediment profiles in eutrophic lakes. WATER RESEARCH 2024; 265:122319. [PMID: 39182350 DOI: 10.1016/j.watres.2024.122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/18/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cyanobacteria-derived organic carbon has been reported to intensify greenhouse gas emissions from lacustrine sediments. However, the specific processes of CH4 and CO2 production and release from sediments into the atmosphere remain unclear, especially in eutrophic lakes. To investigate the influence of severe cyanobacteria accumulation on the production and migration of sedimentary CH4 and CO2, this study examined the different trophic level lakes along the middle and lower reaches of the Yangtze River. The results demonstrated that eutrophication amplified CH4 and CO2 emissions, notably in Lake Taihu, where fluxes peaked at 929.9 and 7222.5 μmol/m2·h, mirroring dissolved gas levels in overlying waters. Increased sedimentary organic carbon raised dissolved CH4 and CO2 concentrations in pore-water, with isotopic tracking showing cyanobacteria-derived carbon specifically elevated CH4 and CO2 in surface sediment pore-water more than in deeper layers. Cyanobacteria-derived carbon deposition on surface sediment boosted organic carbon and moisture levels, fostering an anaerobic microenvironment conducive to enhanced biogenic CH4 and CO2 production in surface sediments. In the microcosm systems with the most severe cyanobacteria accumulation, average CH4 and CO2 concentrations in surface sediments reached 6.9 and 2.3 mol/L, respectively, surpassing the 4.7 and 1.4 mol/L observed in bottom sediments, indicating upward migration of CH4 and CO2 hotspots from deeper to surface layers. These findings enhance our understanding of the mechanisms underlying lake sediment carbon emissions induced by eutrophication and provide a more accurate assessment of lake carbon emissions.
Collapse
Affiliation(s)
- Chuanqiao Zhou
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Yu Peng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Muchun Zhou
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Ruoyu Jia
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Huazu Liu
- Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Li Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing, 210042, China
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| |
Collapse
|
4
|
Sun F, Luo G, Pancost RD, Dong Z, Li Z, Wang H, Chen ZQ, Xie S. Methane fueled lake pelagic food webs in a Cretaceous greenhouse world. Proc Natl Acad Sci U S A 2024; 121:e2411413121. [PMID: 39432787 PMCID: PMC11536134 DOI: 10.1073/pnas.2411413121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Methane (CH4) is a potent greenhouse gas but also an important carbon and energy substrate for some lake food webs. Understanding how CH4 incorporates into food webs is, therefore, crucial for unraveling CH4 cycling and its impacts on climate and ecosystems. However, CH4-fueled lake food webs from pre-Holocene intervals, particularly during greenhouse climates in Earth history, have received relatively little attention. Here, we present a long-term record of CH4-fueled pelagic food webs across the Cretaceous Oceanic Anoxic Event 1a (~120 Mya) that serves as a geological analog to future warming. We show an exceptionally strong expansion of both methanogens and CH4-oxidizing bacteria (up to 87% of hopanoid-producing bacteria) during this Event. Grazing on CH4-oxidizing bacteria by zooplankton (up to 47% of ciliate diets) within the chemocline transferred substantial CH4-derived carbon to the higher trophic levels, representing an important CH4 sink in the water column. Our findings suggest that as Earth warms, microbial CH4 cycling could restructure food webs and fundamentally alter carbon and energy flows and trophic pathways in lake ecosystems.
Collapse
Affiliation(s)
- Funing Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
| | - Genming Luo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Richard D. Pancost
- Organic Geochemistry Unit, School of Earth Sciences, School of Chemistry, Cabot Institute for the Environment, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Zhengkun Dong
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Zhiguo Li
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
- School of Environmental Studies, China University of Geosciences, Wuhan430074, China
| | - Zhong-Qiang Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
- School of Earth Sciences, China University of Geosciences, Wuhan430074, China
| |
Collapse
|
5
|
Zhang Y, Liu N, Lei W, Fu H, Liu Z. Abrupt shift in the organic matter input to sediments in Lake Liangzi, a typical macrophyte-dominated shallow lake in Eastern China, and its response to anthropogenic impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174668. [PMID: 38997039 DOI: 10.1016/j.scitotenv.2024.174668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Understanding the historical variations in organic matter (OM) input to lake sediments and the possible mechanisms regulating this phenomenon is important for studying carbon cycling and burial in lake systems; however, this topic remains poorly addressed for macrophyte-dominated lakes. To bridge these gaps, we analyzed bulk OM and molecular geochemical proxies in a dated sediment core from Lake Liangzi, a typical submerged macrophyte-dominated lake in East China, to infer changes in OM input to sediments over the past 169 years due to the intensification of human activities in the catchment. A relatively primitive OM input pattern was observed in ca. 1841-1965, during which the lowest hydrogen index (HI), short-chain n-alkane abundance, and n-C17/n-C16 alkane indicated minimal input from phytoplankton, whereas the high Paq (proxy of aquatic macrophyte input) and long-chain n-alkane abundance suggested dominant and subordinate inputs from submerged and emergent macrophytes, respectively. OM input transitioned during ca. 1965-1993, with the highest Paq and lowest long-chain n-alkane abundance, indicating an increase of submerged macrophyte input and concurrent decline of emergent macrophyte input, probably caused by hydrological regulation practices and land reclamation in the 1960s, respectively. A further shift in OM input was observed since ca. 1993, characterized by the beginning of an increase in phytoplankton input, as indicated by the greater HI, short-chain n-alkane abundance, and n-C17/n-C16 alkane in sediments. Moreover, a lower Paq and higher abundance of long-chain n-alkanes indicated a decline in input from submerged macrophytes and an elevated input from terrestrial plants. The increase in αβ-hopane abundance and homohopane index value indicated that petroleum-sourced OM was first introduced into the sediments. The causes of these OM input changes included nutrient influx associated with domestic and industrial discharge, aquaculture within the lake, and widespread deforestation and land clearance in the catchment.
Collapse
Affiliation(s)
- Yongdong Zhang
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Ning Liu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Weizhen Lei
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Huan Fu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Zhengwen Liu
- Department of Ecology and Hydrobiology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Schwefel R, Nkwalale LGT, Jordan S, Rinke K, Hupfer M. Temperatures and hypolimnetic oxygen in German lakes: Observations, future trends and adaptation potential. AMBIO 2024:10.1007/s13280-024-02046-z. [PMID: 38967897 DOI: 10.1007/s13280-024-02046-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
We investigated trends in temperature, stratification, and hypolimnetic oxygen concentration of German lakes under climate change using observational data and hydrodynamic modelling. Observations from 46 lakes revealed that annually averaged surface temperatures increased by + 0.5 °C between 1990 and 2020 while bottom temperatures remained almost constant. Modelling of 12 lakes predicted further increases in surface temperatures by 0.3 °C/decade until the year 2099 in the most pessimistic emission scenario RCP 8.5 (RCP 4.5: + 0.18 °C/decade; RCP 2.6: + 0.04 °C/decade). Again, bottom temperatures increased much less while summer stratification extended by up to 38 days. Using a simplified oxygen model, we showed that hypolimnetic oxygen concentrations decreased by 0.7-1.9 mg L-1 in response to the extended stratification period. However, model runs assuming lower productivity (e. g. through nutrient reduction) resulted in increased oxygen concentrations even in the most pessimistic emission scenario. Our results suggest that the negative effects of climate change on the oxygen budget of lakes can be efficiently mitigated by nutrient control.
Collapse
Affiliation(s)
- Robert Schwefel
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany.
| | - Lipa G T Nkwalale
- Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstr. 3a, 39114, Magdeburg, Germany
| | - Sylvia Jordan
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany
| | - Karsten Rinke
- Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstr. 3a, 39114, Magdeburg, Germany
| | - Michael Hupfer
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587, Berlin, Germany
- Department of Aquatic Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Seestraße 45, 15526, Bad Saarow, Germany
| |
Collapse
|
7
|
Vesamäki JS, Laine MB, Nissinen R, Taipale SJ. Plastic and terrestrial organic matter degradation by the humic lake microbiome continues throughout the seasons. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13302. [PMID: 38852938 PMCID: PMC11162827 DOI: 10.1111/1758-2229.13302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Boreal freshwaters go through four seasons, however, studies about the decomposition of terrestrial and plastic compounds often focus only on summer. We compared microbial decomposition of 13C-polyethylene, 13C-polystyrene, and 13C-plant litter (Typha latifolia) by determining the biochemical fate of the substrate carbon and identified the microbial decomposer taxa in humic lake waters in four seasons. For the first time, the annual decomposition rate including separated seasonal variation was calculated for microplastics and plant litter in the freshwater system. Polyethylene decomposition was not detected, whereas polystyrene and plant litter were degraded in all seasons. In winter, decomposition rates of polystyrene and plant litter were fivefold and fourfold slower than in summer, respectively. Carbon from each substrate was mainly respired in all seasons. Plant litter was utilized efficiently by various microbial groups, whereas polystyrene decomposition was limited to Alpha- and Gammaproteobacteria. The decomposition was not restricted only to the growth season, highlighting that the decomposition of both labile organic matter and extremely recalcitrant microplastics continues throughout the seasons.
Collapse
Affiliation(s)
- Jussi S. Vesamäki
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Miikka B. Laine
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Riitta Nissinen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Sami J. Taipale
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
8
|
Lai C, Liu Z, Yu Q, Sun H, Xia F, He X, Ma Z, Han Y, Liu X, Hao P, Bao Q, Shao M, He H. Control of carbon dioxide exchange fluxes by rainfall and biological carbon pump in karst river-lake systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173486. [PMID: 38796009 DOI: 10.1016/j.scitotenv.2024.173486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
As an important component of inland water, the primary factors affecting the carbon cycle in karst river-lake systems require further investigation. In particular, the impacts of climatic factors and the biological carbon pump (BCP) on carbon dioxide (CO2) exchange fluxes in karst rivers and lakes deserve considerable attention. Using quarterly sampling, field monitoring, and meteorological data collection, the spatiotemporal characteristics of CO2 exchange fluxes in Erhai Lake (a typical karst lake in Yunnan, SW China) and its inflow rivers were investigated and the primary influencing factors were analyzed. The average river CO2 exchange flux reached 346.80 mg m-2 h-1, compared to -6.93 mg m-2 h-1 for the lake. The carbon cycle in rivers was strongly influenced by land use within the basin; cultivated and construction land were the main contributors to organic carbon (OC) in the river (r = 0.66, p < 0.01) and the mineralization of OC was a major factor in CO2 oversaturation in most rivers (r = 0.76, p < 0.01). In addition, the BCP effect of aquatic plants and the high pH in karst river-lake systems enhance the ability of water body to absorb CO2, resulting in undersaturated CO2 levels in the lake. Notably, under rainfall regulation, riverine OC and dissolved inorganic carbon (DIC) flux inputs controlled the level of CO2 exchange fluxes in the lake (rOC = 0.78, p < 0.05; rDIC = 0.97, p < 0.01). We speculate that under future climate and human activity scenarios, the DIC and OC input from rivers may alleviate the CO2 limitation of BCP effects in karst eutrophication lakes, possibly enabling aquatic plants to convert more CO2 into OC for burial. The results of this research can help advance our understanding of CO2 emissions and absorption mechanisms in karst river-lake systems.
Collapse
Affiliation(s)
- Chaowei Lai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China.
| | - Qingchun Yu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Fan Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejun He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Ma
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Yongqiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengyun Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Qian Bao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| | - Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550081, China
| |
Collapse
|
9
|
Wan X, Lu X, Zhu L, Feng J. Relative prevalence of top-down versus bottom-up control in planktonic ecosystem under eutrophication and climate change: A comparative study of typical bay and estuary. WATER RESEARCH 2024; 255:121487. [PMID: 38518414 DOI: 10.1016/j.watres.2024.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.
Collapse
Affiliation(s)
- Xuhao Wan
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
10
|
Guo Y, Song J, Feng J, Wang H, Zhang J, Ru J, Wang X, Han X, Ma H, Lyu Y, Ma W, Wang C, Qiu X, Wan S. Nighttime warming and nitrogen addition effects on the microclimate of a freshwater wetland dominated by Phragmites australis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171573. [PMID: 38462005 DOI: 10.1016/j.scitotenv.2024.171573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
The critical impacts of microclimate on carbon (C) cycling have been widely reported. However, the potential effects of global change on wetland microclimate remain unclear, primarily because of the absence of field manipulative experiment in inundated wetland. This study was designed to examine the effects of nighttime warming and nitrogen (N) addition on air, water, and sediment temperature and also reveal the controlling factors in a Phragmites australis dominated freshwater wetland on the North China Plain. Nighttime warming increased daily air, water, and sediment temperature by 0.24 °C, 0.27 °C, and 0.36 °C, respectively. The diurnal temperature range of water was decreased by 0.44 °C under nighttime warming, whereas warming had no effect on diurnal temperature range of air and sediment. In addition, N addition caused a reduction of 0.20 °C and 0.14 °C in daily water and sediment temperature by increasing vegetation coverage. There was a significant interaction between nighttime warming and N addition on water temperature. Furthermore, the vapor pressure deficit is the main factor affecting the extent of the warming-induced increases in air temperature. The changes of height and leaf area index of Phragmites australis are responsible for the cooling effects in the N addition plots. This study provides empirical evidence for the positive climate warming - microclimate feedback in freshwater wetland. However, N deposition leads to decreased water and sediment temperature. Our findings highlight the importance of incorporating the differential impacts of nighttime warming and N addition on air, water, and sediment temperature into the predictions of wetland C cycling responses to climate change.
Collapse
Affiliation(s)
- Yunpeng Guo
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jian Song
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jiayin Feng
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Hongpeng Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jinhua Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Jingyi Ru
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Xiaopan Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Xu Han
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Huixia Ma
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Yaru Lyu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Wenjing Ma
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Chao Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Xueli Qiu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Shiqiang Wan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
11
|
Kang M, Liu L, Grossart HP. Spatio-temporal variations of methane fluxes in sediments of a deep stratified temperate lake. iScience 2024; 27:109520. [PMID: 38591008 PMCID: PMC11000008 DOI: 10.1016/j.isci.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/09/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Spatio-temporal variability of sediment-mediated methane (CH4) production in freshwater lakes causes large uncertainties in predicting global lake CH4 emissions under different climate change and eutrophication scenarios. We conducted extensive sediment incubation experiments to investigate CH4 fluxes in Lake Stechlin, a deep, stratified temperate lake. Our results show contrasting spatial patterns in CH4 fluxes between littoral and profundal sites. The littoral sediments, ∼33% of the total sediment surface area, contributed ∼86.9% of the annual CH4 flux at the sediment-water interface. Together with sediment organic carbon quality, seasonal stratification is responsible for the striking spatial difference in sediment CH4 production between littoral and profundal zones owing to more sensitive CH4 production than oxidation to warming. While profundal sediments produce a relatively small amount of CH4, its production increases markedly as anoxia spreads in late summer. Our measurements indicate that future lake CH4 emissions will increase due to climate warming and concomitant hypoxia/anoxia.
Collapse
Affiliation(s)
- Manchun Kang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Yichang 443002, China
- Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, Yichang 443002, China
| | - Liu Liu
- Yunnan Key Laboratory of Plateau Geographical Processes and Environmental Changes, Faculty of Geography, Yunnan Normal University, Kunming 650500, China
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 16775 Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Colina M, Meerhoff M, Cabrera-Lamanna L, Kosten S. Experimental warming promotes CO 2 uptake but hinders carbon incorporation toward higher trophic levels in cyanobacteria-dominated freshwater communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:171029. [PMID: 38367721 DOI: 10.1016/j.scitotenv.2024.171029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Shallow freshwaters can exchange large amounts of carbon dioxide (CO2) with the atmosphere and also store significant quantities of carbon (C) in their sediments. Current warming and eutrophication pressures might alter the role of shallow freshwater ecosystems in the C cycle. Although eutrophication has been widely associated to an increase in total phytoplankton biomass and particularly of cyanobacteria, it is still poorly understood how warming may affect ecosystem metabolism under contrasting phytoplankton community composition. We studied the effects of experimental warming on CO2 fluxes and C allocation on two contrasting natural phytoplankton communities: chlorophytes-dominated versus cyanobacteria-dominated, both with a similar zooplankton community with a potentially high grazing capacity (i.e., standardized density of large-bodied cladocerans). The microcosms were subject to two different constant temperatures (control and +4 °C, i.e., 19.5 vs 23.5 °C) and we ensured no nutrient nor light limitation. CO2 uptake increased with warming in both communities, being the strongest in the cyanobacteria-dominated communities. However, only a comparatively minor share of the fixed C translated into increased phytoplankton (Chl-a), and particularly a negligible share translated into zooplankton biomass. Most C was either dissolved in the water (DIC) or sedimented, the latter being potentially available for mineralization into DIC and CO2, or methane (CH4) when anoxic conditions prevail. Our results suggest that C uptake increases with warming particularly when cyanobacteria dominate, however, due to the low efficiency in transfer through the trophic web the final fate of the fixed C may be substantially different in the long run.
Collapse
Affiliation(s)
- Maite Colina
- Departamento de Ecología y Gestión Ambiental, Centro Universitario de la Región Este, Universidad de la República, Maldonado, Uruguay; Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| | - Mariana Meerhoff
- Departamento de Ecología y Gestión Ambiental, Centro Universitario de la Región Este, Universidad de la República, Maldonado, Uruguay; Department of Ecoscience, Aarhus University, Aarhus, Denmark
| | - Lucía Cabrera-Lamanna
- Departamento de Ecología y Gestión Ambiental, Centro Universitario de la Región Este, Universidad de la República, Maldonado, Uruguay; Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Sarian Kosten
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
13
|
Sharma AR, Bordoloi R, Paul A, Gyanendra Y, Tripathi OP. Water quality and geochemical facie of high-altitude lakes in Tawang, Eastern Himalaya, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24492-24511. [PMID: 38441742 DOI: 10.1007/s11356-024-32712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/26/2024] [Indexed: 04/07/2024]
Abstract
High-altitude lakes (HALs) can be used as a supplement or alternative source of water in areas where there is a water shortage. When these lakes are efficiently managed, they can supply more water resources to fulfil the increasing demand. Water quality assessment aids in the identification of adequate and safe drinking water sources. It minimizes threats to the public's health by making sure that lake water extraction fulfills safety and health regulations. Water quality and hydrogeochemical study was conducted on six HALs of the Tawang district of Arunachal Pradesh during the year 2022. The water quality index (WQI) values varied from excellent to poor (33.87 to 101.95). Lake 6 stands out with its exceptional water quality as it had the minimum average WQI value of 52.98. In contrast, Lake 5 had the lowest water quality among the studied lakes with the maximum average WQI value of 95.31. However, the water might not be safe to drink due to the elevated levels of fluoride in these lakes. It is crucial to address and minimize the high fluoride levels to ensure the safety and acceptability of the water for consumption. The Piper diagram showed that Ca2+ > Mg2+ > Na+ > K+ and HCO3- > Cl- > SO42-, respectively, were the primary cations and anions present in these lakes. The Gibbs diagram also demonstrated the effect of rock weathering and precipitation dominance on the water chemistry in the research area. These results provide insightful information about the water quality of HALs, which is essential information for concerned government departments and agencies to manage water issues more efficiently. Based on current research, the HALs in this region have a lot of potential to meet the growing demand for drinking water.
Collapse
Affiliation(s)
- Aribam Rocky Sharma
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed to Be University), Nirjuli, Arunachal Pradesh, 791109, India
| | - Reetashree Bordoloi
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed to Be University), Nirjuli, Arunachal Pradesh, 791109, India
| | - Ashish Paul
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed to Be University), Nirjuli, Arunachal Pradesh, 791109, India.
| | - Yumnam Gyanendra
- Department of Forestry and Environmental Science, Manipur University, Canchipur, Imphal, 795003, Manipur, India
| | - Om Prakash Tripathi
- Department of Environmental Science, Mizoram University, Tanhril, Aizawl, 796004, Mizoram, India
| |
Collapse
|
14
|
Yang X, Zhou Y, Yu Z, Li J, Yang H, Huang C, Jeppesen E, Zhou Q. Influence of hydrological features on CO 2 and CH 4 concentrations in the surface water of lakes, Southwest China: A seasonal and mixing regime analysis. WATER RESEARCH 2024; 251:121131. [PMID: 38246081 DOI: 10.1016/j.watres.2024.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Due to the large spatiotemporal variability in the processes controlling carbon emissions from lakes, estimates of global lake carbon emission remain uncertain. Identifying the most reliable predictors of CO2 and CH4 concentrations across different hydrological features can enhance the accuracy of carbon emission estimates locally and globally. Here, we used data from 71 lakes in Southwest China varying in surface area (0.01‒702.4 km2), mean depth (< 1‒89.6 m), and climate to analyze differences in CO2 and CH4 concentrations and their driving mechanisms between the dry and rainy seasons and between different mixing regimes. The results showed that the average concentrations of CO2 and CH4 in the rainy season were 23.9 ± 18.8 μmol L-1 and 2.5 ± 4.9 μmol L-1, respectively, which were significantly higher than in the dry season (10.5 ± 10.3 μmol L-1 and 1.8 ± 4.2 μmol L-1, respectively). The average concentrations of CO2 and CH4 at the vertically mixed sites were 24.1 ± 21.8 μmol L-1 and 2.6 ± 5.4 μmol L-1, being higher than those at the stratified sites (14.8 ± 13.4 μmol L-1 and 1.7 ± 3.5 μmol L-1, respectively). Moreover, the environmental factors were divided into four categories, i.e., system productivity (represented by the contents of total nitrogen, total phosphorus, chlorophyll a and dissolved organic matter), physicochemical factors (water temperature, Secchi disk depth, dissolved oxygen and pH value), lake morphology (lake area, water depth and drainage ratio), and geoclimatic factors (altitude, wind speed, precipitation and land-use intensity). In addition to the regression and variance partitioning analyses between the concentrations of CO2 and CH4 and environmental factors, the cascading effects of environmental factors on CO2 and CH4 concentrations were further elucidated under four distinct hydrological scenarios, indicating the different driving mechanisms between the scenarios. Lake morphology and geoclimatic factors were the main direct drivers of the carbon concentrations during the rainy season, while they indirectly affected the carbon concentrations via influencing physicochemical factors and further system productivity during the dry season; although lake morphology and geoclimatic factors directly contributed to the carbon concentrations at the vertically mixed and stratified sites, the direct effect of system productivity was only observed at the stratified sites. Our results emphasize that, when estimating carbon emissions from lakes at broad spatial scales, it is essential to consider the influence of precipitation-related seasons and lake mixing regimes.
Collapse
Affiliation(s)
- Xiaoying Yang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-Security, Yunnan University, Kunming 650500, China
| | - Yongqiang Zhou
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhirong Yu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Jingyi Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6AB, United Kingdom
| | - Changchun Huang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
| | - Erik Jeppesen
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Department of Ecoscience, Aarhus University, Aarhus 8000, Denmark
| | - Qichao Zhou
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, China.
| |
Collapse
|
15
|
Xun F, Feng M, Ma S, Chen H, Zhang W, Mao Z, Zhou Y, Xiao Q, Wu QL, Xing P. Methane ebullition fluxes and temperature sensitivity in a shallow lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169589. [PMID: 38151123 DOI: 10.1016/j.scitotenv.2023.169589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Inland waters are important sources of atmospheric methane (CH4), with a major contribution from the CH4 ebullition pathway. However, there is still a lack of CH4 ebullition flux (eFCH4) and their temperature sensitivity (Q10) in shallow lakes, which might lead to large uncertainties in CH4 emission response from aquatic to climate and environmental change. Herein, the magnitude and regulatory of two CH4 pathways (ebullition and diffusion) were studied in subtropical Lake Chaohu, China, using the real-time portable greenhouse gas (GHG) analyzer-floating chamber method at 18 sites over four seasons. eFCH4 (12.06 ± 4.10 nmol m-2 s-1) was the dominant contributing pathway (73.0 %) to the two CH4 emission pathways in Lake Chaohu. The whole-lake mass balance calculation demonstrated that 56.6 % of the CH4 emitted from the sediment escaped through the ebullition pathway. eFCH4 was significantly higher in the western (WL: 16.54 ± 22.22 nmol m-2 s-1) and eastern lake zones (EL: 11.89 ± 15.43 nmol m-2 s-1) than in the middle lake zone (ML: 8.86 ± 13.78 nmol m-2 s-1; p < 0.05) and were significantly higher in the nearshore lake zone (NL: 15.94 ± 19.58 nmol m-2 s-1) than in the pelagic lake zone (PL: 6.64 ± 12.37 nmol m-2 s-1; p < 0.05). eFCH4 was significantly higher in summer (32.12 ± 13.82 nmol m-2 s-1) than in other seasons (p < 0.05). eFCH4 had a strong temperature dependence. Sediment total organic carbon (STOC) is an important ecosystem level Q10 driver of eFCH4. The meta-analysis also verified that across ecosystems the ecosystem-level Q10 of eFCH4 was significantly positively correlated with STOC and latitude (p < 0.05). This study suggests that eFCH4 will become increasingly crucial in shallow lake ecosystems as climate change and human activities increase. The potential increase in ebullition fluxes in high-latitude lakes is of great importance.
Collapse
Affiliation(s)
- Fan Xun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shuzhan Ma
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - He Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangshou Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Zhou
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qitao Xiao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
16
|
Yang P, Zhang L, Lin Y, Yang H, Lai DYF, Tong C, Zhang Y, Tan L, Zhao G, Tang KW. Significant inter-annual fluctuation in CO 2 and CH 4 diffusive fluxes from subtropical aquaculture ponds: Implications for climate change and carbon emission evaluations. WATER RESEARCH 2024; 249:120943. [PMID: 38064785 DOI: 10.1016/j.watres.2023.120943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Aquaculture ponds are potential hotspots for carbon cycling and emission of greenhouse gases (GHGs) like CO2 and CH4, but they are often poorly assessed in the global GHG budget. This study determined the temporal variations of CO2 and CH4 concentrations and diffusive fluxes and their environmental drivers in coastal aquaculture ponds in southeastern China over a five-year period (2017-2021). The findings indicated that CH4 flux from aquaculture ponds fluctuated markedly year-to-year, and CO2 flux varied between positive and negative between years. The coefficient of inter-annual variation of CO2 and CH4 diffusive fluxes was 168% and 127%, respectively, highlighting the importance of long-term observations to improve GHG assessment from aquaculture ponds. In addition to chlorophyll-a and dissolved oxygen as the common environmental drivers, CO2 was further regulated by total dissolved phosphorus and CH4 by dissolved organic carbon. Feed conversion ratio correlated positively with both CO2 and CH4 concentrations and fluxes, showing that unconsumed feeds fueled microbial GHG production. A linear regression based on binned (averaged) monthly CO2 diffusive flux data, calculated from CO2 concentrations, can be used to estimate CH4 diffusive flux with a fair degree of confidence (r2 = 0.66; p < 0.001). This algorithm provides a simple and practical way to assess the total carbon diffusive flux from aquaculture ponds. Overall, this study provides new insights into mitigating the carbon footprint of aquaculture production and assessing the impact of aquaculture ponds on the regional and global scales.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, PR China
| | - Yongxin Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou, 350117, PR China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Reading, UK; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Yifei Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China
| | - Lishan Tan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Guanghui Zhao
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
17
|
Hu A, Jang KS, Tanentzap AJ, Zhao W, Lennon JT, Liu J, Li M, Stegen J, Choi M, Lu Y, Feng X, Wang J. Thermal responses of dissolved organic matter under global change. Nat Commun 2024; 15:576. [PMID: 38233386 PMCID: PMC10794202 DOI: 10.1038/s41467-024-44813-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024] Open
Abstract
The diversity of intrinsic traits of different organic matter molecules makes it challenging to predict how they, and therefore the global carbon cycle, will respond to climate change. Here we develop an indicator of compositional-level environmental response for dissolved organic matter to quantify the aggregated response of individual molecules that positively and negatively associate with warming. We apply the indicator to assess the thermal response of sediment dissolved organic matter in 480 aquatic microcosms along nutrient gradients on three Eurasian mountainsides. Organic molecules consistently respond to temperature change within and across contrasting climate zones. At a compositional level, dissolved organic matter in warmer sites has a stronger thermal response and shows functional reorganization towards molecules with lower thermodynamic favorability for microbial decomposition. The thermal response is more sensitive to warming at higher nutrients, with increased sensitivity of up to 22% for each additional 1 mg L-1 of nitrogen loading. The utility of the thermal response indicator is further confirmed by laboratory experiments and reveals its positive links to greenhouse gas emissions.
Collapse
Affiliation(s)
- Ang Hu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Kyoung-Soon Jang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Wenqian Zhao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Jinfu Liu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mingjia Li
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - James Stegen
- Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, Richland, WA, 99352, USA
| | - Mira Choi
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, 28119, South Korea
| | - Yahai Lu
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaojuan Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jianjun Wang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
18
|
Zhao S, Hermans M, Niemistö J, Jilbert T. Elevated internal phosphorus loading from shallow areas of eutrophic boreal lakes: Insights from porewater geochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167950. [PMID: 37865251 DOI: 10.1016/j.scitotenv.2023.167950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Internal phosphorus (P) loading is widely recognized as a major cause of lake eutrophication. One conventional paradigm states that the magnitude of internal loading through P diffusion is constrained by the presence of iron (Fe) oxides in surface sediments under oxic conditions near the sediment-water interface (SWI). However, biogeochemical P dynamics in Fe-rich sedimentary systems are still not fully understood, especially in eutrophic lakes where intensively coupled organic matter (OM) remineralization and reductive dissolution of Fe-bound P (Fe-P) exist concurrently. Here, we assess the diagenetic processes that govern sedimentary P cycling in two eutrophic Fe-rich lakes in southern Finland, Lake Hiidenvesi and Lake Kytäjärvi, using a combination of porewater and solid-phase analyses. Coupled reductive dissolution of Fe-P and OM remineralization controlled P regeneration in both lakes, with Fe-P acting as the dominant source for porewater P. Vivianite formation likely immobilized sedimentary P in the deepest basin of Hiidenvesi. Elevated P diffusion rates were observed at shallow sites under oxic bottom water conditions in summer in both lakes, stimulated by enhanced remineralization of both freshly- (mostly phytoplankton-origin) and earlier-deposited OM under elevated temperatures. Areas overlain by oxic bottom water contributed more benthic P fluxes to the water column compared to anoxic/hypoxic areas in both lakes during all sampling seasons. Our study suggests that in shallow eutrophic settings with high OM deposition and elevated temperatures, remineralization in upper sediments regenerates P efficiently enough to support a significant amount of P release to the water column even under sedimentary molar Fe/P ratios >20. We also discuss the implication of our findings for lake restoration strategies.
Collapse
Affiliation(s)
- Siqi Zhao
- Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014 Helsinki, Finland; Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin katu 2, P.O. Box 64, FI-00014 Helsinki, Finland.
| | - Martijn Hermans
- Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014 Helsinki, Finland; Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin katu 2, P.O. Box 64, FI-00014 Helsinki, Finland; Baltic Sea Centre, Stockholm University, Svante Arrhenius väg 20F, 114 18 Stockholm, Sweden
| | - Juha Niemistö
- Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014 Helsinki, Finland; AFRY Finland Oy, Environment & Land Use Planning, P.O. Box 50, FI-01621 Vantaa, Finland
| | - Tom Jilbert
- Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1, P.O. Box 65, FI-00014 Helsinki, Finland; Environmental Geochemistry Group, Department of Geosciences and Geography, Faculty of Science, University of Helsinki, Gustaf Hällströmin katu 2, P.O. Box 64, FI-00014 Helsinki, Finland
| |
Collapse
|
19
|
Manasypov R, Fan L, Lim AG, Krickov IV, Pokrovsky OS, Kuzyakov Y, Dorodnikov M. Size matters: Aerobic methane oxidation in sediments of shallow thermokarst lakes. GLOBAL CHANGE BIOLOGY 2024; 30:e17120. [PMID: 38273495 DOI: 10.1111/gcb.17120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Shallow thermokarst lakes are important sources of greenhouse gases (GHGs) such as methane (CH4 ) and carbon dioxide (CO2 ) resulting from continuous permafrost thawing due to global warming. Concentrations of GHGs dissolved in water typically increase with decreasing lake size due to coastal abrasion and organic matter delivery. We hypothesized that (i) CH4 oxidation depends on the natural oxygenation gradient in the lake water and sediments and increases with lake size because of stronger wind-induced water mixing; (ii) CO2 production increases with decreasing lake size, following the dissolved organic matter gradient; and (iii) both processes are more intensive in the upper than deeper sediments due to the in situ gradients of oxygen (O2 ) and bioavailable carbon. We estimated aerobic CH4 oxidation potentials and CO2 production based on the injection of 13 C-labeled CH4 in the 0-10 cm and 10-20 cm sediment depths of small (~300 m2 ), medium (~3000 m2 ), and large (~106 m2 ) shallow thermokarst lakes in the West Siberian Lowland. The CO2 production was 1.4-3.5 times stronger in the upper sediments than in the 10-20 cm depth and increased from large (158 ± 18 nmol CO2 g-1 sediment d.w. h-1 ) to medium and small (192 ± 17 nmol CO2 g-1 h-1 ) lakes. Methane oxidation in the upper sediments was similar in all lakes, while at depth, large lakes had 14- and 74-fold faster oxidation rates (5.1 ± 0.5 nmol CH4 -derived CO2 g-1 h-1 ) than small and medium lakes, respectively. This was attributed to the higher O2 concentration in large lakes due to the more intense wind-induced water turbulence and mixing than in smaller lakes. From a global perspective, the CH4 oxidation potential confirms the key role of thermokarst lakes as an important hotspot for GHG emissions, which increase with the decreasing lake size.
Collapse
Affiliation(s)
- Rinat Manasypov
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Lichao Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Artem G Lim
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Ivan V Krickov
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
| | - Oleg S Pokrovsky
- BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
- GET UMR 5563 CNRS, Toulouse, France
- Federal Center for Integrated Arctic Research, Institute of Ecological Problem of the North, Arkhangelsk, Russia
| | - Yakov Kuzyakov
- Department of Agricultural Soil Science, Georg-August-University of Göttingen, Göttingen, Germany
- Department of Soil Science of Temperate Ecosystems, Georg-August-University of Göttingen, Göttingen, Germany
- Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Maxim Dorodnikov
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Liao Y, Xiao Q, Li Y, Yang C, Li J, Duan H. Salinity is an important factor in carbon emissions from an inland lake in arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167721. [PMID: 37832686 DOI: 10.1016/j.scitotenv.2023.167721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Saline lakes, serving as the ultimate destination for most hydrological systems, accumulate substantial amounts of nutrients and organic matter from basins, and act as vast carbon reservoirs. These lakes exhibit exceptionally active biogeochemical cycling processes of carbon dioxide (CO2) and methane (CH4), and constitute integral components of the global carbon cycle. However, understanding of greenhouse gas emissions from saline lakes remains unclear mostly due to scarce data. In this study, we obtained CO2 and CH4 diffusive fluxes and biogeochemical parameters during ice-free period of 2021 at Bosten Lake, which is a representative inland saline lake located in China's arid region. Results revealed that Bosten Lake was a significant source of atmospheric gas carbon emissions, with average diffusion emissions of 12.645 ± 3.475 mmol m-2 d-1 for CO2 and 0.279 ± 0.069 mmol m-2 d-1 for CH4. Temporally, field measurements found a positive correlation between conductivity (Spc, a proxy of salinity) and CO2 emissions (R2 = 0.50, p < 0.01). Furthermore, the CH4 diffusive fluxes increased with the trophic state index (TSI, R2 = 0.31, p < 0.01). Spatially, exogenous inputs led to the spatial heterogeneity of carbon emissions. Our results highlighted that temporal variations in salinity constitute a crucial factor influencing CO2 emissions, and the saline lake has greater global warming potential compared to freshwater. The study provides an in-depth analysis of greenhouse gas emissions and driving factors in saline lakes of arid regions, and supports a further understanding of the carbon cycle in different types of lakes.
Collapse
Affiliation(s)
- Yuanshan Liao
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yimin Li
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chen Yang
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junli Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hongtao Duan
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Nanjing 211135, China.
| |
Collapse
|
21
|
Bartosiewicz M, Przytulska A, Birkholz A, Zopfi J, Lehmann MF. Controls and significance of priming effects in lake sediments. GLOBAL CHANGE BIOLOGY 2024; 30:e17076. [PMID: 38273585 DOI: 10.1111/gcb.17076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 01/27/2024]
Abstract
Warming and eutrophication influence carbon (C) processing in sediments, with implications for the global greenhouse-gas budget. Temperature effects on sedimentary C loss are well understood, but the mechanism of change in turnover through priming with labile organic matter (OM) is not. Evaluating changes in the magnitude of priming as a function of warming, eutrophication, and OM stoichiometry, we incubated sediments with 13 C-labeled fresh organic matter (FOM, algal/cyanobacterial) and simulated future climate scenarios (+4°C and +8°C). We investigated FOM-induced production of CH4 and microbial community changes. C loss was primed by up to 17% in dominantly allochthonous sediments (ranging from 5% to 17%), compared to up to 6% in autochthonous sediments (-9% to 6%), suggesting that refractory OM is more susceptible to priming. The magnitude of priming was dependent on sediment OM stoichiometry (C/N ratio), the ratio of fresh labile OM to microbial biomass (FOM/MB), and temperature. Priming was strongest at 4°C when FOM/MB was below 50%. Addition of FOM was associated with activation and growth of bacterial decomposers, including for example, Firmicutes, Bacteroidetes, or Fibrobacteres, known for their potential to degrade insoluble and complex structural biopolymers. Using sedimentary C/N > 15 as a threshold, we show that in up to 35% of global lakes, sedimentation is dominated by allochthonous rather than autochthonous material. We then provide first-order estimates showing that, upon increase in phytoplankton biomass in these lakes, priming-enabled degradation of recalcitrant OM will release up to 2.1 Tg C annually, which would otherwise be buried for geological times.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Przytulska
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Axel Birkholz
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
22
|
Wen Y, Zhang W, Shan B. Amino acids as indicators of seasonal variations in organic matter degradation in surface sediments from a shallow lake. J Environ Sci (China) 2023; 131:1-10. [PMID: 37225371 DOI: 10.1016/j.jes.2022.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/26/2023]
Abstract
Degradation of organic matter (OM) in sediments is a key link in nutrient cycling and sedimentation processes in lakes. The aim of this study was to explore the degradation of OM in surface sediments of a shallow lake (Baiyangdian Lake, China) under seasonal temperature variations. For this, we used the amino acid-based degradation index (DI) and the spatiotemporal distribution characteristics and sources of OM. Sediment OM in the lake mainly originated from freshwater aquatic plants and terrestrial C4 plants. The sediment at some sampling sites was affected by surrounding crops. The organic carbon and total nitrogen contents, and the total hydrolyzed amino acid concentrations in the sediments were highest in summer and lowest in winter. The lowest DI occurred in spring, which indicated that the OM in the surface sediment at this time was highly degraded and relatively stable, and the highest DI occurred in winter, which showed that the sediment was fresh. The water temperature was positively correlated with the organic carbon content (p < 0.01) and total hydrolyzed amino acids concentration (p < 0.05). Seasonal variations in the overlying water temperature had a large effect on OM degradation in the lake sediments. Our results will facilitate the management and restoration of lake sediments that suffer from endogenous release of OM in a warming climate.
Collapse
Affiliation(s)
- Yan Wen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoqing Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Wang X, Shi K, Zhang Y, Qin B, Zhang Y, Wang W, Woolway RI, Piao S, Jeppesen E. Climate change drives rapid warming and increasing heatwaves of lakes. Sci Bull (Beijing) 2023; 68:1574-1584. [PMID: 37429775 DOI: 10.1016/j.scib.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/12/2023]
Abstract
Climate change could seriously threaten global lake ecosystems by warming lake surface water and increasing the occurrence of lake heatwaves. Yet, there are great uncertainties in quantifying lake temperature changes globally due to a lack of accurate large-scale model simulations. Here, we integrated satellite observations and a numerical model to improve lake temperature modeling and explore the multifaceted characteristics of trends in surface temperatures and lake heatwave occurrence in Chinese lakes from 1980 to 2100. Our model-data integration approach revealed that the lake surface waters have warmed at a rate of 0.11 °C 10a-1 during the period 1980-2021, being only half of the pure model-based estimate. Moreover, our analysis suggested that an asymmetric seasonal warming rate has led to a reduced temperature seasonality in eastern plain lakes but an amplified one in alpine lakes. The durations of lake heatwaves have also increased at a rate of 7.7 d 10a-1. Under the high-greenhouse-gas-emission scenario, lake surface temperature and lake heatwave duration were projected to increase by 2.2 °C and 197 d at the end of the 21st century, respectively. Such drastic changes would worsen the environmental conditions of lakes subjected to high and increasing anthropogenic pressures, posing great threats to aquatic biodiversity and human health.
Collapse
Affiliation(s)
- Xiwen Wang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kun Shi
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Yunlin Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China.
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yibo Zhang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weijia Wang
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Nanjing, University of Chinese Academy of Sciences, Nanjing 211135, China
| | - R Iestyn Woolway
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL57 2DG, UK
| | - Shilong Piao
- Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Erik Jeppesen
- Department of Ecoscience, Aarhus University, Aarhus C 8000, Denmark; Sino-Danish Centre for Education and Research, Beijing 100039, China; Limnology Laboratory, Centre for Ecosystem Research and Implementation (EKOSAM), Department of Biological Sciences, Middle East Technical University, Ankara 06800, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdeneli-Mersin 33731, Turkey
| |
Collapse
|
24
|
Winder JC, Braga LPP, Kuhn MA, Thompson LM, Olefeldt D, Tanentzap AJ. Climate warming has direct and indirect effects on microbes associated with carbon cycling in northern lakes. GLOBAL CHANGE BIOLOGY 2023; 29:3039-3053. [PMID: 36843502 DOI: 10.1111/gcb.16655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 05/03/2023]
Abstract
Northern lakes disproportionately influence the global carbon cycle, and may do so more in the future depending on how their microbial communities respond to climate warming. Microbial communities can change because of the direct effects of climate warming on their metabolism and the indirect effects of climate warming on groundwater connectivity from thawing of surrounding permafrost, especially at lower landscape positions. Here we used shotgun metagenomics to compare the taxonomic and functional gene composition of sediment microbes in 19 peatland lakes across a 1600-km permafrost transect in boreal western Canada. We found microbes responded differently to the loss of regional permafrost cover than to increases in local groundwater connectivity. These results suggest that both the direct and indirect effects of climate warming, which were respectively associated with loss of permafrost and subsequent changes in groundwater connectivity interact to change microbial composition and function. Archaeal methanogens and genes involved in all major methanogenesis pathways were more abundant in warmer regions with less permafrost, but higher groundwater connectivity partly offset these effects. Bacterial community composition and methanotrophy genes did not vary with regional permafrost cover, and the latter changed similarly to methanogenesis with groundwater connectivity. Finally, we found an increase in sugar utilization genes in regions with less permafrost, which may further fuel methanogenesis. These results provide the microbial mechanism for observed increases in methane emissions associated with loss of permafrost cover in this region and suggest that future emissions will primarily be controlled by archaeal methanogens over methanotrophic bacteria as northern lakes warm. Our study more generally suggests that future predictions of aquatic carbon cycling will be improved by considering how climate warming exerts both direct effects associated with regional-scale permafrost thaw and indirect effects associated with local hydrology.
Collapse
Affiliation(s)
- Johanna C Winder
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Lucas P P Braga
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
- Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - McKenzie A Kuhn
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Lauren M Thompson
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - David Olefeldt
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Dadi T, Schultze M, Kong X, Seewald M, Rinke K, Friese K. Sudden eutrophication of an aluminum sulphate treated lake due to abrupt increase of internal phosphorus loading after three decades of mesotrophy. WATER RESEARCH 2023; 235:119824. [PMID: 36913811 DOI: 10.1016/j.watres.2023.119824] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Aluminum salts are widely used to immobilize phosphorus (P) in lakes suffering from internal loading. However, longevity of treatments varies among lakes; some lakes eutrophy faster than others. We conducted biogeochemical investigations of sediments of a closed artificial Lake Barleber, Germany that was successfully remediated with aluminum sulfate in 1986. The lake became mesotrophic for almost 30 years; a rather rapid re-eutrophication took place in 2016 leading to massive cyanobacterial blooms. We quantified internal loading from sediment and analyzed two environmental factors that might have contributed to the sudden shift in trophic state. Increase in lake P concentration started in 2016, reaching 0.3 mg L-1, and remained elevated into the spring of 2018. Reducible P fraction in the sediment was 37 - 58% of total P, indicating a high potential for mobilization of benthic P during anoxia. Estimated P release from sediments for 2017 was approximately 600 kg for the whole lake. This is consistent with sediment incubation results; higher temperature (20°C) and anoxia contributed to release of P (27.9 ± 7.1 mg m-2 d-1, 0.94 ± 0.23 mmol m-2 d-1) to the lake, triggering re-eutrophication. Loss of aluminum P adsorption capacity together with anoxia and high water temperatures (organic matter mineralization) are major drivers of re-eutrophication. Accordingly, treated lakes at some time require a repeated aluminum treatment for sustaining acceptable water quality and we recommend regular sediment monitoring in treated lakes. This is crucial given the effects of climate warming on duration of stratification in lakes which may result in the need for treatment of many lakes.
Collapse
Affiliation(s)
- Tallent Dadi
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany.
| | - Martin Schultze
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Xiangzhen Kong
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 210008 Nanjing, China
| | - Michael Seewald
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Karsten Rinke
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| | - Kurt Friese
- UFZ-Helmholtz Centre for Environmental Research, Department Lake Research, Brueckstr. 3a, D-39114 Magdeburg, Germany
| |
Collapse
|
26
|
Kumar A, Kumar A, Chaturvedi AK, Joshi N, Mondal R, Malyan SK. Greenhouse gas emissions from hydroelectric reservoirs: mechanistic understanding of influencing factors and future prospect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-25717-y. [PMID: 37010689 DOI: 10.1007/s11356-023-25717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/31/2023] [Indexed: 06/19/2023]
Abstract
Rising need for various renewable and non-renewable energy resources became vital for developing countries to meet their rapid economic growth under an exponentially growing population scenario. The primary goal of COP-26 for climate change mitigation is to reduce greenhouse gas (GHG) emissions from different sectors. Because of their significant contribution to global warming, GHG emissions from hydroelectric reservoirs have been a contentious topic of discussion since the pre-industrial age. However, the exact methodology for quantification of GHG and important parameters affecting emission rate is difficult due to limited equipment facilities, techniques for GHG measurement, uncertainties in GHG emissions rate, insufficient GHG database, and significant spatio-temporal variability of emission in the global reservoirs. This paper discusses the current scenario of GHG emissions from renewable energy, with a focus on hydroelectric reservoirs, methodological know-how, the interrelationship between parameters impacting GHG emissions, and mitigation techniques. Aside from that, significant methods and approaches for predicting GHG emissions from hydroelectric reservoirs, accounting for GHG emissions, life cycle assessment, uncertainty sources, and knowledge gaps, have been thoroughly discussed.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Amit Kumar
- Central Silk Board, Central Muga Eri Research and Training Institute, Jorhat, Assam, 785700, India
| | - Ashish K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, 673571, India
| | - Neeshu Joshi
- Agriculture Research Sub-Station, Agriculture University, Jodhpur, Sumerpur, Pali, 306902, India
| | - Raju Mondal
- Central Sericulture Germplasm Resource Center, Central Silk Board, Husor, Tamil Nadu, 635109, India
| | - Sandeep K Malyan
- Department of Environmental Studies, Dyal Singh Evening College, University of Delhi, New Delhi, 110003, India
| |
Collapse
|
27
|
Wang H, Li Q, Xu J. Climate Warming Does Not Override Eutrophication, but Facilitates Nutrient Release from Sediment and Motivates Eutrophic Process. Microorganisms 2023; 11:microorganisms11040910. [PMID: 37110333 PMCID: PMC10143447 DOI: 10.3390/microorganisms11040910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The climate is changing. The average temperature in Wuhan, China, is forecast to increase by at least 4.5 °C over the next century. Shallow lakes are important components of the biosphere, but they are sensitive to climate change and nutrient pollution. We hypothesized that nutrient concentration is the key determinant of nutrient fluxes at the water-sediment interface, and that increased temperature increases nutrient movement to the water column because warming stimulates shifts in microbial composition and function. Here, twenty-four mesocosms, mimicking shallow lake ecosystems, were used to study the effects of warming by 4.5 °C above ambient temperature at two levels of nutrients relevant to current degrees of lake eutrophication levels. This study lasted for 7 months (April–October) under conditions of near-natural light. Intact sediments from two different trophic lakes (hypertrophic and mesotrophic) were used, separately. Environmental factors and bacterial community compositions of overlying water and sediment were measured at monthly intervals (including nutrient fluxes, chlorophyll a [chl a], water conductivity, pH, sediment characteristics, and sediment-water et al.). In low nutrient treatment, warming significantly increased chl a in the overlying waters and bottom water conductivity, it also drives a shift in microbial functional composition towards more conducive sediment carbon and nitrogen emissions. In addition, summer warming significantly accelerates the release of inorganic nutrients from the sediment, to which microorganisms make an important contribution. In high nutrient treatment, by contrast, the chl a was significantly decreased by warming, and the nutrient fluxes of sediment were significantly enhanced, warming had considerably smaller effects on benthic nutrient fluxes. Our results suggest that the process of eutrophication could be significantly accelerated in current projections of global warming, especially in shallow unstratified clear-water lakes dominated by macrophytes.
Collapse
|
28
|
Deng Y, Yan Y, Wu Y, Liu G, Ma J, Xu X, Wang G. Response of aquatic plant decomposition to invasive algal organic matter mediated by the co-metabolism effect in eutrophic lakes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117037. [PMID: 36535141 DOI: 10.1016/j.jenvman.2022.117037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The decomposition of aquatic plant residues changes by the invasive algal organic matter in eutrophic lakes, however, the driving mechanisms of these biogeochemistry processes are still far from clear. In this study, a series of microcosms was constructed to simulate the mixed decomposition processes of aquatic plant residues with invasive algae as long as 205 days. Three aquatic plants (Potamogeton malaianus, Nymphoides peltatum, and Phragmites australis) and algae were collected from a typical eutrophic lake. The addition of algae promoted the decomposition of three plant residues based on the mass loss, and the positive co-metabolism effect was produced. The co-metabolism intensity was 8%-25% on the water surface and 19%-45% on the water-sediment interface, respectively. In addition, the response of three aquatic plant residues to the algal organic matter was different with their co-metabolism intensities in the order of P. australis > P. malaianus > N. peltatum on both the water surface and water-sediment interface. The phylum number of bacteria attached to the surface of plant residues increased from 27 to 52. The abundance of Bacteroidetes, which had the function of decomposing refractory organic matter, increased most significantly at the final incubation. At present, shallow lakes are under the double pressure of eutrophication and global warming, and the intensity and duration of algal blooms are increasing. Therefore, the co-metabolism effect of the residue decomposition process described here may change the carbon cycle strength and increase the greenhouse gas emissions of lakes and need to be taken into account in future lake management.
Collapse
Affiliation(s)
- Yang Deng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Yiting Wu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Gan Liu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
29
|
Zhang Y, Shen J, Feng JM, Li XY, Liu HJ, Wang XZ. Composition, distribution, and source of organic carbon in surface sediments of Erhai Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159983. [PMID: 36356753 DOI: 10.1016/j.scitotenv.2022.159983] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Lake sediment is an important organic carbon (OC) sink. Nevertheless, few studies have been conducted on sediment organic carbon (SOC) in lakes, and the effects of environmental variables on SOC pools remain poorly understood. We combined physicochemical and spectroscopic analyses to investigate the composition, distribution, and source of OC in surface sediments of Erhai Lake, southwest China, and explored the relationships between environmental variables and its SOC pool. The SOC pool consists of relatively high proportions of labile organic carbon fractions, mainly from algal production, which are rapidly decomposed and exhibit high turnover rates. The relative content of humus carbon ranges from 13.5 % to 20.5 %, with fulvic acid carbon predominating (average 52.95 %), indicating weak humification and a relatively active humus carbon pool. The dissolved organic matter in water column and sediments of Erhai Lake is largely influenced by endogenous production, with a great contribution from phytoplankton. Surface sediments contained more protein-like components than overlying waters (80.0 % vs. 63.0 %), attributed mainly to abundant algal deposition and intense bacterial metabolism. Among environmental variables, sediment chlorophyll a showed the strongest relationship with the SOC pool, and was associated with rapid decomposition and promotion of the humification process, which supported the conclusion that algae had an important influence on the SOC pool. The SOC pool in the southern region of the lake is mainly contributed by algae, other microorganisms, and sewage, exhibiting a greater potential to release organic matters into the water column. The center and northern SOC pools show relatively stable characteristics and stronger OC sink capacity, mainly because of the input of terrestrial refractory organic matters from runoff. Our data shed light on the OC storage mechanisms in the surface sediments of Erhai Lake and provide theoretical bases for enhancing the OC sink of sediments in the lake.
Collapse
Affiliation(s)
- Yao Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Ji-Meng Feng
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Xue-Ying Li
- National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China
| | - Hua-Ji Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China
| | - Xin-Ze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali, China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali, China.
| |
Collapse
|
30
|
Xiao T, Ran F, Li Z, Wang S, Nie X, Liu Y, Yang C, Tan M, Feng S. Sediment organic carbon dynamics response to land use change in diverse watershed anthropogenic activities. ENVIRONMENT INTERNATIONAL 2023; 172:107788. [PMID: 36738584 DOI: 10.1016/j.envint.2023.107788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Sediment organic carbon (SOC) is a precious archive that synthesizes anthropogenic processes that remove geochemical fluxes from watersheds. However, the scarcity of inspection about the dynamic mechanisms of anthropogenic activities on SOC limits understanding into how key human factors drive carbon dynamics. Here, four typical basins with similar natural but significantly diverse human contexts (high-moderate-low disturbance: XJ-ZS and YJ-LS) were selected to reconstruct sedimentation rates (SR) and SOC dynamics nearly a century based on 200-cm corers. A partial least squares path model (PLS-PM) was used to establish successive (70 years) and multiple anthropogenic data (population, agriculture, land use, etc.) quantification methods for SOC. Intensified anthropogenic disturbances shifted all SR from pre-stable to post-1960s fluctuating increases (total coefficient: high: 0.63 < low: 0.47 < medium: 0.45). Although land use change was co-critical driver of SOC variations, their trend and extent differed under the dams and other disturbances (SOC mutated in high-moderate but stable in low). For high basin, land use changes increased (0.12) but dams reduced (-0.10) the downstream SOC. Furthermore, SOC mutation corresponded to soil erosion due to urbanization in both periods A and B. For moderate, SOC was reversed with the increase in afforestation and cropland (-0.19) due to the forest excitation effect and deep ploughing, which corresponded to the drought in phase B and the anthropogenic ecological project in A. For low, the increase in SOC corresponded to the Great Leap Forward deforestation in period B and the reed sweep in A, which suggested the minor land change substantially affected (0.16) SOC in fragile environments. Overall, SOC dynamics revealed that anthropogenic activities affected terrestrial and aquatic ecosystems for near the centenary, especially land use. This is constructive for agroforestry management and reservoir construction, consistent with expectations like upstream carbon sequestration and downstream carbon stabilization.
Collapse
Affiliation(s)
- Tao Xiao
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Fengwei Ran
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Zhongwu Li
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science & Engineering, Hunan University, Changsha 410082, PR China.
| | - Shilan Wang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China.
| | - Yaojun Liu
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Changrong Yang
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China; Key Laboratory of Subtropical Ecology and Environmental Change, Hunan Normal University, Changsha 410081, PR China
| | - Min Tan
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Sirui Feng
- School of Geographical Sciences, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
31
|
Wang W, Chen J, Wang S, Li W. Differences in the composition, source, and stability of suspended particulate matter and sediment organic matter in Hulun Lake, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27163-27174. [PMID: 36378378 DOI: 10.1007/s11356-022-24096-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/18/2021] [Indexed: 06/16/2023]
Abstract
The occurrence, migration, transformation, and stability of sediment (SOM) and suspended particulate (SPOM) organic matters have important effects on the environmental behaviors of carbon, nitrogen, phosphorus, and other pollutants in a water environment. The content, composition, fluorescence characteristics, source, and stability of SOM and SPOM in Hulun Lake, a typical lake in cold and arid region of China, were compared by sequential extraction, three-dimensional fluorescence spectroscopy, parallel factor technique, carbon-nitrogen ratio, and stable carbon isotope. Contents of SOM and SPOM in north and west were higher than those in east and south. The average content of SPOM (24.70 ± 4.63 g/kg) was slightly higher than that of SOM (23.04 ± 10.27 g/kg), but the difference was not significant. Humin was the dominant component in SOM and SPOM, accounting for 73.7% and 61.2%, respectively. Humus was the main fluorescence component of water-extractable organic matter in SOM and SPOM, accounting for 79.9% and 70.4%, respectively, of the total fluorescence intensity. SOM and SPOM were derived from terrestrial sources with a relative contribution rate of about 70%. SPOM was more influenced by autochthonous sources and had a significantly lower humification degree and stability than SOM. Effects of climate changes on migration, transformation, stability, and bioavailability of organic matters and endogenous pollutants closely related to organic matters in lakes of cold and arid regions should be paid attention in the future.
Collapse
Affiliation(s)
- Wenwen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 2 Beinong Rd., Changping District, Beijing, 102206, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Shuhang Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Wei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, 2 Beinong Rd., Changping District, Beijing, 102206, China.
| |
Collapse
|
32
|
Sharma S, Futter MN, Spence C, Venkiteswaran JJ, Whitfield CJ. Modelling Subarctic watershed dissolved organic carbon response to hydroclimatic regime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159382. [PMID: 36240938 DOI: 10.1016/j.scitotenv.2022.159382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Shifts in hydroclimatic regimes associated with global climate change may impact freshwater availability and quality. In high latitudes of the northern hemisphere, where vast quantities of carbon are stored terrestrially, explaining landscape-scale carbon (C) budgets and associated pollutant transfer is necessary for understanding the impact of changing hydroclimatic regimes. We used a dynamic modelling approach to simulate streamflow, DOC concentration, and DOC export in a northern Canadian catchment that has undergone notable climate warming, and will continue to for the remainder of this century. The Integrated Catchment model for Carbon (INCA-C) was successfully calibrated to a multi-year period (2012-2016) that represents a range in hydrologic conditions. The model was subsequently run over 30-year periods representing baseline and two future climate scenarios. Average discharge is predicted to decrease under an elevated temperature scenario (22-27 % of baseline) but increase (116-175 % of baseline) under an elevated temperature and precipitation scenario. In the latter scenario the nival hydroclimatic regime is expected to shift to a combined nival and pluvial regime. Average DOC flux over 30 years is predicted to decrease (24-27 % of baseline) under the elevated temperature scenario, as higher DOC concentrations are offset by lower runoff. Under the elevated temperature and precipitation scenario, results suggest an increase in carbon export of 64-81 % above baseline. These increases are attributed to greater connectivity of the catchment. The largest increase in DOC export is expected to occur in early winter. These predicted changes in DOC export, particularly under a climate that is warmer and wetter could be part of larger ecosystem change and warrant additional monitoring efforts in the region.
Collapse
Affiliation(s)
- S Sharma
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada
| | - M N Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - C Spence
- Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - J J Venkiteswaran
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - C J Whitfield
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 3H5, Canada.
| |
Collapse
|
33
|
Ran F, Nie X, Wang S, Liao W, Xiao T, Yang C, Liu Y, Liu Y, Liu S, Li Z. Anthropogenic-driven chronological increase of sediment organic carbon burial in a river-lake system. ENVIRONMENTAL RESEARCH 2022; 215:114392. [PMID: 36152885 DOI: 10.1016/j.envres.2022.114392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Total organic carbon (TOC) in lake sediments from upstream catchments is deposited and buried in substrate, recording historical environmental changes. However, the linkage among natural variability, anthropogenic activity, and TOC burial for has not yet been clarified. This study examined the lake sediments of five 200-cm-deep dated depositional cores in west Dongting lake, China to quantify the magnitude, allocation, and amplitude of TOC burial. 44.47-59.36% of TOC burial flux was buried at 100-200 cm, suggesting lake sediments at deep layers stored considerable carbon. TOC burial rate (BRTOC) decreased along the lake entrance to its body, which was explained by the geochemical differences. Since 1900, BRTOC presented an increasing with a 4-7 times uptrend, showing three sedimentary stages with the increased human disturbance, such as deforestation, hydroelectric facilities. Moreover, the coefficient of variation of BRTOC in the third stage was lower than that in the second stage for the implementation of watershed reforestation and reservoir construction. Our findings stressed that natural variations of lake sedimentation background induced the change of TOC burial among the depositional sites, and enhanced that anthropogenic perturbation drove its chronological increases. This research unveiled the linkage between TOC burial, natural variability, and human disturbance from the perspective of burial evolutions in a lacustrine sedimentary environment.
Collapse
Affiliation(s)
- Fengwei Ran
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Xiaodong Nie
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China.
| | - Shilan Wang
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Wenfei Liao
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Tao Xiao
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Changrong Yang
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Yi Liu
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Yaojun Liu
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China
| | - Songbo Liu
- Beijing Water Science and Technology Institute, Beijing, 100048, PR China
| | - Zhongwu Li
- Key Laboratory of Ecological and Environmental Change in Subtropical Zone, School of Geographic Sciences, Hunan Normal University, Changsha, 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
34
|
Ma J, Lai Q, He F, Li W, Li Z. Warming Enhances the Co-Metabolism Effect During the Decomposition of Sediment Organic Carbon in Eutrophic Lakes. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:984-989. [PMID: 36178504 DOI: 10.1007/s00128-022-03608-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Warming has been affecting carbon cycling in freshwater ecosystems throughout recent decades. However, how the co-metabolism effect (CE) during the decomposition of sediment organic carbon (SOC) in eutrophic lakes responds to warming remains understudied. A 33-day experiment was conducted to examine the mechanisms that underpin the CE in lacustrine sediments. The results indicated that warming increased the co-metabolism intensity of sedimentary organic matter. At the beginning of the experiment (0-9 d), the co-metabolism intensity increased rapidly at both 25℃ and 35℃. However, at the end of the experiment (33 d), the cumulative co-metabolism intensity was highest at 25℃, which was 33.75% and 153.74% higher than the intensities at 15℃ and 35℃, respectively. By enhancing the co-metabolism intensity of the SOC, warming would weaken lakes "carbon sink" functions. Thus, our study provides novel evidence that microorganisms regulate SOC turnover and effectively maintain a balance between resources and microbial requirements.
Collapse
Affiliation(s)
- Jie Ma
- Nanjing Institute of Environment Sciences, Ministry of Ecology and Environment, 210042, Nanjing, P. R. China.
| | - Qiuying Lai
- Nanjing Institute of Environment Sciences, Ministry of Ecology and Environment, 210042, Nanjing, P. R. China
| | - Fei He
- Nanjing Institute of Environment Sciences, Ministry of Ecology and Environment, 210042, Nanjing, P. R. China
| | - Weixin Li
- Nanjing Institute of Environment Sciences, Ministry of Ecology and Environment, 210042, Nanjing, P. R. China
| | - Zhichun Li
- School of Environment and Surveying Engineering, Suzhou University, 234000, Suzhou, P. R. China
| |
Collapse
|
35
|
Lü W, Ren H, Ding W, Li H, Yao X, Jiang X, Qadeer A. Biotic and abiotic controls on sediment carbon dioxide and methane fluxes under short-term experimental warming. WATER RESEARCH 2022; 226:119312. [PMID: 36369685 DOI: 10.1016/j.watres.2022.119312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Due to the differences in biotic and abiotic factors between soil and sediments, the predicted linkages between biotic and abiotic factors and soil carbon dioxide (CO2) and methane (CH4) fluxes under warming may not be suitable for sediments. Additionally, the combination of biotic and abiotic factors which determines sediment temperature-dependent CO2 and CH4 fluxes remains unresolved. To address this issue, different types of sediments (including lake, small river and pond sediments) collected from 30 sites across the Yangtze River Basin were incubated under short-term experimental warming. During the incubating phase, the sediment temperature-dependent CO2 and CH4 fluxes as well as the accompanying biotic factors (organic carbon and microbial community) and abiotic factors (pH and dissolved oxygen (DO)) were determined and analyzed synthetically. Our results indicated that sediment CO2 fluxes were more sensitive than CH4 fluxes to warming, which might lead to a relatively large CO2 contribution to total greenhouse gas emissions in a warming climate. Additionally, temperature-dependent CO2 fluxes in pond sediments were more sensitive than those in lake sediments. Random forest analysis indicated that DO greatly affected the variation in the sediment temperature-dependent CO2 fluxes, whereas Methanococcales primarily predicted the CH4 fluxes under warming. DO also highly affected the variation in the temperature sensitivity of CH4 fluxes, whereas pH mostly predicted the temperature sensitivity of CO2 fluxes. Our findings suggest that biotic and abiotic factors, especially DO, pH and the composition of methanogens, coregulate CO2 and CH4 emissions in response to climate warming. Therefore, biotic and abiotic factors should be considered in the models for predication and investigation of sediment organic carbon dynamics under climate change.
Collapse
Affiliation(s)
- Weiwei Lü
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haoyu Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wanchang Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - He Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Yao
- School of Environment and Planning, University of Liaocheng, Liaocheng 252000, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
36
|
Wang S, Gao Y, Jia J, Lu Y, Wang J, Ha X, Li Z, Sun K. Determining whether hydrological processes drive carbon source and sink conversion shifts in a large floodplain-lake system in China. WATER RESEARCH 2022; 224:119105. [PMID: 36122449 DOI: 10.1016/j.watres.2022.119105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Lake carbon (C) cycling is a key component of the global C cycle and associated C source and sink processes. The partial pressure of carbon dioxide (pCO2) and carbon dioxide (CO2) exchange flux at the lake-air interface (Fc) are controlled by complex physical, chemical, and biological mechanisms. It would be instructively significant to determine whether hydrological processes drive conversion shifts between C sources and sinks in floodplain-lake systems. Findings from this study show that exogenous input and in situ metabolism related to photosynthesis, respiration, and organic matter degradation were the main driving mechanisms of CO2 absorption and release in a large floodplain-lake system (i.e., Lake Poyang). Moreover, the intense and frequent water-level fluctuations inherent to floodplain-lakes may also have a direct or indirect impact on C cycling processes and CO2 exchange rates in floodplain-lake systems via their effect on physical processes, inorganic C transport, in-situ metabolic processes. We confirmed the potential of C source and sink conversion in floodplain-lakes under hydrological fluctuations, and strengthen the understanding of driving mechanisms of C source and sink conversion in floodplain systems.
Collapse
Affiliation(s)
- Shuoyue Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jing Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xianrui Ha
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhaoxi Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
37
|
McKercher LJ, Messer TL, Mittelstet AR, Comfort SD. A biological and chemical approach to restoring water quality: A case study in an urban eutrophic pond. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115463. [PMID: 35724571 DOI: 10.1016/j.jenvman.2022.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Efforts to improve water quality of eutrophic ponds often involve implementing changes to watershed management practices to reduce external nutrient loads. While this is required for long-term recovery and prevention, eutrophic conditions are often sustained through the recycling of internal nutrients already present within the waterbody. In particular, internal phosphorus bound to organic material and adsorbed to sediment has the potential to delay lake recovery for decades. Thus, pond and watershed management techniques are needed that not only reduce external nutrient loading but also mitigate the effects of internal nutrients already present. Therefore, our objective was to demonstrate a biological and chemical approach to remove and sequester nutrients present and entering an urban retention pond. A novel biological and chemical management technique was designed by constructing a 37 m2 (6.1 m × 6.1 m) floating treatment wetland coupled with a slow-release lanthanum composite inserted inside an airlift pump. The floating treatment wetland promoted microbial denitrification and plant uptake of nitrogen and phosphorus, while the airlift pump slowly released lanthanum to the water column over the growing season to reduce soluble reactive phosphorus. The design was tested at the microcosm and field scales, where nitrate-N and phosphate-P removal from the water column was significant (α = 0.05) at the microcosm scale and observed at the field scale. Two seasons of field sampling showed both nitrate-N and phosphate-P concentrations were reduced from 50 μg L-1 in 2020 to <10 μg L-1 in 2021. Load calculations of incoming nitrate-N and phosphate-P entering the retention pond from the surrounding watershed indicate the presented biological-chemical treatment is sustainable and will minimize the effects of nutrient loading from nonpoint source pollution.
Collapse
Affiliation(s)
- Levi J McKercher
- School of Natural Resources, University of Nebraska-Lincoln, 101 Hardin Hall Lincoln, NE, 68583, USA.
| | - Tiffany L Messer
- Department of Biosystems and Agricultural Engineering, University of Kentucky, 128 CE Barnhart Lexington, KY, 40506, USA.
| | - Aaron R Mittelstet
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, 200 L.W. Chase Hall Lincoln, NE, 68583, USA.
| | - Steve D Comfort
- School of Natural Resources, University of Nebraska-Lincoln, 101 Hardin Hall Lincoln, NE, 68583, USA.
| |
Collapse
|
38
|
Sun H, Yu R, Liu X, Cao Z, Li X, Zhang Z, Wang J, Zhuang S, Ge Z, Zhang L, Sun L, Lorke A, Yang J, Lu C, Lu X. Drivers of spatial and seasonal variations of CO 2 and CH 4 fluxes at the sediment water interface in a shallow eutrophic lake. WATER RESEARCH 2022; 222:118916. [PMID: 35921715 DOI: 10.1016/j.watres.2022.118916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Shallow eutrophic lakes contribute disproportional to the emissions of CO2 and CH4 from inland waters. The processes that contribute to these fluxes, their environmental controls, and anthropogenic influences, however, are poorly constrained. Here, we studied the spatial variability and seasonal dynamics of CO2 and CH4 fluxes across the sediment-water interface, and their relationships to porewater nutrient concentrations in Lake Ulansuhai, a shallow eutrophic lake located in a semi-arid region in Northern China. The mean concentrations of CO2 and CH4 in porewater were 877.8 ± 31.0 µmol L-1 and 689.2 ± 45.0 µmol L-1, which were more than 50 and 20 times higher than those in the water column, respectively. The sediment was always a source of both gases for the water column. Porewater CO2 and CH4 concentrations and diffusive fluxes across the sediment-water interface showed significant temporal and spatial variations with mean diffusive fluxes of 887.3 ±124.7 µmol m-2 d-1 and 607.1 ± 68.0 µmol m-2 d-1 for CO2 and CH4, respectively. The temporal and spatial variations of CO2 and CH4 concentrations in porewater were associated with corresponding variations in dissolved organic carbon and dissolved nitrogen species. Temperature and dissolved organic carbon in surface porewater were the most important drivers of temporal variations in diffusive fluxes, whereas dissolved organic carbon and nitrogen were the main drivers of their spatial variations. Diffusive fluxes generally increased with increasing dissolved organic carbon and nitrogen in the porewater from the inflow to the outflow region of the lake. The estimated fluxes of both gases at the sediment-water interface were one order of magnitude lower than the emissions at the water surface, which were measured in a companion study. This indicates that diffusive fluxes across the sediment-water interface were not the main pathway for CO2 and CH4 emissions to the atmosphere. To improve the mechanistic understanding and predictability of greenhouse gas emissions from shallow lakes, future studies should aim to close the apparent gap in the CO2 and CH4 budget by combining improved flux measurement techniques with process-based modeling.
Collapse
Affiliation(s)
- Heyang Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruihong Yu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Key Laboratory of Mongolian Plateau Ecology and Resource Utilization, Ministry of Education, Hohhot 010021, China.
| | - Xinyu Liu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhengxu Cao
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiangwei Li
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuangzhuang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jun Wang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shuai Zhuang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zheng Ge
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Linxiang Zhang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Liangqi Sun
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Andreas Lorke
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Jie Yang
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Ecology and Environment of Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Changwei Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xixi Lu
- Inner Mongolia Key Laboratory of River and Lake Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Department of Geography, National University of Singapore, 117570, Singapore
| |
Collapse
|
39
|
He H, Wang Y, Liu Z, Bao Q, Wei Y, Chen C, Sun H. Lake metabolic processes and their effects on the carbonate weathering CO 2 sink: Insights from diel variations in the hydrochemistry of a typical karst lake in SW China. WATER RESEARCH 2022; 222:118907. [PMID: 35944408 DOI: 10.1016/j.watres.2022.118907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The precipitation of carbonate minerals does not invariably result in CO2 emission to the atmosphere, because dissolved inorganic carbon (DIC) can be partially utilized by terrestrial aquatic phototrophs, thus generating an autochthonous organic carbon (AOC) sink. However, little is known about the potential effects of this mechanism on carbon cycles in DIC-rich lakes, mainly due to the lack of detailed documentation of the related processes, which limits our ability to accurately evaluate and predict the magnitude of this carbon sink. We conducted field observations in Fuxian Lake, a large and representative karst lake in the Yunnan-Guizhou Plateau, SW China. Continuous diel monitoring was conducted to quantitatively assess the coupled relationship between lake metabolism and DIC cycling and its influence on the carbonate weathering-related CO2 sink. We found that the diel physicochemical variations and isotopic characteristics were mainly controlled by the metabolism of aquatic phototrophs, evidenced by a significant relationship between net ecosystem production and diel DIC cycling, and demonstrating the significance of DIC fertilization in supporting high primary production in karst lakes. The data showed that a reduction in photosynthesis occurred in the afternoon of almost every day, which can be explained by the lower CO2/O2 ratio that increased the potential for the photorespiration of aquatic plants, thus reducing photosynthesis. We found that a net autotrophic ecosystem prevailed in Fuxian Lake, suggesting that the lake functions more as a sink than a source of atmospheric CO2. Considering carbonate weathering, the estimated AOC sink amounted to 650-704 t C km-2 yr-1, demonstrating both the potentially significant role of metabolism in lacustrine carbon cycling and the potential of the combination of photosynthesis and carbonate weathering for carbon sequestration. Our findings may help to quantitatively estimate the future impact of lake metabolism on carbon cycling, with implications for formulating management policies needed to regulate the magnitude of this carbon sink.
Collapse
Affiliation(s)
- Haibo He
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming 650500, China
| | | | - Zaihua Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Qian Bao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest China of Ministry of Education, Sichuan Normal University, Chengdu 610066, China
| | - Yu Wei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| | - Hailong Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (CAS), 99 Lincheng West Road, Guiyang 550081, China
| |
Collapse
|
40
|
Yang P, Tang KW, Tong C, Lai DYF, Wu L, Yang H, Zhang L, Tang C, Hong Y, Zhao G. Changes in sediment methanogenic archaea community structure and methane production potential following conversion of coastal marsh to aquaculture ponds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119276. [PMID: 35405221 DOI: 10.1016/j.envpol.2022.119276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Widespread conversion of coastal wetlands into aquaculture ponds in coastal region often results in degradation of the wetland ecosystems, but its effects on sediment's potential to produce greenhouse gases remain unclear. Using field sampling, incubation experiments and molecular analysis, we studied the sediment CH4 production potential and the relevant microbial communities in a brackish marsh and the nearby aquaculture ponds in the Min River Estuary in southeastern China. Sediment CH4 production potential was higher in the summer and autumn months than in spring and winter months, and it was significantly correlated with sediment carbon content among all environmental variables. The mean sediment CH4 production potential in the aquaculture ponds (20.1 ng g-1 d-1) was significantly lower than that in the marsh (45.2 ng g-1 d-1). While Methanobacterium dominated in both habitats (41-59%), the overall composition of sediment methanogenic archaea communities differed significantly between the two habitats (p < 0.05) and methanogenic archaea alpha diversity was lower in the aquaculture ponds (p < 0.01). Network analysis revealed that interactions between sediment methanogenic archaea were much weaker in the ponds than in the marsh. Overall, these findings suggest that conversion of marsh land to aquaculture ponds significantly altered the sediment methanogenic archaea community structure and diversity and lowered the sediment's capacity to produce CH4.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Lianzuan Wu
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, 350007, China; Department of Geography and Environmental Science, University of Reading, Reading, UK
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China; Research Centre of Wetlands in Subtropical Region, Fujian Normal University, Fuzhou, 350007, PR China
| | - Chen Tang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Yan Hong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Guanghui Zhao
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| |
Collapse
|
41
|
Zhan Q, Teurlincx S, van Herpen F, Raman NV, Lürling M, Waajen G, de Senerpont Domis LN. Towards climate-robust water quality management: Testing the efficacy of different eutrophication control measures during a heatwave in an urban canal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154421. [PMID: 35278546 DOI: 10.1016/j.scitotenv.2022.154421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Harmful algal blooms are symptomatic of eutrophication and lead to deterioration of water quality and ecosystem services. Extreme climatic events could enhance eutrophication resulting in more severe nuisance algal blooms, while they also may hamper current restoration efforts aimed to reduce nutrient loads. Evaluation of restoration measures on their efficacy under climate change is essential for effective water management. We conducted a two-month mesocosm experiment in a hypertrophic urban canal focussing on the reduction of sediment phosphorus (P)-release. We tested the efficacy of four interventions, measuring phytoplankton biomass, nutrients in water and sediment. The measures included sediment dredging, water column aeration and application of P-sorbents (lanthanum-modified bentonite - Phoslock® and iron-lime sludge, a by-product from drinking water production). An extreme heatwave (with the highest daily maximum air temperature up to 40.7 °C) was recorded in the middle of our experiment. This extreme heatwave was used for the evaluation of heatwave-induced impacts. Dredging and lanthanum modified bentonite exhibited the largest efficacy in reducing phytoplankton and cyanobacteria biomass and improving water clarity, followed by iron-lime sludge, whereas aeration did not show an effect. The heatwave negatively impacted all four measures, with increased nutrient releases and consequently increased phytoplankton biomass and decreased water clarity compared to the pre-heatwave phase. We propose a conceptual model suggesting that the heatwave locks nutrients within the biological P loop, which is the exchange between labile P and organic P, while the P fraction in the chemical P loop will be decreased. As a consequence, the efficacy of chemical agents targeting P-reduction by chemical binding will be hampered by heatwaves. Our study indicates that current restoration measures might be challenged in a future with more frequent and intense heatwaves.
Collapse
Affiliation(s)
- Qing Zhan
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands.
| | - Sven Teurlincx
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands
| | - Frank van Herpen
- Royal HaskoningDHV, P.O. Box 1132, 3800 BC Amersfoort, the Netherlands; Water Authority Aa en Maas, P.O. Box 5049, 5201 GA 's-Hertogenbosch, the Netherlands
| | - Nandini Vasantha Raman
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Miquel Lürling
- Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| | - Guido Waajen
- Water Authority Brabantse Delta, P.O. Box 5520, 4801 DZ Breda, the Netherlands
| | - Lisette N de Senerpont Domis
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6708 PB Wageningen, the Netherlands; Department of Aquatic Ecology and Water Quality Management, Wageningen University & Research, P.O. Box 47, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
42
|
Reinl KL, Harris TD, Elfferich I, Coker A, Zhan Q, De Senerpont Domis LN, Morales-Williams AM, Bhattacharya R, Grossart HP, North RL, Sweetman JN. The role of organic nutrients in structuring freshwater phytoplankton communities in a rapidly changing world. WATER RESEARCH 2022; 219:118573. [PMID: 35643062 DOI: 10.1016/j.watres.2022.118573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Carbon, nitrogen, and phosphorus are critical macroelements in freshwater systems. Historically, researchers and managers have focused on inorganic forms, based on the premise that the organic pool was not available for direct uptake by phytoplankton. We now know that phytoplankton can tap the organic nutrient pool through a number of mechanisms including direct uptake, enzymatic hydrolysis, mixotrophy, and through symbiotic relationships with microbial communities. In this review, we explore these mechanisms considering current and projected future anthropogenically-driven changes to freshwater systems. In particular, we focus on how naturally- and anthropogenically- derived organic nutrients can influence phytoplankton community structure. We also synthesize knowledge gaps regarding phytoplankton physiology and the potential challenges of nutrient management in an organically dynamic and anthropogenically modified world. Our review provides a basis for exploring these topics and suggests several avenues for future work on the relation between organic nutrients and eutrophication and their ecological implications in freshwater systems.
Collapse
Affiliation(s)
- Kaitlin L Reinl
- Lake Superior National Estuarine Research Reserve, University of Wisconsin-Madison Division of Extension, 14 Marina Drive, Superior, Wisconsin 54880, US; University of Wisconsin-Madison, Center for Limnology, 608 N. Park St., Madison, WI, US; University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US.
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, 2101 Constant Ave., Lawrence, KS, US
| | - Inge Elfferich
- Cardiff University, Earth and Environmental Sciences, Main Building, Park Place CF10 3AT, Cardiff, UK
| | - Ayooluwateso Coker
- University of Minnesota-Duluth, Large Lakes Observatory, 2205 E. 5th St., Duluth, MN, US
| | - Qing Zhan
- Netherlands Institute of Ecology, Dept. of Aquatic Ecology, Droevendaalsesteeg 10, Wageningen, NL
| | | | - Ana M Morales-Williams
- University of Vermont, Rubenstein School of Environment and Natural Resources, 81 Carrigan Drive, Burlington, VT, US
| | - Ruchi Bhattacharya
- University of Waterloo, Department of Earth and Environmental Sciences, 200 University Ave., N2L 1V6, Waterloo, ON, CA
| | - Hans-Peter Grossart
- Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), Dept. Plankton and Microbial Ecology, Zur alten Fischerhuette 2, D-16775 Stechlin, DE; Potsdam University, Institute of Biochemistry and Biology, Maulbeerallee 2, 14469 Potsdam
| | - Rebecca L North
- University of Missouri-Columbia, School of Natural Resources, 303L Anheuser Busch Natural Resource Building, Columbia, MO, US
| | - Jon N Sweetman
- Pennsylvania State University, Ecological Science and Management, 457 Agriculture Sciences and Industries Building, State College, PA, US
| |
Collapse
|
43
|
Liu C, Zhang F, Wang X, Chan NW, Rahman HA, Yang S, Tan ML. Assessing the factors influencing water quality using environment water quality index and partial least squares structural equation model in the Ebinur Lake Watershed, Xinjiang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29033-29048. [PMID: 34993791 DOI: 10.1007/s11356-021-17886-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Surface water quality deterioration is commonly associated with environmental changes and human activities. Although some research has been carried out to evaluate the relationship between various influencing factors and water quality, there is still very little scientific understanding on how to accurately define the key factors of water quality deterioration. This study aims to quantify the impact of environmental factors and land use land cover (LULC) changes on water quality in the Ebinur Lake Watershed, Xinjiang, China. A total of 20 water parameters were used to calculate the Environment Water Quality Index (CWQI). Meanwhile, the partial least squares-structural equation model (PLS-SEM) was used to quantify the impact of eleven factors influencing water quality in the watershed. About 33.3% of the monitoring points that located mostly in the downstream region with dominant anthropogenic activities were detected as poor quality. There were no obvious temporal changes in water quality from 2016 to 2019. The PLS-SEM simulation shows that the latent variable "land use/cover types" (path coefficient = - 0.600) and "Environmental factor" (path coefficient = - 0.313) are two major factors affected water quality in the Ebinur Lake Watershed, with a strong explanatory power to water quality change (R2 = 0.727). In the latent variable "Environmental factors", the "NDVI" and "night light brightness value" have a great influence on water quality, with the weights of 0.451 and 0.427, respectively. Correspondingly, the "farmland" and "forest land" within the latent variable of "Land use/cover type" have a considerable impact water quality, with the weights of 0.361 and - 0.340, respectively. In conclusion, the influence of anthropogenic activities on surface water quality of the Ebinur Lake Watershed is greater than that of environmental factors. Compared with the traditional multivariate statistical method, PLS-SEM provides a new insight for quantifying the complex relationship between different influencing factors and water quality.
Collapse
Affiliation(s)
- Changjiang Liu
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China
- Xinjiang Institute of Technology, Aksu, 843000, China
- Key Laboratory of Wisdom City and Environment Modeling of Higher Education Institute, College of Resources and Environmental Science, Xinjiang University, Urumqi, 830046, China
| | - Fei Zhang
- Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi, 830046, China.
- Key Laboratory of Wisdom City and Environment Modeling of Higher Education Institute, College of Resources and Environmental Science, Xinjiang University, Urumqi, 830046, China.
- Engineering Research Center of Central Asia Geoinformation Development and Utilization, Mapping and Geoinformation, National Administration of Surveying, Urumqi, 830002, China.
- Commonwealth Scientific and Industrial Research Organization Land and Water, Canberra, ACT, 2601, Australia.
| | - Xiaoping Wang
- International Institute for Earth System Science, Nanjing University, Nanjing, 210023, China
| | - Ngai Weng Chan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Haliza Abdul Rahman
- Institute for Social Science Studies, Universiti Putra Malaysia, 43400, Serdang, Malaysia
| | - Shengtian Yang
- College of Water Sciences, Beijing Normal University, Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, Beijing, 100875, China
| | - Mou Leong Tan
- GeoInformatic Unit, Geography Section, School of Humanities, Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| |
Collapse
|
44
|
Ankit Y, Muneer W, Gaye B, Lahajnar N, Bhattacharya S, Bulbul M, Jehangir A, Anoop A, Mishra PK. Apportioning sedimentary organic matter sources and its degradation state: Inferences based on aliphatic hydrocarbons, amino acids and δ 15N. ENVIRONMENTAL RESEARCH 2022; 205:112409. [PMID: 34838761 DOI: 10.1016/j.envres.2021.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The sources and state of sedimentary organic matter (SOM) in fresh water aquatic systems are important to understand the carbon cycling in terrestrial environments. The composition of organic matter in the lake sediments demonstrates the physical and chemical condition of the lake ecosystems. However, the systematic and structured investigations focussed on to understand the source and fate of organic matters within eutrophic lakes is still far from clear. The present study is focusing on the implications of amino acids (AA), aliphatic hydrocarbons and bulk geochemical (C/N, δ15N) proxies to understand the distribution, sources and state of sedimentary organic matter in Ahansar Lake from Kashmir valley, India. The relatively low C/N ratios along with high AA contents indicate enhanced aquatic productivity in the lake system. Likewise, the dominance of the mid-chain monomethyl alkanes (MMAs), highly branched isoprenoids (HBIs), botryococcenes, steroids and triterpenoids suggest OM sourced from periphyton remains. Furthermore, the presence of C27, C28 and C29 diagenetically altered steroids also reflects a major algal contribution. The spatial variability of Paq demonstrates their applicability as a proxy for the contribution of aquatic vegetation. The ratio of individual amino acids (oxic/anoxic ratio) and low Pr/Ph (pristane/phytane) values indicate anoxic nature of the current depositional environment. This also leads to significant organic matter preservation as revealed by amino acid indices (e.g., degradation index - DI and reactivity index - RI). These data collectively demonstrate the systematic investigation and comprehensive understanding of source of sedimentary organic matters and respective depositional condition via multiple indicators. Overall, understanding the OM molecular composition and its spatial heterogeneity in a lake system is important to better constrain the fate of organic carbon, and assess the pollution risks as well as adopt relevant management strategies.
Collapse
Affiliation(s)
- Yadav Ankit
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | | | - Birgit Gaye
- Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
| | - Niko Lahajnar
- Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
| | | | - Mehta Bulbul
- Indian Institute of Science Education and Research, Mohali, 140306, India
| | | | - Ambili Anoop
- Indian Institute of Science Education and Research, Mohali, 140306, India.
| | - Praveen K Mishra
- Indian Institute of Science Education and Research, Mohali, 140306, India; Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, Uttarakhand, India.
| |
Collapse
|
45
|
Wang X, Yang H, Xue B, Zhang M, Yang B, Huang C. Comparison of spatiotemporal carbon, nitrogen, and phosphorus burial in two plateau lacustrine sediments: implication for N and P control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9904-9922. [PMID: 34508319 DOI: 10.1007/s11356-021-16423-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
The long-term accumulation, burial and release of nutrients, such as carbon (C), nitrogen (N), and phosphorus (P) in lacustrine sediments are responsible for the global lake eutrophication. Interpretation of the spatiotemporal sedimentary record of nutrients (C, N, and P) in contrasting trophic level of lakes is helpful for understanding the evolutionary process of water eutrophication. Based on the radiochronology of 210Pbex and 137Cs, a comparative study of spatial and temporal concentrations, burial of total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), the sources of organic matter were conducted using sediment cores from two plateau lakes Dianchi (DC) and Fuxian (FX) of SW China. Results showed that concentrations and burial of C, N, and P in sediments of DC, a shallow hypertrophic lake with the maximum depth of 5.8 m, were both higher than those in FX, an oligotrophic deep lake with the maximum depth of 155.0 m. For both lakes the molar ratio of TOC/TN increased in the sediments moving from north to south. The values of TOC/TN molar ratios increased over time in DC and were higher than in FX. The extremely high values of TOC/TN appeared in the central and southern parts of FX, indicating the impacts of accumulation effect and sediment focusing in the deeper region and indirect supplement from the Lake Xingyun (XY), an adjoining lake connected with FX via the Gehe River. Time-integrated sources identification in DC indicated the contribution of allochthonous sources was dominant over the past few decades, which contributed to the increased trophic level of the lake. The comparison of relationships of carbon accumulation rates (CAR), nitrogen accumulation rates (NAR), and phosphorous accumulation rates (PAR), the ratios of N/P and the utilizations of N and P fertilizer between DC and FX implied that both of N and P inputs should be limited for reducing the trophic level, but N control was predominant in comparison with P for both lakes. The results indicated that caution is required in plateau lakes to limit transition from oligotrophic to eutrophic in these lakes.
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Environmental Sciences, Nanjing Xiaozhuang University, Nanjing, 211171, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Hao Yang
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Bin Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Mingli Zhang
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Benjun Yang
- School of Resources, Environmental and Tourism Management, West Anhui University, Liu'an, 237012, China
| | - Changchun Huang
- School of Geographical Sciences, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
46
|
Cano Bernal JE, Rankinen K, Thielking S. Concentration of organic carbon in Finnish catchments and variables involved in its variations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113981. [PMID: 34739905 DOI: 10.1016/j.jenvman.2021.113981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The majority of the carbon worldwide is in soil. In a river catchment, the tight relationship between soil, water and climate makes carbon likely to be eroded and transported from the soil to the rivers. There are multiple variables which can trigger and accelerate the process. In order to assess the importance of the factors involved, and their interactions resulting in the changes in the carbon cycle within catchments, we have studied the catchments of 26 Finnish rivers from 2000 to 2019. These catchments are distributed all over Finland, but we have grouped them into three categories: southern, peatland and northern. We have run a boosted regression tree (BRT) analysis on chemical, physical, climatic and anthropogenic factors to determine their influence on the variations of total organic carbon (TOC) concentration. TOC concentration has decreased in Finland between 2000 and 2019 by 0.91 mg/l, driven principally by forest ditching and % old forest in the catchment. Old forest is especially dominant in the northern catchments with an influence on TOC of 40.5%. In southern and peatland catchments, average precipitation is an important factor to explain the changes in TOC whilst in northern catchments, organic fields have more influence.
Collapse
Affiliation(s)
- José Enrique Cano Bernal
- Biodiversity Centre, Finnish Environment Institute (SYKE), Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Katri Rankinen
- Biodiversity Centre, Finnish Environment Institute (SYKE), Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Sophia Thielking
- Leibniz University Hannover, Institute of Physical Geography and Landscape Ecology, Schneiderberg 50, 30167, Hannover, Germany
| |
Collapse
|
47
|
Sadat-Noori M, Rutlidge H, Andersen MS, Glamore W. Quantifying groundwater carbon dioxide and methane fluxes to an urban freshwater lake using radon measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149184. [PMID: 34346371 DOI: 10.1016/j.scitotenv.2021.149184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Freshwater lakes can play a significant role in greenhouse gas budgets as they can be sources or sinks of carbon to the atmosphere. However, there is limited information on groundwater discharge being a source of carbon to freshwater lakes. Here, we measure CO2 and CH4 in the largest urban freshwater lake in the metropolitan area of Sydney (Australia) and quantify groundwater discharge rates into the lake using radon (222Rn, a natural groundwater tracer). We also assess the spatial variability of radon, CO2 and CH4 in the lake, in addition to surface water and groundwater nutrient and carbon concentrations. Results revealed that the lake system was a source of CO2 and CH4 to the atmosphere with fluxes of 113 ± 81 and 0.3 ± 0.1 mmol/m2/d, respectively. These calculated CO2 fluxes were larger than commonly observed lake fluxes and the global average flux from lakes. However, CH4 fluxes were lower than the average global value. Based on the radon mass balance model, groundwater discharge to the lake was 16 ± 10 cm/d, which resulted in groundwater-derived CO2 and CH4 fluxes contributing 25 and 13% to the overall greenhouse gas emissions from the lake, respectively. Radon, CO2 and CH4 maps showed similar spatial distribution trends in the lake and a strong relationship between radon, NO3 and NH4 suggested groundwater flow was also a driver of nitrogen into the lake from the western side of the lake, following the general regional groundwater flow. This work provides insights into groundwater and greenhouse gas dynamics in Sydney's largest urban freshwater lake with two implications for carbon budgets: to incorporate urban lakes in global carbon budgets and to account for, the often ignored, groundwater discharge as a source of carbon to lakes.
Collapse
Affiliation(s)
- Mahmood Sadat-Noori
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Helen Rutlidge
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - Martin S Andersen
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| | - William Glamore
- Water Research Laboratory, School of Civil & Environmental Engineering, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
48
|
Ran F, Nie X, Li Z, Xiao L, Sun Y, Wang S, Liao W, Tong D, Li Z, Peng Y. Chronological records of sediment organic carbon at an entrance of Dongting Lake: Response to historical meteorological events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148801. [PMID: 34323744 DOI: 10.1016/j.scitotenv.2021.148801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lake sediments are the products of soil erosion and are strongly influenced by climate variability, particularly extreme meteorological events. Sediment organic carbon (SOC) can reflect environmental changes that affect sediment transport. However, the response of SOC chronological records to major meteorological events is relatively unknown. This study explored the chronological regularity of SOC and verified its variations using major historical meteorological events. Based on three sediment profiles with a depth of 230 cm at the Yuan River entrance to the West Dongting Lake (Hanshou entrance), the SOC chronology was reconstructed by employing the sedimentation rates calculated by 137Cs and 210Pb. The sedimentary environment then was interpreted via comparisons and quantitative analysis. The grain distribution and the S-shaped distribution of SOC reflected the general deposition regularity of organic carbon in lake sediments, which gradually stabilized with depth. The average sedimentation rates based on 137Cs and 210Pb were 1.310 and 1.319 cm a-1, respectively. Accordingly, SOC records covered the past 76 years via dating (0-100 cm), during which the SOC content first increased and subsequently stabilized. By comparing the data with the occurrence of 11 major historical meteorological events, we found that SOC generally increased after these events. Moreover, the frequent occurrence of meteorological events stabilized the SOC content. Severe floods had a greater impact on SOC content than severe droughts, causing SOC to change by up to 20.24% and 8.77%, respectively. Our findings suggest that major historical meteorological events can verify SOC chronological records, thereby highlighting their significant impacts on organic carbon variations in sediments.
Collapse
Affiliation(s)
- Fengwei Ran
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Xiaodong Nie
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China.
| | - Zhongwu Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Linhui Xiao
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Yize Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Shilan Wang
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Wenfei Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Di Tong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Zeting Li
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| | - Yijie Peng
- College of Geographic Science, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
49
|
Webster BC, Waters MN, Golladay SW. Alterations to sediment nutrient deposition and transport along a six reservoir sequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147246. [PMID: 33940419 DOI: 10.1016/j.scitotenv.2021.147246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Reservoir presence and construction has become commonplace along rivers due to the multitude of ecosystem services they provide. Many services are well recognized, including the effectiveness of sequestering both sediments and sediment-bound nutrients such as silts and phosphorus (P). Reservoirs are also capable of transforming or sequestering significant quantities of nutrients with more complex biogeochemical pathways, like nitrogen (N). Reservoir assessments, independent of inflow-outflow models, have primarily focused on a small number of systems creating a growing need to understand how reservoirs function both individually and as reservoir sequences within large rivers and their watersheds. Models have simulated the overall efficiency and drivers of reservoir nutrient deposition, but few have considered how a sequence of reservoirs alters deposition as an interdependent watershed-sediment-transport-system. In this study, we collected sediment cores from a six-reservoir sequence along a 5th - 6th order stream receiving treated waters from a large metropolitan area in the subtropical southeastern United States. Paleolimnological studies of subtropical reservoirs are underrepresented and are needed to understand the history of reservoir development. Using paleolimnological techniques and a known 30 year flux of riverine nutrient loading from waste water treatment facilities, we compared nutrient deposition to reservoir morphological qualities and primary producer community structure during the past ~50 years. Our findings suggest phosphorus deposition is associated with reservoir order downstream of the primary nutrient source, nitrogen deposition is linked to reservoir water retention time, and N:P is most strongly linked to reservoir surface area and watershed population density. Our results were strongly influenced by a large upstream and metropolitan nutrient source, common in large rivers, but under different conditions of nutrient loading (i.e. nonpoint source), reservoirs may express other nutrient depositional patterns.
Collapse
Affiliation(s)
- B C Webster
- Department of Crop, Soils and Environmental Science, Auburn University, United States of America.
| | - M N Waters
- Department of Crop, Soils and Environmental Science, Auburn University, United States of America
| | - S W Golladay
- Jones Center at Ichauway, United States of America
| |
Collapse
|
50
|
Sabás I, Miró A, Piera J, Catalan J, Camarero L, Buchaca T, Ventura M. Factors of surface thermal variation in high-mountain lakes of the Pyrenees. PLoS One 2021; 16:e0254702. [PMID: 34343195 PMCID: PMC8330907 DOI: 10.1371/journal.pone.0254702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Thermal variables are crucial drivers of biological processes in lakes and ponds. In the current context of climate change, determining which factors better constrain their variation within lake districts become of paramount importance for understanding species distribution and their conservation. In this study, we describe the regional and short-term interannual variability in surface water temperature of high mountain lakes and ponds of the Pyrenees. And, we use mixed regression models to identify key environmental factors and to infer mean and maximum summer temperature, accumulated degree-days, diel temperature ranges and three-days’ oscillation. The study is based on 59 lake-temperature series measured from 2001 to 2014. We found that altitude was the primary explicative factor for accumulated degree-days and mean and maximum temperature. In contrast, lake area showed the most relevant effect on the diel temperature range and temperature oscillations, although diel temperature range was also found to decline with altitude. Furthermore, the morphology of the catchment significantly affected accumulated degree-days and maximum and mean water temperatures. The statistical models developed here were applied to upscale spatially the current thermic conditions across the whole set of lakes and ponds of the Pyrenees.
Collapse
Affiliation(s)
- Ibor Sabás
- CSIC, Centre for Advanced Studies of Blanes CEAB, Integrative Freshwater Ecology Group, Blanes, Catalonia, Spain
- * E-mail:
| | - Alexandre Miró
- CSIC, Centre for Advanced Studies of Blanes CEAB, Integrative Freshwater Ecology Group, Blanes, Catalonia, Spain
| | - Jaume Piera
- Department of Physical & Technological Oceanography, CSIC, Institute of Marine Sciences, ICM, Barcelona, Spain
| | - Jordi Catalan
- CREAF Campus UAB, Edifici C, Cerdanyola Del Valles, Spain
- CSIC, Campus UAB, Cerdanyola Del Valles, Spain
| | - Lluís Camarero
- CSIC, Centre for Advanced Studies of Blanes CEAB, Integrative Freshwater Ecology Group, Blanes, Catalonia, Spain
| | - Teresa Buchaca
- CSIC, Centre for Advanced Studies of Blanes CEAB, Integrative Freshwater Ecology Group, Blanes, Catalonia, Spain
| | - Marc Ventura
- CSIC, Centre for Advanced Studies of Blanes CEAB, Integrative Freshwater Ecology Group, Blanes, Catalonia, Spain
| |
Collapse
|