1
|
Molina-Henao EH, Valdez-Benítez OJ, Amon ND, Sandoval-Arango S, López-Uribe MM, Otero-Ospina JT. Phylogenetic Structure of Two Euglossine Communities Divided by the Colombian Andes. NEOTROPICAL ENTOMOLOGY 2025; 54:58. [PMID: 40237964 DOI: 10.1007/s13744-024-01230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/08/2024] [Indexed: 04/18/2025]
Abstract
The alarming decline in bee populations throughout the world makes it imperative to understand the dynamics of its communities in undersampled tropical regions such as Colombian Choco and Amazon. Euglossine bees, also known as orchid bees, are the primary pollinators of orchids in the Neotropical region, and little is known about the resilience of these communities to geographical formations. Combining phylogenetics with the community ecology makes it possible to evaluate the evolutionary relationships among coexisting species, and to associate the phylogenetic structure of the community with the niche overlap and historical events. Here, we evaluated whether the orchid bee communities differ phylogenetically by altitudinal range on each side of the Andean mountains. We collected euglossine bees using chemical attractants at three different elevation levels in two sites (Putumayo and Nariño) separated by the Andean cordillera. We captured 1225 bees belonging to 64 species and four genera. We found phylogenetic clustering in Low and High Nariño, in contrast to Putumayo and Mid Nariño, which tended toward a random draw. However, overdispersion was not recorded; hence, the role of environmental filtering and competitive exclusion in community assembly along elevation gradients remains unclear. Consequently, we propose that the emergence of the Northern Andes generated changes in the composition of orchid bee communities distributed sympatrically. The niche conservatism observed in Nariño is explained by the narrow zone and climatic homogeneity and randomness in Putumayo, by the extension of the territory and other geological events such as Pleistocene refugees and Amazon River formation.
Collapse
Affiliation(s)
- Edward Hernan Molina-Henao
- Grupo de Investigación en Orquídeas, Ecología y Sistemática Vegetal, Univ Nacional de Colombia, Valle del Cauca, Colombia.
- Entomology and Nematology Dept, Univ of Florida, Gainesville, FL, USA.
| | - Oscar Julián Valdez-Benítez
- Grupo de Investigación en Orquídeas, Ecología y Sistemática Vegetal, Univ Nacional de Colombia, Valle del Cauca, Colombia
- Dept of Entomology, Pennsylvania State Univ, University Park, PA, USA
| | - Nolan D Amon
- Dept of Entomology, Pennsylvania State Univ, University Park, PA, USA
- Dept of Entomology, Univ of Wisconsin-Madison, Madison, WI, USA
| | - Stephania Sandoval-Arango
- Grupo de Investigación en Orquídeas, Ecología y Sistemática Vegetal, Univ Nacional de Colombia, Valle del Cauca, Colombia
- Dept of Entomology, Pennsylvania State Univ, University Park, PA, USA
| | | | - Joel Tupac Otero-Ospina
- Grupo de Investigación en Orquídeas, Ecología y Sistemática Vegetal, Univ Nacional de Colombia, Valle del Cauca, Colombia
| |
Collapse
|
2
|
Nelson AS, Larson MJ, Hammer TJ. Core symbionts, age at inoculation and diet affect colonization of the bumblebee gut by a common bacterial pathogen. J Anim Ecol 2025. [PMID: 40177853 DOI: 10.1111/1365-2656.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Microbes shape the health of bumblebees, an important group of pollinators, including species of conservation concern. Most microbial research on bumblebees has focused on eukaryotic and viral pathogens or the core gut microbiome, a community of host-specialized bacterial symbionts that helps protect hosts against eukaryotic pathogens. Bumblebees also harbour a third class of microbes: non-core gut bacteria, which are non-host specific and vary among individuals. Understanding their functional role and how they interact with core symbionts is important for bumblebee ecology and management. We surveyed non-core bacteria in wild bumblebee workers (Bombus impatiens) and conducted laboratory experiments with gnotobiotic B. impatiens to examine factors shaping colonization by a focal non-core bacterium (Serratia marcescens) and its consequences for bee health. Non-core bacteria, including Serratia, frequently occur at high abundance in wild bumblebees, with roughly half of individuals harbouring at least 10% non-core gut bacteria. Experiments showed that Serratia marcescens better colonizes the gut when bees are inoculated early (within 1 day of adult emergence) and the core gut microbiome is disrupted. A mixed wildflower pollen diet facilitated the highest level of infection compared with two monofloral pollen treatments. We also provide evidence that Serratia is pathogenic: exposing bees with disrupted gut microbiomes to Serratia strongly reduced lifespan and, as a result, also reduced total reproduction. These results have three important implications: first, non-core bacteria are widespread in wild bumblebees, and some species are opportunistic pathogens. Second, the core gut microbiome plays a crucial role in protecting against these pathogens. Third, the timing of inoculation relative to bee age, as well as diet, is a key factor controlling bacterial pathogen colonization of the gut. Overall, these findings suggest that gut bacterial health could be an important target for monitoring and managing bumblebee health.
Collapse
Affiliation(s)
- Annika S Nelson
- Department of Biology, Texas Christian University, Fort Worth, Texas, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - McKenna J Larson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Tobin J Hammer
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Polidori C, Trisoglio CF, Ferrari A, Romano A, Bonasoro F. Contaminant-driven midgut histological damage in bees and other aculeate Hymenoptera: A quantitative review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 115:104670. [PMID: 40049307 DOI: 10.1016/j.etap.2025.104670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/09/2025]
Abstract
We present a review about histological sub-lethal effects due to anthropogenic contaminants on the midgut of bees and other aculeate hymenopterans. Contaminant types, damage types, and methodology were extracted and summarized from 74 published articles, and then quantitatively analyzed. We found that the Western honeybee (Apis mellifera) is by far the most widely used model. Contaminants have largely been tested under laboratory conditions, particularly insecticides and fungicides. Tissue-level damage (e.g., degradation of epithelium and of peritrophic membrane) were often detected together with cell-level damage (e.g., cell vacuolisation, karyorrhexis). Descriptive statistics and mixed models suggested that herbicides may cause a specific mix of alterations with an overall lower severity compared with other pesticides, while the combined use of light and electron microscopy seemed to detect more damage types. We claim for efforts to reduce biases in future studies on such histological effects, allowing their clearer use as markers of human activities.
Collapse
Affiliation(s)
- Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy.
| | - Chiara Francesca Trisoglio
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Andrea Romano
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| | - Francesco Bonasoro
- Department of Environmental Science and Policy (ESP), University of Milan, via Celoria 26, Milan 20133, Italy
| |
Collapse
|
4
|
Cirtwill AR, Roslin T, Peña-Aguilera P, Agboto A, Bercê W, Bondarchuk SN, Brodschneider R, Heidari B, Kaizirege C, Nyaga JM, Ekpah O, Gomez GO, Paz C, Pirk C, Salehi-Najafabadi A, Salonen A, Soloniaina C, Wirta H. The Latitudinal Biotic Interaction Hypothesis revisited: contrasting latitudinal richness gradients in actively vs. passively accumulated interaction partners of honey bees. BMC Ecol Evol 2025; 25:24. [PMID: 40097948 PMCID: PMC11912709 DOI: 10.1186/s12862-025-02363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Contrasting hypotheses suggest that the number of biotic interactions per species could either increase towards the equator due to the increasing richness of potential interaction partners (Neutral theory), or decrease in the tropics due to increased biotic competition (Latitudinal Biotic Interaction Hypothesis). Empirical testing of these hypotheses remains limited due to practical limitations, differences in methodology, and species turnover across latitudes. Here, we focus on a single species with a worldwide distribution, the honey bee (Apis mellifera L.), to assess how the number of different types of interactions vary across latitudes. Foraging honey bees interact with many organisms in their local environment, including plants they actively select to visit and microbes that they largely encounter passively (i.e., unintentionally and more or less randomly). Tissue pieces and spores of these organisms are carried to the hive by foraging honey bees and end up preserved within honey, providing a rich record of the species honey bees encounter in nature. RESULTS Using honey samples from around the globe, we show that while honey bees visit more plant taxa at higher latitudes, they encounter more bacteria in the tropics. CONCLUSIONS These different components of honey bees' biotic niche support the latitudinal biotic interaction hypothesis for actively-chosen interactions, but are more consistent with neutral theory (assuming greater bacterial richness in the tropics) for unintentional interactions.
Collapse
Affiliation(s)
| | - Tomas Roslin
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pablo Peña-Aguilera
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Agathe Agboto
- University of Abomey-Calavi, Faculty of Agronomic Sciences, Laboratory of Agricultural Entomology, Abomey-Calavi, Benin
| | | | - Svetlana N Bondarchuk
- Sikhote-Alin State Nature Biosphere Reserve Named After K.G. Abramov, 44 Partizanskaya Str., Terney, Primorsky Krai, 692150, Russia
| | | | - Behzad Heidari
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Camara Kaizirege
- Tanzifarm Tanzania Limited, Mlele District, Katavi Region, Tanzania
| | | | - Ojonugwa Ekpah
- Institute of Geoecology, Department Landscape Ecology and Environmental Systems Analysis, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Claudia Paz
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, Av 24A 1515, Rio Claro, SP, 13506-900, Brazil
- Current address: Department of Entomology and Acarology, Laboratory of Pathology and Microbial Control, University of São Paulo, 13418-900, Piracicaba, SP, Brazil
| | - Christian Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Amir Salehi-Najafabadi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Anneli Salonen
- Finnish Beekeepers' Association, Ullanlinnankatu 1 A 3, 00130, Helsinki, Finland
| | - Chantal Soloniaina
- Department of International Relations and Partnership, Ministry of Education, Antananarivo, Madagascar
| | - Helena Wirta
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden.
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Doublet V, Doyle TD, Carvell C, Brown MJF, Wilfert L. Host ecology and phylogeny shape the temporal dynamics of social bee viromes. Nat Commun 2025; 16:2207. [PMID: 40044660 PMCID: PMC11882784 DOI: 10.1038/s41467-025-57314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The composition of viral communities (i.e. viromes) can be dynamic and complex. Co-evolution may lead to virome host-specificity. However, eco-evolutionary factors may influence virome dynamics in wild host communities, potentially leading to disease emergence. Social bees are relevant models to address the drivers of virome composition: these important pollinators form multi-species assemblages, with high niche overlap and strong seasonality in their biotic interactions. We applied a microbial community approach to disentangle the role of host phylogeny and host ecology in shaping bee viromes, combining plant-pollinator networks with meta-transcriptomics, and small interfering RNAs as proxies for viral replication in pollinators and pollen. We identified over a hundred insect and plant viral sequences from ca. 4500 insect pollinator samples across three time points in one year. While host genetic distance drives the distribution of bee viruses, we find that plant-pollinator interactions and phenology drive plant virus communities collected by bees. This reveals the opportunities for virus spread in the bee assemblage. However, we show that transmission to multiple hosts is only realized for a fraction of insect viruses, with even fewer found to be actively replicating in multiple species, including the particularly virulent multi-host acute bee paralysis virus.
Collapse
Affiliation(s)
- Vincent Doublet
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Toby D Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Mark J F Brown
- Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
6
|
Payne AN, Prayugo V, Dolezal AG. A honey bee-associated virus remains infectious and quantifiable in postmortem hosts. J Invertebr Pathol 2025; 209:108258. [PMID: 39667616 DOI: 10.1016/j.jip.2024.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Corpse-mediated pathogen transmission is a viable route through which naïve hosts can become infected, but its likelihood for honey bee-associated viruses is largely unknown. While these viruses can be easily detected in deceased bees, it remains unclear if they stay infectious within postmortem hosts or if enough viral RNA degradation-and subsequently virus inactivation-occurs post-host death to render these viruses inviable. This knowledge gap has important implications for how researchers perform honey bee virus studies and for our general understanding of honey bee virus transmission. To better understand the resiliency of honey bee-associated viruses within deceased hosts, we first tested the hypothesis that postmortem specimens, stored in colony-normal temperature and humidity conditions, can be reliably used to quantify virus abundance. To determine this, we experimentally-infected adult honey bees with Israeli acute paralysis virus (IAPV) and then measured the virus levels of individuals sampled live or at different postmortem time points (4, 12, 24, and 48 hours post-death) using RT-qPCR and a standard curve absolute quantification method. We found no significant differences based on when bees were sampled, indicating that postmortem honey bees are statistically comparable to using live-sampled bees and can be reliably used to quantify absolute IAPV abundance. We then performed a follow-up experiment that determined whether or not the IAPV detected in postmortem bees remained infectious over time. We found that IAPV extracted from postmortem bees remained highly infectious for at least 48 hours post-death, indicating that any viral RNA degradation that may have occurred during the postmortem interval did not adversely affect IAPV's overall infectivity. The results from this study suggest that IAPV is more resilient to degradation than previously assumed, support the use of postmortem bees for downstream IAPV analyses, and indicate that postmortem hosts can act as sources of IAPV infection for susceptible individuals.
Collapse
Affiliation(s)
- Alexandria N Payne
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; USDA-ARS Honey Bee Breeding, Genetics, and Physiology Unit, Baton Rouge, LA 70820, United States.
| | - Vincent Prayugo
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Adam G Dolezal
- University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| |
Collapse
|
7
|
Müller‐Theissen ML, Gottdenker NL, Altizer SM. Resistance and Tolerance to Imperfectly Specialized Parasites: Milkweed Butterflies and Their Protozoan Parasites. Ecol Evol 2025; 15:e70979. [PMID: 40040934 PMCID: PMC11879272 DOI: 10.1002/ece3.70979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 03/06/2025] Open
Abstract
Understanding host specificity and cross-species transmission of parasites is crucial for predicting the risk and consequences of parasite spillover. We experimentally examined these dynamics in two closely related, sympatric, milkweed butterfly hosts: monarchs (Danaus plexippus) and queens (D. gilippus). The debilitating protozoan Ophryocystis elektroscirrha (OE) infects wild monarchs throughout their range, and similar neogregarine parasites have been reported from queens. We compared host resistance and tolerance to infection between hosts exposed to parasites of conspecific and heterospecific origin and examined whether differences in immune investment reflected variation in infection outcomes. Results showed that monarchs were highly susceptible to both conspecific and heterospecific parasites. In contrast, queens were susceptible almost exclusively to conspecific parasites. Queens showed greater tolerance to infection and greater immune defense in the form of melanization activity and concentration of encapsulating hemocytes. Additionally, monarch parasites caused higher pre-adult mortality and more wing deformities than queen parasites. Given that OE can reduce monarch abundance and migratory performance, quantifying cross-infection outcomes is important for conservation management of these two butterfly species. The greater susceptibility and costs of infection in monarchs suggest potential fitness trade-offs against resistance and tolerance to infection in migratory hosts and underscore the need to identify factors that limit hosts' adaptation to parasites.
Collapse
Affiliation(s)
- Maria L. Müller‐Theissen
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
| | - Nicole L. Gottdenker
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
- Department of PathologyCollege of Veterinary Medicine, University of GeorgiaAthensGAUSA
| | - Sonia M. Altizer
- Odum School of EcologyUniversity of GeorgiaAthensGAUSA
- Center for the Ecology of Infectious DiseasesUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
8
|
Camenzind DW, Bruckner S, Neumann P, Van Oystaeyen A, Strobl V, Williams GR, Straub L. Microsporidian parasite impairs colony fitness in bumblebees. Open Biol 2025; 15:240304. [PMID: 39999878 PMCID: PMC11858756 DOI: 10.1098/rsob.240304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Emerging infectious diseases can have a major impact on fitness of novel hosts, thereby contributing to ongoing species declines. In social insects, collaborative brood care by workers and successful mating of male sexuals are key to colony fitness. The microsporidian endoparasite Nosema ceranae has spread almost globally, shifting across honeybee species and now to bumblebees. However, despite N. ceranae being linked to recent population declines, its possible impact on bumblebee colony fitness remains poorly understood. Here, we show that N. ceranae infections can significantly impact Bombus terrestris worker feeding glands, as well as longevity, sperm quality and mating abilities of drones. In the laboratory, workers and drones were either exposed to the parasite or not. Then, parasite infection rates and loads, as well as lethal and sublethal parameters, were assessed. Infected drones revealed higher parasite infection rates and spore titres, as well as mortality compared with female workers, suggesting sex-specific susceptibility. Furthermore, infections impaired feeding glands, affected sperm traits and altered mating behaviour, all of which are key to colony fitness. Our findings provide a mechanistic explanation on how N. ceranae contributes to the ongoing decline of wild bumblebee populations, calling for respective mitigation measures.
Collapse
Affiliation(s)
- Domenic W. Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | | | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Geoffrey R. Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| |
Collapse
|
9
|
Sokolov NA, Boots M, Bartlett LJ. Avoiding the tragedies of parasite tolerance in Darwinian beekeeping. Proc Biol Sci 2025; 292:20242433. [PMID: 39904384 PMCID: PMC11793967 DOI: 10.1098/rspb.2024.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees, Apis mellifera, major losses are associated with the virus-vectoring mite, Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significant Varroa infestations produce subsequent colonies. We argue that this 'hands-off' approach will not always lead to Varroa resistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to 'tragedies of tolerance'. These tragedies can be avoided through successful breeding regimes that specifically select for low Varroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management.
Collapse
Affiliation(s)
- Nina A. Sokolov
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Lewis J. Bartlett
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
10
|
Chen H, Bashir NH, Li Q, Liu C, Naeem M, Wang H, Gao W, Corlett RT, Liu C, Vidal MC. The Role of Pathogens in Bumblebee Decline: A Review. Pathogens 2025; 14:94. [PMID: 39861055 PMCID: PMC11768362 DOI: 10.3390/pathogens14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes. Unfortunately, there is a lack of a full understanding of the role of pathogens and parasites in the decline of bumblebee species. The current study provides a comprehensive review of how pathogens and parasites contribute to the decline of bumblebee species. The study also explores the prevalence of each pathogen and parasite within bumblebee populations. Furthermore, we address the synergistic effects of pathogens and other stressors, such as pesticides, climatic effects, and habitat loss, on bumblebee populations. To summarize, we propose possible conservation and management strategies to preserve the critical role of bumblebees in pollination services and thus to support ecosystem and agricultural health.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nawaz Haider Bashir
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Qiang Li
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, Qujing Normal University, Qujing, 655011, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Muhammad Naeem
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Haohan Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Wenrong Gao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China; (H.C.); (N.H.B.); (Q.L.); (M.N.); (H.W.); (W.G.)
| | - Richard T. Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China;
| | - Cong Liu
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
- Department of Organismic and Evolutional Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mayra C. Vidal
- Biology Department, University of Massachusetts Boston, Boston, MA 02125, USA;
| |
Collapse
|
11
|
Cini E, Potts SG, Senapathi D, Albrecht M, Arafah K, Askri D, Bocquet M, Bulet P, Costa C, la Rúa PD, Klein AM, Knauer A, Mänd M, Raimets R, Schweiger O, Stout JC, Breeze TD. Beekeepers' perceptions toward a new omics tool for monitoring bee health in Europe. PLoS One 2025; 20:e0316609. [PMID: 39808672 PMCID: PMC11731711 DOI: 10.1371/journal.pone.0316609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Pressures on honey bee health have substantially increased both colony mortality and beekeepers' costs for hive management across Europe. Although technological advances could offer cost-effective solutions to these challenges, there is little research into the incentives and barriers to technological adoption by beekeepers in Europe. Our study is the first to investigate beekeepers' willingness to adopt the Bee Health Card, a molecular diagnostic tool developed within the PoshBee EU project which can rapidly assess bee health by monitoring molecular changes in bees. The Bee Health Card, based on MALDI BeeTyping®, is currently on level six of the Technology Readiness Level scale, meaning that the technology has been demonstrated in relevant environments. Using an on-line survey from seven European countries, we show that beekeepers recognise the potential for the tool to improve colony health, and that targeted economic incentives, such as subsidises, may help reduce cost being a barrier to the adoption and frequent use of the tool. Based on the description of the tool, 43% of beekeepers appear to be moderately confident in the effectiveness of the Bee Health Card. This confidence could increase if the tool was easy to use and not time consuming, and a higher confidence could also contribute to raising the probability of accepting extra costs linked to it. We estimate that, in the worst-case scenario, the cost per single use of the Bee Health Card should be between €47-90 across a range of European countries, depending on the labour and postage costs. However, the monetary benefits in terms of honey production could exceed this. In order to successfully tackle colony health issues, it is recommended using the BHC five times per year, from the end to the beginning of winter. Finally, we discuss the knowledge needs for assessing beekeeper health tools in future research.
Collapse
Affiliation(s)
- Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
- School of Environmental and Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Simon G. Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
| | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
| | | | | | - Dalel Askri
- Plateforme BioPark d’Archamps, Archamps, France
| | | | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Team-Verdel: ARN, Epigénétique et Stress/RNA, Epigenetics and Stress, Grenoble, France
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, Murcia, Spain
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - Anina Knauer
- Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Oliver Schweiger
- UFZ–Helmholtz Centre for Environmental Research, Department of Community Ecology, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher, Leipzig, Germany
| | - Jane C. Stout
- Trinity College Dublin, School of Natural Sciences, Botany Department, College Green, Dublin, Ireland
| | - Tom D. Breeze
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, England, United Kingdom
| |
Collapse
|
12
|
Straub F, Birkenbach M, Boesing AL, Manning P, Olsson O, Kuppler J, Wilfert L, Ayasse M. Local and landscape factors differently influence health and pollination services in two important pollinator groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178330. [PMID: 39752984 DOI: 10.1016/j.scitotenv.2024.178330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/12/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
Agricultural management significantly affects insects, especially pollinators, which are crucial for crop pollination and biodiversity. In agricultural landscapes, various factors spanning different spatial scales are known to affect pollinator health, which, in turn, can influence pollination services. However, the importance of these factors in driving the health and performance of different pollinator groups remains unclear. Using a long-term biodiversity research platform, the German Biodiversity Exploratories, we investigated links between local and landscape-level land-use, health and pollination services in common pollinators, the bumblebee Bombus lapidarius and the syrphid fly Episyrphus balteatus, by measuring various traits as proxies for pollinator health and pollination services. Because of their different life histories, we expected the territorial bumblebees to be more vulnerable to land-use intensification at both spatial levels, compared with the migratory syrphid flies. Both land-use and environmental factors (climate) across spatial scales affected pollinator health, mostly via changes in body size: High land-use intensity reduced bumblebee body size, whereas higher ambient air temperature decreased syrphid fly body size. Increasing proportions of intensively managed areas at the landscape level decreased viral infections in both species. Additionally, landscape-level land-use and climate changed the bumblebees cuticular chemical profile, which is essential for communication in these social insects. Increasing land-use intensity at the local level and higher proportions of intensive land-use at the landscape level both had an indirect negative effect on pollination services in bumblebees via local flower cover and body size. Pollination services in both species were linked to body size. Thus, land-use factors affect pollinator health differently: bumblebees are more vulnerable to local and landscape-level land-use intensification, while syrphid flies are more resilient potentially due to their higher mobility. As pollinator health affects pollination services, our results indicate that land-use intensification poses a high risk to crops pollinated by species with small home ranges.
Collapse
Affiliation(s)
- Florian Straub
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Markus Birkenbach
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Andrea Larissa Boesing
- Senckenberg Biodiversität und Klima Forschungszentrum, Georg-Voigt-Straße 14-16, 60325 Frankfurt am Main, Germany
| | - Peter Manning
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ola Olsson
- Lund University, Department of Biology, Ecology Building, 22362 Lund, Sweden
| | - Jonas Kuppler
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Lena Wilfert
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Ayasse
- Ulm University, Institute of Evolutionary Ecology and Conservation Genomics, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
13
|
Maurer C, Schauer A, Yañez O, Neumann P, Gajda A, Paxton RJ, Pellissier L, Schweiger O, Szentgyörgyi H, Vanbergen AJ, Albrecht M. Species traits, landscape quality and floral resource overlap with honeybees determine virus transmission in plant-pollinator networks. Nat Ecol Evol 2024; 8:2239-2251. [PMID: 39367259 PMCID: PMC11618065 DOI: 10.1038/s41559-024-02555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Emerging infectious diseases pose a threat to pollinators. Virus transmission among pollinators via flowers may be reinforced by anthropogenic land-use change and concomitant alteration of plant-pollinator interactions. Here, we examine how species' traits and roles in flower-visitation networks and landscape-scale factors drive key honeybee viruses-black queen cell virus (BQCV) and deformed wing virus-in 19 wild bee and hoverfly species, across 12 landscapes varying in pollinator-friendly (flower-rich) habitat. Viral loads were on average more than ten times higher in managed honeybees than in wild pollinators. Viral loads in wild pollinators were higher when floral resource use overlapped with honeybees, suggesting these as reservoir hosts, and increased with pollinator abundance and viral loads in honeybees. Viral prevalence decreased with the amount of pollinator-friendly habitat in a landscape, which was partly driven by reduced floral resource overlap with honeybees. Black queen cell virus loads decreased with a wild pollinator's centrality in the network and the proportion of visited dish-shaped flowers. Our findings highlight the complex interplay of resource overlap with honeybees, species traits and roles in flower-visitation networks and flower-rich pollinator habitat shaping virus transmission.
Collapse
Affiliation(s)
- Corina Maurer
- Agroecology and Environment, Agroscope, Zürich, Switzerland.
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Gajda
- Warsaw University of Life Sciences, Institute of Veterinary Medicine, Laboratory of Bee Diseases, Warsaw, Poland
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Loïc Pellissier
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schweiger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, Halle (Saale), Germany
| | | | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
14
|
Torchio GM, Cimon-Morin J, Mendes P, Goyette JO, Schwantes AM, Arias-Patino M, Bennett EM, Destrempes C, Pellerin S, Poulin M. From marginal croplands to natural habitats: A methodological framework for assessing the restoration potential to enhance wild-bee pollination in agricultural landscapes. LANDSCAPE ECOLOGY 2024; 39:194. [PMID: 39539641 PMCID: PMC11554958 DOI: 10.1007/s10980-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Context Intensive agriculture increases crop yields, but harms biodiversity and associated ecosystem services such as pollination. To sustain wild-bee pollination in intensive agricultural landscapes, a minimum of (semi-) natural habitat is needed in the vicinity of crop fields. However, restoration of (semi-) natural habitat is a challenge, especially when most land is allocated to commodity production. Objectives To evaluate the restoration potential of marginal lands to enhance pollination in intensive agricultural landscapes. Methods We simulated restoration scenarios in marginal agricultural lands (abandoned and degraded fields, and field edges) in La Vallée-du-Richelieu (Quebec, Canada), aimed at enhancing pollination provision and increasing (semi-) natural habitat coverage by at least 20% within 1 km from crop fields, the estimated minimum amount required to sustain wild-bee populations. We then evaluated the extent to which restoration targets were reached in our scenarios. Results More than half of the agricultural region studied remained with less than 20% (semi-) natural area coverage, and wild-bee pollination provision could not be ensured across the whole agricultural region after restoration. However, our results show that there is still an important potential for increasing natural habitat coverage by restoring marginal agricultural lands alone. Conclusion Restoration of marginal lands has a key role to play in the transition towards multifunctionality of production landscapes but might not be sufficient to achieve goals such as those adopted at the COP15 (e.g., restoring 30% of degraded land). Our framework can assist landscape planners in evaluating the restoration potential of agricultural landscapes, as well as its limitations. Supplementary Information The online version contains supplementary material available at 10.1007/s10980-024-01993-y.
Collapse
Affiliation(s)
- Gabriela María Torchio
- Département de Phytologie, Faculté des Sciences de L’Agriculture et de L’Alimentation, Université Laval, 2425 Rue de L’Agriculture, Québec, QC G1V 0A6 Canada
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
- Centre d’Étude de la Forêt, Université du Québec À Montréal, 141 Président-Kennedy, Montréal, QC H2X 1Y4 Canada
| | - Jérôme Cimon-Morin
- Centre d’Étude de la Forêt, Université du Québec À Montréal, 141 Président-Kennedy, Montréal, QC H2X 1Y4 Canada
- Département des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et de Géomatique, Université Laval, 2405 Rue de La Terrasse, Québec, QC G1V 0A6 Canada
| | - Poliana Mendes
- Département de Phytologie, Faculté des Sciences de L’Agriculture et de L’Alimentation, Université Laval, 2425 Rue de L’Agriculture, Québec, QC G1V 0A6 Canada
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
| | - Jean-Olivier Goyette
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
- Département des Sciences Naturelles et Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), 58 Rue Principale, Ripon, QC J0V 1V0 Canada
| | - Amanda M. Schwantes
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2 Canada
| | - Miguel Arias-Patino
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 Canada
| | - Elena M. Bennett
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
- McGill School of Environment, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
| | - Catherine Destrempes
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9 Canada
| | - Stéphanie Pellerin
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
- Institut de Recherche en Biologie Végétale, Université de Montréal and Jardin Botanique de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC H1X 2B2 Canada
| | - Monique Poulin
- Département de Phytologie, Faculté des Sciences de L’Agriculture et de L’Alimentation, Université Laval, 2425 Rue de L’Agriculture, Québec, QC G1V 0A6 Canada
- Quebec Centre for Biodiversity Science, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC H3A 1B1 Canada
| |
Collapse
|
15
|
Czaczkes TJ, Breuss C, Kurze C. High variability in the attractiveness of municipally-planted decorative plants to insects. PeerJ 2024; 12:e17762. [PMID: 39525476 PMCID: PMC11549908 DOI: 10.7717/peerj.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/26/2024] [Indexed: 11/16/2024] Open
Abstract
Insect populations are declining globally. A major driver of this decline is land use change, including urbanisation. However, urban environments can also offer a wide range of floral resources to pollinators, through ornamental plantings, but these can vary widely in their attractiveness to insects. Often, the largest single planter of ornamental plants in an urban area is the municipality. Here we evaluated the decorative plantings carried out by the city municipality of Regensburg, Germany, by systematically surveying insect visitations on different plant types in late summer, when forage is often limited for pollinators. We found a 130-fold difference from the least to the most attractive plants, and high variation in which insect groups were attracted to which plants. While honey bees, which are not a conservation concern, were the most common insect visitors, some decorative plants attracted a very large proportion of wild bees, flies, and wasps. Our results demonstrate that there is great scope for increasing the supply of urban forage to pollinators in general, and specific groups in particular, without requiring new decorative plant types to be sourced or planted. We argue that providing local evidence-based guidance to municipalities offers a quick and potentially cost-neutral method for supporting urban insect populations.
Collapse
|
16
|
Šimenc Kramar L, Toplak I. Identification of Twenty-Two New Complete Genome Sequences of Honeybee Viruses Detected in Apis mellifera carnica Worker Bees from Slovenia. INSECTS 2024; 15:832. [PMID: 39590430 PMCID: PMC11594352 DOI: 10.3390/insects15110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
In this study, honeybee viruses were identified in naturally infected honeybee colonies (Apis mellifera carnica). From nine selected samples of clinically affected and ten samples of healthy honeybee colonies, different strains of honeybee viruses were first detected using quantitative real-time RT-PCR methods. Twenty-two nucleotide sequences of the complete genomes of honeybee viruses were identified using the Illumina Next-Generation Sequencing (NGS) method: acute bee paralysis virus (ABPV) (n = 4), black queen cell virus (BQCV) (n = 3), chronic bee paralysis virus (CBPV) (n = 2), deformed wing virus (DWV) (n = 5), Lake Sinai virus (LSV) (n = 4), sacbrood bee virus (SBV) (n = 1), Apis rhabdovirus-1 (ARV-1) (n = 1), bee macula-like virus (BeeMLV) (n = 1) and Hubei partiti-like virus 34 (HPLV34) (n = 1). The nucleotide sequences of ABPV, BQCV, DWV and SBV are the first complete genomes of these viruses identified in Slovenia and they represent an important contribution to our understanding of the genetic diversity of honeybee viruses. ARV-1, BeeMLV and HPLV34 were detected and sequenced for the first time in Slovenia.
Collapse
Affiliation(s)
- Laura Šimenc Kramar
- Institute of Microbiology and Parasitology, Parasitology Unit, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia
| | - Ivan Toplak
- Institute of Microbiology and Parasitology, Virology Unit, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1115 Ljubljana, Slovenia;
| |
Collapse
|
17
|
Bosco L, Yañez O, Schauer A, Maurer C, Cushman SA, Arlettaz R, Jacot A, Seuberlich T, Neumann P, Schläppi D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174280. [PMID: 38942311 DOI: 10.1016/j.scitotenv.2024.174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.
Collapse
Affiliation(s)
- Laura Bosco
- LUOMUS - Finnish Museum of Natural History, PL 17 - P.O. Box 17, 00014, University of Helsinki, Finland; Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Samuel A Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Ornithological Institute, Regional Office Valais, 1950 Sion, Switzerland.
| | - Torsten Seuberlich
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; School of Biological Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, BS8 1TQ Bristol, United Kingdom.
| |
Collapse
|
18
|
Miles GP, Liu XF, Scheffler BE, Amiri E, Weaver MA, Grodowitz MJ, Chen J. Solenopsis richteri (Hymenoptera: Formicidae) alates infected with deformed wing virus display wing deformity with altered mobility. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:47. [PMID: 39302452 DOI: 10.1007/s00114-024-01934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Deformed wing virus (DWV) has long been identified as a critical pathogen affecting honeybees, contributing to colony losses through wing deformities, neurological impairments, and reduced lifespan. Since DWV also affects other pollinators, it poses a significant threat to global pollination networks. While honeybees have been the focal point of DWV studies, emerging research indicates that this RNA virus is not host-specific but rather a generalist pathogen capable of infecting a wide range of insect species, including other bee species such as bumblebees and solitary bees, as well as wasps and ants. This expands the potential impact of DWV beyond honeybees to broader ecological communities. The black imported fire ant, Solenopsis richteri, is an economically important invasive ant species. In this study, we describe deformed wing (DW) symptoms in S. richteri. DW alates were found in three of nine (33%) laboratory colonies. The symptoms ranged from severely twisted wings to a single crumpled wing tip. Additionally, numerous symptomatic alates also displayed altered mobility, ranging from an ataxic gait to an inability to walk. Viral replication of DWV was confirmed using a modified strand-specific RT-PCR. Our results suggest that S. richteri can be an alternative host for DWV, expanding our understanding of DWV as a generalist pathogen in insects. However, additional research is required to determine whether DWV is the etiological agent responsible for DW syndrome in S. richteri.
Collapse
Affiliation(s)
- Godfrey P Miles
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Xiaofen F Liu
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, 141 Experiment Station Road, Stoneville, MS, 38776, USA
| | - Esmaeil Amiri
- Delta Research and Extension Center, Mississippi State University, 82 Stoneville Road, Stoneville, MS, 38776, USA
| | - Mark A Weaver
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Michael J Grodowitz
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Jian Chen
- Biological Control of Pests Research Unit, USDA-ARS, Stoneville, MS, 38776, USA.
| |
Collapse
|
19
|
Pamminger T, Basley K, Goulson D, Hughes WOH. Potential acetylcholine-based communication in honeybee haemocytes and its modulation by a neonicotinoid insecticide. PeerJ 2024; 12:e17978. [PMID: 39285925 PMCID: PMC11404474 DOI: 10.7717/peerj.17978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
There is growing concern that some managed and wild insect pollinator populations are in decline, potentially threatening biodiversity and sustainable food production on a global scale. In recent years, there has been increasing evidence that sub-lethal exposure to neurotoxic, neonicotinoid pesticides can negatively affect pollinator immunocompetence and could amplify the effects of diseases, likely contributing to pollinator declines. However, a direct pathway connecting neonicotinoids and immune functions remains elusive. In this study we show that haemocytes and non-neural tissues of the honeybee Apis mellifera express the building blocks of the nicotinic acetylcholine receptors that are the target of neonicotinoids. In addition, we demonstrate that the haemocytes, which form the cellular arm of the innate immune system, actively express choline acetyltransferase, a key enzyme necessary to synthesize acetylcholine. In a last step, we show that the expression of this key enzyme is affected by field-realistic doses of clothianidin, a widely used neonicotinoid. These results support a potential mechanistic framework to explain the effects of sub-lethal doses of neonicotinoids on the immune function of pollinators.
Collapse
Affiliation(s)
- Tobias Pamminger
- School of Life Sciences, University of Sussex, Brighton, UK
- Bayer AG, Monheim am Rhein, Germany
| | - Kate Basley
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | |
Collapse
|
20
|
Zhao X, Jiang J, Pang Z, Ma W, Jiang Y, Fu Y, Liu Y. Tracking Existing Factors Directly Affecting the Reproduction of Bumblebees: Current Knowledge. INSECTS 2024; 15:654. [PMID: 39336622 PMCID: PMC11432074 DOI: 10.3390/insects15090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Bumblebees are primary social insects and a vital class of pollinating insects. Their distinctive reproductive mode is characterized by the independent initiation and construction of the nest by the queen and the subsequent production of sufficient workers, males, and gynes following colony development. After successful mating, the queen transitions to the first phase of its annual life cycle. The reproductive processes are directly influenced by environmental factors, including floral resources and pesticides. Moreover, the reproductive level is regulated by biological factors, particularly the role of workers, who participate in egg laying and pass on their genetic material to the next generation of queens. Successful reproduction can only be achieved by maintaining colony development under natural or artificial breeding conditions. Consequently, understanding the known factors that influence bumblebee reproduction is essential for developing conservation strategies for wild bumblebees and for successfully breeding diverse bumblebee species. Breeding various bumblebee species is crucial for in-depth research into known factors and for further exploration of other potential factors, which will also help to meet the demand for pollination in agricultural facilities globally.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Jingxin Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Zilin Pang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan 030031, China;
| | - Yusuo Jiang
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| | - Yanfang Fu
- HeBei Provincial Animal Husbandry Station, Shijiazhuang 050035, China;
| | - Yanjie Liu
- College of Animal Sciences, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (X.Z.); (J.J.); (Z.P.); (Y.J.)
| |
Collapse
|
21
|
Lee YD, Yokoi T, Nakazawa T. A pollinator crisis can decrease plant abundance despite pollinators being herbivores at the larval stage. Sci Rep 2024; 14:18523. [PMID: 39122794 PMCID: PMC11316071 DOI: 10.1038/s41598-024-69537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Pollinating insects are decreasing worldwide due to various environmental stresses (so-called pollinator crisis), raising concerns that plant productivity could be undermined in natural and agricultural ecosystems. To date, however, few studies have reported a concurrent decline in both pollinators and plants, and little is known about when a "plant crisis" occurs. Here, we propose that anthropogenic environmental stresses on pollinating insects (e.g. climate change, habitat loss, and pesticide usage) can negatively affect herbivorous insects (e.g., pollinator larvae and crop pests) as well, and effects of pollinator declines may be masked by positive effects of herbivore declines. To test the idea, we theoretically investigated plant population dynamics mediated by two insect groups: one representing a pollinator that is mutualistic at the adult stage but antagonistic at the larval stage, and the other representing a non-structured pest herbivore. Our model revealed that environmental stresses (increasing insect mortality) can have counterintuitive effects on plants. Nonetheless, plant abundance generally decreases with decreasing pollinator abundance, especially when plant populations grow slowly without pollinators, when pollinators are effective mutualists, or when pollinators are susceptible to environmental stresses. These findings offer a theoretical basis for assessing the pollinator crisis for biodiversity conservation and agricultural management.
Collapse
Affiliation(s)
- Yi-De Lee
- Department of Physics, National Cheng Kung University, Tainan City, Taiwan
| | - Tomoyuki Yokoi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takefumi Nakazawa
- Department of Life Sciences, National Cheng Kung University, No.1, University Road, 701, Tainan City, Taiwan.
| |
Collapse
|
22
|
Shamaev ND, Shuralev EA, Mukminov MN. Current status of Nosema spp. infection cases in apis mellifera in eurasian countries and Ptp3 gene haplotypes in the Republic of Tatarstan, Russia. Vet Res Commun 2024; 48:2691-2698. [PMID: 38644458 DOI: 10.1007/s11259-024-10383-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
The current status of Nosema spp. infections in A. mellifera throughout Eurasia was characterized using electronic databases. Although N. ceranae was predominantly detected in southwestern and south-central regions and N. apis in northwestern and north-central areas, most studies reported the occurrence of both species in Eurasia. In addition, the occurrence of Nosema spp. and Ptp3 gene haplotypes was investigated in the Republic of Tatarstan, Russia. Most of the examined honey bees were infected with both N. apis and N. ceranae. N. apis and N. ceranae isolates were either heterozygous or belonged to different strains and showed infection with more than one strain. New haplotypes were found for N. apis and N. ceranae in the Republic of Tatarstan, Russia. This study expands the data regarding existing haplotypes of Nosema species: there are currently 9 shared and 56 unique Ptp3 nucleotide sequence haplotypes of N. ceranae, and 2 shared and 7 unique haplotypes of N. apis, respectively.
Collapse
Affiliation(s)
- Nikolai D Shamaev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia.
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia.
- Kazan State Medical University, Republic of Tatarstan, 49 Butlerova St, Kazan, 420012, Russia.
| | - Eduard A Shuralev
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
- Kazan State Academy of Veterinary Medicine named after N.E. Bauman, Republic of Tatarstan, 35 Sibirskiy tract St, 420029, Kazan, Russia
| | - Malik N Mukminov
- Central Research Laboratory, Russian Medical Academy of Continuous Professional Education (Kazan State Medical Academy Branch), Republic of Tatarstan, 36 Butlerova St, Kazan, 420012, Russia
- Department of Applied Ecology, Institute of Environmental Sciences, Kazan Federal University, Republic of Tatarstan, 18 Kremlyovskaya St, Kazan, 420008, Russia
| |
Collapse
|
23
|
Lopes AR, Low M, Martín-Hernández R, Pinto MA, De Miranda JR. Origins, diversity, and adaptive evolution of DWV in the honey bees of the Azores: the impact of the invasive mite Varroa destructor. Virus Evol 2024; 10:veae053. [PMID: 39119136 PMCID: PMC11306321 DOI: 10.1093/ve/veae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Deformed wing virus (DWV) is a honey bee virus, whose emergence from relative obscurity is driven by the recent host-switch, adaptation, and global dispersal of the ectoparasitic mite Varroa destructor (a highly efficient vector of DWV) to reproduction on honey bees (Apis mellifera). Our study examines how varroa affects the continuing evolution of DWV, using the Azores archipelago, where varroa is present on only three out of the eight Islands, as a natural experimental system for comparing different evolutionary conditions and trajectories. We combined qPCR of 494 honey bee colonies sampled across the archipelago with amplicon deep sequencing to reveal how the DWV genetic landscape is altered by varroa. Two of the varroa-free Islands were also free of DWV, while a further two Islands were intriguingly dominated by the rare DWV-C major variant. The other four Islands, including the three varroa-infested Islands, were dominated by the common DWV-A and DWV-B variants. The varroa-infested Islands had, as expected, an elevated DWV prevalence relative to the uninfested Islands, but not elevated DWV loads, due the relatively high prevalence and loads of DWV-C on the varroa-free Islands. This establishes the Azores as a stable refuge for DWV-C and provides the most convincing evidence to date that at least some major strains of DWV may be capable of not just surviving, but actually thriving in honey bees in the absence of varroa-mediated transmission. We did not detect any change in DWV genetic diversity associated with island varroa status but did find a positive association of DWV diversity with virus load, irrespective of island varroa status.
Collapse
Affiliation(s)
- Ana R Lopes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, Porto 4050-313, Portugal
| | - Matthew Low
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| | - Raquel Martín-Hernández
- Centro de Investigación Apícola y Agroambiental (CIAPA), IRIAF. Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Marchamalo 19180, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla—La Mancha, Albacete 02006, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança 5300-253, Portugal
| | - Joachim R De Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 756-51, Sweden
| |
Collapse
|
24
|
Dobelmann J, Manley R, Wilfert L. Caught in the act: the invasion of a viral vector changes viral prevalence and titre in native honeybees and bumblebees. Biol Lett 2024; 20:20230600. [PMID: 38715462 PMCID: PMC11135380 DOI: 10.1098/rsbl.2023.0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024] Open
Abstract
Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.
Collapse
Affiliation(s)
- Jana Dobelmann
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| | | | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| |
Collapse
|
25
|
Streicher T, Brinker P, Tragust S, Paxton RJ. Host Barriers Limit Viral Spread in a Spillover Host: A Study of Deformed Wing Virus in the Bumblebee Bombus terrestris. Viruses 2024; 16:607. [PMID: 38675948 PMCID: PMC11053533 DOI: 10.3390/v16040607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission of pathogens from reservoir to recipient host species, termed pathogen spillover, can profoundly impact plant, animal, and public health. However, why some pathogens lead to disease emergence in a novel species while others fail to establish or do not elicit disease is often poorly understood. There is strong evidence that deformed wing virus (DWV), an (+)ssRNA virus, spills over from its reservoir host, the honeybee Apis mellifera, into the bumblebee Bombus terrestris. However, the low impact of DWV on B. terrestris in laboratory experiments suggests host barriers to virus spread in this recipient host. To investigate potential host barriers, we followed the spread of DWV genotype B (DWV-B) through a host's body using RT-PCR after experimental transmission to bumblebees in comparison to honeybees. Inoculation was per os, mimicking food-borne transmission, or by injection into the bee's haemocoel, mimicking vector-based transmission. In honeybees, DWV-B was present in both honeybee faeces and haemolymph within 3 days of inoculation per os or by injection. In contrast, DWV-B was not detected in B. terrestris haemolymph after inoculation per os, suggesting a gut barrier that hinders DWV-B's spread through the body of a B. terrestris. DWV-B was, however, detected in B. terrestris faeces after injection and feeding, albeit at a lower abundance than that observed for A. mellifera, suggesting that B. terrestris sheds less DWV-B than A. mellifera in faeces when infected. Barriers to viral spread in B. terrestris following oral infection may limit DWV's impact on this spillover host and reduce its contribution to the community epidemiology of DWV.
Collapse
Affiliation(s)
- Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Pina Brinker
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
26
|
Huang X, Zhang Q, Sheikh UAA, Wang Y, Zheng L. Bumblebee Foraging Dynamics and Pollination Outcomes for Cherry Tomato and Pear Varieties in Northern China. INSECTS 2024; 15:216. [PMID: 38667346 PMCID: PMC11049964 DOI: 10.3390/insects15040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Bumblebees (Bombus terrestris) have strong environmental adaptability and high pollen transfer efficiency, making them well-suited pollinators of economic crops. However, bumblebee pollination is still not widely applied in northern China due to the lack of data on foraging behavior and pollination effects. We conducted a three-year experiment involving cherry tomatoes (Solanum lycopersicum L.) and pears (Pyrus spp.) treated with bumblebee pollination to evaluate the foraging behavior and pollination effects on these two crops. Results showed that B. terrestris had enhanced foraging activities as daytime temperatures rose from 18 °C to 26 °C, as indicated by the increased number of bees leaving the hive and returning bees carrying pollen in greenhouses in winter. There were two peaks in the foraging activity of bumblebees in pear orchards in early spring, which was closely related to the temperature change in the daytime. Undoubtedly, cherry tomatoes treated with B. terrestris had higher fruit setting rate, weight, seed number, and fruit yields compared to those with hormone 2,4-dichlorophenoxyacetic acid treatments, as well as a lower rate of deformed fruits. B. terrestris pollination can significantly increase the fruit setting rate and fruit yield of pears, compared with open pollination, and can fully achieve the effect of hand pollination. B. terrestris pollination can improve cultivation efficiency, increase yield, and produce more economic benefits. Moreover, it can also contribute to reducing hormone residues and ensure the safety of agricultural products. We recommend its application to cherry tomatoes in greenhouses in winter and potential application to pears in orchards in early spring in northern China. However, the risk to local bumblebee species of introducing commercially available bumblebees into orchards should be considered and evaluated in future research. This study provides both empirical support and a theoretical basis for the selection of bumblebees as pollinators in the production of economically important crops and the improvement of crop cultivation management in northern China.
Collapse
Affiliation(s)
- Xunbing Huang
- College of Resources and Environment, College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China; (X.H.); (Q.Z.)
| | - Qianwen Zhang
- College of Resources and Environment, College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China; (X.H.); (Q.Z.)
| | - Umer Ayyaz Aslam Sheikh
- Department of Entomology, Faculty of Agriculture, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Yueyue Wang
- College of Resources and Environment, College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China; (X.H.); (Q.Z.)
| | - Li Zheng
- College of Resources and Environment, College of Agriculture and Forestry Science, Linyi University, Linyi 276000, China; (X.H.); (Q.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
27
|
Nguyen TT, Yoo MS, Truong AT, Youn SY, Kim DH, Lee SJ, Yoon SS, Cho YS. Prevalence and genome features of lake sinai virus isolated from Apis mellifera in the Republic of Korea. PLoS One 2024; 19:e0299558. [PMID: 38502683 PMCID: PMC10950237 DOI: 10.1371/journal.pone.0299558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 03/21/2024] Open
Abstract
Lake Sinai Virus (LSV) is an emerging pathogen known to affect the honeybee (Apis mellifera). However, its prevalence and genomic characteristics in the Republic of Korea (ROK) remain unexplored. This study aimed to assess the prevalence of and analyze the LSVs by examining 266 honeybee samples from the ROK. Our findings revealed that LSV exhibited the highest infection rate among the pathogens observed in Korean apiaries, particularly during the reported period of severe winter loss (SWL) in A. mellifera apiaries in 2022. Three LSV genotypes- 2, 3, and 4 -were identified using RNA-dependent RNA polymerase gene analysis. Importantly, the infection rates of LSV2 (65.2%) and LSV3 (73.3%) were significantly higher in colonies experiencing SWL than in those experiencing normal winter loss (NWL) (p < 0.03). Furthermore, this study provides the first near-complete genome sequences of the Korean LSV2, LSV3, and LSV4 strains, comprising 5,759, 6,040, and 5,985 nt, respectively. Phylogenetic analysis based on these near-complete genome sequences demonstrated a close relationship between LSVs in the ROK and China. The high LSV infection rate in colonies experiencing a heightened mortality rate during winter suggests that this pathogen might contribute to SWL in ROK. Moreover, the genomic characteristic information on LSVs in this study holds immense potential for epidemiological information and the selection of specific genes suitable for preventing and treating LSV, including the promising utilization of RNA interference medicine in the future.
Collapse
Affiliation(s)
- Thi-Thu Nguyen
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Institute of Biotechnology, Vietnam Academy of Science & Technology, Ha Noi, Viet Nam
| | - Mi-Sun Yoo
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - A-Tai Truong
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Viet Nam
| | - So Youn Youn
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Dong-Ho Kim
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Se-Ji Lee
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Soon-Seek Yoon
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Yun Sang Cho
- Department of Animal and Plant Health Research, Laboratory of Parasitic and Honeybee Diseases, Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| |
Collapse
|
28
|
Reingold V, Eliyahu A, Luria N, Leibman D, Sela N, Lachman O, Smith E, Mandelik Y, Sadeh A, Dombrovsky A. A Distinct Arabidopsis Latent Virus 1 Isolate Was Found in Wild Brassica hirta Plants and Bees, Suggesting the Potential Involvement of Pollinators in Virus Spread. PLANTS (BASEL, SWITZERLAND) 2024; 13:671. [PMID: 38475517 DOI: 10.3390/plants13050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
During our search for aphid-pathogenic viruses, a comovirus was isolated from wild asymptomatic Brassica hirta (white mustard) plants harboring a dense population of Brevicoryne brassicae aphids. The transmission-electron-microscopy visualization of purified virions revealed icosahedral particles. The virus was mechanically transmitted to plants belonging to Brassicaceae, Solanaceae, Amaranthaceae, and Fabaceae families, showing unique ringspot symptoms only on B. rapa var. perviridis plants. The complete viral genome, comprised of two RNA segments, was sequenced. RNA1 and RNA2 contained 5921 and 3457 nucleotides, respectively, excluding the 3' terminal poly-adenylated tails. RNA1 and RNA2 each had one open-reading frame encoding a polyprotein of 1850 and 1050 amino acids, respectively. The deduced amino acids at the Pro-Pol region, delineated between a conserved CG motif of 3C-like proteinase and a GDD motif of RNA-dependent RNA polymerase, shared a 96.5% and 90% identity with the newly identified Apis mellifera-associated comovirus and Arabidopsis latent virus 1 (ArLV1), respectively. Because ArLV1 was identified early in 2018, the B. hirta comovirus was designated as ArLV1-IL-Bh. A high-throughput-sequencing-analyses of the extracted RNA from managed honeybees and three abundant wild bee genera, mining bees, long-horned bees, and masked bees, sampled while co-foraging in a Mediterranean ecosystem, allowed the assembly of ArLV1-IL-Bh, suggesting pollinators' involvement in comovirus spread in weeds.
Collapse
Affiliation(s)
- Victoria Reingold
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avi Eliyahu
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 3009500, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Noa Sela
- Bioinformatics Unit, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Elisheva Smith
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Yael Mandelik
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Asaf Sadeh
- Department of Natural Resources, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 3009500, Israel
| | - Aviv Dombrovsky
- Department of Plant Pathology and Weed Research, ARO Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7528809, Israel
| |
Collapse
|
29
|
Babin A, Schurr F, Delannoy S, Fach P, Huyen Ton Nu Nguyet M, Bougeard S, de Miranda JR, Rundlöf M, Wintermantel D, Albrecht M, Attridge E, Bottero I, Cini E, Costa C, De la Rúa P, Di Prisco G, Dominik C, Dzul D, Hodge S, Klein AM, Knapp J, Knauer AC, Mänd M, Martínez-López V, Medrzycki P, Pereira-Peixoto MH, Potts SG, Raimets R, Schweiger O, Senapathi D, Serrano J, Stout JC, Tamburini G, Brown MJF, Laurent M, Rivière MP, Chauzat MP, Dubois E. Distribution of infectious and parasitic agents among three sentinel bee species across European agricultural landscapes. Sci Rep 2024; 14:3524. [PMID: 38347035 PMCID: PMC10861508 DOI: 10.1038/s41598-024-53357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.
Collapse
Affiliation(s)
- Aurélie Babin
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| | - Frank Schurr
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Sabine Delannoy
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Genomics Platform, Food Safety Laboratory, ANSES, 94701, Maisons-Alfort, France
| | | | - Stéphanie Bougeard
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology and Welfare, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Dimitry Wintermantel
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Matthias Albrecht
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Eleanor Attridge
- Federation of Irish Beekeepers' Associations, Tullamore, Ireland
| | - Irene Bottero
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Elena Cini
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Pilar De la Rúa
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Gennaro Di Prisco
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
- Institute for Sustainable Plant Protection, The Italian National Research Council, Piazzale E. Ferni 1, 80055, Portici, Napoli, Italy
| | - Christophe Dominik
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Daniel Dzul
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Simon Hodge
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Alexandra-Maria Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Jessica Knapp
- Department of Biology, Lund University, Lund, Sweden
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anina C Knauer
- Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046, Zurich, Switzerland
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente Martínez-López
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Bioscience Building, L69 7ZB, Liverpool, UK
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, Via di Corticella 133, 40128, Bologna, Italy
| | - Maria Helena Pereira-Peixoto
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Risto Raimets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Oliver Schweiger
- UFZ-Helmholtz Centre for Environmental Research, Department of Community Ecology, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany
| | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - José Serrano
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | - Jane C Stout
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Giovanni Tamburini
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- University of Bari, Department of Soil, Plant and Food Sciences (DiSSPA-Entomology and Zoology), Bari, Italy
| | - Mark J F Brown
- Centre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UK
| | - Marion Laurent
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Rivière
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
| | - Marie-Pierre Chauzat
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France
- Paris-Est University, ANSES, Laboratory for Animal Health, 94701, Maisons-Alfort, France
| | - Eric Dubois
- ANSES, Sophia Antipolis Laboratory, Unit of Honey bee Pathology, 06902, Sophia Antipolis, France.
| |
Collapse
|
30
|
Aynalem T, Meng L, Getachew A, Wu J, Yu H, Tan J, Li N, Xu S. A New Isolated Fungus and Its Pathogenicity for Apis mellifera Brood in China. Microorganisms 2024; 12:313. [PMID: 38399717 PMCID: PMC10892447 DOI: 10.3390/microorganisms12020313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/25/2024] Open
Abstract
In this article, we report the pathogenicity of a new strain of fungus, Rhizopus oryzae to honeybee larvae, isolated from the chalkbrood-diseased mummies of honeybee larvae and pupae collected from apiaries in China. Based on morphological observation and internal transcribed spacer (ITS) region analyses, the isolated pathogenic fungus was identified as R. oryzae. Koch's postulates were performed to determine the cause-and-effect pathogenicity of this isolate fungus. The in vitro pathogenicity of this virulent fungus in honeybees was tested by artificially inoculating worker larvae in the lab. The pathogenicity of this new fungus for honeybee larvae was both conidial-concentration and exposure-time dependent; its highly infectious and virulent effect against the larvae was observed at 1 × 105 conidia/larva in vitro after 96 h of challenge. Using probit regression analysis, the LT50 value against the larvae was 26.8 h at a conidial concentration of 1 × 105 conidia/larva, and the LC50 was 6.2 × 103 conidia/larva. These results indicate that the new isolate of R. oryzae has considerable pathogenicity in honeybee larvae. Additionally, this report suggests that pathogenic phytofungi may harm their associated pollinators. We recommend further research to quantify the levels, mechanisms, and pathways of the pathogenicity of this novel isolated pathogen for honeybee larvae at the colony level.
Collapse
Affiliation(s)
- Tessema Aynalem
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Lifeng Meng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Awraris Getachew
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
- College of Agriculture and Environmental Science, Bahir Dar University, Bahir Dar P.O. Box 26, Ethiopia
| | - Jiangli Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Huimin Yu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Jing Tan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Nannan Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| | - Shufa Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (T.A.); (L.M.); (A.G.); (J.W.); (H.Y.); (J.T.); (N.L.)
| |
Collapse
|
31
|
Sharpe SR, Morrow JL, Cook JM, Papanicolaou A, Riegler M. Transmission mode predicts coinfection patterns of insect-specific viruses in field populations of the Queensland fruit fly. Mol Ecol 2024; 33:e17226. [PMID: 38018898 DOI: 10.1111/mec.17226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/05/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Insect-specific viruses (ISVs) can affect insect health and fitness, but can also interact with other insect-associated microorganisms. Despite this, ISVs are often studied in isolation from each other, in laboratory populations. Consequently, their diversity, prevalence and associations with other viruses in field populations are less known, yet these parameters are important to understanding virus epidemiology. To help address this knowledge gap, we assessed the diversity, prevalence and coinfections of three ISVs (horizontally transmitted cripavirus, biparentally transmitted sigmavirus and maternally transmitted iflavirus) in 29 field populations of Queensland fruit fly, Australia's most significant horticultural pest, in the context of their different transmission modes. We detected new virus variant diversity. In contrast to the very high virus prevalence in laboratory populations, 46.8% of 293 field flies carried one virus and 4.8% had two viruses. Cripavirus and sigmavirus occurred in all regions, while iflavirus was restricted to subtropical and tropical regions. Cripavirus was most prevalent (37.5%), followed by sigmavirus (13.7%) and iflavirus (4.4%). Cripavirus coinfected some flies with either one of the two vertically transmitted viruses. However, sigmavirus did not coinfect individuals with iflavirus. Three different modelling approaches detected negative association patterns between sigmavirus and iflavirus, consistent with the absence of such coinfections in laboratory populations. This may be linked with their maternal transmission and the ineffective paternal transmission of sigmavirus. Furthermore, we found that, unlike sigmavirus and iflavirus, cripavirus load was higher in laboratory than field flies. Laboratory and mass-rearing conditions may increase ISV prevalence and load due to increased transmission opportunities. We conclude that a combination of field and laboratory studies is needed to uncover ISV interactions and further our understanding of ISV epidemiology.
Collapse
Affiliation(s)
- Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
32
|
Cantwell-Jones A, Tylianakis JM, Larson K, Gill RJ. Using individual-based trait frequency distributions to forecast plant-pollinator network responses to environmental change. Ecol Lett 2024; 27:e14368. [PMID: 38247047 DOI: 10.1111/ele.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Determining how and why organisms interact is fundamental to understanding ecosystem responses to future environmental change. To assess the impact on plant-pollinator interactions, recent studies have examined how the effects of environmental change on individual interactions accumulate to generate species-level responses. Here, we review recent developments in using plant-pollinator networks of interacting individuals along with their functional traits, where individuals are nested within species nodes. We highlight how these individual-level, trait-based networks connect intraspecific trait variation (as frequency distributions of multiple traits) with dynamic responses within plant-pollinator communities. This approach can better explain interaction plasticity, and changes to interaction probabilities and network structure over spatiotemporal or other environmental gradients. We argue that only through appreciating such trait-based interaction plasticity can we accurately forecast the potential vulnerability of interactions to future environmental change. We follow this with general guidance on how future studies can collect and analyse high-resolution interaction and trait data, with the hope of improving predictions of future plant-pollinator network responses for targeted and effective conservation.
Collapse
Affiliation(s)
- Aoife Cantwell-Jones
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| | - Jason M Tylianakis
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
- Bioprotection Aotearoa, School of Biological Sciences, Private Bag 4800, University of Canterbury, Christchurch, New Zealand
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Richard J Gill
- Georgina Mace Centre for The Living Planet, Department of Life Sciences, Silwood Park, Imperial College London, Ascot, UK
| |
Collapse
|
33
|
Leclercq N, Marshall L, Weekers T, Basu P, Benda D, Bevk D, Bhattacharya R, Bogusch P, Bontšutšnaja A, Bortolotti L, Cabirol N, Calderón-Uraga E, Carvalho R, Castro S, Chatterjee S, De La Cruz Alquicira M, de Miranda JR, Dirilgen T, Dorchin A, Dorji K, Drepper B, Flaminio S, Gailis J, Galloni M, Gaspar H, Gikungu MW, Hatteland BA, Hinojosa-Diaz I, Hostinská L, Howlett BG, Hung KLJ, Hutchinson L, Jesus RO, Karklina N, Khan MS, Loureiro J, Men X, Molenberg JM, Mudri-Stojnić S, Nikolic P, Normandin E, Osterman J, Ouyang F, Oygarden AS, Ozolina-Pole L, Ozols N, Parra Saldivar A, Paxton RJ, Pitts-Singer T, Poveda K, Prendergast K, Quaranta M, Read SFJ, Reinhardt S, Rojas-Oropeza M, Ruiz C, Rundlöf M, Sade A, Sandberg C, Sgolastra F, Shah SF, Shebl MA, Soon V, Stanley DA, Straka J, Theodorou P, Tobajas E, Vaca-Uribe JL, Vera A, Villagra CA, Williams MK, Wolowski M, Wood TJ, Yan Z, Zhang Q, Vereecken NJ. Global taxonomic, functional, and phylogenetic diversity of bees in apple orchards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165933. [PMID: 37536603 DOI: 10.1016/j.scitotenv.2023.165933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
An essential prerequisite to safeguard pollinator species is characterisation of the multifaceted diversity of crop pollinators and identification of the drivers of pollinator community changes across biogeographical gradients. The extent to which intensive agriculture is associated with the homogenisation of biological communities at large spatial scales remains poorly understood. In this study, we investigated diversity drivers for 644 bee species/morphospecies in 177 commercial apple orchards across 33 countries and four global biogeographical biomes. Our findings reveal significant taxonomic dissimilarity among biogeographical zones. Interestingly, despite this dissimilarity, species from different zones share similar higher-level phylogenetic groups and similar ecological and behavioural traits (i.e. functional traits), likely due to habitat filtering caused by perennial monoculture systems managed intensively for crop production. Honey bee species dominated orchard communities, while other managed/manageable and wild species were collected in lower numbers. Moreover, the presence of herbaceous, uncultivated open areas and organic management practices were associated with increased wild bee diversity. Overall, our study sheds light on the importance of large-scale analyses contributing to the emerging fields of functional and phylogenetic diversity, which can be related to ecosystem function to promote biodiversity as a key asset in agroecosystems in the face of global change pressures.
Collapse
Affiliation(s)
- N Leclercq
- Agroecology Lab, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium.
| | - L Marshall
- Agroecology Lab, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, Netherlands
| | - T Weekers
- Agroecology Lab, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium
| | - P Basu
- Centre for Pollination Studies, University of Calcutta, Kolkata, India
| | - D Benda
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic; Department of Entomology, National Museum, Prague, Czech Republic
| | - D Bevk
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | - R Bhattacharya
- Centre for Pollination Studies, University of Calcutta, Kolkata, India
| | - P Bogusch
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - A Bontšutšnaja
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - L Bortolotti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - N Cabirol
- Department of Ecology and Natural Resources, Faculty of Science, UNAM, México City, Mexico
| | - E Calderón-Uraga
- Department of Ecology and Natural Resources, Faculty of Science, UNAM, México City, Mexico
| | - R Carvalho
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Castro
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - S Chatterjee
- Centre for Pollination Studies, University of Calcutta, Kolkata, India
| | - M De La Cruz Alquicira
- Department of Ecology and Natural Resources, Faculty of Science, UNAM, México City, Mexico
| | - J R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 750 05, Sweden
| | - T Dirilgen
- School of Agriculture and Food Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - A Dorchin
- Laboratory of Zoology, Université de Mons, Mons, Belgium; The Steinhardt Museum of Natural History, Tel Aviv University, 69978 Tel Aviv, Israel; Department of Entomology, Royal Museum for Central Africa, Tervuren, Belgium
| | - K Dorji
- College of Natural Resources, Royal University of Bhutan, Punakha, Bhutan
| | - B Drepper
- Division of Forest, Nature and Landscape, University of Leuven, Leuven, Belgium
| | - S Flaminio
- CREA Research Centre for Agriculture and Environment, Bologna, Italy; Laboratory of Zoology, Université de Mons, Mons, Belgium
| | - J Gailis
- Institute for Plant Protection Research Agrihorts, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - M Galloni
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - H Gaspar
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - M W Gikungu
- Department of Zoology, National Museums of Kenya, Nairobi, Kenya
| | - B A Hatteland
- Division for Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Aas, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - I Hinojosa-Diaz
- Department of Zoology, Institute of Biology, UNAM, México City, Mexico
| | - L Hostinská
- Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Králové, Czech Republic
| | - B G Howlett
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, New Zealand
| | - K-L J Hung
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Oklahoma Biological Survey, University of Oklahoma, Norman, OK 73019, USA
| | - L Hutchinson
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - R O Jesus
- Graduate Program in Ecology, State University of Campinas, Campinas, São Paulo, Brazil
| | - N Karklina
- Institute for Plant Protection Research Agrihorts, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - M S Khan
- Department of Entomology, University of Agriculture, Peshawar, Pakistan
| | - J Loureiro
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - X Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Plant Virology,Jinan 250100, China
| | - J-M Molenberg
- Agroecology Lab, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium
| | - S Mudri-Stojnić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia
| | - P Nikolic
- Faculty of Agriculture, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - E Normandin
- Centre sur la biodiversité, Département des sciences biologiques, Université de Montréal, QC, Québec H1X 2B2, Canada
| | - J Osterman
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacherstrasse 4, 79106, Freiburg im Breisgau, Germany
| | - F Ouyang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - A S Oygarden
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - L Ozolina-Pole
- Institute for Plant Protection Research Agrihorts, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - N Ozols
- Institute for Plant Protection Research Agrihorts, Latvia University of Life Sciences and Technologies, Jelgava, Latvia
| | - A Parra Saldivar
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación (UMCE), Santiago, Chile
| | - R J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - T Pitts-Singer
- USDA Agricultural Research Service, Pollinating Insects Research Unit, Logan, UT 84322, USA
| | - K Poveda
- Department of Entomology, Cornell University, 4126 Comstock Hall, Ithaca, NY 14853, USA
| | - K Prendergast
- Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| | - M Quaranta
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - S F J Read
- The New Zealand Institute for Plant & Food Research Limited, Lincoln, Canterbury, New Zealand
| | - S Reinhardt
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| | - M Rojas-Oropeza
- Department of Ecology and Natural Resources, Faculty of Science, UNAM, México City, Mexico
| | - C Ruiz
- Departamento Biología Animal, Edafología y Geología, Facultad de Ciencias, Universidad de La Laguna, La Laguna, 38206, Tenerife, Spain
| | - M Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - A Sade
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905 Haifa, Israel
| | - C Sandberg
- Department of Biology, Lund University, Lund, Sweden; Calluna AB, Husargatan 3, Malmö, 211 28, Sweden
| | - F Sgolastra
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S F Shah
- Department of Entomology, University of Agriculture, Peshawar, Pakistan
| | - M A Shebl
- Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - V Soon
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - D A Stanley
- School of Agriculture and Food Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - J Straka
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - P Theodorou
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - E Tobajas
- Department of Biology, Lund University, Lund, Sweden; Department of Animal Biology, University of Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| | - J L Vaca-Uribe
- Laboratorio de Investigaciones en Abejas LABUN, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá,111321, Colombia
| | - A Vera
- Departamento de Biología, Universidad Metropolitana de Ciencias de la Educación (UMCE), Santiago, Chile
| | - C A Villagra
- Instituto de Entomología, Universidad Metropolitana de Ciencias de la Educación (UMCE), Santiago, Chile
| | - M-K Williams
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - M Wolowski
- Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - T J Wood
- Laboratory of Zoology, Université de Mons, Mons, Belgium
| | - Z Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Q Zhang
- Beijing Biodiversity Conservation Research Center/Beijing Milu Ecological Research Center, Beijing 100076, China
| | - N J Vereecken
- Agroecology Lab, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 264/02, B-1050 Brussels, Belgium
| |
Collapse
|
34
|
Roy N, Kim C, Lee D, Yang S, Lee KY, Yoon HJ, Lee KS, Choi K. Assessing potential impact of gut microbiome disruptions on the environmental stress resilience of indoor-reared Bombus terrestris. PLoS One 2023; 18:e0290848. [PMID: 37963166 PMCID: PMC10645317 DOI: 10.1371/journal.pone.0290848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 11/16/2023] Open
Abstract
Bumblebees are crucial for both natural ecosystems and agriculture, but their decline in distribution and abundance over the past decade is alarming. The global importance of bumblebees in natural ecosystems and agricultural food production cannot be overstated. However, the reported decline over the past decade has led to a surge of interest in understanding and addressing bumblebee population decline. Hence, we aimed to detect disruptions in the gut microbiome of male and worker bumblebees reared indoor and outdoor to assess potential resilience to environmental stress. Using the Illumina MiSeq platform for 16s rRNA amplicon sequencing, we analyzed the gut microbiome of male and worker bees that were raised indoors (designated as the IM and IW group) and those that were raised outdoors (also designated as the OM and OW group). Our results show presence of core bacteria Neisseriaceae, Orbaceae, Lactobacillaceae and Bifidobacteriaceae from indoor reared worker bees. However, a higher abundance of Bifidobacterium and absence of Fructobacillus from indoor reared worker bees was also observed. Indoor-reared male bees had lower diversity and fewer observed OTUs compared to outdoor-reared male bees. Additionally, the relative abundance of Actinobacteriota, Bacteroidota, and Firmicutes was significantly lower in indoor-reared males, while Proteobacteria was significantly increased. Despite this, we did not observe any dysbiosis in the gut microbiota of indoor-reared bumblebees when comparing the role of the gut symbionts among the groups. These results suggest that indoor-reared Bombus terrestris may be resilient to environmental stress when used as outdoor pollinators.
Collapse
Affiliation(s)
- Nazish Roy
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Chaerin Kim
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Dongmin Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Seongeun Yang
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Kyeong Yong Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, Republic of Korea
| | - Hyung Joo Yoon
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju, Republic of Korea
| | - Kwang-Sik Lee
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Kihyuck Choi
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
35
|
Ng WH, Myers CR, McArt S, Ellner SP. A Time for Every Purpose: Using Time-Dependent Sensitivity Analysis to Help Understand and Manage Dynamic Ecological Systems. Am Nat 2023; 202:630-654. [PMID: 37963117 DOI: 10.1086/726143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractSensitivity analysis is often used to help understand and manage ecological systems by assessing how a constant change in vital rates or other model parameters might affect the management outcome. This allows the manager to identify the most favorable course of action. However, realistic changes are often localized in time-for example, a short period of culling leads to a temporary increase in the mortality rate over the period. Hence, knowing when to act may be just as important as knowing what to act on. In this article, we introduce the method of time-dependent sensitivity analysis (TDSA) that simultaneously addresses both questions. We illustrate TDSA using three case studies: transient dynamics in static disease transmission networks, disease dynamics in a reservoir species with seasonal life history events, and endogenously driven population cycles in herbivorous invertebrate forest pests. We demonstrate how TDSA often provides useful biological insights, which are understandable on hindsight but would not have been easily discovered without the help of TDSA. However, as a caution, we also show how TDSA can produce results that mainly reflect uncertain modeling choices and are therefore potentially misleading. We provide guidelines to help users maximize the utility of TDSA while avoiding pitfalls.
Collapse
|
36
|
Sun H, Li H, Zhang X, Liu Y, Chen H, Zheng L, Zhai Y, Zheng H. The honeybee gut resistome and its role in antibiotic resistance dissemination. Integr Zool 2023; 18:1014-1026. [PMID: 36892101 DOI: 10.1111/1749-4877.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.
Collapse
Affiliation(s)
- Huihui Sun
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Sanya Institute of China Agricultural University, Sanya, China
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| | - Hao Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Diseases and Insect Pests, Jinan, China
| |
Collapse
|
37
|
Xiao Y, Fei D, Li M, Ma Y, Ma M. Establishment and Application of CRISPR-Cas12a-Based Recombinase Polymerase Amplification and a Lateral Flow Dipstick and Fluorescence for the Detection and Distinction of Deformed Wing Virus Types A and B. Viruses 2023; 15:2041. [PMID: 37896818 PMCID: PMC10612068 DOI: 10.3390/v15102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Deformed wing virus (DWV) is one of the important pathogens of the honey bee (Apis mellifera), which consists of three master variants: types A, B, and C. Among them, DWV types A (DWV-A) and B (DWV-B) are the most prevalent variants in honey bee colonies and have been linked to colony decline. DWV-A and DWV-B have different virulence, but it is difficult to distinguish them via traditional methods. In this study, we established a visual detection assay for DWV-A and DWV-B using recombinase polymerase amplification (RPA) and a lateral flow dipstick (LFD) coupled with the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 12a fluorescence system (RPA-CRISPR-Cas12a-LFD). The limit of detection of this system was ~6.5 × 100 and 6.2 × 101 copies/μL for DWV-A and DWV-B, respectively. The assays were specific and non-cross-reactive against other bee viruses, and the results could be visualized within 1 h. The assays were validated by extracting cDNA from 36 clinical samples of bees that were suspected to be infected with DWV. The findings were consistent with those of traditional reverse transcription-quantitative polymerase chain reaction, and the RPA-CRISPR-Cas12a assay showed the specific, sensitive, simple, and appropriate detection of DWV-A and DWV-B. This method can facilitate the visual and qualitative detection of DWV-A and DWV-B as well as the monitoring of different subtypes, thereby providing potentially better control and preventing current and future DWV outbreaks.
Collapse
Affiliation(s)
- Yuting Xiao
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Dongliang Fei
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Ming Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| | - Yueyu Ma
- Experimental Animal Center of Jinzhou Medical University, Jinzhou 121000, China; (D.F.); (Y.M.)
| | - Mingxiao Ma
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, China; (Y.X.); (M.L.)
| |
Collapse
|
38
|
Nakamura S, Taki H, Arai T, Funayama K, Furihata S, Furui Y, Ikeda T, Inoue H, Kagawa K, Kishimoto H, Kohyama M, Komatsu M, Konuma A, Nakada K, Nakamura S, Sawamura N, Sonoda S, Sueyoshi M, Toda S, Yaginuma K, Yamamoto S, Yoshida K, Yokoi T, Toyama M. Diversity and composition of flower-visiting insects and related factors in three fruit tree species. Biodivers Data J 2023; 11:e100955. [PMID: 37720662 PMCID: PMC10504601 DOI: 10.3897/bdj.11.e100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/26/2023] [Indexed: 09/19/2023] Open
Abstract
Animal-mediated pollination is an essential ecosystem service for the production of many fruit trees. To reveal the community composition of flower-visiting wild insects which potentially contribute to fruit production and to examine the effects of geographic location, local meteorological conditions and locally introduced domesticated pollinators on them, we investigated the community composition of insects visiting the flowers (hereafter, "visitors") of apple, Japanese pear and Oriental persimmon for 1‒3 years at 20 sites around Japan. While most of the variation (82%) of the community composition was explained by tree species with a slight contribution by geographic distance (2%), maximum temperature and tree species contributed 62% and 41% of the variation in total abundance of the visitors, respectively. Though the dominant families of the visitors varied spatiotemporally, the community composition of the visitors of apple and Japanese pear clearly differed from that of Oriental persimmon. While Andrenidae and Syrphidae together accounted for 46%‒64% of the visitors of apple and Japanese pear, Apidae represented 57% of the visitors of Oriental persimmon. The taxonomic richness, diversity and evenness of the visitors were best predicted by locally introduced domesticated pollinators and local meteorological conditions of wind speed and maximum temperature. Amongst these selected factors, locally introduced domesticated pollinators could have the largest impact. It seemed to be strongly related to the reduction of taxonomic richness, diversity and evenness of the visitors, accounting for 41‒89% of the variation. Results suggested that the community composition and total abundance of potential pollinators were predominantly determined by tree species and temperature, but locally introduced domesticated pollinators could have a determinantal pressure on the taxonomic diversity of the community.
Collapse
Affiliation(s)
- Shoko Nakamura
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hachioji, JapanForestry and Forest Products Research Institute, Forest Research and Management OrganizationHachiojiJapan
| | - Hisatomo Taki
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, JapanForestry and Forest Products Research Institute, Forest Research and Management OrganizationTsukubaJapan
| | - Tomonori Arai
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, JapanInstitute for Plant Protection, National Agriculture and Food Research OrganizationTsukubaJapan
| | - Ken Funayama
- Akita Fruit Tree Experiment Station, Yokote, JapanAkita Fruit Tree Experiment StationYokoteJapan
| | - Shunsuke Furihata
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, JapanInstitute for Plant Protection, National Agriculture and Food Research OrganizationTsukubaJapan
| | - Yuki Furui
- Tottori Prefecture Horticultural Research Center, Hokueicho, JapanTottori Prefecture Horticultural Research CenterHokueichoJapan
| | - Takamasa Ikeda
- Tohaku Agricultural Extension Center, Tottori Prefecture, Kotoura-cho, JapanTohaku Agricultural Extension Center, Tottori PrefectureKotoura-choJapan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, JapanInstitute for Plant Protection, National Agriculture and Food Research OrganizationHigashihiroshimaJapan
| | - Kiyohiko Kagawa
- School of Agriculture, Utsunomiya University, Utsunomiya, JapanSchool of Agriculture, Utsunomiya UniversityUtsunomiyaJapan
| | - Hidenari Kishimoto
- Institute for Plant Protection, National Agriculture and Food Research Organization, Morioka, JapanInstitute for Plant Protection, National Agriculture and Food Research OrganizationMoriokaJapan
| | - Mitsuko Kohyama
- Fruit Tree Research Institute, Uki, JapanFruit Tree Research InstituteUkiJapan
| | - Michiyo Komatsu
- Semboku Regional Development Bureau, Akita Prefecture, Daisen, JapanSemboku Regional Development Bureau, Akita PrefectureDaisenJapan
| | - Akihiro Konuma
- Department of Business Development, National Agricultural Research Organization, Tsukuba, JapanDepartment of Business Development, National Agricultural Research OrganizationTsukubaJapan
| | - Ken Nakada
- Department of Agriculture, Forestry and Fisheries, Tottori Prefecture, Higashimachi, JapanDepartment of Agriculture, Forestry and Fisheries, Tottori PrefectureHigashimachiJapan
| | - Suguru Nakamura
- Fukushima Agricultural Technology Centre, Fruit Tree Research Centre, Fukushima, JapanFukushima Agricultural Technology Centre, Fruit Tree Research CentreFukushimaJapan
| | - Nobuo Sawamura
- Shimane Agricultural Technology Center, Izumo, JapanShimane Agricultural Technology CenterIzumoJapan
| | - Shoji Sonoda
- School of Agriculture, Utsunomiya University, Utsunomiya, JapanSchool of Agriculture, Utsunomiya UniversityUtsunomiyaJapan
| | - Masahiro Sueyoshi
- Forestry and Forest Products Research Institute, Forest Research and Management Organization, Tsukuba, JapanForestry and Forest Products Research Institute, Forest Research and Management OrganizationTsukubaJapan
| | - Seishi Toda
- Tea Research Insutitute, Kumamoto Prefecture, Mifune, JapanTea Research Insutitute, Kumamoto PrefectureMifuneJapan
| | - Katsuhiko Yaginuma
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Morioka, JapanInstitute of Fruit Tree and Tea Science, National Agriculture and Food Research OrganizationMoriokaJapan
| | - Shunsuke Yamamoto
- Eastern Shimane Agriculture, Forestry and Fisheries Promotion Center, Izumo, JapanEastern Shimane Agriculture, Forestry and Fisheries Promotion CenterIzumoJapan
| | - Koki Yoshida
- Fukushima Agricultural Technology Centre, Koriyama, JapanFukushima Agricultural Technology CentreKoriyamaJapan
| | - Tomoyuki Yokoi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, JapanFaculty of Life and Environmental Sciences, University of TsukubaTsukubaJapan
| | - Masatoshi Toyama
- Institute for Plant Protection, National Agriculture and Food Research Organization, Tsukuba, JapanInstitute for Plant Protection, National Agriculture and Food Research OrganizationTsukubaJapan
| |
Collapse
|
39
|
Chantaphanwattana T, Shafiey H, Phokasem P, Disayathanoowat T, Paxton RJ. The presence of identical deformed wing virus sequence variants in co-occurring Apis species in Northern Thailand may represent a potential epidemiological threat to native honey bees of Southeast Asia. J Invertebr Pathol 2023; 200:107957. [PMID: 37364674 DOI: 10.1016/j.jip.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Widespread native honey bee species in South and East Asia (Apis cerana, Apis dorsata and Apis florea) and the imported western honey bee (Apis mellifera) share habitats and potentially also share pathogens. Chief among the threats facing A. mellifera in Europe and North America is deformed wing virus (DWV), including its two principal genotypes: A and B (DWV-A and DWV-B respectively). Though DWV-A has been recorded in Asia's native Apis species, it is not known if DWV-B, or both DWV-A and DWV-B, are currently widespread in Asia and, if so, whether viral transmission is primarily intraspecific or interspecific. This study aims to fill these knowledge gaps by (i) determining the DWV genotype in four co-occurring Apis host species using qPCR and (ii) inferring viral transmission between them using nucleotide sequences of DWV from Apis host species collected at three independent localities in Northern Thailand. We found DWV-A and -B in all four Apis species, the exotic A. mellifera and the native A. cerana, A. dorsata and A. florea. That DWV-A sequences were identical across Apis species at the same locality, with a similar pattern for DWV-B sequences, suggests that DWV's epidemiology is largely driven by ongoing interspecific transmission (spillover) of DWV across co-occurring native and exotic Apis species. Both genotypes of DWV represent a serious threat to Asia's exotic and native honey bee species.
Collapse
Affiliation(s)
- Thunyarat Chantaphanwattana
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hassan Shafiey
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Patcharin Phokasem
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Terd Disayathanoowat
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center in Deep Technology Associated with Beekeeping and Bee Products for Sustainable Development Goals, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany.
| |
Collapse
|
40
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
41
|
Deutsch KR, Graham JR, Boncristiani HF, Bustamante T, Mortensen AN, Schmehl DR, Wedde AE, Lopez DL, Evans JD, Ellis JD. Widespread distribution of honey bee-associated pathogens in native bees and wasps: Trends in pathogen prevalence and co-occurrence. J Invertebr Pathol 2023; 200:107973. [PMID: 37479057 DOI: 10.1016/j.jip.2023.107973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Pollinators have experienced significant declines in the past decade, in part due to emerging infectious diseases. Historically, studies have primarily focused on pathogens in the Western honey bee, Apis mellifera. However, recent work has demonstrated that these pathogens are shared by other pollinators and can negatively affect their health. Here, we surveyed honey bees and 15 native bee and wasp species for 13 pathogens traditionally associated with honey bees. The native bee and wasp species included 11 species not previously screened for pathogens. We found at least one honey bee-associated pathogen in 53% of native bee and wasp samples. The most widely distributed and commonly detected pathogens were the microsporidian Nosema ceranae, the bacterium Melissococcus plutonius, and the viruses deformed wing virus and black queen cell virus. The prevalence of viruses was generally higher in honey bees than in native bees and wasps. However, the prevalence of M. plutonius and the brood fungus Ascosphaera apis was significantly higher in some native bee species than in honey bees. The data also reveal novel trends in the association between co-occurring pathogens in honey bees and native bees and wasps at the pathogen community level. These results can inform the assessment of risks that native pollinator species face from pathogen stress, and indicate that many non-viral pathogens, notably M. plutonius and N. ceranae, are far more widely distributed and commonly found in native bees and wasps than previously thought.
Collapse
Affiliation(s)
| | - Jason R Graham
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Planet Bee Foundation, San Francisco, CA 94132, USA
| | - Humberto F Boncristiani
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Inside The Hive Media, Consulting Inc., Odenton, MD 21113, USA
| | - Tomas Bustamante
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Independent Collaborator, Dallas, TX, USA
| | - Ashley N Mortensen
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; The New Zealand Institute for Plant and Food Research Limited, Bisley Road, Hamilton 3214, New Zealand
| | - Daniel R Schmehl
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Bayer CropScience LP, 700 Chesterfield Pwky. W., Chesterfield, MO 63017, USA
| | - Ashlyn E Wedde
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA; Driscoll's Global R&D, Watsonville, CA, USA
| | - Dawn L Lopez
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - Jay D Evans
- Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Yue D, Li R, Zhang J, Chen Y, Palmer-Young EC, Huang S, Huang WF. A DNA Plasmid-Based Approach for Efficient Synthesis of Sacbrood Virus Infectious Clones within Host Cells. Viruses 2023; 15:1866. [PMID: 37766273 PMCID: PMC10537335 DOI: 10.3390/v15091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
RNA viruses are often cited as a significant factor affecting the populations of both domestic honey bees and wild pollinators. To expedite the development of effective countermeasures against these viruses, a more comprehensive understanding of virus biology necessitates extensive collaboration among scientists from diverse research fields. While the infectious virus clone is a robust tool for studying virus diseases, the current methods for synthesizing infectious clones of bee-infecting RNA viruses entail the in vitro transcription of the viral genome RNA in 8-10 kb, presenting challenges in reproducibility and distribution. This article reports on the synthesis of an infectious clone of the Chinese variant sacbrood virus (SBV) using a DNA plasmid containing an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) immediate-early protein (IE1) promoter to trigger transcription of the downstream viral genome within hosts. The results demonstrate that the IE1-SBV plasmid can synthesize SBV clones in a widely used lepidopteran immortal cell line (Sf9) and honey bee pupae. Furthermore, the negative strand of the clone was detected in both Sf9 cells and honey bee pupae, indicating active infection and replication. However, the transfection of Sf9 cells was observed in only a limited proportion (less than 10%) of the cells, and the infection did not appear to spread to adjacent cells or form infective virions. The injection of honey bee pupae with 2500 ng of the IE1-SBV plasmid resulted in high infection rates in Apis cerana pupae but low rates in A. mellifera pupae, although the dosage was comparatively high compared with other studies using in vitro transcribed viral RNA. Our findings suggest that the synthesis of bee-infecting RNA viruses using DNA plasmids is feasible, albeit requiring additional optimization. However, this method holds substantial potential for facilitating the production of clones with various sequence modifications, enabling the exploration of viral gene functions and biology. The ease of distributing infectious clones in DNA plasmid form may foster collaboration among scientists in applying the clone to bee biology, ecology, and behavior, ultimately offering a comprehensive approach to managing virus diseases in the future.
Collapse
Affiliation(s)
- Dandan Yue
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Runlin Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Jikailang Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
| | - Yanping Chen
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Evan C. Palmer-Young
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Honeybee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China
| | - Wei-Fone Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.Y.); (R.L.)
- Bee Research Laboratory, Agriculture Research Service, USDA, Beltsville, MD 20705, USA
| |
Collapse
|
43
|
Keino BC, Carrel M. Spatial and temporal trends of overweight/obesity and tobacco use in East Africa: subnational insights into cardiovascular disease risk factors. Int J Health Geogr 2023; 22:20. [PMID: 37620831 PMCID: PMC10463724 DOI: 10.1186/s12942-023-00342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is increasing in Sub-Saharan Africa (SSA). Overweight/obesity and tobacco use are modifiable CVD risk factors, however literature about the spatiotemporal dynamics of these risk factors in the region at subnational or local scales is lacking. We describe the spatiotemporal trends of overweight/obesity and tobacco use at subnational levels over a 13-year period (2003 to 2016) in five East African nations. METHODS Cross-sectional, nationally representative Demographic and Health Surveys (DHS) were used to explore the subnational spatiotemporal patterns of overweight/obesity and tobacco use in Burundi, Kenya, Rwanda, Tanzania, and Uganda, five East African Community (EAC) nations with unique cultural landscapes influencing CVD risk factors. Adaptive kernel density estimation and logistic regression were used to determine the spatial distribution and change over time of CVD risk factors on a subnational and subpopulation (rural/urban) scale. RESULTS Subnational analysis shows that regional and national level analysis masks important trends in CVD risk factor prevalence. Overweight/obesity and tobacco use trends were not similar: overweight/obesity prevalence increased across most nations included in the study and the inverse was true for tobacco use prevalence. Urban populations in each nation were more likely to be overweight/obese than rural populations, but the magnitude of difference varied widely between nations. Spatial analysis revealed that although the prevalence of overweight/obesity increased over time in both urban and rural populations, the rate of change differed between urban and rural areas. Rural populations were more likely to use tobacco than urban populations, though the likelihood of use varied substantially between nations. Additionally, spatial analysis showed that tobacco use was not evenly distributed across the landscape: tobacco use increased in and around major cities and urban centers but declined in rural areas. CONCLUSIONS We highlight the importance of de-homogenizing CVD risk factor research in SSA. Studies of national or regional prevalence trends mask important information about subpopulation and place-specific behavior and drivers of risk factor prevalence. Spatially explicit studies should be considered as a vital tool to understand local drivers of health, disease, and associated risk factor trends, especially in highly diverse yet low-resourced, marginalized, and often homogenized regions.
Collapse
Affiliation(s)
- Barbara Chebet Keino
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA.
| | - Margaret Carrel
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
44
|
Nekoei S, Rezvan M, Khamesipour F, Mayack C, Molento MB, Revainera PD. A systematic review of honey bee (Apis mellifera, Linnaeus, 1758) infections and available treatment options. Vet Med Sci 2023. [PMID: 37335585 PMCID: PMC10357250 DOI: 10.1002/vms3.1194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/11/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Honey bees and honeycomb bees are very valuable for wild flowering plants and economically important crops due to their role as pollinators. However, these insects confront many disease threats (viruses, parasites, bacteria and fungi) and large pesticide concentrations in the environment. Varroa destructor is the most prevalent disease that has had the most negative effects on the fitness and survival of different honey bees (Apis mellifera and A. cerana). Moreover, honey bees are social insects and this ectoparasite can be easily transmitted within and across bee colonies. OBJECTIVE This review aims to provide a survey of the diversity and distribution of important bee infections and possible management and treatment options, so that honey bee colony health can be maintained. METHODS We used PRISMA guidelines throughout article selection, published between January 1960 and December 2020. PubMed, Google Scholar, Scopus, Cochrane Library, Web of Science and Ovid databases were searched. RESULTS We have collected 132 articles and retained 106 articles for this study. The data obtained revealed that V. destructor and Nosema spp. were found to be the major pathogens of honey bees worldwide. The impact of these infections can result in the incapacity of forager bees to fly, disorientation, paralysis, and death of many individuals in the colony. We find that both hygienic and chemical pest management strategies must be implemented to prevent, reduce the parasite loads and transmission of pathogens. The use of an effective miticide (fluvalinate-tau, coumaphos and amitraz) now seems to be an essential and common practice required to minimise the impact of Varroa mites and other pathogens on bee colonies. New, alternative biofriendly control methods, are on the rise, and could be critical for maintaining honey bee hive health and improving honey productivity. CONCLUSIONS We suggest that critical health control methods be adopted globally and that an international monitoring system be implemented to determine honey bee colony safety, regularly identify parasite prevalence, as well as potential risk factors, so that the impact of pathogens on bee health can be recognised and quantified on a global scale.
Collapse
Affiliation(s)
- Shahin Nekoei
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Rezvan
- Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Faham Khamesipour
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology, Genetics, and Bioengineering, Sabanci University, İstanbul, Turkey
| | - Marcelo Beltrão Molento
- Laboratory of Veterinary Clinical Parasitology, Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
- Microbiology, Parasitology, Pathology Program, Federal University of Parana, Curitiba, PR, Brazil
| | - Pablo Damián Revainera
- Centro de Investigación en Abejas Sociales (CIAS), Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
45
|
Strange JP, Tripodi AD, Huntzinger C, Knoblett J, Klinger E, Herndon JD, Vuong HQ, McFrederick QS, Irwin RE, Evans JD, Giacomini JJ, Ward R, Adler LS. Comparative analysis of 3 pollen sterilization methods for feeding bumble bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:662-673. [PMID: 36930576 DOI: 10.1093/jee/toad036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 06/14/2023]
Abstract
Pollen is an essential component of bee diets, and rearing bumble bees (Bombus spp.) for commercial use necessitates feeding pollen in mass quantities. This pollen is collected from honey bee (Apis mellifera L.) colonies because neither an artificial diet nor an economical, large-scale pollen collection process from flowers is available. The provenance of honey bee-collected pollen is often unknown, and in some cases has crossed international borders. Both deformed wing virus (DWV) and the fungal pathogen Ascosphaera apis (Claussen) Olive & Spiltoir (cause of chalkbrood disease); occur in honey bee-collected pollen, and infections have been observed in bumble bees. We used these pathogens as general surrogates for viruses and spore-forming fungal diseases to test the efficacy of 3 sterilization methods, and assessed whether treatment altered pollen quality for the bumble bee. Using honey bee-collected pollen spiked with known doses of DWV and A. apis, we compared gamma irradiation (GI), ozone fumigation (OZ), and ethylene oxide fumigation (EO) against an untreated positive control and a negative control. Following sterilization treatments, we tested A. apis spore viability, detected viral presence with PCR, and tested palatability to the bumble bee Bombus impatiens Cresson. We also measured bacterial growth from pollens treated with EO and GI. GI and EO outperformed OZ treatment in pathogen suppression. EO had the highest sterilizing properties under commercial conditions and retained palatability and supported bee development better than other treatments. These results suggest that EO sterilization reduces pathogen risks while retaining pollen quality as a food source for rearing bumble bees.
Collapse
Affiliation(s)
- James P Strange
- USDA-ARS-Pollinating Insect Biology Management and Systematics Research Unit, Logan, UT 84341, United States
- Department of Entomology, The Ohio State University, Columbus, OH 43210, United States
| | | | - Craig Huntzinger
- USDA-ARS-Pollinating Insect Biology Management and Systematics Research Unit, Logan, UT 84341, United States
| | - Joyce Knoblett
- USDA-ARS-Pollinating Insect Biology Management and Systematics Research Unit, Logan, UT 84341, United States
| | - Ellen Klinger
- USDA-ARS-Pollinating Insect Biology Management and Systematics Research Unit, Logan, UT 84341, United States
- Department of Entomology, The Ohio State University, Columbus, OH 43210, United States
| | - James D Herndon
- USDA-ARS-Pollinating Insect Biology Management and Systematics Research Unit, Logan, UT 84341, United States
- Department of Biology, Utah State University, Logan, UT 84321, United States
| | - Hoang Q Vuong
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, United States
| | - Quinn S McFrederick
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, United States
| | - Rebecca E Irwin
- Department of Applied Ecology, NC State University, Raleigh, NC 27695United States
| | - Jay D Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, United States
| | - Jonathan J Giacomini
- Department of Applied Ecology, NC State University, Raleigh, NC 27695United States
| | - Robert Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT 84322United States
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003United States
| |
Collapse
|
46
|
McCormick EC, Cohen OR, Dolezal AG, Sadd BM. Consequences of microsporidian prior exposure for virus infection outcomes and bumble bee host health. Oecologia 2023:10.1007/s00442-023-05394-x. [PMID: 37284861 DOI: 10.1007/s00442-023-05394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Host-parasite interactions do not occur in a vacuum, but in connected multi-parasite networks that can result in co-exposures and coinfections of individual hosts. These can affect host health and disease ecology, including disease outbreaks. However, many host-parasite studies examine pairwise interactions, meaning we still lack a general understanding of the influence of co-exposures and coinfections. Using the bumble bee Bombus impatiens, we study the effects of larval exposure to a microsporidian Nosema bombi, implicated in bumble bee declines, and adult exposure to Israeli Acute Paralysis Virus (IAPV), an emerging infectious disease from honey bee parasite spillover. We hypothesize that infection outcomes will be modified by co-exposure or coinfection. Nosema bombi is a potentially severe, larval-infecting parasite, and we predict that prior exposure will result in decreased host resistance to adult IAPV infection. We predict double parasite exposure will also reduce host tolerance of infection, as measured by host survival. Although our larval Nosema exposure mostly did not result in viable infections, it partially reduced resistance to adult IAPV infection. Nosema exposure also negatively affected survival, potentially due to a cost of immunity in resisting the exposure. There was a significant negative effect of IAPV exposure on survivorship, but prior Nosema exposure did not alter this survival outcome, suggesting increased tolerance given the higher IAPV infections in the bees previously exposed to Nosema. These results again demonstrate that infection outcomes can be non-independent when multiple parasites are present, even when exposure to one parasite does not result in a substantial infection.
Collapse
Affiliation(s)
- Elyse C McCormick
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Olivia R Cohen
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA
| | - Adam G Dolezal
- School of Integrated Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, IL, 61790, USA.
| |
Collapse
|
47
|
Khan KA, Ganeshprasad DN, Sachin HR, Shouche YS, Ghramh HA, Sneharani AH. Gut microbial diversity in Apis cerana indica and Apis florea colonies: a comparative study. Front Vet Sci 2023; 10:1149876. [PMID: 37252382 PMCID: PMC10213700 DOI: 10.3389/fvets.2023.1149876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Honey bee gut microbiota have an important role in host health, nutrition, host-symbiont interaction, and interaction behavior with the surrounding environment. Recent discoveries of strain-level variation, characteristics of protective and nutritional capabilities, and reports of eco-physiological significance to the microbial community have emphasized the importance of honey bee gut microbiota. Many regions of Asia and Africa are inhabited by the dwarf honey bee, Apis florea. Studying its microflora and potential for pollination is therefore of foremost importance. Methods In the present investigation, we aimed to explore the gut bacteriobiome composition of two distinct honey bee species, Apis florea and Apis cerana indica using high throughput sequencing. Functional predictions of bee gut bacterial communities using PICRUSt2 was carried out. Results and discussion The phylum Proteobacteria dominated the bacterial community in both A. cerana indica (50.1%) and A. florea (86.7%), followed by Firmicutes (26.29 and 12.81%), Bacteroidetes (23.19 and 0.04%) and Actinobacteria (0.4 and 0.02%) respectively. The gut bacteria of A. cerana indica was more diverse than that of A. florea. The observed variations in bacterial genomic diversity among these critical pollinator species may have been influenced by the apiary management techniques, ecological adaptation factors or habitat size. These variations can have a significant effect in understanding host-symbiont interactions and functioning of gut microbiota highlighting the importance of metagenomic survey in understanding microbial community ecology and evolution. This is the first comparative study on variation in bacterial diversity between two Asian honey bees.
Collapse
Affiliation(s)
- Khalid Ali Khan
- Applied College, Mahala Campus, King Khalid University, Abha, Saudi Arabia
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - D. N. Ganeshprasad
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - H. R. Sachin
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Hamed A. Ghramh
- Unit of Bee Research and Honey Production, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - A. H. Sneharani
- Department of Studies and Research in Biochemistry, Jnana Kaveri Post Graduate Centre, Mangalore University, Chikka Aluvara, Karnataka, India
| |
Collapse
|
48
|
Lim HC, Lambrecht D, Forkner RE, Roulston T. Minimal Sharing of Nosematid and Trypanosomatid Parasites between Honey Bees and Other Bees, but Extensive Sharing of Crithidia between Bumble and Mason Bees. J Invertebr Pathol 2023; 198:107933. [PMID: 37169330 DOI: 10.1016/j.jip.2023.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
We document gut parasites in co-occurring Apis, Bombus, and Osmia spp. in the Northern Virginia region, USA. Trypanosomatidea occurred in sixty percent of specimens and 13% carried Nosematidae. We found strong host partitioning: Lotmaria passim and Vairimorpha (Nosema) ceranae predominated in Apis, and Crithidia bombi and V. bombi in Bombus. We did not detect pathogen spread from Apis to Bombus but did detect sharing of C. bombi between Bombus and Osmia, higher parasite levels in Apis at sites with apiaries, and clustering of Vairimopha infection. Given the presence of C. bombi in Osmia, we suggest disease sharing across taxa be monitored.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, Virginia, USA; Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA.
| | - David Lambrecht
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - Rebecca E Forkner
- Department of Biology, George Mason University, Fairfax, Virginia, USA
| | - T'ai Roulston
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
49
|
Chapman NC, Colin T, Cook J, da Silva CRB, Gloag R, Hogendoorn K, Howard SR, Remnant EJ, Roberts JMK, Tierney SM, Wilson RS, Mikheyev AS. The final frontier: ecological and evolutionary dynamics of a global parasite invasion. Biol Lett 2023; 19:20220589. [PMID: 37222245 PMCID: PMC10207324 DOI: 10.1098/rsbl.2022.0589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Studying rapid biological changes accompanying the introduction of alien organisms into native ecosystems can provide insights into fundamental ecological and evolutionary theory. While powerful, this quasi-experimental approach is difficult to implement because the timing of invasions and their consequences are hard to predict, meaning that baseline pre-invasion data are often missing. Exceptionally, the eventual arrival of Varroa destructor (hereafter Varroa) in Australia has been predicted for decades. Varroa is a major driver of honeybee declines worldwide, particularly as vectors of diverse RNA viruses. The detection of Varroa in 2022 at over a hundred sites poses a risk of further spread across the continent. At the same time, careful study of Varroa's spread, if it does become established, can provide a wealth of information that can fill knowledge gaps about its effects worldwide. This includes how Varroa affects honeybee populations and pollination. Even more generally, Varroa invasion can serve as a model for evolution, virology and ecological interactions between the parasite, the host and other organisms.
Collapse
Affiliation(s)
- Nadine C. Chapman
- School of Life and Environmental Sciences, Behaviour, Ecology and Evolution Lab, The University of Sydney, NSW 2006, Australia
| | - Théotime Colin
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - James Cook
- Hawkesbury Institute for the Environment, Western Sydney University, NSW 2753, Australia
| | - Carmen R. B. da Silva
- School of Biological Sciences, Faculty of Science, Monash University, Clayton Victoria 3800, Australia
| | - Ros Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Katja Hogendoorn
- School of Agriculture, The University of Adelaide, Food and Wine, Adelaide SA 5005, Australia
| | - Scarlett R. Howard
- Hawkesbury Institute for the Environment, Western Sydney University, NSW 2753, Australia
| | - Emily J. Remnant
- School of Life and Environmental Sciences, Behaviour, Ecology and Evolution Lab, The University of Sydney, NSW 2006, Australia
| | - John M. K. Roberts
- Commonwealth Scientific & Industrial Research Organisation, Canberra 2601, ACT, Australia
| | - Simon M. Tierney
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, USA
| | - Rachele S. Wilson
- School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexander S. Mikheyev
- Research School of Biology, Australian National University, Canberra, ACT 26000, Australia
| |
Collapse
|
50
|
Fernandez De Landa G, Alberoni D, Baffoni L, Fernandez De Landa M, Revainera PD, Porrini LP, Brasesco C, Quintana S, Zumpano F, Eguaras MJ, Maggi MD, Di Gioia D. The gut microbiome of solitary bees is mainly affected by pathogen assemblage and partially by land use. ENVIRONMENTAL MICROBIOME 2023; 18:38. [PMID: 37098635 PMCID: PMC10131457 DOI: 10.1186/s40793-023-00494-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.
Collapse
Affiliation(s)
- Gregorio Fernandez De Landa
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy.
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| | - Mateo Fernandez De Landa
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Pablo Damian Revainera
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Leonardo Pablo Porrini
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Constanza Brasesco
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Silvina Quintana
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Francisco Zumpano
- Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Funes 3350, Universidad Nacional de Mar del Plata-CONICET, 7600, Mar del Plata, Argentina
| | - Martìn Javier Eguaras
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Matias Daniel Maggi
- Facultad de Ciencias Exactas y Naturales, Centro de Asociación Simple CIC PBA, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Abejas Sociales, Universidad Nacional de Mar del Plata, , Mar del Plata, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Viale Fanin 44, 40127, Bologna, Italy
| |
Collapse
|