1
|
Vazquez-Fernandez E, Yang J, Zhang Z, Andreeva AE, Emsley P, Barford D. A comparative study of the cryo-EM structures of Saccharomyces cerevisiae and human anaphase-promoting complex/cyclosome (APC/C). eLife 2024; 13:RP100821. [PMID: 39401078 PMCID: PMC11473103 DOI: 10.7554/elife.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that controls progression through the cell cycle by orchestrating the timely proteolysis of mitotic cyclins and other cell cycle regulatory proteins. Although structures of multiple human APC/C complexes have been extensively studied over the past decade, the Saccharomyces cerevisiae APC/C has been less extensively investigated. Here, we describe medium resolution structures of three S. cerevisiae APC/C complexes: unphosphorylated apo-APC/C and the ternary APC/CCDH1-substrate complex, and phosphorylated apo-APC/C. Whereas the overall architectures of human and S. cerevisiae APC/C are conserved, as well as the mechanism of CDH1 inhibition by CDK-phosphorylation, specific variations exist, including striking differences in the mechanism of coactivator-mediated stimulation of E2 binding, and the activation of APC/CCDC20 by phosphorylation. In contrast to human APC/C in which coactivator induces a conformational change of the catalytic module APC2:APC11 to allow E2 binding, in S. cerevisiae apo-APC/C the catalytic module is already positioned to bind E2. Furthermore, we find no evidence of a phospho-regulatable auto-inhibitory segment of APC1, that in the unphosphorylated human APC/C, sterically blocks the CDC20C-box binding site of APC8. Thus, although the functions of APC/C are conserved from S. cerevisiae to humans, molecular details relating to their regulatory mechanisms differ.
Collapse
Affiliation(s)
| | - Jing Yang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Ziguo Zhang
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | | | - Paul Emsley
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - David Barford
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| |
Collapse
|
2
|
Cui Z, Luo J, Cheng F, Xu W, Wang J, Lin M, Sun Y, Chen S. Identification and Functional Analysis of E3 Ubiquitin Ligase g2e3 in Chinese Tongue Sole, Cynoglossus semilaevis. Animals (Basel) 2024; 14:2579. [PMID: 39272364 PMCID: PMC11394658 DOI: 10.3390/ani14172579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Gametogenesis, the intricate developmental process responsible for the generation of germ cells (gametes), serves as a fundamental prerequisite for the perpetuation of the reproductive cycle across diverse organisms. The g2e3 enzyme is a putative ubiquitin E3 ligase implicated in the intricate regulatory mechanisms underlying cellular proliferation and division processes. The present study delves into the function of G2/M phase-specific E3 ubiquitin protein ligase (Cs-g2e3) in gametogenesis in Chinese Tongue Sole (Cynoglossus semilaevis). Sequence analysis shows that the Cs-g2e3 mRNA spans 6479 bp, encoding a 733 amino acid protein characterized by three conserved structural domains: PHD, RING, and HECT-typical of HECT E3 ubiquitin ligases. The predominant expression of Cs-g2e3 in the gonad tissues is further verified by qPCR. The expression profile of Cs-g2e3 in the gonads of the Chinese Tongue Sole is analyzed at different ages, and the results show that its expression peaks at 8 months of age and then begins to decline and stabilize. It is noteworthy that the expression level remains significantly elevated compared to that observed during the juvenile period. In situ hybridization shows that the mRNA of Cs-g2e3 is mainly localized in the germ cells of the ovary and the testis. RNA interference experiments show that the knockdown of Cs-g2e3 in ovarian and testicular germ cell lines significantly downregulates the expression of key genes involved in oogenesis (e.g., sox9 and cyp19a) and spermatogenesis (e.g., tesk1 and piwil2), respectively. Furthermore, the analysis of mutations in the transcription factor binding sites reveals that mutations within the Myogenin, YY1, and JunB binding sites significantly impact the transcriptional activity of the Cs-g2e3 gene, with the mutation in the YY1 binding site exhibiting the most pronounced effect (p < 0.001). This study contributes to a deeper understanding of the tissue-specific expression patterns of Cs-g2e3 across various tissues in Cynoglossus semilaevis, as well as the potential regulatory influences of transcription factors on its promoter activity. These findings may facilitate future research endeavors aimed at elucidating the expression and functional roles of the Cs-g2e3 gene.
Collapse
Affiliation(s)
- Zhongkai Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jun Luo
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Fangzhou Cheng
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Wenteng Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jialin Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Mengjiao Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yuqi Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Songlin Chen
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Shaaban M, Clapperton JA, Ding S, Kunzelmann S, Mäeots ME, Maslen SL, Skehel JM, Enchev RI. Structural and mechanistic insights into the CAND1-mediated SCF substrate receptor exchange. Mol Cell 2023:S1097-2765(23)00418-5. [PMID: 37339624 DOI: 10.1016/j.molcel.2023.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023]
Abstract
Modular SCF (SKP1-CUL1-Fbox) ubiquitin E3 ligases orchestrate multiple cellular pathways in eukaryotes. Their variable SKP1-Fbox substrate receptor (SR) modules enable regulated substrate recruitment and subsequent proteasomal degradation. CAND proteins are essential for the efficient and timely exchange of SRs. To gain structural understanding of the underlying molecular mechanism, we reconstituted a human CAND1-driven exchange reaction of substrate-bound SCF alongside its co-E3 ligase DCNL1 and visualized it by cryo-EM. We describe high-resolution structural intermediates, including a ternary CAND1-SCF complex, as well as conformational and compositional intermediates representing SR- or CAND1-dissociation. We describe in molecular detail how CAND1-induced conformational changes in CUL1/RBX1 provide an optimized DCNL1-binding site and reveal an unexpected dual role for DCNL1 in CAND1-SCF dynamics. Moreover, a partially dissociated CAND1-SCF conformation accommodates cullin neddylation, leading to CAND1 displacement. Our structural findings, together with functional biochemical assays, help formulate a detailed model for CAND-SCF regulation.
Collapse
Affiliation(s)
- Mohammed Shaaban
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Julie A Clapperton
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Shan Ding
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Märt-Erik Mäeots
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- The Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK.
| |
Collapse
|
4
|
Wang YX, Huang CY, Chiu HJ, Huang PH, Chien HT, Jwo SH, Liao YC. Nuclear-localized CTEN is a novel transcriptional regulator and promotes cancer cell migration through its downstream target CDC27. J Physiol Biochem 2023; 79:163-174. [PMID: 36399312 DOI: 10.1007/s13105-022-00932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
C-terminal tensin-like (CTEN) is a tensin family protein typically localized to the cytoplasmic side of focal adhesions, and primarily contributes to cell adhesion and migration. Elevated expression and nuclear accumulation of CTEN have been reported in several types of cancers and found to be associated with malignant behaviors. However, the function of nuclear CTEN remains elusive. In this study, we report for the first time that nuclear CTEN associates with chromatin DNA and occupies the region proximal to the transcription start site in several genes. The mRNA expression level of CTEN positively correlates with that of one of its putative target genes, cell division cycle protein 27 (CDC27), in a clinical colorectal cancer dataset, suggesting that CTEN may play a role in the regulation of CDC27 gene expression. Furthermore, we demonstrated that CTEN is recruited to the promoter region of the CDC27 gene and that the mRNA expression and promoter activity of CDC27 are both reduced when CTEN is downregulated. In addition, we found that enhanced nuclear accumulation of CTEN in HCT116 cells by overexpression of CTEN fused with nuclear localization signals increases CDC27 transcript levels and promoter activity. The increased nuclear-localized CTEN also significantly promotes cell migration, and the migratory ability is suppressed when CDC27 is knocked down. These results demonstrate that nuclear CTEN regulates CDC27 expression transcriptionally and promotes cell migration through CDC27. Our findings provide new insights into CTEN moonlighting in the nucleus as a DNA-associated protein and transcriptional regulator involved in modulating cancer cell migration.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Chun-Yang Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsiao-Ju Chiu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Po-Han Huang
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hung-Ting Chien
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Si-Han Jwo
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Kopertekh L, Reichardt S. Effect of the At-CDC27a gene on Nicotiana benthamiana phenotype and accumulation of recombinant proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:1042446. [PMID: 36426154 PMCID: PMC9679211 DOI: 10.3389/fpls.2022.1042446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
In this study the anaphase promoting complex subunit CDC27a from Arabidopsis thaliana was introduced in the genome of Nicotiana benthamiana by Agrobacterium tumefaciens. The presence of the At-CDC27a gene facilitates plant biomass production. Compared to wild type N. benthamiana the leaf mass fraction of the best performing transgenic line At-CDC27a-29 was increased up to 154%. The positive effect of the At-CDC27a expression on leaf biomass accumulation was accompanied by an enlarged total leaf area. Furthermore, the ectopic expression of the At-CDC27a also affected cellular conditions for the production of foreign proteins delivered by the TRBO vector. In comparison to the non-transgenic control, the protein accumulation in the At-CDC27a-29 plant host increased up to 146% for GFP and up to 181% for scFv-TM43-E10. Collectively, the modified N. benthamiana plants developed in this study might be useful to improve the yield of recombinant proteins per biomass unit in closed facilities.
Collapse
|
6
|
de Oliveira PN, da Silva LFC, Eloy NB. The role of APC/C in cell cycle dynamics, growth and development in cereal crops. FRONTIERS IN PLANT SCIENCE 2022; 13:987919. [PMID: 36247602 PMCID: PMC9558237 DOI: 10.3389/fpls.2022.987919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Cereal crops can be considered the basis of human civilization. Thus, it is not surprising that these crops are grown in larger quantities worldwide than any other food supply and provide more energy to humankind than any other provision. Additionally, attempts to harness biomass consumption continue to increase to meet human energy needs. The high pressures for energy will determine the demand for crop plants as resources for biofuel, heat, and electricity. Thus, the search for plant traits associated with genetic increases in yield is mandatory. In multicellular organisms, including plants, growth and development are driven by cell division. These processes require a sequence of intricated events that are carried out by various protein complexes and molecules that act punctually throughout the cycle. Temporal controlled degradation of key cell division proteins ensures a correct onset of the different cell cycle phases and exit from the cell division program. Considering the cell cycle, the Anaphase-Promoting Complex/Cyclosome (APC/C) is an important conserved multi-subunit ubiquitin ligase, marking targets for degradation by the 26S proteasome. Studies on plant APC/C subunits and activators, mainly in the model plant Arabidopsis, revealed that they play a pivotal role in several developmental processes during growth. However, little is known about the role of APC/C in cereal crops. Here, we discuss the current understanding of the APC/C controlling cereal crop development.
Collapse
|
7
|
Progress in the mechanism of neuronal surface P antigen modulating hippocampal function and implications for autoimmune brain disease. Curr Opin Neurol 2022; 35:436-442. [PMID: 35674087 DOI: 10.1097/wco.0000000000001054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to present a new regulation system in the hippocampus constituted by the neuronal surface P antigen (NSPA) and the tyrosine phosphatase PTPMEG/PTPN4, which provides mechanistic and therapeutic possibilities for cognitive dysfunction driven by antiribosomal P protein autoantibodies in patients with systemic lupus erythematosus (SLE). RECENT FINDINGS Mice models lacking the function of NSPA as an E3 ubiquitin ligase show impaired glutamatergic synaptic plasticity, decreased levels of NMDAR at the postsynaptic density in hippocampus and memory deficits. The levels of PTPMEG/PTPN4 are increased due to lower ubiquitination and proteasomal degradation, resulting in dephosphorylation of tyrosines that control endocytosis in GluN2 NMDAR subunits. Adult hippocampal neurogenesis (AHN) that normally contributes to memory processes is also defective in the absence of NSPA. SUMMARY NSPA function is crucial in memory processes controlling the stability of NMDAR at PSD through the ubiquitination of PTPMEG/PTPN4 and also through AHN. As anti-P autoantibodies reproduce the impairments of glutamatergic transmission, plasticity and memory performance seen in the absence of NSPA, it might be expected to perturb the NSPA/PTPMEG/PTPN4 pathway leading to hypofunction of NMDAR. This neuropathogenic mechanism contrasts with that of anti-NMDAR antibodies also involved in lupus cognitive dysfunction. Testing this hypothesis might open new therapeutic possibilities for cognitive dysfunction in SLE patients bearing anti-P autoantibodies.
Collapse
|
8
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
9
|
Insights in Post-Translational Modifications: Ubiquitin and SUMO. Int J Mol Sci 2022; 23:ijms23063281. [PMID: 35328702 PMCID: PMC8952880 DOI: 10.3390/ijms23063281] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/23/2022] Open
Abstract
Both ubiquitination and SUMOylation are dynamic post-translational modifications that regulate thousands of target proteins to control virtually every cellular process. Unfortunately, the detailed mechanisms of how all these cellular processes are regulated by both modifications remain unclear. Target proteins can be modified by one or several moieties, giving rise to polymers of different morphology. The conjugation cascades of both modifications comprise a few activating and conjugating enzymes but close to thousands of ligating enzymes (E3s) in the case of ubiquitination. As a result, these E3s give substrate specificity and can form polymers on a target protein. Polymers can be quickly modified forming branches or cleaving chains leading the target protein to its cellular fate. The recent development of mass spectrometry(MS) -based approaches has increased the understanding of ubiquitination and SUMOylation by finding essential modified targets in particular signaling pathways. Here, we perform a concise overview comprising from the basic mechanisms of both ubiquitination and SUMOylation to recent MS-based approaches aimed to find specific targets for particular E3 enzymes.
Collapse
|
10
|
Abstract
Cytomegaloviruses (CMVs) are among the largest pathogenic viruses in mammals. To enable replication of their long double-stranded DNA genomes, CMVs induce profound changes in cell cycle regulation. A hallmark of CMV cell cycle control is the establishment of an unusual cell cycle arrest at the G1/S transition, which is characterized by the coexistence of cell cycle stimulatory and inhibitory activities. While CMVs interfere with cellular DNA synthesis and cell division, they activate S-phase-specific gene expression and nucleotide metabolism. This is facilitated by a set of CMV gene products that target master regulators of G1/S progression such as cyclin E and A kinases, Rb-E2F transcription factors, p53-p21 checkpoint proteins, the APC/C ubiquitin ligase, and the nucleotide hydrolase SAMHD1. While the major themes of cell cycle regulation are well conserved between human and murine CMVs (HCMV and MCMV), there are considerable differences at the level of viral cell cycle effectors and their mechanisms of action. Furthermore, both viruses have evolved unique mechanisms to sense the host cell cycle state and modulate the infection program accordingly. This review provides an overview of conserved and divergent features of G1/S control by MCMV and HCMV.
Collapse
|
11
|
Schreiber A, Collins BC, Davis C, Enchev RI, Sedra A, D'Antuono R, Aebersold R, Peter M. Multilayered regulation of autophagy by the Atg1 kinase orchestrates spatial and temporal control of autophagosome formation. Mol Cell 2021; 81:5066-5081.e10. [PMID: 34798055 PMCID: PMC8693860 DOI: 10.1016/j.molcel.2021.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022]
Abstract
Autophagy is a conserved intracellular degradation pathway exerting various cytoprotective and homeostatic functions by using de novo double-membrane vesicle (autophagosome) formation to target a wide range of cytoplasmic material for vacuolar/lysosomal degradation. The Atg1 kinase is one of its key regulators, coordinating a complex signaling program to orchestrate autophagosome formation. Combining in vitro reconstitution and cell-based approaches, we demonstrate that Atg1 is activated by lipidated Atg8 (Atg8-PE), stimulating substrate phosphorylation along the growing autophagosomal membrane. Atg1-dependent phosphorylation of Atg13 triggers Atg1 complex dissociation, enabling rapid turnover of Atg1 complex subunits at the pre-autophagosomal structure (PAS). Moreover, Atg1 recruitment by Atg8-PE self-regulates Atg8-PE levels in the growing autophagosomal membrane by phosphorylating and thus inhibiting the Atg8-specific E2 and E3. Our work uncovers the molecular basis for positive and negative feedback imposed by Atg1 and how opposing phosphorylation and dephosphorylation events underlie the spatiotemporal regulation of autophagy.
Collapse
Affiliation(s)
- Anne Schreiber
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK; Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Ben C Collins
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Colin Davis
- Cellular Degradation Systems Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Radoslav I Enchev
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland; Visual Biochemistry Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Angie Sedra
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Rocco D'Antuono
- Crick Advanced Light Microscopy (CALM) STP, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
12
|
Schuyler SC, Chen HY. Using Budding Yeast to Identify Molecules That Block Cancer Cell 'Mitotic Slippage' Only in the Presence of Mitotic Poisons. Int J Mol Sci 2021; 22:ijms22157985. [PMID: 34360748 PMCID: PMC8347345 DOI: 10.3390/ijms22157985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Research on the budding yeast Saccharomyces cerevisiae has yielded fundamental discoveries on highly conserved biological pathways and yeast remains the best-studied eukaryotic cell in the world. Studies on the mitotic cell cycle and the discovery of cell cycle checkpoints in budding yeast has led to a detailed, although incomplete, understanding of eukaryotic cell cycle progression. In multicellular eukaryotic organisms, uncontrolled aberrant cell division is the defining feature of cancer. Some of the most successful classes of anti-cancer chemotherapeutic agents are mitotic poisons. Mitotic poisons are thought to function by inducing a mitotic spindle checkpoint-dependent cell cycle arrest, via the assembly of the highly conserved mitotic checkpoint complex (MCC), leading to apoptosis. Even in the presence of mitotic poisons, some cancer cells continue cell division via 'mitotic slippage', which may correlate with a cancer becoming refractory to mitotic poison chemotherapeutic treatments. In this review, knowledge about budding yeast cell cycle control is explored to suggest novel potential drug targets, namely, specific regions in the highly conserved anaphase-promoting complex/cyclosome (APC/C) subunits Apc1 and/or Apc5, and in a specific N-terminal region in the APC/C co-factor cell division cycle 20 (Cdc20), which may yield molecules which block 'mitotic slippage' only in the presence of mitotic poisons.
Collapse
Affiliation(s)
- Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan;
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Kwei-Shan, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-03-211-8800 (ext. 3596)
| | - Hsin-Yu Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan;
| |
Collapse
|
13
|
LaPlante G, Zhang W. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors. Cancers (Basel) 2021; 13:3079. [PMID: 34203106 PMCID: PMC8235664 DOI: 10.3390/cancers13123079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is a critical regulator of cellular protein levels and activity. It is, therefore, not surprising that its dysregulation is implicated in numerous human diseases, including many types of cancer. Moreover, since cancer cells exhibit increased rates of protein turnover, their heightened dependence on the UPS makes it an attractive target for inhibition via targeted therapeutics. Indeed, the clinical application of proteasome inhibitors in treatment of multiple myeloma has been very successful, stimulating the development of small-molecule inhibitors targeting other UPS components. On the other hand, while the discovery of potent and selective chemical compounds can be both challenging and time consuming, the area of targeted protein degradation through utilization of the UPS machinery has seen promising developments in recent years. The repertoire of proteolysis-targeting chimeras (PROTACs), which employ E3 ligases for the degradation of cancer-related proteins via the proteasome, continues to grow. In this review, we will provide a thorough overview of small-molecule UPS inhibitors and highlight advancements in the development of targeted protein degradation strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Gabriel LaPlante
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada;
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, MaRS Centre West Tower, 661 University Avenue, Toronto, ON M5G1M1, Canada
| |
Collapse
|
14
|
Kazemi-Sefat GE, Keramatipour M, Talebi S, Kavousi K, Sajed R, Kazemi-Sefat NA, Mousavizadeh K. The importance of CDC27 in cancer: molecular pathology and clinical aspects. Cancer Cell Int 2021; 21:160. [PMID: 33750395 PMCID: PMC7941923 DOI: 10.1186/s12935-021-01860-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background CDC27 is one of the core components of Anaphase Promoting complex/cyclosome. The main role of this protein is defined at cellular division to control cell cycle transitions. Here we review the molecular aspects that may affect CDC27 regulation from cell cycle and mitosis to cancer pathogenesis and prognosis. Main text It has been suggested that CDC27 may play either like a tumor suppressor gene or oncogene in different neoplasms. Divergent variations in CDC27 DNA sequence and alterations in transcription of CDC27 have been detected in different solid tumors and hematological malignancies. Elevated CDC27 expression level may increase cell proliferation, invasiveness and metastasis in some malignancies. It has been proposed that CDC27 upregulation may increase stemness in cancer stem cells. On the other hand, downregulation of CDC27 may increase the cancer cell survival, decrease radiosensitivity and increase chemoresistancy. In addition, CDC27 downregulation may stimulate efferocytosis and improve tumor microenvironment. Conclusion CDC27 dysregulation, either increased or decreased activity, may aggravate neoplasms. CDC27 may be suggested as a prognostic biomarker in different malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01860-9.
Collapse
Affiliation(s)
- Golnaz Ensieh Kazemi-Sefat
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Talebi
- Department of Medical Genetics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran
| | | | - Kazem Mousavizadeh
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 14665-354, Tehran, 14496-14535, Iran. .,Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Qu J, Zou T, Lin Z. The Roles of the Ubiquitin-Proteasome System in the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2021; 22:1526. [PMID: 33546413 PMCID: PMC7913544 DOI: 10.3390/ijms22041526] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells, which is essential for synthesis, processing, sorting of protein and lipid metabolism. However, the cells activate a defense mechanism called endoplasmic reticulum stress (ER stress) response and initiate unfolded protein response (UPR) as the unfolded proteins exceed the folding capacity of the ER due to the environmental influences or increased protein synthesis. ER stress can mediate many cellular processes, including autophagy, apoptosis and senescence. The ubiquitin-proteasome system (UPS) is involved in the degradation of more than 80% of proteins in the cells. Today, increasing numbers of studies have shown that the two important components of UPS, E3 ubiquitin ligases and deubiquitinases (DUBs), are tightly related to ER stress. In this review, we summarized the regulation of the E3 ubiquitin ligases and DUBs in ER stress.
Collapse
Affiliation(s)
| | | | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.Q.); (T.Z.)
| |
Collapse
|
16
|
Saleme MDLS, Andrade IR, Eloy NB. The Role of Anaphase-Promoting Complex/Cyclosome (APC/C) in Plant Reproduction. FRONTIERS IN PLANT SCIENCE 2021; 12:642934. [PMID: 33719322 PMCID: PMC7943633 DOI: 10.3389/fpls.2021.642934] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/03/2021] [Indexed: 05/06/2023]
Abstract
Most eukaryotic species propagate through sexual reproduction that requires male and female gametes. In flowering plants, it starts through a single round of DNA replication (S phase) and two consecutive chromosome segregation (meiosis I and II). Subsequently, haploid mitotic divisions occur, which results in a male gametophyte (pollen grain) and a female gametophyte (embryo sac) formation. In order to obtain viable gametophytes, accurate chromosome segregation is crucial to ensure ploidy stability. A precise gametogenesis progression is tightly regulated in plants and is controlled by multiple mechanisms to guarantee a correct evolution through meiotic cell division and sexual differentiation. In the past years, research in the field has shown an important role of the conserved E3-ubiquitin ligase complex, Anaphase-Promoting Complex/Cyclosome (APC/C), in this process. The APC/C is a multi-subunit complex that targets proteins for degradation via proteasome 26S. The functional characterization of APC/C subunits in Arabidopsis, which is one of the main E3 ubiquitin ligase that controls cell cycle, has revealed that all subunits investigated so far are essential for gametophytic development and/or embryogenesis.
Collapse
|
17
|
Qi F, Li Y, Yang X, Wu Y, Lin L, Liu X. Hsa_circ_0044226 knockdown attenuates progression of pulmonary fibrosis by inhibiting CDC27. Aging (Albany NY) 2020; 12:14808-14818. [PMID: 32710728 PMCID: PMC7425454 DOI: 10.18632/aging.103543] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/01/2020] [Indexed: 12/27/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disorder. Here, we performed a bioinformatics analysis using the GSE102660 dataset from the Gene Expression Omnibus database to identify differentially expressed circRNAs (DEcircRNAs) in tissues from IPF patients and healthy controls. The results identified 45 DEcircRNAs, among which expression of hsa_circ_0044226 was markedly higher in lung tissues from IPF patients than from healthy controls. Knocking down hsa_circ_0044226 expression using a targeted shRNA inhibited TGF-β1-induced fibrosis in RLE-6TN cells and in a bleomycin-induced mouse model of IPA. The diminished TGF-β1-induced fibrosis was associated with upregulated expression of E-cadherin and downregulated expression of α-SMA, collagen III and fibronectin 1, as well as with reduced expression of CDC27, suggesting inhibition of epithelial-to-mesenchymal transition (EMT). All of those effects were reversed by overexpression of CDC27. This suggests CDC27 overexpression abolishes the antifibrotic effect of hsa_circ_0044226 knockdown through activation of EMT. Furthermore, hsa_circ_0044226 knockdown decreased the expression of CDC27 in BLM-induced pulmonary fibrosis mouse model. Collectively then, these findings indicate that downregulation of hsa_circ_0044226 attenuates pulmonary fibrosis in vitro and in vivo by inhibiting CDC27, which in turn suppresses EMT. This suggests hsa_circ_0044226 may be a useful therapeutic target for the treatment of IPF.
Collapse
Affiliation(s)
- Fei Qi
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Yong Li
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Xue Yang
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Yanping Wu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Lianjun Lin
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
18
|
Lin CL, Tan X, Chen M, Kusi M, Hung CN, Chou CW, Hsu YT, Wang CM, Kirma N, Chen CL, Lin CH, Lathrop KI, Elledge R, Kaklamani VG, Mitsuya K, Huang THM. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer. BMC Med Genomics 2020; 13:69. [PMID: 32408897 PMCID: PMC7222439 DOI: 10.1186/s12920-020-0729-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Chromothripsis is an event of genomic instability leading to complex chromosomal alterations in cancer. Frequent long-range chromatin interactions between transcription factors (TFs) and targets may promote extensive translocations and copy-number alterations in proximal contact regions through inappropriate DNA stitching. Although studies have proposed models to explain the initiation of chromothripsis, few discussed how TFs influence this process for tumor progression. METHODS This study focused on genomic alterations in amplification associated regions within chromosome 17. Inter-/intra-chromosomal rearrangements were analyzed using whole genome sequencing data of breast tumors in the Cancer Genome Atlas (TCGA) cohort. Common ERα binding sites were defined based on MCF-7, T47D, and MDA-MB-134 breast cancer cell lines using univariate K-means clustering methods. Nanopore sequencing technology was applied to validate frequent rearrangements detected between ATC loci on 17q23 and an ERα hub on 20q13. The efficacy of pharmacological inhibition of a potentially druggable target gene on 17q23 was evaluated using breast cancer cell lines and patient-derived circulating breast tumor cells. RESULTS There are five adjoining regions from 17q11.1 to 17q24.1 being hotspots of chromothripsis. Inter-/intra-chromosomal rearrangements of these regions occurred more frequently in ERα-positive tumors than in ERα-negative tumors. In addition, the locations of the rearrangements were often mapped within or close to dense ERα binding sites localized on these five 17q regions or other chromosomes. This chromothriptic event was linked to concordant upregulation of 96 loci that predominantly regulate cell-cycle machineries in advanced luminal tumors. Genome-editing analysis confirmed that an ERα hub localized on 20q13 coordinately regulates a subset of these loci localized on 17q23 through long-range chromosome interactions. One of these loci, Tousled Like Kinase 2 (TLK2) known to participate in DNA damage checkpoint control, is an actionable target using phenothiazine antipsychotics (PTZs). The antiproliferative effect of PTZs was prominent in high TLK2-expressing cells, compared to low expressing cells. CONCLUSION This study demonstrates a new approach for identifying tumorigenic drivers from genomic regions highly susceptible to ERα-related chromothripsis. We found a group of luminal breast tumors displaying 17q-related chromothripsis for which antipsychotics can be repurposed as treatment adjuncts.
Collapse
Affiliation(s)
- Chun-Lin Lin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Xi Tan
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meizhen Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Meena Kusi
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chia-Nung Hung
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chih-Wei Chou
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ya-Ting Hsu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Nameer Kirma
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Chun-Liang Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ching-Hung Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kate I Lathrop
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Elledge
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Virginia G Kaklamani
- Department of Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kohzoh Mitsuya
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
19
|
Asmamaw MD, Liu Y, Zheng YC, Shi XJ, Liu HM. Skp2 in the ubiquitin-proteasome system: A comprehensive review. Med Res Rev 2020; 40:1920-1949. [PMID: 32391596 DOI: 10.1002/med.21675] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/26/2020] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a complex process that regulates protein stability and activity by the sequential actions of E1, E2 and E3 enzymes to influence diverse aspects of eukaryotic cells. However, due to the diversity of proteins in cells, substrate selection is a highly critical part of the process. As a key player in UPS, E3 ubiquitin ligases recruit substrates for ubiquitination specifically. Among them, RING E3 ubiquitin ligases which are the most abundant E3 ubiquitin ligases contribute to diverse cellular processes. The multisubunit cullin-RING ligases (CRLs) are the largest family of RING E3 ubiquitin ligases with tremendous plasticity in substrate specificity and regulate a vast array of cellular functions. The F-box protein Skp2 is a component of CRL1 (the prototype of CRLs) which is expressed in many tissues and participates in multiple cellular functions such as cell proliferation, metabolism, and tumorigenesis by contributing to the ubiquitination and subsequent degradation of several specific tumor suppressors. Most importantly, Skp2 plays a pivotal role in a plethora of cancer-associated signaling pathways. It enhances cell growth, accelerates cell cycle progression, promotes migration and invasion, and inhibits cell apoptosis among others. Hence, targeting Skp2 may represent a novel and attractive strategy for the treatment of different human cancers overexpressing this oncogene. In this review article, we summarized the known roles of Skp2 both in health and disease states in relation to the UPS.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Ying Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Xiao-Jing Shi
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Zhengzhou University, Ministry of Education of China, Zhengzhou, Henan, China
| |
Collapse
|
20
|
APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. Semin Cancer Biol 2020; 67:80-91. [PMID: 32165320 DOI: 10.1016/j.semcancer.2020.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
The anaphase promoting complex/ cyclosome (APC/C), is an evolutionarily conserved protein complex essential for cellular division due to its role in regulating the mitotic transition from metaphase to anaphase. In this review, we highlight recent work that has shed light on our understanding of the role of APC/C coactivators, Cdh1 and Cdc20, in cancer initiation and development. We summarize the current state of knowledge regarding APC/C structure and function, as well as the distinct ways Cdh1 and Cdc20 are dysregulated in human cancer. We also discuss APC/C inhibitors, novel approaches for targeting the APC/C as a cancer therapy, and areas for future work.
Collapse
|
21
|
Zhu H, Liu L, Ren L, Ma J, Hu S, Zhu Z, Zhao X, Shi C, Wang X, Zhang C, Gu M, Li X. Systematic prediction of the biological functions of TAS2R10 using positive co-expression analysis. Exp Ther Med 2020; 19:1733-1738. [PMID: 32104227 PMCID: PMC7027137 DOI: 10.3892/etm.2019.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/07/2019] [Indexed: 11/06/2022] Open
Abstract
Type 2 taste receptor 10 (TAS2R10), belonging to the TAS2R family of bitter receptors, is widely expressed in extra-oral tissues. However, its biological roles beyond bitterness sensing in the tongue have remained largely elusive. The present study aimed to perform a positive co-expression analysis using 60,000 Affymetrix expression arrays and 5,000 The Cancer Genome Atlas datasets to uncover such roles. Based on the functional enrichment analysis, it was indicated that in the Gene Ontology (GO) category biological process, TAS2R10 was mostly involved in 'cellular protein metabolic process', 'protein modification process', 'cellular protein modification process' and 'cellular component assembly'. In the GO category cellular component, the co-expressed genes were accumulated in 'Spt-Ada-Gcn5 acetyltransferase (SAGA)-type complex' and 'SAGA complex', and in the category molecular function, they were concentrated in 'hexosaminidase activity', 'cytoskeletal adaptor activity', 'cyclin binding' and 'β-N-acetylhexosaminidase activity'. Of note, it was indicated that TAS2R10 may be involved in 'ubiquitin-mediated proteolysis', which may provide a starting point to fully investigate the detailed functions of TAS2R10 in the future. TAS2R10 was also indicated to be associated with human diseases, i.e. 'Salmonella infection'. Overall, the present study was the first to perform a comprehensive bioinformatics analysis of the functions of TAS2R10 and provide insight regarding the notion that this gene may have crucial roles beyond bitterness sensing.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Lianyong Liu
- Department of Endocrinology, Punan Hospital of Pudong New District, Shanghai 200125, P.R. China
| | - Li Ren
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Junhua Ma
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Shuanggang Hu
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
| | - Zhaohui Zhu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xuemei Zhao
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Chao Shi
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xing Wang
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Chaobao Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| | - Xiangqi Li
- Department of Endocrinology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai 200135, P.R. China
| |
Collapse
|
22
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
23
|
Melloy PG. The anaphase-promoting complex: A key mitotic regulator associated with somatic mutations occurring in cancer. Genes Chromosomes Cancer 2019; 59:189-202. [PMID: 31652364 DOI: 10.1002/gcc.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that helps control chromosome separation and exit from mitosis in many different kinds of organisms, including yeast, flies, worms, and humans. This review represents a new perspective on the connection between APC/C subunit mutations and cancer. The complex nature of APC/C and limited mutation analysis of its subunits has made it difficult to determine the relationship of each subunit to cancer. In this work, cancer genomic data were examined to identify APC/C subunits with a greater than 5% alteration frequency in 11 representative cancers using the cBioPortal database. Using the Genetic Determinants of Cancer Patient Survival database, APC/C subunits were also studied and found to be significantly associated with poor patient prognosis in several cases. In comparing these two kinds of cancer genomics data to published large-scale genomic analyses looking for cancer driver genes, ANAPC1 and ANAPC3/CDC27 stood out as being represented in all three types of analyses. Seven other subunits were found to be associated both with >5% alteration frequency in certain cancers and being associated with an effect on cancer patient prognosis. The aim of this review is to provide new approaches for investigators conducting in vivo studies of APC/C subunits and cancer progression. In turn, a better understanding of these APC/C subunits and their role in different cancers will help scientists design drugs that are more precisely targeted to certain cancers, using APC/C mutation status as a biomarker.
Collapse
Affiliation(s)
- Patricia G Melloy
- Department of Biological and Allied Health Sciences, Fairleigh Dickinson University, Madison, New Jersey
| |
Collapse
|
24
|
Xu R, Xu J, Wang L, Niu B, Copenhaver GP, Ma H, Zheng B, Wang Y. The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis. THE NEW PHYTOLOGIST 2019; 224:229-241. [PMID: 31230348 PMCID: PMC6771777 DOI: 10.1111/nph.16014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/03/2019] [Indexed: 05/07/2023]
Abstract
Faithful chromosome segregation is required for both mitotic and meiotic cell divisions and is regulated by multiple mechanisms including the anaphase-promoting complex/cyclosome (APC/C), which is the largest known E3 ubiquitin-ligase complex and has been implicated in regulating chromosome segregation in both mitosis and meiosis in animals. However, the role of the APC/C during plant meiosis remains largely unknown. Here, we show that Arabidopsis APC8 is required for male meiosis. We used a combination of genetic analyses, cytology and immunolocalisation to define the function of AtAPC8 in male meiosis. Meiocytes from apc8-1 plants exhibit several meiotic defects including improper alignment of bivalents at metaphase I, unequal chromosome segregation during anaphase II, and subsequent formation of polyads. Immunolocalisation using an antitubulin antibody showed that APC8 is required for normal spindle morphology. We also observed mitotic defects in apc8-1, including abnormal sister chromatid segregation and microtubule morphology. Our results demonstrate that Arabidopsis APC/C is required for meiotic chromosome segregation and that APC/C-mediated regulation of meiotic chromosome segregation is a conserved mechanism among eukaryotes.
Collapse
Affiliation(s)
- Rong‐Yan Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Shanghai Chenshan Plant Science Research CenterChinese Academy of SciencesChenshan Botanical GardenShanghai201602China
| | - Jing Xu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Liudan Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Key Laboratory of Plant Functional Genomics of the Ministry of EducationJiangsu Key Laboratory of Crop Genetics and Physiology/Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhou225009China
| | - Gregory P. Copenhaver
- Department of Biology and the Integrative Program for Biological and Genome SciencesUniversity of North Carolina at Chapel HillChapel HillNC27599‐3280USA
- Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNC27599‐3280USA
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
- Center for Evolutionary BiologyInstitutes of Biomedical SciencesSchool of Life SciencesFudan UniversityShanghai200433China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| |
Collapse
|
25
|
Zhang J, Zhong C, Huang Y, Lin HX, Wang M. A method for identifying protein complexes with the features of joint co-localization and joint co-expression in static PPI networks. Comput Biol Med 2019; 111:103333. [PMID: 31376777 DOI: 10.1016/j.compbiomed.2019.103333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/01/2019] [Accepted: 06/17/2019] [Indexed: 02/09/2023]
Abstract
Identifying protein complexes in static protein-protein interaction (PPI) networks is essential for understanding the underlying mechanism of biological processes. Proteins in a complex are co-localized at the same place and co-expressed at the same time. We propose a novel method to identify protein complexes with the features of joint co-localization and joint co-expression in static PPI networks. To achieve this goal, we define a joint localization vector to construct a joint co-localization criterion of a protein group, and define a joint gene expression to construct a joint co-expression criterion of a gene group. Moreover, the functional similarity of proteins in a complex is an important characteristic. Thus, we use the CC-based, MF-based, and BP-based protein similarities to devise functional similarity criterion to determine whether a protein is functionally similar to a protein cluster. Based on the core-attachment structure and following to seed expanding strategy, we use four types of biological data including PPI data with reliability score, protein localization data, gene expression data, and gene ontology annotations, to identify protein complexes. The experimental results on yeast data show that comparing with existing methods our proposed method can efficiently and exactly identify more protein complexes, especially more protein complexes of sizes from 2 to 6. Furthermore, the enrichment analysis demonstrates that the protein complexes identified by our method have significant biological meaning.
Collapse
Affiliation(s)
- Jinxiong Zhang
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, China; School of Computer, Electronics and Information, Guangxi University, Nanning, China.
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, China.
| | - Yiran Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning, China.
| | - Hai Xiang Lin
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, the Netherlands.
| | - Mian Wang
- College of Life Science and Technology, Guangxi University, Nanning, China.
| |
Collapse
|
26
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
27
|
Wu Q, Zhang W, Xue L, Wang Y, Fu M, Ma L, Song Y, Zhan QM. APC/C-CDH1–Regulated IDH3β Coordinates with the Cell Cycle to Promote Cell Proliferation. Cancer Res 2019; 79:3281-3293. [PMID: 31053633 DOI: 10.1158/0008-5472.can-18-2341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/20/2018] [Accepted: 04/29/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Qingnan Wu
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ming Fu
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi-Min Zhan
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
28
|
Pancsa R, Schad E, Tantos A, Tompa P. Emergent functions of proteins in non-stoichiometric supramolecular assemblies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:970-979. [PMID: 30826453 DOI: 10.1016/j.bbapap.2019.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022]
Abstract
Proteins are the basic functional units of the cell, carrying out myriads of functions essential for life. There are countless reports in molecular cell biology addressing the functioning of proteins under physiological and pathological conditions, aiming to understand life at the atomistic-molecular level and thereby being able to develop remedies against diseases. The central theme in most of these studies is that the functional unit under study is the protein itself. Recent rapid progress has radically challenged and extended this protein-function paradigm, by demonstrating that novel function(s) may emerge when proteins form dynamic and non-stoichiometric supramolecular assemblies. There is an increasing number of cases for such collective functions, such as targeting, localization, protection/shielding and filtering effects, as exemplified by signaling complexes and prions, biominerals and mucus, amphibian adhesions and bacterial biofilms, and a broad range of membraneless organelles (bio-condensates) formed by liquid-liquid phase separation in the cell. In this short review, we show that such non-stoichiometric organization may derive from the heterogeneity of the system, a mismatch in valency and/or geometry of the partners, and/or intrinsic structural disorder and multivalency of the component proteins. Either way, the resulting functional features cannot be simply described by, or predicted from, the properties of the isolated single protein(s), as they belong to the collection of proteins.
Collapse
Affiliation(s)
- Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary; VIB Center for Structural Biology (CSB), Brussels, Belgium; Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), Brussels, Belgium.
| |
Collapse
|
29
|
Abstract
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Collapse
Affiliation(s)
- Hiroyuki Yamano
- Cell Cycle Control Group, UCL Cancer Institute, University College London, Paul O’Gorman Building, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
30
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
31
|
O’Beirne SL, Shenoy SA, Salit J, Strulovici-Barel Y, Kaner RJ, Visvanathan S, Fine JS, Mezey JG, Crystal RG. Ambient Pollution-related Reprogramming of the Human Small Airway Epithelial Transcriptome. Am J Respir Crit Care Med 2018; 198:1413-1422. [PMID: 29897792 PMCID: PMC6290954 DOI: 10.1164/rccm.201712-2526oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
RATIONALE Epidemiologic studies have demonstrated that exposure to particulate matter ambient pollution has adverse effects on lung health, exacerbated by cigarette smoking. Particulate matter less than or equal to 2.5 μm in aerodynamic diameter (PM2.5) is among the most harmful urban pollutants and is closely linked to respiratory disease. OBJECTIVES Based on the knowledge that the small airway epithelium (SAE) plays a central role in the pathogenesis of smoking-related lung disease, we hypothesized that elevated PM2.5 levels are associated with dysregulation of SAE gene expression, which may contribute to the development of respiratory disease. METHODS From 2009 to 2012, healthy nonsmoker (n = 29) and smoker (n = 129) residents of New York City underwent bronchoscopy with SAE brushing (2.6 ± 1.3 samples/subject; total of 405 samples). SAE gene expression was assessed by Affymetrix HG-U133 Plus 2.0 microarray. New York City PM2.5 levels (Environmental Protection Agency data) were averaged for the 30 days before bronchoscopy. A linear mixed model was used to assess PM2.5-related gene dysregulation accounting for multiple clinical and methodologic variables. MEASUREMENTS AND MAIN RESULTS Thirty-day mean PM2.5 levels varied from 6.2 to 18 μg/m3. In nonsmokers, there was no dysregulation of SAE gene expression associated with ambient PM2.5 levels. In marked contrast, n = 219 genes were significantly dysregulated in association with PM2.5 levels in the SAE of smokers. Many of these genes relate to cell growth and transcription regulation. Interestingly, 11% of genes were mitochondria associated. CONCLUSIONS PM2.5 exposure contributes to significant dysregulation of the SAE transcriptome of smokers, linking pollution and airway epithelial biology in the risk of development of respiratory disease in susceptible individuals.
Collapse
Affiliation(s)
- Sarah L. O’Beirne
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | | | - Robert J. Kaner
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | | | - Jason G. Mezey
- Department of Genetic Medicine and
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York
| | - Ronald G. Crystal
- Department of Genetic Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
32
|
Sud A, Thomsen H, Orlando G, Försti A, Law PJ, Broderick P, Cooke R, Hariri F, Pastinen T, Easton DF, Pharoah PDP, Dunning AM, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Campa D, Hoffmann P, Nöthen MM, Jöckel KH, von Strandmann EP, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study implicates immune dysfunction in the development of Hodgkin lymphoma. Blood 2018; 132:2040-2052. [PMID: 30194254 PMCID: PMC6236462 DOI: 10.1182/blood-2018-06-855296] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
To further our understanding of inherited susceptibility to Hodgkin lymphoma (HL), we performed a meta-analysis of 7 genome-wide association studies totaling 5325 HL cases and 22 423 control patients. We identify 5 new HL risk loci at 6p21.31 (rs649775; P = 2.11 × 10-10), 6q23.3 (rs1002658; P = 2.97 × 10-8), 11q23.1 (rs7111520; P = 1.44 × 10-11), 16p11.2 (rs6565176; P = 4.00 × 10-8), and 20q13.12 (rs2425752; P = 2.01 × 10-8). Integration of gene expression, histone modification, and in situ promoter capture Hi-C data at the 5 new and 13 known risk loci implicates dysfunction of the germinal center reaction, disrupted T-cell differentiation and function, and constitutive NF-κB activation as mechanisms of predisposition. These data provide further insights into the genetic susceptibility and biology of HL.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Fadi Hariri
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, and
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, United Kingdom
- Division of Health Sciences, Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Health Research, University College London, London, United Kingdom
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| | - Per Hoffmann
- Human Genomic Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics and
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | | | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Marburg, Germany
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Nick Orr
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom; and
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
33
|
Watson ER, Brown NG, Peters JM, Stark H, Schulman BA. Posing the APC/C E3 Ubiquitin Ligase to Orchestrate Cell Division. Trends Cell Biol 2018; 29:117-134. [PMID: 30482618 DOI: 10.1016/j.tcb.2018.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
Abstract
The anaphase promoting complex/cyclosome (APC/C) E3 ligase controls mitosis and nonmitotic pathways through interactions with proteins that coordinate ubiquitylation. Since the discovery that the catalytic subunits of APC/C are conformationally dynamic cullin and RING proteins, many unexpected and intricate regulatory mechanisms have emerged. Here, we review structural knowledge of this regulation, focusing on: (i) coactivators, E2 ubiquitin (Ub)-conjugating enzymes, and inhibitors engage or influence multiple sites on APC/C including the cullin-RING catalytic core; and (ii) the outcomes of these interactions rely on mobility of coactivators and cullin-RING domains, which permits distinct conformations specifying different functions. Thus, APC/C is not simply an interaction hub, but is instead a dynamic, multifunctional molecular machine whose structure is remodeled by binding partners to achieve temporal ubiquitylation regulating cell division.
Collapse
Affiliation(s)
- Edmond R Watson
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Campus Vienna Biocenter (VBC) 1, 1030 Vienna, Austria
| | - Holger Stark
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany; Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
34
|
da Silva Antunes R, Babor M, Carpenter C, Khalil N, Cortese M, Mentzer AJ, Seumois G, Petro CD, Purcell LA, Vijayanand P, Crotty S, Pulendran B, Peters B, Sette A. Th1/Th17 polarization persists following whole-cell pertussis vaccination despite repeated acellular boosters. J Clin Invest 2018; 128:3853-3865. [PMID: 29920186 DOI: 10.1172/jci121309] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/12/2018] [Indexed: 01/17/2023] Open
Abstract
In the mid-1990s, whole-cell pertussis (wP) vaccines were associated with local and systemic adverse events that prompted their replacement with acellular pertussis (aP) vaccines in many high-income countries. In the past decade, rates of pertussis disease have increased in children receiving only aP vaccines. We compared the immune responses to aP boosters in individuals who received their initial doses with either wP or aP vaccines using activation-induced marker (AIM) assays. Specifically, we examined pertussis-specific memory CD4+ T cell responses ex vivo, highlighting a type 2/Th2 versus type 1/Th1 and Th17 differential polarization as a function of childhood vaccination. Remarkably, after a contemporary aP booster, cells from donors originally primed with aP were (a) associated with increased IL-4, IL-5, IL-13, IL-9, and TGF-β and decreased IFN-γ and IL-17 production, (b) defective in their ex vivo capacity to expand memory cells, and (c) less capable of proliferating in vitro. These differences appeared to be T cell specific, since equivalent increases of antibody titers and plasmablasts after aP boost were seen in both groups. In conclusion, our data suggest that there are long-lasting effects and differences in polarization and proliferation of T cell responses in adults originally vaccinated with aP compared with those that initially received wP, despite repeated acellular boosters.
Collapse
Affiliation(s)
- Ricardo da Silva Antunes
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mariana Babor
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Chelsea Carpenter
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Natalie Khalil
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Mario Cortese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | - Lisa A Purcell
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Pandurangan Vijayanand
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Bali Pulendran
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,UCSD School of Medicine, La Jolla, California, USA
| |
Collapse
|
35
|
Delgado TC, Barbier-Torres L, Zubiete-Franco I, Lopitz-Otsoa F, Varela-Rey M, Fernández-Ramos D, Martínez-Chantar ML. Neddylation, a novel paradigm in liver cancer. Transl Gastroenterol Hepatol 2018; 3:37. [PMID: 30050997 DOI: 10.21037/tgh.2018.06.05] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is the sixth most prevailing cancer worldwide. Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, has a rather heterogeneous pathogenesis making it highly refractive to current therapeutic approaches. Hence, HCC patients have a poor and gloomy prognosis making liver cancer the second leading cause of global cancer-related deaths. On this basis, a more global mechanism, such as post-translational modifications (PTMs) of proteins, may provide a valuable therapeutic approach for HCC clinical management by simultaneously regulating multiple disrupted signaling pathways. In the last years, the ubiquitin-like molecule NEDD8 (Neural precursor cell-expressed developmentally downregulated-8) conjugation pathway, neddylation, was shown to be aberrant in HCC patients with a significant positive correlation found among global levels of neddylation and poorer prognosis. Even though the best-established role for NEDD8 is the activation of ubiquitin E3 ligase family of cullin-RING ligases, the putative role for other NEDD8 substrates has been explored in recent years leading to the identification of novel neddylation targets in HCC. Importantly, treatment with the small pharmacological inhibitor Pevonedistat (MLN4924) (Millennium Pharmaceuticals, Takeda Pharmaceutical), currently in clinical trials for the treatment of some types of leukemias and other advanced solid tumors, was shown to suppress the outgrowth of hepatoma cells and liver cancer in pre-clinical mouse models. Overall, considering that the neddylation inhibitor Pevonedistat was well-tolerated and displayed a significant antitumor effect in pre-clinical models, combinatory pharmacological treatment based on Pevonedistat are highly recommended to enter clinical trials targeting advanced HCC.
Collapse
Affiliation(s)
- Teresa Cardoso Delgado
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Lúcia Barbier-Torres
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imanol Zubiete-Franco
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - María-Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
36
|
Sahana J, Nassef MZ, Wehland M, Kopp S, Krüger M, Corydon TJ, Infanger M, Bauer J, Grimm D. Decreased E-Cadherin in MCF7 Human Breast Cancer Cells Forming Multicellular Spheroids Exposed to Simulated Microgravity. Proteomics 2018; 18:e1800015. [PMID: 29785723 DOI: 10.1002/pmic.201800015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Indexed: 12/23/2022]
Abstract
MCF7 human breast cancer cells were cultured under normal gravity (1 g) and on a random positioning machine (RPM) preventing sedimentation. After 2 weeks, adherent 1 g-control and adherent RPM cells (AD) as well as multicellular spheroids (MCS) were harvested. AD and MCS had been exposed to the RPM in the same culture flask. In a subsequent proteome analysis, the majority of the proteins detected showed similar label-free quantification (LFQ) scores in each of the respective subpopulations, but in both AD or MCS cultures, proteins were also found whose LFQs deviated at least twofold from their counterparts in the 1 g-control cells. They included the cell junction protein E-cadherin, which was diminished in MCS cells, where proteins of the E-cadherin autodegradation pathway were enhanced and c-Src (proto-oncogene tyrosine-protein kinase c-Src) was detected. Spheroid formation was prevented by inhibition of c-Src but promoted by antibodies blocking E-cadherin activity. An interaction analysis of the detected proteins that are involved in forming and regulating junctions or adhesion complexes and in E-cadherin autodegradation indicated connections between the two protein groups. This suggests that the balance of proteins that up- or downregulate E-cadherin mediates the tendency of MCF7 cells to form MCS during RPM exposure.
Collapse
Affiliation(s)
- Jayashree Sahana
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mohamed Zakaria Nassef
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Markus Wehland
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kopp
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Marcus Krüger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Department of Ophthalmology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Manfred Infanger
- Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| | - Johann Bauer
- Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Daniela Grimm
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.,Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany.,Gravitational Biology and Translational Regenerative Medicine, Faculty of Medicine and Mechanical Engineering, Otto-von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
37
|
Drouet Y, Treilleux I, Viari A, Léon S, Devouassoux-Shisheboran M, Voirin N, de la Fouchardière C, Manship B, Puisieux A, Lasset C, Moyret-Lalle C. Integrated analysis highlights APC11 protein expression as a likely new independent predictive marker for colorectal cancer. Sci Rep 2018; 8:7386. [PMID: 29743633 PMCID: PMC5943309 DOI: 10.1038/s41598-018-25631-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 12/22/2022] Open
Abstract
After a diagnosis of colorectal cancer (CRC), approximately 50% of patients will present distant metastasis. Although significant progress has been made in treatments, most of them will die from the disease. We investigated the predictive and prognostic potential of APC11, the catalytic subunit of APC/C, which has never been examined in the context of CRC. The expression of APC11 was assessed in CRC cell lines, in tissue microarrays (TMAs) and in public datasets. Overexpression of APC11 mRNA was associated with chromosomal instability, lymphovascular invasion and residual tumor. Regression models accounting for the effects of well-known protein markers highlighted association of APC11 protein expression with residual tumor (odds ratio: OR = 6.51; 95% confidence intervals: CI = 1.54–27.59; P = 0.012) and metastasis at diagnosis (OR = 3.87; 95% CI = 1.20–2.45; P = 0.024). Overexpression of APC11 protein was also associated with worse distant relapse-free survival (hazard ratio: HR = 2.60; 95% CI = 1.26–5.37; P = 0.01) and worse overall survival (HR = 2.69; 95% CI = 1.31–5.51; P = 0.007). APC11 overexpression in primary CRC thus represents a potentially novel theranostic marker of metastatic CRC.
Collapse
Affiliation(s)
- Youenn Drouet
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France
| | | | - Alain Viari
- INRIA Grenoble-Rhône-Alpes, 655 Avenue de l'Europe, 38330, Montbonnot, Saint Martin, France.,Synergie Lyon Cancer, Plateforme de Bioinformatique 'Gilles Thomas' Centre Léon Bérard, Lyon, France
| | - Sophie Léon
- Centre Léon Bérard, Service d'Anatomopathologie, Lyon, F-69008, France
| | - Mojgan Devouassoux-Shisheboran
- Centre Léon Bérard, Lyon, F-69008, France.,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69622, France.,Université Lyon1, ISPB, Lyon, F-69008, France.,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France.,Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, F-69008, France
| | - Nicolas Voirin
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,Hospices Civils de Lyon, Hôpital Edouard Herriot, Service d'Hygiéne, Epidémiologie et Prévention, Lyon, F-69437, France
| | | | | | - Alain Puisieux
- Centre Léon Bérard, Lyon, F-69008, France.,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France.,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69622, France.,Université Lyon1, ISPB, Lyon, F-69008, France.,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Christine Lasset
- Centre Léon Bérard, Département de Santé Publique, Lyon, F-69008, France.,CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, F-69373, France.,Université de Lyon, Lyon, F-69622, France
| | - Caroline Moyret-Lalle
- Centre Léon Bérard, Lyon, F-69008, France. .,INSERM U1052, Cancer Research Center of Lyon, Lyon, F-69008, France. .,CNRS UMR 5286, Cancer Research Center of Lyon, Lyon, F-69008, France. .,Université de Lyon, Lyon, F-69622, France. .,Université Lyon1, ISPB, Lyon, F-69008, France. .,LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France.
| |
Collapse
|
38
|
Imasaki T, Wenzel S, Yamada K, Bryant ML, Takagi Y. Titer estimation for quality control (TEQC) method: A practical approach for optimal production of protein complexes using the baculovirus expression vector system. PLoS One 2018; 13:e0195356. [PMID: 29614134 PMCID: PMC5882171 DOI: 10.1371/journal.pone.0195356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The baculovirus expression vector system (BEVS) is becoming the method of choice for expression of many eukaryotic proteins and protein complexes for biochemical, structural and pharmaceutical studies. Significant technological advancement has made generation of recombinant baculoviruses easy, efficient and user-friendly. However, there is a tremendous variability in the amount of proteins made using the BEVS, including different batches of virus made to express the same proteins. Yet, what influences the overall production of proteins or protein complexes remains largely unclear. Many downstream applications, particularly protein structure determination, require purification of large quantities of proteins in a repetitive manner, calling for a reliable experimental set-up to obtain proteins or protein complexes of interest consistently. During our investigation of optimizing the expression of the Mediator Head module, we discovered that the ‘initial infectivity’ was an excellent indicator of overall production of protein complexes. Further, we show that this initial infectivity can be mathematically described as a function of multiplicity of infection (MOI), correlating recombinant protein yield and virus titer. All these findings led us to develop the Titer Estimation for Quality Control (TEQC) method, which enables researchers to estimate initial infectivity, titer/MOI values in a simple and affordable way, and to use these values to quantitatively optimize protein expressions utilizing BEVS in a highly reproducible fashion.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sabine Wenzel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Kentaro Yamada
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Megan L. Bryant
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Feng Z, Zhang L, Zhou J, Zhou S, Li L, Guo X, Feng G, Ma Z, Huang W, Huang F. mir-218-2 promotes glioblastomas growth, invasion and drug resistance by targeting CDC27. Oncotarget 2018; 8:6304-6318. [PMID: 27974673 PMCID: PMC5351633 DOI: 10.18632/oncotarget.13850] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 11/02/2016] [Indexed: 12/04/2022] Open
Abstract
Glioma has become a significant global health problem with substantial morbidity and mortality, underscoring the importance of elucidating its underlying molecular mechanisms. Recent studies have identified mir-218 as an anti-oncogene; however, the specific functions of mir-218-1 and mir-218-2 remain unknown, especially the latter. The objective of this study was to further investigate the role of mir-218-2 in glioma. Our results indicated that mir-218-2 is highly overexpressed in glioma. Furthermore, we showed that mir-218-2 is positively correlated with the growth, invasion, migration, and drug susceptibility (to β-lapachone) of glioma cells. In vitro, the overexpression of mir-218-2 promoted glioma cell proliferation, invasion, and migration. In addition, the overexpression of mir-218-2 in vivo was found to increase glioma tumor growth. Accordingly, the inhibition of mir-218-2 resulted in the opposite effects. Cell division cycle 27 (CDC27), the downstream target of mir-218-2, is involved in the regulation of glioma cells. Our results indicate that the overexpression of CDC27 counteracted the function of mir-218-2 in glioma cells. These novel findings provide new insight in the application of mir-218-2 as a potential glioma treatment.
Collapse
Affiliation(s)
- Zhuoying Feng
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Luping Zhang
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Junchen Zhou
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Shuai Zhou
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Li Li
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Xuyan Guo
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Guoying Feng
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Ze Ma
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fei Huang
- Institute of Human Anatomy and Histology and Embryology, Otology & Neuroscience Center, Binzhou Medical University, Laishan District, Shandong Province, 264003,China
| |
Collapse
|
40
|
Sud A, Thomsen H, Law PJ, Försti A, Filho MIDS, Holroyd A, Broderick P, Orlando G, Lenive O, Wright L, Cooke R, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Eeles R, Kote-Jarai ZS, Muir K, Pashayan N, Hoffmann P, Nöthen MM, Jöckel KH, Strandmann EPV, Lightfoot T, Kane E, Roman E, Lake A, Montgomery D, Jarrett RF, Swerdlow AJ, Engert A, Orr N, Hemminki K, Houlston RS. Genome-wide association study of classical Hodgkin lymphoma identifies key regulators of disease susceptibility. Nat Commun 2017; 8:1892. [PMID: 29196614 PMCID: PMC5711884 DOI: 10.1038/s41467-017-00320-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023] Open
Abstract
Several susceptibility loci for classical Hodgkin lymphoma have been reported. However, much of the heritable risk is unknown. Here, we perform a meta-analysis of two existing genome-wide association studies, a new genome-wide association study, and replication totalling 5,314 cases and 16,749 controls. We identify risk loci for all classical Hodgkin lymphoma at 6q22.33 (rs9482849, P = 1.52 × 10-8) and for nodular sclerosis Hodgkin lymphoma at 3q28 (rs4459895, P = 9.43 × 10-17), 6q23.3 (rs6928977, P = 4.62 × 10-11), 10p14 (rs3781093, P = 9.49 × 10-13), 13q34 (rs112998813, P = 4.58 × 10-8) and 16p13.13 (rs34972832, P = 2.12 × 10-8). Additionally, independent loci within the HLA region are observed for nodular sclerosis Hodgkin lymphoma (rs9269081, HLA-DPB1*03:01, Val86 in HLA-DRB1) and mixed cellularity Hodgkin lymphoma (rs1633096, rs13196329, Val86 in HLA-DRB1). The new and established risk loci localise to areas of active chromatin and show an over-representation of transcription factor binding for determinants of B-cell development and immune response.
Collapse
Affiliation(s)
- Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | | | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Oleg Lenive
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Lauren Wright
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosie Cooke
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Rosalind Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, London, SM2 5NG, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M1 3BB, UK
- Division of Health Sciences, Warwick Medical School, Warwick University, Warwick, CV4 7AL, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Per Hoffmann
- Department of Biomedicine, Division of Medical Genetics, University of Basel, Basel, 4031, Switzerland
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | | | | | - Tracy Lightfoot
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eleanor Kane
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Eve Roman
- Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Annette Lake
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Dorothy Montgomery
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Ruth F Jarrett
- MRC University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Anthony J Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Andreas Engert
- Department of Internal Medicine, University Hospital of Cologne, Cologne, 50937, Germany
| | - Nick Orr
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Centre, Heidelberg, 69120, Germany
- Centre for Primary Health Care Research, Lund University, Malmö, 221 00, Sweden
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
41
|
Transcriptome Sequencing Reveals Novel Candidate Genes for Cardinium hertigii-Caused Cytoplasmic Incompatibility and Host-Cell Interaction. mSystems 2017; 2:mSystems00141-17. [PMID: 29181449 PMCID: PMC5698495 DOI: 10.1128/msystems.00141-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/23/2017] [Indexed: 11/29/2022] Open
Abstract
The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes. Cytoplasmic incompatibility (CI) is an intriguing, widespread, symbiont-induced reproductive failure that decreases offspring production of arthropods through crossing incompatibility of infected males with uninfected females or with females infected with a distinct symbiont genotype. For years, the molecular mechanism of CI remained unknown. Recent genomic, proteomic, biochemical, and cell biological studies have contributed to understanding of CI in the alphaproteobacterium Wolbachia and implicate genes associated with the WO prophage. Besides a recently discovered additional lineage of alphaproteobacterial symbionts only moderately related to Wolbachia, Cardinium (Bacteroidetes) is the only other symbiont known to cause CI, and genomic evidence suggests that it has very little homology with Wolbachia and evolved this phenotype independently. Here, we present the first transcriptomic study of the CI Cardinium strain cEper1, in its natural host, Encarsia suzannae, to detect important CI candidates and genes involved in the insect-Cardinium symbiosis. Highly expressed transcripts included genes involved in manipulating ubiquitination, apoptosis, and host DNA. Female-biased genes encoding ribosomal proteins suggest an increase in general translational activity of Cardinium in female wasps. The results confirm previous genomic analyses that indicated that Wolbachia and Cardinium utilize different genes to induce CI, and transcriptome patterns further highlight expression of some common pathways that these bacteria use to interact with the host and potentially cause this enigmatic and fundamental manipulation of host reproduction. IMPORTANCE The majority of insects carry maternally inherited intracellular bacteria that are important in their hosts’ biology, ecology, and evolution. Some of these bacterial symbionts cause a reproductive failure known as cytoplasmic incompatibility (CI). In CI, the mating of symbiont-infected males and uninfected females produces few or no daughters. The CI symbiont then spreads and can have a significant impact on the insect host population. Cardinium, a bacterial endosymbiont of the parasitoid wasp Encarsia in the Bacteroidetes, is the only bacterial lineage known to cause CI outside the Alphaproteobacteria, where Wolbachia and another recently discovered CI symbiont reside. Here, we sought insight into the gene expression of a CI-inducing Cardinium strain in its natural host, Encarsia suzannae. Our study provides the first insights into the Cardinium transcriptome and provides support for the hypothesis that Wolbachia and Cardinium target similar host pathways with distinct and largely unrelated sets of genes.
Collapse
|
42
|
Alfieri C, Zhang S, Barford D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol 2017; 7:170204. [PMID: 29167309 PMCID: PMC5717348 DOI: 10.1098/rsob.170204] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/10/2017] [Indexed: 12/17/2022] Open
Abstract
The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.
Collapse
Affiliation(s)
- Claudio Alfieri
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Suyang Zhang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Barford
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
43
|
Rahimi H, Shokrgozar MA, Madadkar-Sobhani A, Mahdian R, Foroumadi A, Karimipoor M. Structural Insight into Anaphase Promoting Complex 3 Structure and Docking with a Natural Inhibitory Compound. Adv Biomed Res 2017; 6:26. [PMID: 28401073 PMCID: PMC5359995 DOI: 10.4103/2277-9175.201683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Anaphase promoting complex (APC) is the biggest Cullin-RING E3 ligase and is very important in cell cycle control; many anti-cancer agents target this. APC controls the onset of chromosome separation and mitotic exit through securin and cyclin B degradation, respectively. Its APC3 subunit identifies the APC activators-Cdh1 and Cdc20. MATERIALS AND METHODS The structural model of the APC3 subunit of APC was developed by means of computational techniques; the binding of a natural inhibitory compound to APC3 was also investigated. RESULTS It was found that APC3 structure consists of numerous helices organized in anti-parallel and the overall model is superhelical of tetratrico-peptide repeat (TPR) domains. Furthermore, binding pocket of the natural inhibitory compound as APC3 inhibitor was shown. CONCLUSION The findings are beneficial to understand the mechanism of the APC activation and design inhibitory compounds.
Collapse
Affiliation(s)
- Hamzeh Rahimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Armin Madadkar-Sobhani
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain; Department of Bioinformatics, Institute of Biophysics and Biochemistry, University of Tehran, Tehran, Iran
| | - Reza Mahdian
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
44
|
Sansregret L, Patterson JO, Dewhurst S, López-García C, Koch A, McGranahan N, Chao WCH, Barry DJ, Rowan A, Instrell R, Horswell S, Way M, Howell M, Singleton MR, Medema RH, Nurse P, Petronczki M, Swanton C. APC/C Dysfunction Limits Excessive Cancer Chromosomal Instability. Cancer Discov 2017; 7:218-233. [PMID: 28069571 PMCID: PMC5300100 DOI: 10.1158/2159-8290.cd-16-0645] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/25/2023]
Abstract
Intercellular heterogeneity, exacerbated by chromosomal instability (CIN), fosters tumor heterogeneity and drug resistance. However, extreme CIN correlates with improved cancer outcome, suggesting that karyotypic diversity required to adapt to selection pressures might be balanced in tumors against the risk of excessive instability. Here, we used a functional genomics screen, genome editing, and pharmacologic approaches to identify CIN-survival factors in diploid cells. We find partial anaphase-promoting complex/cyclosome (APC/C) dysfunction lengthens mitosis, suppresses pharmacologically induced chromosome segregation errors, and reduces naturally occurring lagging chromosomes in cancer cell lines or following tetraploidization. APC/C impairment caused adaptation to MPS1 inhibitors, revealing a likely resistance mechanism to therapies targeting the spindle assembly checkpoint. Finally, CRISPR-mediated introduction of cancer somatic mutations in the APC/C subunit cancer driver gene CDC27 reduces chromosome segregation errors, whereas reversal of an APC/C subunit nonsense mutation increases CIN. Subtle variations in mitotic duration, determined by APC/C activity, influence the extent of CIN, allowing cancer cells to dynamically optimize fitness during tumor evolution. SIGNIFICANCE We report a mechanism whereby cancers balance the evolutionary advantages associated with CIN against the fitness costs caused by excessive genome instability, providing insight into the consequence of CDC27 APC/C subunit driver mutations in cancer. Lengthening of mitosis through APC/C modulation may be a common mechanism of resistance to cancer therapeutics that increase chromosome segregation errors. Cancer Discov; 7(2); 218-33. ©2017 AACR.See related commentary by Burkard and Weaver, p. 134This article is highlighted in the In This Issue feature, p. 115.
Collapse
Affiliation(s)
| | | | | | | | - André Koch
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nicholas McGranahan
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| | | | | | - Andrew Rowan
- The Francis Crick Institute, London, United Kingdom
| | | | | | - Michael Way
- The Francis Crick Institute, London, United Kingdom
| | | | | | - René H. Medema
- The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Nurse
- The Francis Crick Institute, London, United Kingdom
| | - Mark Petronczki
- The Francis Crick Institute, London, United Kingdom
- Boehringer Ingelheim, Vienna, Austria
| | - Charles Swanton
- The Francis Crick Institute, London, United Kingdom
- CRUK UCL/Manchester Lung Cancer Centre of Excellence
| |
Collapse
|
45
|
Mainolfi N, Rasmusson T. Targeted Protein Degradation. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1016/bs.armc.2017.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
APC/C and retinoblastoma interaction: cross-talk of retinoblastoma protein with the ubiquitin proteasome pathway. Biosci Rep 2016; 36:BSR20160152. [PMID: 27402801 PMCID: PMC5025812 DOI: 10.1042/bsr20160152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
The ubiquitin (Ub) ligase anaphase promoting complex/cyclosome (APC/C) and the tumour suppressor retinoblastoma protein (pRB) play key roles in cell cycle regulation. APC/C is a critical regulator of mitosis and G1-phase of the cell cycle whereas pRB keeps a check on proliferation by inhibiting transition to the S-phase. APC/C and pRB interact with each other via the co-activator of APC/C, FZR1, providing an alternative pathway of regulation of G1 to S transition by pRB using a post-translational mechanism. Both pRB and FZR1 have complex roles and are implicated not only in regulation of cell proliferation but also in differentiation, quiescence, apoptosis, maintenance of chromosomal integrity and metabolism. Both are also targeted by transforming viruses. We discuss recent advances in our understanding of the involvement of APC/C and pRB in cell cycle based decisions and how these insights will be useful for development of anti-cancer and anti-viral drugs.
Collapse
|
47
|
Ukleja M, Valpuesta JM, Dziembowski A, Cuellar J. Beyond the known functions of the CCR4-NOT complex in gene expression regulatory mechanisms: New structural insights to unravel CCR4-NOT mRNA processing machinery. Bioessays 2016; 38:1048-58. [PMID: 27502453 DOI: 10.1002/bies.201600092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery.
Collapse
Affiliation(s)
- Marta Ukleja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland. .,Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain. .,Institute of Structural and Molecular Biology, University College London and Birkbeck, London, UK.
| | - José María Valpuesta
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Biology, Department of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Jorge Cuellar
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
48
|
de Boer HR, Llobet SG, van Vugt MATM. Erratum to: Controlling the response to DNA damage by the APC/C-Cdh1. Cell Mol Life Sci 2016; 73:2985-2998. [PMID: 27251328 PMCID: PMC4969907 DOI: 10.1007/s00018-016-2279-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H Rudolf de Boer
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sergi Guerrero Llobet
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
50
|
Ondracka A, Robbins JA, Cross FR. An APC/C-Cdh1 Biosensor Reveals the Dynamics of Cdh1 Inactivation at the G1/S Transition. PLoS One 2016; 11:e0159166. [PMID: 27410035 PMCID: PMC4943722 DOI: 10.1371/journal.pone.0159166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022] Open
Abstract
B-type cyclin-dependent kinase activity must be turned off for mitotic exit and G1 stabilization. B-type cyclin degradation is mediated by the anaphase-promoting complex/cyclosome (APC/C); during and after mitotic exit, APC/C is dependent on Cdh1. Cdh1 is in turn phosphorylated and inactivated by cyclin-CDK at the Start transition of the new cell cycle. We developed a biosensor to assess the cell cycle dynamics of APC/C-Cdh1. Nuclear exit of the G1 transcriptional repressor Whi5 is a known marker of Start; APC/C-Cdh1 is inactivated 12 min after Whi5 nuclear exit with little measurable cell-to-cell timing variability. Multiple phosphorylation sites on Cdh1 act in a redundant manner to repress its activity. Reducing the number of phosphorylation sites on Cdh1 can to some extent be tolerated for cell viability, but it increases variability in timing of APC/C-Cdh1 inactivation. Mutants with minimal subsets of phosphorylation sites required for viability exhibit striking stochasticity in multiple responses including budding, nuclear division, and APC/C-Cdh1 activity itself. Multiple cyclin-CDK complexes, as well as the stoichiometric inhibitor Acm1, contribute to APC/C-Cdh1 inactivation; this redundant control is likely to promote rapid and reliable APC/C-Cdh1 inactivation immediately following the Start transition.
Collapse
Affiliation(s)
- Andrej Ondracka
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
| | - Jonathan A. Robbins
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York, NY 10065, United States of America
- * E-mail:
| |
Collapse
|