1
|
Nahálková J. On the interface of aging, cancer, and neurodegeneration with SIRT6 and L1 retrotransposon protein interaction network. Ageing Res Rev 2024; 101:102496. [PMID: 39251041 DOI: 10.1016/j.arr.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Roles of the sirtuins in aging and longevity appear related to their evolutionarily conserved functions as retroviral-restriction factors. Retrotransposons also promote the aging process, which can be reversed by the inhibition of their activity. SIRT6 can functionally limit the mutation activity of LINE-1 (L1), a retrotransposon causing cancerogenesis-linked mutations accumulating during aging. Here, an overview of the molecular mechanisms of the controlling effects was created by the pathway enrichment and gene function prediction analysis of a protein interaction network of SIRT6 and L1 retrotransposon proteins L1 ORF1p, and L1 ORF2p. The L1-SIRT6 interaction network is enriched in pathways and nodes associated with RNA quality control, DNA damage response, tumor-related and retrotransposon activity-suppressing functions. The analysis also highlighted sumoylation, which controls protein-protein interactions, subcellular localization, and other post-translational modifications; DNA IR Damage and Cellular Response via ATR, and Hallmark Myc Targets V1, which scores are a measure of tumor aggressiveness. The protein node prioritization analysis emphasized the functions of tumor suppressors p53, PARP1, BRCA1, and BRCA2 having L1 retrotransposon limiting activity; tumor promoters EIF4A3, HNRNPA1, HNRNPH1, DDX5; and antiviral innate immunity regulators DDX39A and DDX23. The outline of the regulatory mechanisms involved in L1 retrotransposition with a focus on the prioritized nodes is here demonstrated in detail. Furthermore, a model establishing functional links between HIV infection, L1 retrotransposition, SIRT6, and cancer development is also presented. Finally, L1-SIRT6 subnetwork SIRT6-PARP1-BRCA1/BRCA2-TRIM28-PIN1-p53 was constructed, where all nodes possess L1 retrotransposon activity-limiting activity and together represent candidates for multitarget control.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld co., Snickar-Anders väg 17, Skyttorp, Uppsala County 74394, Sweden.
| |
Collapse
|
2
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
4
|
Pradhan SK, Lozoya T, Prorok P, Yuan Y, Lehmkuhl A, Zhang P, Cardoso MC. Developmental Changes in Genome Replication Progression in Pluripotent versus Differentiated Human Cells. Genes (Basel) 2024; 15:305. [PMID: 38540366 PMCID: PMC10969796 DOI: 10.3390/genes15030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
DNA replication is a fundamental process ensuring the maintenance of the genome each time cells divide. This is particularly relevant early in development when cells divide profusely, later giving rise to entire organs. Here, we analyze and compare the genome replication progression in human embryonic stem cells, induced pluripotent stem cells, and differentiated cells. Using single-cell microscopic approaches, we map the spatio-temporal genome replication as a function of chromatin marks/compaction level. Furthermore, we mapped the replication timing of subchromosomal tandem repeat regions and interspersed repeat sequence elements. Albeit the majority of these genomic repeats did not change their replication timing from pluripotent to differentiated cells, we found developmental changes in the replication timing of rDNA repeats. Comparing single-cell super-resolution microscopic data with data from genome-wide sequencing approaches showed comparable numbers of replicons and large overlap in origins numbers and genomic location among developmental states with a generally higher origin variability in pluripotent cells. Using ratiometric analysis of incorporated nucleotides normalized per replisome in single cells, we uncovered differences in fork speed throughout the S phase in pluripotent cells but not in somatic cells. Altogether, our data define similarities and differences on the replication program and characteristics in human cells at different developmental states.
Collapse
Affiliation(s)
- Sunil Kumar Pradhan
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Teresa Lozoya
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Paulina Prorok
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Yue Yuan
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| | - Peng Zhang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China;
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany; (S.K.P.); (P.P.)
| |
Collapse
|
5
|
Bona N, Crossan GP. Fanconi anemia DNA crosslink repair factors protect against LINE-1 retrotransposition during mouse development. Nat Struct Mol Biol 2023; 30:1434-1445. [PMID: 37580626 PMCID: PMC10584689 DOI: 10.1038/s41594-023-01067-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/13/2023] [Indexed: 08/16/2023]
Abstract
Long interspersed nuclear element 1 (LINE-1) is the only autonomous retrotransposon in humans and new integrations are a major source of genetic variation between individuals. These events can also lead to de novo germline mutations, giving rise to heritable genetic diseases. Recently, a role for DNA repair in regulating these events has been identified. Here we find that Fanconi anemia (FA) DNA crosslink repair factors act in a common pathway to prevent retrotransposition. We purify recombinant SLX4-XPF-ERCC1, the crosslink repair incision complex, and find that it cleaves putative nucleic acid intermediates of retrotransposition. Mice deficient in upstream crosslink repair signaling (FANCA), a downstream component (FANCD2) or the nuclease XPF-ERCC1 show increased LINE-1 retrotransposition in vivo. Organisms limit retrotransposition through transcriptional silencing but this protection is attenuated during early development leaving the zygote vulnerable. We find that during this window of vulnerability, DNA crosslink repair acts as a failsafe to prevent retrotransposition. Together, our results indicate that the FA DNA crosslink repair pathway acts together to protect against mutation by restricting LINE-1 retrotransposition.
Collapse
|
6
|
Luqman-Fatah A, Miyoshi T. Human LINE-1 retrotransposons: impacts on the genome and regulation by host factors. Genes Genet Syst 2023; 98:121-154. [PMID: 36436935 DOI: 10.1266/ggs.22-00038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genome sequencing revealed that nearly half of the human genome is comprised of transposable elements. Although most of these elements have been rendered inactive due to mutations, full-length intact long interspersed element-1 (LINE-1 or L1) copies retain the ability to mobilize through RNA intermediates by a so-called "copy-and-paste" mechanism, termed retrotransposition. L1 is the only known autonomous mobile genetic element in the genome, and its retrotransposition contributes to inter- or intra-individual genetic variation within the human population. However, L1 retrotransposition also poses a threat to genome integrity due to gene disruption and chromosomal instability. Moreover, recent studies suggest that aberrant L1 expression can impact human health by causing diseases such as cancer and chronic inflammation that might lead to autoimmune disorders. To counteract these adverse effects, the host cells have evolved multiple layers of defense mechanisms at the epigenetic, RNA and protein levels. Intriguingly, several host factors have also been reported to facilitate L1 retrotransposition, suggesting that there is competition between negative and positive regulation of L1 by host factors. Here, we summarize the known host proteins that regulate L1 activity at different stages of the replication cycle and discuss how these factors modulate disease-associated phenotypes caused by L1.
Collapse
Affiliation(s)
- Ahmad Luqman-Fatah
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| | - Tomoichiro Miyoshi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University
- Department of Stress Response, Radiation Biology Center, Graduate School of Biostudies, Kyoto University
| |
Collapse
|
7
|
Ravaioli F, Bacalini MG, Giuliani C, Pellegrini C, D’Silva C, De Fanti S, Pirazzini C, Giorgi G, Del Re B. Evaluation of DNA Methylation Profiles of LINE-1, Alu and Ribosomal DNA Repeats in Human Cell Lines Exposed to Radiofrequency Radiation. Int J Mol Sci 2023; 24:9380. [PMID: 37298336 PMCID: PMC10253908 DOI: 10.3390/ijms24119380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
A large body of evidence indicates that environmental agents can induce alterations in DNA methylation (DNAm) profiles. Radiofrequency electromagnetic fields (RF-EMFs) are radiations emitted by everyday devices, which have been classified as "possibly carcinogenic"; however, their biological effects are unclear. As aberrant DNAm of genomic repetitive elements (REs) may promote genomic instability, here, we sought to determine whether exposure to RF-EMFs could affect DNAm of different classes of REs, such as long interspersed nuclear elements-1 (LINE-1), Alu short interspersed nuclear elements and ribosomal repeats. To this purpose, we analysed DNAm profiles of cervical cancer and neuroblastoma cell lines (HeLa, BE(2)C and SH-SY5Y) exposed to 900 MHz GSM-modulated RF-EMF through an Illumina-based targeted deep bisulfite sequencing approach. Our findings showed that radiofrequency exposure did not affect the DNAm of Alu elements in any of the cell lines analysed. Conversely, it influenced DNAm of LINE-1 and ribosomal repeats in terms of both average profiles and organisation of methylated and unmethylated CpG sites, in different ways in each of the three cell lines studied.
Collapse
Affiliation(s)
- Francesco Ravaioli
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Maria Giulia Bacalini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BIGEA), University of Bologna, 40126 Bologna, Italy;
| | - Camilla Pellegrini
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara D’Silva
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Sara De Fanti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (F.R.); (M.G.B.); (C.P.); (C.D.); (S.D.F.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy;
| | - Gianfranco Giorgi
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Brunella Del Re
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
8
|
Liu X, Liu Z, Wu Z, Ren J, Fan Y, Sun L, Cao G, Niu Y, Zhang B, Ji Q, Jiang X, Wang C, Wang Q, Ji Z, Li L, Esteban CR, Yan K, Li W, Cai Y, Wang S, Zheng A, Zhang YE, Tan S, Cai Y, Song M, Lu F, Tang F, Ji W, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023; 186:287-304.e26. [PMID: 36610399 DOI: 10.1016/j.cell.2022.12.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Aihua Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingao Cai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J, Garcia Perez JL. LINE-1 Retrotransposition Assays in Embryonic Stem Cells. Methods Mol Biol 2023; 2607:257-309. [PMID: 36449167 DOI: 10.1007/978-1-0716-2883-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The ongoing mobilization of active non-long terminal repeat (LTR) retrotransposons continues to impact the genomes of most mammals, including humans and rodents. Non-LTR retrotransposons mobilize using an intermediary RNA and a copy-and-paste mechanism termed retrotransposition. Non-LTR retrotransposons are subdivided into long and short interspersed elements (LINEs and SINEs, respectively), depending on their size and autonomy; while active class 1 LINEs (LINE-1s or L1s) encode the enzymatic machinery required to mobilize in cis, active SINEs use the enzymatic machinery of active LINE-1s to mobilize in trans. The mobilization mechanism used by LINE-1s/SINEs was exploited to develop ingenious plasmid-based retrotransposition assays in cultured cells, which typically exploit a reporter gene that can only be activated after a round of retrotransposition. Retrotransposition assays, in cis or in trans, are instrumental tools to study the biology of mammalian LINE-1s and SINEs. In fact, these and other biochemical/genetic assays were used to uncover that endogenous mammalian LINE-1s/SINEs naturally retrotranspose during early embryonic development. However, embryonic stem cells (ESCs) are typically used as a cellular model in these and other studies interrogating LINE-1/SINE expression/regulation during early embryogenesis. Thus, human and mouse ESCs represent an excellent model to understand how active retrotransposons are regulated and how their activity impacts the germline. Here, we describe robust and quantitative protocols to study human/mouse LINE-1 (in cis) and SINE (in trans) retrotransposition using (human and mice) ESCs. These protocols are designed to study the mobilization of active non-LTR retrotransposons in a cellular physiologically relevant context.
Collapse
Affiliation(s)
- Marta Garcia-Cañadas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Laura Sanchez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Johana Rojas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Jose L Garcia Perez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain.
- MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC)/University of Edinburgh, Western General Hospital Campus, Edinburgh, UK.
| |
Collapse
|
10
|
Di Stefano LH, Saba LJ, Oghbaie M, Jiang H, McKerrow W, Benitez-Guijarro M, Taylor MS, LaCava J. Affinity-Based Interactome Analysis of Endogenous LINE-1 Macromolecules. Methods Mol Biol 2023; 2607:215-256. [PMID: 36449166 DOI: 10.1007/978-1-0716-2883-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During their proliferation and the host's concomitant attempts to suppress it, LINE-1 (L1) retrotransposons give rise to a collection of heterogeneous ribonucleoproteins (RNPs); their protein and RNA compositions remain poorly defined. The constituents of L1-associated macromolecules can differ depending on numerous factors, including, for example, position within the L1 life cycle, whether the macromolecule is productive or under suppression, and the cell type within which the proliferation is occurring. This chapter describes techniques that aid the capture and characterization of protein and RNA components of L1 macromolecules from tissues that natively express them. The protocols described have been applied to embryonal carcinoma cell lines that are popular model systems for L1 molecular biology (e.g., N2102Ep, NTERA-2, and PA-1 cells), as well as colorectal cancer tissues. N2102Ep cells are given as the use case for this chapter; the protocols should be applicable to essentially any tissue exhibiting endogenous L1 expression with minor modifications.
Collapse
|
11
|
Wang L, Tracy L, Su W, Yang F, Feng Y, Silverman N, Zhang ZZZ. Retrotransposon activation during Drosophila metamorphosis conditions adult antiviral responses. Nat Genet 2022; 54:1933-1945. [PMID: 36396707 PMCID: PMC9795486 DOI: 10.1038/s41588-022-01214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Retrotransposons are one type of mobile genetic element that abundantly reside in the genomes of nearly all animals. Their uncontrolled activation is linked to sterility, cancer and other pathologies, thereby being largely considered detrimental. Here we report that, within a specific time window of development, retrotransposon activation can license the host's immune system for future antiviral responses. We found that the mdg4 (also known as Gypsy) retrotransposon selectively becomes active during metamorphosis at the Drosophila pupal stage. At this stage, mdg4 activation educates the host's innate immune system by inducing the systemic antiviral function of the nuclear factor-κB protein Relish in a dSTING-dependent manner. Consequently, adult flies with mdg4, Relish or dSTING silenced at the pupal stage are unable to clear exogenous viruses and succumb to viral infection. Altogether, our data reveal that hosts can establish a protective antiviral response that endows a long-term benefit in pathogen warfare due to the developmental activation of mobile genetic elements.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Lauren Tracy
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Weijia Su
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Fu Yang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Yu Feng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Z Z Zhao Zhang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
- Duke Regeneration Center, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
12
|
Li TD, Murano K, Kitano T, Guo Y, Negishi L, Siomi H. TDP-43 safeguards the embryo genome from L1 retrotransposition. SCIENCE ADVANCES 2022; 8:eabq3806. [PMID: 36417507 PMCID: PMC9683724 DOI: 10.1126/sciadv.abq3806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Transposable elements (TEs) are genomic parasites that propagate within the host genome and introduce mutations. Long interspersed nuclear element-1 (LINE-1 or L1) is the major TE class, which occupies nearly 20% of the mouse genome. L1 is highly active in mammalian preimplantation embryos, posing a major threat to genome integrity, but the mechanism of stage-specific protection against L1 retrotransposition is unknown. Here, we show that TAR DNA-binding protein 43 (TDP-43), mutations in which constitute a major risk factor for amyotrophic lateral sclerosis, inhibits L1 retrotransposition in mouse embryonic stem cells (mESCs) and preimplantation embryos. Knockdown of TDP-43 resulted in massive genomic L1 expansion and impaired cell growth in preimplantation embryos and ESCs. Functional analysis demonstrated that TDP-43 interacts with L1 open reading frame 1 protein (L1 ORF1p) to mediate genomic protection, and loss of this interaction led to derepression of L1 retrotransposition. Our results identify TDP-43 as a guardian of the embryonic genome.
Collapse
Affiliation(s)
- Ten D. Li
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kensaku Murano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tomohiro Kitano
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Lumi Negishi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
13
|
Zhang Z, Zhang N, Guo S, Liu Q, Wang S, Zhang A, Yi D, Zhao J, Li Q, Wang J, Zhang Y, Ma L, Ding J, Cen S, Li X. The Zinc-Finger protein ZCCHC3 inhibits LINE-1 retrotransposition. Front Microbiol 2022; 13:891852. [PMID: 36274734 PMCID: PMC9580041 DOI: 10.3389/fmicb.2022.891852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Long-interspersed element 1 (LINE-1) is an autonomous non-LTR retrotransposon. Its replication can cause mutation and rearrangement of host genomic DNA, which may result in serious genetic diseases. Host cells therefore developed defense strategies to restrict LINE-1 mobilization. In this study, we reported that CCHC-type zinc-finger protein ZCCHC3 can repress LINE-1 retrotransposition, and this activity is closely related to its zinc-finger domain. Further studies show that ZCCHC3 can post-transcriptionally diminish the LINE-1 RNA level. The association of ZCCHC3 with both LINE-1 RNA and ORF1 suggests that ZCCHC3 interacts with LINE-1 RNP and consequently causes its RNA degradation. These data demonstrate collectively that ZCCHC3 contributes to the cellular control of LINE-1 replication.
Collapse
|
14
|
Kabi M, Filion GJ. Chromatin and viral integration in immunity: The challenge of silencing non-self genes. Trends Immunol 2022; 43:449-458. [PMID: 35490134 DOI: 10.1016/j.it.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Abstract
Several viruses hide in the genome of their host. To complete their replication cycle, they need to integrate in the form of a provirus and express their genes. In vertebrates, integrated viruses can be silenced by chromatin, implying that some specific mechanisms exist to detect non-self genes. The known mechanisms depend on sequence features of retroelements, but the fluctuations of virus expression suggest that other determinants also exist. Here we review the mechanisms allowing chromatin to silence integrated viruses and propose that DNA repair may help flag them as 'non-self' shortly after their genomic insertion.
Collapse
Affiliation(s)
- Manisha Kabi
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Guillaume J Filion
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada.
| |
Collapse
|
15
|
Rudzki S. Is PTSD an Evolutionary Survival Adaptation Initiated by Unrestrained Cytokine Signaling and Maintained by Epigenetic Change? Mil Med 2022; 188:usac095. [PMID: 35446412 DOI: 10.1093/milmed/usac095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Treatment outcomes for PTSD with current psychological therapies are poor, with very few patients achieving sustained symptom remission. A number of authors have identified physiological and immune disturbances in Post Traumatic Stress Disorder (PTSD) patients, but there is no unifying hypothesis that explains the myriad features of the disorder. MATERIALS AND METHODS The medical literature was reviewed over a 6-year period primarily using the medical database PUBMED. RESULTS The literature contains numerous papers that have identified a range of physiological and immune dysfunction in association with PTSD. This paper proposes that unrestrained cytokine signaling induces epigenetic changes that promote an evolutionary survival adaptation, which maintains a defensive PTSD phenotype. The brain can associate immune signaling with past threat and initiate a defensive behavioral response. The sympathetic nervous system is pro-inflammatory, while the parasympathetic nervous system is anti-inflammatory. Prolonged cholinergic withdrawal will promote a chronic inflammatory state. The innate immune cytokine IL-1β has pleiotropic properties and can regulate autonomic, glucocorticoid, and glutamate receptor functions, sleep, memory, and epigenetic enzymes. Changes in epigenetic enzyme activity can potentially alter phenotype and induce an adaptation. Levels of IL-1β correlate with severity and duration of PTSD and PTSD can be prevented by bolus administration of hydrocortisone in acute sepsis, consistent with unrestrained inflammation being a risk factor for PTSD. The nervous and immune systems engage in crosstalk, governed by common receptors. The benefits of currently used psychiatric medication may arise from immune, as well as synaptic, modulation. The psychedelic drugs (3,4-Methylenedioxymethamphetamine (MDMA), psilocybin, and ketamine) have potent immunosuppressive and anti-inflammatory effects on the adaptive immune system, which may contribute to their reported benefit in PTSD. There may be distinct PTSD phenotypes induced by innate and adaptive cytokine signaling. CONCLUSION In order for an organism to survive, it must adapt to its environment. Cytokines signal danger to the brain and can induce epigenetic changes that result in a persistent defensive phenotype. PTSD may be the price individuals pay for the genomic flexibility that promotes adaptation and survival.
Collapse
Affiliation(s)
- Stephan Rudzki
- Canberra Sports Medicine, Deakin, Australian Capital Territory 2600, Australia
| |
Collapse
|
16
|
Freeman B, White T, Kaul T, Stow EC, Baddoo M, Ungerleider N, Morales M, Yang H, Deharo D, Deininger P, Belancio V. Analysis of epigenetic features characteristic of L1 loci expressed in human cells. Nucleic Acids Res 2022; 50:1888-1907. [PMID: 35100410 PMCID: PMC8887483 DOI: 10.1093/nar/gkac013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Only a select few L1 loci in the human genome are expressed in any given cell line or organ, likely to minimize damage done to the genome. The epigenetic features and requirements of expressed L1 loci are currently unknown. Using human cells and comprehensive epigenetic analysis of individual expressed and unexpressed L1 loci, we determined that endogenous L1 transcription depends on a combination of epigenetic factors, including open chromatin, activating histone modifications, and hypomethylation at the L1 promoter. We demonstrate that the L1 promoter seems to require interaction with enhancer elements for optimal function. We utilize epigenetic context to predict the expression status of L1Hs loci that are poorly mappable with RNA-Seq. Our analysis identified a population of ‘transitional’ L1 loci that likely have greater potential to be activated during the epigenetic dysregulation seen in tumors and during aging because they are the most responsive to targeted CRISPR-mediated delivery of trans-activating domains. We demonstrate that an engineered increase in endogenous L1 mRNA expression increases Alu mobilization. Overall, our findings present the first global and comprehensive analysis of epigenetic status of individual L1 loci based on their expression status and demonstrate the importance of epigenetic context for L1 expression heterogeneity.
Collapse
Affiliation(s)
- Benjamin Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Travis White
- Sloan Kettering Institute for Cancer Research, NY, NY 10065, USA
| | - Tiffany Kaul
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Emily C Stow
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Maria Morales
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Hanlin Yang
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Dawn Deharo
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, Tulane Center for Aging, New Orleans, LA 70112, USA
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| | - Prescott Deininger
- Tulane Cancer Center, Tulane Health Sciences Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- To whom correspondence should be addressed. Tel: +1 504 988 4506; Fax: +1 504 988 1687;
| |
Collapse
|
17
|
Fukuda S, Narendran S, Varshney A, Nagasaka Y, Wang SB, Ambati K, Apicella I, Pereira F, Fowler BJ, Yasuma T, Hirahara S, Yasuma R, Huang P, Yerramothu P, Makin RD, Wang M, Baker KL, Marion KM, Huang X, Baghdasaryan E, Ambati M, Ambati VL, Banerjee D, Bonilha VL, Tolstonog GV, Held U, Ogura Y, Terasaki H, Oshika T, Bhattarai D, Kim KB, Feldman SH, Aguirre JI, Hinton DR, Kerur N, Sadda SR, Schumann GG, Gelfand BD, Ambati J. Alu complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. SCIENCE ADVANCES 2021; 7:eabj3658. [PMID: 34586848 PMCID: PMC8480932 DOI: 10.1126/sciadv.abj3658] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/05/2021] [Indexed: 05/08/2023]
Abstract
Long interspersed nuclear element-1 (L1)–mediated reverse transcription (RT) of Alu RNA into cytoplasmic Alu complementary DNA (cDNA) has been implicated in retinal pigmented epithelium (RPE) degeneration. The mechanism of Alu cDNA–induced cytotoxicity and its relevance to human disease are unknown. Here we report that Alu cDNA is highly enriched in the RPE of human eyes with geographic atrophy, an untreatable form of age-related macular degeneration. We demonstrate that the DNA sensor cGAS engages Alu cDNA to induce cytosolic mitochondrial DNA escape, which amplifies cGAS activation, triggering RPE degeneration via the inflammasome. The L1-extinct rice rat was resistant to Alu RNA–induced Alu cDNA synthesis and RPE degeneration, which were enabled upon L1-RT overexpression. Nucleoside RT inhibitors (NRTIs), which inhibit both L1-RT and inflammasome activity, and NRTI derivatives (Kamuvudines) that inhibit inflammasome, but not RT, both block Alu cDNA toxicity, identifying inflammasome activation as the terminal effector of RPE degeneration.
Collapse
Affiliation(s)
- Shinichi Fukuda
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Siddharth Narendran
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Aravind Eye Hospital System, Madurai, India
| | - Akhil Varshney
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Yosuke Nagasaka
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shao-bin Wang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kameshwari Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ivana Apicella
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Felipe Pereira
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Benjamin J. Fowler
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Tetsuhiro Yasuma
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Departamento de Oftalmologia e Ciências Visuais, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Shuichiro Hirahara
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Reo Yasuma
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Peirong Huang
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Praveen Yerramothu
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ryan D. Makin
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mo Wang
- Doheny Eye Institute, Los Angeles, CA, USA
| | | | | | | | - Elmira Baghdasaryan
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Meenakshi Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Vidya L. Ambati
- Center for Digital Image Evaluation, Charlottesville, VA, USA
| | - Daipayan Banerjee
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Genrich V. Tolstonog
- Department of Otolaryngology–Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ulrike Held
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Yuichiro Ogura
- Department of Ophthalmology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroko Terasaki
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sanford H. Feldman
- Center for Comparative Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - J. Ignacio Aguirre
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - David R. Hinton
- Departments of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Nagaraj Kerur
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Srinivas R. Sadda
- Doheny Eye Institute, Los Angeles, CA, USA
- Department of Ophthalmology, David Geffen School of Medicine, University of California–Los Angeles, Los Angeles, California, USA
| | - Gerald G. Schumann
- Department of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Bradley D. Gelfand
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
18
|
Ramos KS, Bojang P, Bowers E. Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood) 2021; 246:2082-2097. [PMID: 34304633 PMCID: PMC8524765 DOI: 10.1177/15353702211031247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
LINE-1 retrotransposon, the most active mobile element of the human genome, is subject to tight regulatory control. Stressful environments and disease modify the recruitment of regulatory proteins leading to unregulated activation of LINE-1. The activation of LINE-1 influences genome dynamics through altered chromatin landscapes, insertion mutations, deletions, and modulation of cellular plasticity. To date, LINE-1 retrotransposition has been linked to various cancer types and may in fact underwrite the genetic basis of various other forms of chronic human illness. The occurrence of LINE-1 polymorphisms in the human population may define inter-individual differences in susceptibility to disease. This review is written in honor of Dr Peter Stambrook, a friend and colleague who carried out highly impactful cancer research over many years of professional practice. Dr Stambrook devoted considerable energy to helping others live up to their full potential and to navigate the complexities of professional life. He was an inspirational leader, a strong advocate, a kind mentor, a vocal supporter and cheerleader, and yes, a hard critic and tough friend when needed. His passionate stand on issues, his witty sense of humor, and his love for humanity have left a huge mark in our lives. We hope that that the knowledge summarized here will advance our understanding of the role of LINE-1 in cancer biology and expedite the development of innovative cancer diagnostics and treatments in the ways that Dr Stambrook himself had so passionately envisioned.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| | - Pasano Bojang
- University of Kentucky College of Medicine, Lexington, KY 40506, USA
| | - Emma Bowers
- Institute of Biosciences and Technology, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
19
|
Briggs EM, Mita P, Sun X, Ha S, Vasilyev N, Leopold ZR, Nudler E, Boeke JD, Logan SK. Unbiased proteomic mapping of the LINE-1 promoter using CRISPR Cas9. Mob DNA 2021; 12:21. [PMID: 34425899 PMCID: PMC8381588 DOI: 10.1186/s13100-021-00249-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The autonomous retroelement Long Interspersed Element-1 (LINE-1) mobilizes though a copy and paste mechanism using an RNA intermediate (retrotransposition). Throughout human evolution, around 500,000 LINE-1 sequences have accumulated in the genome. Most of these sequences belong to ancestral LINE-1 subfamilies, including L1PA2-L1PA7, and can no longer mobilize. Only a small fraction of LINE-1 sequences, approximately 80 to 100 copies belonging to the L1Hs subfamily, are complete and still capable of retrotransposition. While silenced in most cells, many questions remain regarding LINE-1 dysregulation in cancer cells. RESULTS Here, we optimized CRISPR Cas9 gRNAs to specifically target the regulatory sequence of the L1Hs 5'UTR promoter. We identified three gRNAs that were more specific to L1Hs, with limited binding to older LINE-1 sequences (L1PA2-L1PA7). We also adapted the C-BERST method (dCas9-APEX2 Biotinylation at genomic Elements by Restricted Spatial Tagging) to identify LINE-1 transcriptional regulators in cancer cells. Our LINE-1 C-BERST screen revealed both known and novel LINE-1 transcriptional regulators, including CTCF, YY1 and DUSP1. CONCLUSION Our optimization and evaluation of gRNA specificity and application of the C-BERST method creates a tool for studying the regulatory mechanisms of LINE-1 in cancer. Further, we identified the dual specificity protein phosphatase, DUSP1, as a novel regulator of LINE-1 transcription.
Collapse
Affiliation(s)
- Erica M Briggs
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
| | - Paolo Mita
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Present Address: Opentrons Labworks, Queens, NY, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiaoji Sun
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Cellarity, Cambridge, MA, USA
| | - Susan Ha
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Zev R Leopold
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Jef D Boeke
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA
- Institute of Systems Genetics, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Susan K Logan
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
- Department of Urology, NYU Grossman School of Medicine, Alexandria Center for Life Sciences, 450 East 29th Street, Room 321, New York, NY, 10016, USA.
| |
Collapse
|
20
|
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An W, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet 2021; 53:672-682. [PMID: 33833453 PMCID: PMC8270111 DOI: 10.1038/s41588-021-00829-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
21
|
Characterization of an active LINE-1 in the naked mole-rat genome. Sci Rep 2021; 11:5725. [PMID: 33707548 PMCID: PMC7952902 DOI: 10.1038/s41598-021-84962-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Naked mole-rats (NMRs, Heterocephalus glaber) are the longest-living rodent species. A reason for their long lifespan is pronounced cancer resistance. Therefore, researchers believe that NMRs have unknown secrets of cancer resistance and seek to find them. Here, to reveal the secrets, we noticed a retrotransposon, long interspersed nuclear element 1 (L1). L1s can amplify themselves and are considered endogenous oncogenic mutagens. Since the NMR genome contains fewer L1-derived sequences than other mammalian genomes, we reasoned that the retrotransposition activity of L1s in the NMR genome is lower than those in other mammalian genomes. In this study, we successfully cloned an intact L1 from the NMR genome and named it NMR-L1. An L1 retrotransposition assay using the NMR-L1 reporter revealed that NMR-L1 was active retrotransposon, but its activity was lower than that of human and mouse L1s. Despite lower retrotrasposition activity, NMR-L1 was still capable of inducing cell senescence, a tumor-protective system. NMR-L1 required the 3′ untranslated region (UTR) for retrotransposition, suggesting that NMR-L1 is a stringent-type of L1. We also confirmed the 5′ UTR promoter activity of NMR-L1. Finally, we identified the G-quadruplex structure of the 3′ UTR, which modulated the retrotransposition activity of NMR-L1. Taken together, the data indicate that NMR-L1 retrotranspose less efficiently, which may contribute to the cancer resistance of NMRs.
Collapse
|
22
|
Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 2021; 31:187-205. [PMID: 32737416 PMCID: PMC8027439 DOI: 10.1038/s41422-020-0385-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.
Collapse
|
23
|
The tumor suppressor microRNA let-7 inhibits human LINE-1 retrotransposition. Nat Commun 2020; 11:5712. [PMID: 33177501 PMCID: PMC7658363 DOI: 10.1038/s41467-020-19430-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
Nearly half of the human genome is made of transposable elements (TEs) whose activity continues to impact its structure and function. Among them, Long INterspersed Element class 1 (LINE-1 or L1) elements are the only autonomously active TEs in humans. L1s are expressed and mobilized in different cancers, generating mutagenic insertions that could affect tumor malignancy. Tumor suppressor microRNAs are ∼22nt RNAs that post-transcriptionally regulate oncogene expression and are frequently downregulated in cancer. Here we explore whether they also influence L1 mobilization. We show that downregulation of let-7 correlates with accumulation of L1 insertions in human lung cancer. Furthermore, we demonstrate that let-7 binds to the L1 mRNA and impairs the translation of the second L1-encoded protein, ORF2p, reducing its mobilization. Overall, our data reveals that let-7, one of the most relevant microRNAs, maintains somatic genome integrity by restricting L1 retrotransposition. Human Long INterspersed Element class 1 (LINE-1) elements are expressed and mobilized in many types of cancer, contributing to malignancy. Here the authors show that the tumor suppressor microRNA let-7 targets the LINE-1 mRNA and reduces LINE-1 mobilization.
Collapse
|
24
|
Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK, Fernandes L, Holt J, van der Veen AG, Giampazolias E, Burns KH, Maillard PV, Rowe HM. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun 2020; 11:5387. [PMID: 33144593 PMCID: PMC7609715 DOI: 10.1038/s41467-020-19170-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex.
Collapse
Affiliation(s)
- Hale Tunbak
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Rocio Enriquez-Gasca
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | | | - Poppy A Gould
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Petra Mlcochova
- Department of Medicine, University of Cambridge, CB2 0AF, Cambridge, UK
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, CB2 0AF, Cambridge, UK
| | - Liane Fernandes
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - James Holt
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Annemarthe G van der Veen
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Leiden University Medical Centre, Department of Immunohematology and Blood Transfusion, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Kathleen H Burns
- Department of Pathology, John Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Pierre V Maillard
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Helen M Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK.
| |
Collapse
|
25
|
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M, Liu GH, Qu J. SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 2020; 11:483-504. [PMID: 32504224 PMCID: PMC7305295 DOI: 10.1007/s13238-020-00728-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.
Collapse
Affiliation(s)
- Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
26
|
Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:465-493. [PMID: 32144842 DOI: 10.1002/em.22366] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation. L1-RTP is generally repressed; however, a number of observations collected over about 15 years revealed that it can occur in response to environmental stresses. Moreover, emerging evidence indicates that L1-RTP can play a role in the onset of several neurological and oncological diseases in humans. In recent years, great attention has been paid to the exposome paradigm, which proposes that health effects of an environmental factor should be evaluated considering both cumulative environmental exposures and the endogenous processes resulting from the biological response. L1-RTP could be an endogenous process considered for this application. Here, we summarize the current understanding of environmental factors that can affect the retrotransposition of human L1 elements. Evidence indicates that L1-RTP alteration is triggered by numerous and various environmental stressors, such as chemical agents (heavy metals, carcinogens, oxidants, and drugs), physical agents (ionizing and non-ionizing radiations), and experiential factors (voluntary exercise, social isolation, maternal care, and environmental light/dark cycles). These data come from in vitro studies on cell lines and in vivo studies on transgenic animals: future investigations should be focused on physiologically relevant models to gain a better understanding of this topic.
Collapse
Affiliation(s)
- Brunella Del Re
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Giorgi
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
27
|
Horie M. Interactions among eukaryotes, retrotransposons and riboviruses: endogenous riboviral elements in eukaryotic genomes. Genes Genet Syst 2020; 94:253-267. [PMID: 31257309 DOI: 10.1266/ggs.18-00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Riboviruses are viruses that have RNA genomes and replicate only via RNA intermediates. Although they do not require a DNA phase for replication and do not encode reverse transcriptase, the presence of DNA forms of riboviral sequences in ribovirus-infected cells has been reported since the 1970s. Additionally, heritable ribovirus-derived sequences, called riboviral endogenous viral elements (EVEs), have been found in the genomes of many eukaryotes. These are now thought to be formed by the reverse transcription machineries of retrotransposons within eukaryotic genomes sometimes referred to as selfish elements. Surprisingly, some reverse-transcribed riboviral DNAs (including EVEs) provide physiological functions for their hosts, suggesting the occurrence of novel interactions among eukaryotic genomes, retrotransposons and riboviruses, and opening the door to new avenues of investigation. Here I review current knowledge on these triangular interactions, and discuss future directions in this field.
Collapse
Affiliation(s)
- Masayuki Horie
- Hakubi Center for Advanced Research, and Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University
| |
Collapse
|
28
|
Lou C, Goodier JL, Qiang R. A potential new mechanism for pregnancy loss: considering the role of LINE-1 retrotransposons in early spontaneous miscarriage. Reprod Biol Endocrinol 2020; 18:6. [PMID: 31964400 PMCID: PMC6971995 DOI: 10.1186/s12958-020-0564-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
LINE1 retrotransposons are mobile DNA elements that copy and paste themselves into new sites in the genome. To ensure their evolutionary success, heritable new LINE-1 insertions accumulate in cells that can transmit genetic information to the next generation (i.e., germ cells and embryonic stem cells). It is our hypothesis that LINE1 retrotransposons, insertional mutagens that affect expression of genes, may be causal agents of early miscarriage in humans. The cell has evolved various defenses restricting retrotransposition-caused mutation, but these are occasionally relaxed in certain somatic cell types, including those of the early embryo. We predict that reduced suppression of L1s in germ cells or early-stage embryos may lead to excessive genome mutation by retrotransposon insertion, or to the induction of an inflammatory response or apoptosis due to increased expression of L1-derived nucleic acids and proteins, and so disrupt gene function important for embryogenesis. If correct, a novel threat to normal human development is revealed, and reverse transcriptase therapy could be one future strategy for controlling this cause of embryonic damage in patients with recurrent miscarriages.
Collapse
Affiliation(s)
- Chao Lou
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| | - John L. Goodier
- 0000 0001 2171 9311grid.21107.35McKusick-Nathans Deartment of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rong Qiang
- Department of Genetics, Northwest Women’s and Children’s Hospital, 1616 Yanxiang Road, Xi’an, Shaanxi Province People’s Republic of China
| |
Collapse
|
29
|
Ardeljan D, Wang X, Oghbaie M, Taylor MS, Husband D, Deshpande V, Steranka JP, Gorbounov M, Yang WR, Sie B, Larman HB, Jiang H, Molloy KR, Altukhov I, Li Z, McKerrow W, Fenyö D, Burns KH, LaCava J. LINE-1 ORF2p expression is nearly imperceptible in human cancers. Mob DNA 2019; 11:1. [PMID: 31892958 PMCID: PMC6937734 DOI: 10.1186/s13100-019-0191-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Long interspersed element-1 (LINE-1, L1) is the major driver of mobile DNA activity in modern humans. When expressed, LINE-1 loci produce bicistronic transcripts encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Many types of human cancers are characterized by L1 promoter hypomethylation, L1 transcription, L1 ORF1p protein expression, and somatic L1 retrotransposition. ORF2p encodes the endonuclease and reverse transcriptase activities required for L1 retrotransposition. Its expression is poorly characterized in human tissues and cell lines. RESULTS We report mass spectrometry-based tumor proteome profiling studies wherein ORF2p eludes detection. To test whether ORF2p could be detected with specific reagents, we developed and validated five rabbit monoclonal antibodies with immunoreactivity for specific epitopes on the protein. These reagents readily detect ectopic ORF2p expressed from bicistronic L1 constructs. However, endogenous ORF2p is not detected in human tumor samples or cell lines by western blot, immunoprecipitation, or immunohistochemistry despite high levels of ORF1p expression. Moreover, we report endogenous ORF1p-associated interactomes, affinity isolated from colorectal cancers, wherein we similarly fail to detect ORF2p. These samples include primary tumors harboring hundreds of somatically acquired L1 insertions. The new data are available via ProteomeXchange with identifier PXD013743. CONCLUSIONS Although somatic retrotransposition provides unequivocal genetic evidence for the expression of ORF2p in human cancers, we are unable to directly measure its presence using several standard methods. Experimental systems have previously indicated an unequal stoichiometry between ORF1p and ORF2p, but in vivo, the expression of these two proteins may be more strikingly uncoupled. These findings are consistent with observations that ORF2p is not tolerable for cell growth.
Collapse
Affiliation(s)
- Daniel Ardeljan
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Xuya Wang
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Mehrnoosh Oghbaie
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Martin S. Taylor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - David Husband
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
| | - Jared P. Steranka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mikhail Gorbounov
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Wan Rou Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Brandon Sie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
| | - Kelly R. Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065 USA
| | - Ilya Altukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
| | - Zhi Li
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Wilson McKerrow
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - David Fenyö
- Institute for Systems Genetics, Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016 USA
| | - Kathleen H. Burns
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065 USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, 9713 AV The Netherlands
| |
Collapse
|
30
|
Vazquez BN, Thackray JK, Simonet NG, Chahar S, Kane-Goldsmith N, Newkirk SJ, Lee S, Xing J, Verzi MP, An W, Vaquero A, Tischfield JA, Serrano L. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Res 2019; 47:7870-7885. [PMID: 31226208 PMCID: PMC6735864 DOI: 10.1093/nar/gkz519] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.
Collapse
Affiliation(s)
- Berta N Vazquez
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain
| | - Joshua K Thackray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicolas G Simonet
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Sanjay Chahar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34090, France
| | - Noriko Kane-Goldsmith
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Suman Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Jay A Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lourdes Serrano
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
31
|
Abstract
Long interspersed element-1s (L1s) encode 2 proteins (ORF1p and ORF2p) that preferentially mobilize (i.e., retrotranspose) their encoding messenger RNA (mRNA) transcript. ORF1p and/or ORF2p can also mobilize other cellular RNAs, including short interspersed elements (SINEs), U6 small nuclear RNA (snRNA), and mRNAs. Here, we demonstrate the RNA ligase RtcB can join U6 snRNA to L1 or other cellular RNAs to create chimeric RNAs; retrotransposition of the resultant chimeric RNAs leads to chimeric pseudogene formation; and chimeric U6/L1 RNAs are part of the transcriptome in multiple human cells. These data suggest RNA ligation contributes to the plasticity of the transcriptome and that the retrotransposition of chimeric RNAs can generate genetic variation in the human genome. Long interspersed element-1 (LINE-1 or L1) amplifies via retrotransposition. Active L1s encode 2 proteins (ORF1p and ORF2p) that bind their encoding transcript to promote retrotransposition in cis. The L1-encoded proteins also promote the retrotransposition of small-interspersed element RNAs, noncoding RNAs, and messenger RNAs in trans. Some L1-mediated retrotransposition events consist of a copy of U6 RNA conjoined to a variably 5′-truncated L1, but how U6/L1 chimeras are formed requires elucidation. Here, we report the following: The RNA ligase RtcB can join U6 RNAs ending in a 2′,3′-cyclic phosphate to L1 RNAs containing a 5′-OH in vitro; depletion of endogenous RtcB in HeLa cell extracts reduces U6/L1 RNA ligation efficiency; retrotransposition of U6/L1 RNAs leads to U6/L1 pseudogene formation; and a unique cohort of U6/L1 chimeric RNAs are present in multiple human cell lines. Thus, these data suggest that U6 small nuclear RNA (snRNA) and RtcB participate in the formation of chimeric RNAs and that retrotransposition of chimeric RNA contributes to interindividual genetic variation.
Collapse
|
32
|
Saleh A, Macia A, Muotri AR. Transposable Elements, Inflammation, and Neurological Disease. Front Neurol 2019; 10:894. [PMID: 31481926 PMCID: PMC6710400 DOI: 10.3389/fneur.2019.00894] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Transposable Elements (TE) are mobile DNA elements that can replicate and insert themselves into different locations within the host genome. Their propensity to self-propagate has a myriad of consequences and yet their biological significance is not well-understood. Indeed, retrotransposons have evaded evolutionary attempts at repression and may contribute to somatic mosaicism. Retrotransposons are emerging as potent regulatory elements within the human genome. In the diseased state, there is mounting evidence that endogenous retroelements play a role in etiopathogenesis of inflammatory diseases, with a disposition for both autoimmune and neurological disorders. We postulate that active mobile genetic elements contribute more to human disease pathogenesis than previously thought.
Collapse
Affiliation(s)
- Aurian Saleh
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Angela Macia
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| | - Alysson R Muotri
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
33
|
Banuelos-Sanchez G, Sanchez L, Benitez-Guijarro M, Sanchez-Carnerero V, Salvador-Palomeque C, Tristan-Ramos P, Benkaddour-Boumzaouad M, Morell S, Garcia-Puche JL, Heras SR, Franco-Montalban F, Tamayo JA, Garcia-Perez JL. Synthesis and Characterization of Specific Reverse Transcriptase Inhibitors for Mammalian LINE-1 Retrotransposons. Cell Chem Biol 2019; 26:1095-1109.e14. [DOI: 10.1016/j.chembiol.2019.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/29/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022]
|
34
|
Kawamura Y, Sanchez Calle A, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles mediate the horizontal transfer of an active LINE-1 retrotransposon. J Extracell Vesicles 2019; 8:1643214. [PMID: 31448067 PMCID: PMC6691892 DOI: 10.1080/20013078.2019.1643214] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Long interspersed element-1 (LINE-1 or L1) retrotransposons replicate through a copy-and-paste mechanism using an RNA intermediate. However, little is known about the physical transmission of retrotransposon RNA between cells. To examine the horizontal transfer of an active human L1 retrotransposon mediated by extracellular vesicles (EVs), human cancer cells were transfected with an expression construct containing a retrotransposition-competent human L1 tagged with a reporter gene. Using this model, active retrotransposition events were detected by screening for the expression of the reporter gene inserted into the host genome by retrotransposition. EVs including exosomes and microvesicles were isolated from cells by differential centrifugation. The enrichment of L1-derived reporter RNA transcripts were detected in EVs isolated from cells expressing active L1 retrotransposition. The delivery of reporter RNA was confirmed in recipient cells, and reporter genes were detected in the genome of recipient cells. Additionally, employing qRT-PCR, we found that host-encoded factors are activated in response to increased exposure to L1-derived RNA transcripts in recipient cells. Our results suggest that the horizontal transfer of retrotransposons can occur through the incorporation of RNA intermediates delivered via EVs and may have important implications for the intercellular regulation of gene expression and gene function.
Collapse
Affiliation(s)
- Yumi Kawamura
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Anna Sanchez Calle
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Taka-Aki Sato
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
35
|
Sanchez-Luque FJ, Kempen MJHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, García-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Macia A, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD, Faulkner GJ. LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 2019; 75:590-604.e12. [PMID: 31230816 DOI: 10.1016/j.molcel.2019.05.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain.
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dulce B Vargas-Landin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marta García-Cañadas
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Martin Muñoz-Lopez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Laura Sanchez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Mischa Lundberg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara R Heras
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jose L Garcia-Perez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Wang Z, McSwiggin H, Newkirk SJ, Wang Y, Oliver D, Tang C, Lee S, Wang S, Yuan S, Zheng H, Ye P, An W, Yan W. Insertion of a chimeric retrotransposon sequence in mouse Axin1 locus causes metastable kinky tail phenotype. Mob DNA 2019; 10:17. [PMID: 31073336 PMCID: PMC6500023 DOI: 10.1186/s13100-019-0162-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022] Open
Abstract
Background Transposable elements (TEs) make up > 50% of the human genome, and the majority of retrotransposon insertions are truncated and many are located in introns. However, the effects of retrotransposition on the host genes remain incompletely known. Results We report here that insertion of a chimeric L1 (cL1), but not IAP solo LTR, into intron 6 of Axin1 using CRIPSR/Cas9 induced the kinky tail phenotype with ~ 80% penetrance in heterozygous Axin cL1 mice. Both penetrant (with kinky tails) and silent (without kinky tails) Axin cL1 mice, regardless of sex, could transmit the phenotype to subsequent generations with similar penetrance (~ 80%). Further analyses revealed that a longer Axin1 transcript isoform containing partial cL1-targeted intron was present in penetrant, but absent in silent and wild type mice, and the production of this unique Axin1 transcript appeared to correlate with altered levels of an activating histone modification, H3K9ac. Conclusions The mechanism for Axin cL1 mice is different from those previously identified in mice with spontaneous retrotransposition of IAP, e.g., Axin Fu and A vy , both of which have been associated with DNA methylation changes. Our data suggest that Axin1 locus is sensitive to genetic and epigenetic alteration by retrotransposons and thus, ideally suited for studying the effects of new retrotransposition events on target gene function in mice.
Collapse
Affiliation(s)
- Zhuqing Wang
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Hayden McSwiggin
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Simon J Newkirk
- 3Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007 USA
| | - Yue Wang
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Daniel Oliver
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Chong Tang
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Sandy Lee
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Shawn Wang
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Shuiqiao Yuan
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Huili Zheng
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA
| | - Ping Ye
- 2Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57108 USA.,3Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007 USA
| | - Wenfeng An
- 3Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007 USA
| | - Wei Yan
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine Center for Molecular Medicine, Room 207B 1664 North Virginia Street MS/0575, Reno, NV 89557 USA.,4Department of Obstetrics and Gynecology, University of Nevada, Reno School of Medicine, Reno, NV 89557 USA.,5Department of Biology, University of Nevada, Reno, Reno, NV 89557 USA
| |
Collapse
|
37
|
Flasch DA, Macia Á, Sánchez L, Ljungman M, Heras SR, García-Pérez JL, Wilson TE, Moran JV. Genome-wide de novo L1 Retrotransposition Connects Endonuclease Activity with Replication. Cell 2019; 177:837-851.e28. [PMID: 30955886 DOI: 10.1016/j.cell.2019.02.050] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
L1 retrotransposon-derived sequences comprise approximately 17% of the human genome. Darwinian selective pressures alter L1 genomic distributions during evolution, confounding the ability to determine initial L1 integration preferences. Here, we generated high-confidence datasets of greater than 88,000 engineered L1 insertions in human cell lines that act as proxies for cells that accommodate retrotransposition in vivo. Comparing these insertions to a null model, in which L1 endonuclease activity is the sole determinant dictating L1 integration preferences, demonstrated that L1 insertions are not significantly enriched in genes, transcribed regions, or open chromatin. By comparison, we provide compelling evidence that the L1 endonuclease disproportionately cleaves predominant lagging strand DNA replication templates, while lagging strand 3'-hydroxyl groups may prime endonuclease-independent L1 retrotransposition in a Fanconi anemia cell line. Thus, acquisition of an endonuclease domain, in conjunction with the ability to integrate into replicating DNA, allowed L1 to become an autonomous, interspersed retrotransposon.
Collapse
Affiliation(s)
- Diane A Flasch
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - Ángela Macia
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Laura Sánchez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Translational Oncology Program and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, 48109, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sara R Heras
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain
| | - José L García-Pérez
- Department of Genomic Medicine, GENYO: Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Thomas E Wilson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA; Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
38
|
Bodea GO, McKelvey EGZ, Faulkner GJ. Retrotransposon-induced mosaicism in the neural genome. Open Biol 2019; 8:rsob.180074. [PMID: 30021882 PMCID: PMC6070720 DOI: 10.1098/rsob.180074] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Over the past decade, major discoveries in retrotransposon biology have depicted the neural genome as a dynamic structure during life. In particular, the retrotransposon LINE-1 (L1) has been shown to be transcribed and mobilized in the brain. Retrotransposition in the developing brain, as well as during adult neurogenesis, provides a milieu in which neural diversity can arise. Dysregulation of retrotransposon activity may also contribute to neurological disease. Here, we review recent reports of retrotransposon activity in the brain, and discuss the temporal nature of retrotransposition and its regulation in neural cells in response to stimuli. We also put forward hypotheses regarding the significance of retrotransposons for brain development and neurological function, and consider the potential implications of this phenomenon for neuropsychiatric and neurodegenerative conditions.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Eleanor G Z McKelvey
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, TRI Building, Brisbane, Queensland 4102, Australia .,Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
39
|
Pereira GC, Sanchez L, Schaughency PM, Rubio-Roldán A, Choi JA, Planet E, Batra R, Turelli P, Trono D, Ostrow LW, Ravits J, Kazazian HH, Wheelan SJ, Heras SR, Mayer J, García-Pérez JL, Goodier JL. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis. Mob DNA 2018; 9:35. [PMID: 30564290 PMCID: PMC6295051 DOI: 10.1186/s13100-018-0138-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving loss of motor neurons and having no known cure and uncertain etiology. Several studies have drawn connections between altered retrotransposon expression and ALS. Certain features of the LINE-1 (L1) retrotransposon-encoded ORF1 protein (ORF1p) are analogous to those of neurodegeneration-associated RNA-binding proteins, including formation of cytoplasmic aggregates. In this study we explore these features and consider possible links between L1 expression and ALS. RESULTS We first considered factors that modulate aggregation and subcellular distribution of LINE-1 ORF1p, including nuclear localization. Changes to some ORF1p amino acid residues alter both retrotransposition efficiency and protein aggregation dynamics, and we found that one such polymorphism is present in endogenous L1s abundant in the human genome. We failed, however, to identify CRM1-mediated nuclear export signals in ORF1p nor strict involvement of cell cycle in endogenous ORF1p nuclear localization in human 2102Ep germline teratocarcinoma cells. Some proteins linked with ALS bind and colocalize with L1 ORF1p ribonucleoprotein particles in cytoplasmic RNA granules. Increased expression of several ALS-associated proteins, including TAR DNA Binding Protein (TDP-43), strongly limits cell culture retrotransposition, while some disease-related mutations modify these effects. Using quantitative reverse transcription PCR (RT-qPCR) of ALS tissues and reanalysis of publicly available RNA-Seq datasets, we asked if changes in expression of retrotransposons are associated with ALS. We found minimal altered expression in sporadic ALS tissues but confirmed a previous report of differential expression of many repeat subfamilies in C9orf72 gene-mutated ALS patients. CONCLUSIONS Here we extended understanding of the subcellular localization dynamics of the aggregation-prone LINE-1 ORF1p RNA-binding protein. However, we failed to find compelling evidence for misregulation of LINE-1 retrotransposons in sporadic ALS nor a clear effect of ALS-associated TDP-43 protein on L1 expression. In sum, our study reveals that the interplay of active retrotransposons and the molecular features of ALS are more complex than anticipated. Thus, the potential consequences of altered retrotransposon activity for ALS and other neurodegenerative disorders are worthy of continued investigation.
Collapse
Affiliation(s)
- Gavin C. Pereira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Paul M. Schaughency
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Alejandro Rubio-Roldán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Jungbin A. Choi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ranjan Batra
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lyle W. Ostrow
- Neuromuscular Division, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, San Diego, California USA
| | - Haig H. Kazazian
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sarah J. Wheelan
- Oncology Center-Cancer Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| | - Sara R. Heras
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Jens Mayer
- Department of Human Genetics, Medical Faculty, University of Saarland, Homburg/Saar, Germany
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - John L. Goodier
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
40
|
Roos D, de Boer M. Retrotransposable genetic elements causing neutrophil defects. Eur J Clin Invest 2018; 48 Suppl 2:e12953. [PMID: 29774526 DOI: 10.1111/eci.12953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/12/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Retrotransposable elements are stretches of DNA that encode proteins with the inherent ability to insert their own RNA or another RNA by reverse transcriptase as DNA into a new genomic location. In humans, the only autonomous retrotransposable elements are members of the Long INterspersed Element-1 (LINE-1) family. LINE-1s may cause gene inactivation and human disease. DESIGN We present a brief summary of the published knowledge about LINE-1s in humans and the RNAs that these elements can transpose, and we focus on the effect of LINE-1-mediated retrotransposition on human neutrophil function. RESULTS Retrotransposons can cause genetic disease by two primary mechanisms: (1) insertional mutagenesis and (2) nonallelic homologous recombination. The only known neutrophil function affected by retrotransposition is that of NADPH oxidase activity. Four patients with chronic granulomatous disease (CGD) are known with LINE-1-mediated insertional inactivation of CYBB, the gene that encodes the gp91phox component of the phagocyte NADPH oxidase. In addition, 5 CGD patients had a large deletion in the NCF2 gene, encoding the p67phox component, and 2 CGD patients had a similar deletion in NCF1, encoding p47phox . These deletions were caused by nonallelic homologous recombination between 2 Alu elements at the borders of each deletion. Alu elements have spread throughout the human genome by LINE-1 retrotransposition. CONCLUSIONS Probably, the occurrence of LINE-1-mediated insertions causing autosomal CGD has been underestimated. It might be worthwhile to reinvestigate the DNA from autosomal CGD patients with missplice mutations and large deletions for indications of LINE-1-mediated insertions.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Natale F, Scholl A, Rapp A, Yu W, Rausch C, Cardoso MC. DNA replication and repair kinetics of Alu, LINE-1 and satellite III genomic repetitive elements. Epigenetics Chromatin 2018; 11:61. [PMID: 30352618 PMCID: PMC6198450 DOI: 10.1186/s13072-018-0226-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Background Preservation of genome integrity by complete, error-free DNA duplication prior to cell division and by correct DNA damage repair is paramount for the development and maintenance of an organism. This holds true not only for protein-encoding genes, but also it applies to repetitive DNA elements, which make up more than half of the human genome. Here, we focused on the replication and repair kinetics of interspersed and tandem repetitive DNA elements. Results We integrated genomic population level data with a single cell immunofluorescence in situ hybridization approach to simultaneously label replication/repair and repetitive DNA elements. We found that: (1) the euchromatic Alu element was replicated during early S-phase; (2) LINE-1, which is associated with AT-rich genomic regions, was replicated throughout S-phase, with the majority being replicated according to their particular histone marks; (3) satellite III, which constitutes pericentromeric heterochromatin, was replicated exclusively during the mid-to-late S-phase. As for the DNA double-strand break repair process, we observed that Alu elements followed the global genome repair kinetics, while LINE-1 elements repaired at a slower rate. Finally, satellite III repeats were repaired at later time points. Conclusions We conclude that the histone modifications in the specific repeat element predominantly determine its replication and repair timing. Thus, Alu elements, which are characterized by euchromatic chromatin features, are repaired and replicated the earliest, followed by LINE-1 elements, including more variegated eu/heterochromatic features and, lastly, satellite tandem repeats, which are homogeneously characterized by heterochromatic features and extend over megabase-long genomic regions. Altogether, this work reemphasizes the need for complementary approaches to achieve an integrated and comprehensive investigation of genomic processes. Electronic supplementary material The online version of this article (10.1186/s13072-018-0226-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Natale
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany.,Biology Unit, IRBM Science Park S. p. A., 80131, Naples, Italy
| | - Annina Scholl
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Alexander Rapp
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Wei Yu
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany.,G5 Lymphocyte Development and Oncogenesis, Immunology Department, Pasteur Institute, 75724, Paris Cedex 15, France
| | - Cathia Rausch
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287, Darmstadt, Germany.
| |
Collapse
|
42
|
Abstract
Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.
Collapse
Affiliation(s)
- Aniek Janssen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Serafin U. Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Gary H. Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
43
|
Warkocki Z, Krawczyk PS, Adamska D, Bijata K, Garcia-Perez JL, Dziembowski A. Uridylation by TUT4/7 Restricts Retrotransposition of Human LINE-1s. Cell 2018; 174:1537-1548.e29. [PMID: 30122351 PMCID: PMC6191937 DOI: 10.1016/j.cell.2018.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/27/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
LINE-1 retrotransposition is tightly restricted by layers of regulatory control, with epigenetic pathways being the best characterized. Looking at post-transcriptional regulation, we now show that LINE-1 mRNA 3' ends are pervasively uridylated in various human cellular models and in mouse testes. TUT4 and TUT7 uridyltransferases catalyze the modification and function in cooperation with the helicase/RNPase MOV10 to counteract the RNA chaperone activity of the L1-ORF1p retrotransposon protein. Uridylation potently restricts LINE-1 retrotransposition by a multilayer mechanism depending on differential subcellular localization of the uridyltransferases. We propose that uridine residues added by TUT7 in the cytoplasm inhibit initiation of reverse transcription of LINE-1 mRNAs once they are reimported to the nucleus, whereas uridylation by TUT4, which is enriched in cytoplasmic foci, destabilizes mRNAs. These results provide a model for the post-transcriptional restriction of LINE-1, revealing a key physiological role for TUT4/7-mediated uridylation in maintaining genome stability.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Paweł S Krawczyk
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dorota Adamska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Krystian Bijata
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jose L Garcia-Perez
- Department of Genomic Medicine, Centre for Genomics and Oncology (Pfizer-University of Granada and Andalusian Regional Government), PTS Granada, Granada 18016, Spain; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
44
|
Guichard E, Peona V, Malagoli Tagliazucchi G, Abitante L, Jagoda E, Musella M, Ricci M, Rubio-Roldán A, Sarno S, Luiselli D, Pettener D, Taccioli C, Pagani L, Garcia-Perez JL, Boattini A. Impact of non-LTR retrotransposons in the differentiation and evolution of anatomically modern humans. Mob DNA 2018; 9:28. [PMID: 30147753 PMCID: PMC6094920 DOI: 10.1186/s13100-018-0133-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022] Open
Abstract
Background Transposable elements are biologically important components of eukaryote genomes. In particular, non-LTR retrotransposons (N-LTRrs) played a key role in shaping the human genome throughout evolution. In this study, we compared retrotransposon insertions differentially present in the genomes of Anatomically Modern Humans, Neanderthals, Denisovans and Chimpanzees, in order to assess the possible impact of retrotransposition in the differentiation of the human lineage. Results We first identified species-specific N-LTRrs and established their distribution in present day human populations. These analyses shortlisted a group of N-LTRr insertions that were found exclusively in Anatomically Modern Humans. These insertions are associated with an increase in the number of transcriptional/splicing variants of those genes they inserted in. The analysis of the functionality of genes containing human-specific N-LTRr insertions reflects changes that occurred during human evolution. In particular, the expression of genes containing the most recent N-LTRr insertions is enriched in the brain, especially in undifferentiated neurons, and these genes associate in networks related to neuron maturation and migration. Additionally, we identified candidate N-LTRr insertions that have likely produced new functional variants exclusive to modern humans, whose genomic loci show traces of positive selection. Conclusions Our results strongly suggest that N-LTRr impacted our differentiation as a species, most likely inducing an increase in neural complexity, and have been a constant source of genomic variability all throughout the evolution of the human lineage. Electronic supplementary material The online version of this article (10.1186/s13100-018-0133-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Etienne Guichard
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Valentina Peona
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy.,2Department of Evolutionary Biology (EBC), Uppsala University, SE-752 36 Uppsala, Sweden
| | | | - Lucia Abitante
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Evelyn Jagoda
- 4Human Evolutionary Biology, Harvard University, Cambridge, MA 02138 USA
| | - Margherita Musella
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marco Ricci
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alejandro Rubio-Roldán
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain
| | - Stefania Sarno
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- 6Department of Cultural Heritage, University of Bologna, Ravenna Campus, 48121 Ravenna, Italy
| | - Davide Pettener
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cristian Taccioli
- 7Department of Animal Medicine, Production and Health, University of Padova, 35020 Legnaro, Pd Italy
| | - Luca Pagani
- 8Department of Biology, University of Padova, 35131 Padova, Italy.,9Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Jose Luis Garcia-Perez
- 5GENYO - Pfizer - Universidad de Granada - Junta de Andalucía Centre for Genomics and Oncological Research, PTS Granada, 18007 Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU UK
| | - Alessio Boattini
- 1Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
45
|
Benitez-Guijarro M, Lopez-Ruiz C, Tarnauskaitė Ž, Murina O, Mian Mohammad M, Williams TC, Fluteau A, Sanchez L, Vilar-Astasio R, Garcia-Canadas M, Cano D, Kempen MJH, Sanchez-Pozo A, Heras SR, Jackson AP, Reijns MA, Garcia-Perez JL. RNase H2, mutated in Aicardi-Goutières syndrome, promotes LINE-1 retrotransposition. EMBO J 2018; 37:e98506. [PMID: 29959219 PMCID: PMC6068448 DOI: 10.15252/embj.201798506] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 12/03/2022] Open
Abstract
Long INterspersed Element class 1 (LINE-1) elements are a type of abundant retrotransposons active in mammalian genomes. An average human genome contains ~100 retrotransposition-competent LINE-1s, whose activity is influenced by the combined action of cellular repressors and activators. TREX1, SAMHD1 and ADAR1 are known LINE-1 repressors and when mutated cause the autoinflammatory disorder Aicardi-Goutières syndrome (AGS). Mutations in RNase H2 are the most common cause of AGS, and its activity was proposed to similarly control LINE-1 retrotransposition. It has therefore been suggested that increased LINE-1 activity may be the cause of aberrant innate immune activation in AGS Here, we establish that, contrary to expectations, RNase H2 is required for efficient LINE-1 retrotransposition. As RNase H1 overexpression partially rescues the defect in RNase H2 null cells, we propose a model in which RNase H2 degrades the LINE-1 RNA after reverse transcription, allowing retrotransposition to be completed. This also explains how LINE-1 elements can retrotranspose efficiently without their own RNase H activity. Our findings appear to be at odds with LINE-1-derived nucleic acids driving autoinflammation in AGS.
Collapse
Affiliation(s)
- Maria Benitez-Guijarro
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Cesar Lopez-Ruiz
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Žygimantė Tarnauskaitė
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Olga Murina
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Mahwish Mian Mohammad
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Thomas C Williams
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Adeline Fluteau
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Laura Sanchez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Raquel Vilar-Astasio
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marta Garcia-Canadas
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - David Cano
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
| | - Marie-Jeanne Hc Kempen
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Antonio Sanchez-Pozo
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Sara R Heras
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Andrew P Jackson
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Martin Am Reijns
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Jose L Garcia-Perez
- GENYO, Centro de Genómica e Investigación Oncológica: Pfizer - Universidad de Granada - Junta de Andalucía, PTS, Granada, Spain
- MRC Human Genetics Unit, MRC, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
46
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
47
|
Richardson SR, Faulkner GJ. Heritable L1 Retrotransposition Events During Development: Understanding Their Origins: Examination of heritable, endogenous L1 retrotransposition in mice opens up exciting new questions and research directions. Bioessays 2018; 40:e1700189. [PMID: 29709066 PMCID: PMC6681178 DOI: 10.1002/bies.201700189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/04/2018] [Indexed: 01/08/2023]
Abstract
The retrotransposon Long Interspersed Element 1 (LINE-1 or L1) has played a major role in shaping the sequence composition of the mammalian genome. In our recent publication, "Heritable L1 retrotransposition in the mouse primordial germline and early embryo," we systematically assessed the rate and developmental timing of de novo, heritable endogenous L1 insertions in mice. Such heritable retrotransposition events allow L1 to exert an ongoing influence upon genome evolution. Here, we place our findings in the context of earlier studies, and highlight how our results corroborate, and depart from, previous research based on human patient samples and transgenic mouse models harboring engineered L1 reporter genes. In parallel, we outline outstanding questions regarding the stage-specificity, regulation, and functional impact of embryonic and germline L1 retrotransposition, and propose avenues for future research in this field.
Collapse
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute–University of QueenslandWoolloongabbaQueensland 4102Australia
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueensland 4072Australia
- School of Biomedical SciencesUniversity of QueenslandBrisbaneQueensland 4072Australia
| |
Collapse
|
48
|
Giudice A, Crispo A, Grimaldi M, Polo A, Bimonte S, Capunzo M, Amore A, D'Arena G, Cerino P, Budillon A, Botti G, Costantini S, Montella M. The Effect of Light Exposure at Night (LAN) on Carcinogenesis via Decreased Nocturnal Melatonin Synthesis. Molecules 2018; 23:E1308. [PMID: 29844288 PMCID: PMC6100442 DOI: 10.3390/molecules23061308] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
In mammals, a master clock is located within the suprachiasmatic nucleus (SCN) of the hypothalamus, a region that receives input from the retina that is transmitted by the retinohypothalamic tract. The SCN controls the nocturnal synthesis of melatonin by the pineal gland that can influence the activity of the clock's genes and be involved in the inhibition of cancer development. On the other hand, in the literature, some papers highlight that artificial light exposure at night (LAN)-induced circadian disruptions promote cancer. In the present review, we summarize the potential mechanisms by which LAN-evoked disruption of the nocturnal increase in melatonin synthesis counteracts its preventive action on human cancer development and progression. In detail, we discuss: (i) the Warburg effect related to tumor metabolism modification; (ii) genomic instability associated with L1 activity; and (iii) regulation of immunity, including regulatory T cell (Treg) regulation and activity. A better understanding of these processes could significantly contribute to new treatment and prevention strategies against hormone-related cancer types.
Collapse
Affiliation(s)
- Aldo Giudice
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Anna Crispo
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maria Grimaldi
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Andrea Polo
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Sabrina Bimonte
- Division of Anesthesia and Pain Medicine, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Mario Capunzo
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy.
| | - Alfonso Amore
- Abdominal Surgical Oncology and Hepatobiliary Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Giovanni D'Arena
- Department of Hematology and Stem Cell Transplantation Unit, IRCCS, Cancer Referral Center of Basilicata, 85028 Rionero in Vulture, Italy.
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), 80055 Portici, Napoli, Italy.
| | - Alfredo Budillon
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Gerardo Botti
- Pathology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Susan Costantini
- Experimental Pharmacology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| | - Maurizio Montella
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori "Fondazione G. Pascale", 80131 Napoli, Italy.
| |
Collapse
|
49
|
Finley J. Transposable elements, placental development, and oocyte activation: Cellular stress and AMPK links jumping genes with the creation of human life. Med Hypotheses 2018; 118:44-54. [PMID: 30037614 DOI: 10.1016/j.mehy.2018.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs), also known as "jumping genes", are DNA sequences first described by Nobel laureate Barbara McClintock that comprise nearly half of the human genome and are able to transpose or move from one genomic location to another. As McClintock also noted that a genome "shock" or stress may induce TE activation and transposition, accumulating evidence suggests that cellular stress (e.g. mediated by increases in intracellular reactive oxygen species [ROS] and calcium [Ca2+], etc.) induces TE mobilization in several model organisms and L1s (a member of the retrotransposon class of TEs) are active and capable of retrotransposition in human oocytes, human sperm, and in human neural progenitor cells. Cellular stress also plays a critical role in human placental development, with cytotrophoblast (CTB) differentiation leading to the formation of the syncytiotrophoblast (STB), a cellular layer that facilitates nutrient and gas exchange between the mother and the fetus. Syncytin-1, a protein that promotes fusion of CTB cells and is necessary for STB formation, and its receptor is found in human sperm and human oocytes, respectively, and increases in ROS and Ca2+ promote trophoblast differentiation and syncytin-1 expression. Cellular stress is also essential in promoting human oocyte maturation and activation which, similar to TE mobilization, can be induced by compounds that increase intracellular Ca2+ and ROS levels. AMPK is a master metabolic regulator activated by increases in ROS, Ca2+, and/or an AMP(ADP)/ATP ratio increase, etc. as well as compounds that induce L1 mobilization in human cells. AMPK knockdown inhibits trophoblast differentiation and AMPK-activating compounds that promote L1 mobility also enhance trophoblast differentiation. Cellular stressors that induce TE mobilization (e.g. heat shock) also promote oocyte maturation in an AMPK-dependent manner and the antibiotic ionomycin activates AMPK, promotes TE activation, and induces human oocyte activation, producing normal, healthy children. Metformin promotes AMPK-dependent telomerase activation (critical for telomere maintenance) and induces activation of the endonuclease RAG1 (promotes DNA cleavage and transposition) via AMPK. Both RAG1 and telomerase are derived from TEs. It is our hypothesis that cellular stress and AMPK links TE activation and transposition with placental development and oocyte activation, facilitating both human genome evolution and the creation of all human life. We also propose the novel observation that various cellular stress-inducing compounds (e.g. metformin, resveratrol, etc.) may facilitate beneficial TE activation and transposition and enhance fertilization and embryological development through a common mechanism of AMPK activation.
Collapse
|
50
|
Selective elimination of long INterspersed element-1 expressing tumour cells by targeted expression of the HSV-TK suicide gene. Oncotarget 2018; 8:38239-38250. [PMID: 28415677 PMCID: PMC5503529 DOI: 10.18632/oncotarget.16013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/02/2017] [Indexed: 12/31/2022] Open
Abstract
In gene therapy, effective and selective suicide gene expression is crucial. We exploited the endogenous Long INterspersed Element-1 (L1) machinery often reactivated in human cancers to integrate the Herpes Simplex Virus Thymidine Kinase (HSV-TK) suicide gene selectively into the genome of cancer cells. We developed a plasmid-based system directing HSV-TK expression only when reverse transcribed and integrated in the host genome via the endogenous L1 ORF1/2 proteins and an Alu element. Delivery of these new constructs into cells followed by Ganciclovir (GCV) treatment selectively induced mortality of L1 ORF1/2 protein expressing cancer cells, but had no effect on primary cells that do not express L1 ORF1/2. This novel strategy for selective targeting of tumour cells provides high tolerability as the HSV-TK gene cannot be expressed without reverse transcription and integration, and high selectivity as these processes take place only in cancer cells expressing high levels of functional L1 ORF1/2.
Collapse
|