1
|
Lin WH, Tzeng CY, Kao FC, Tsao CW, Li N, Wu CC, Lee SH, Huang KF, Hu WW, Chen SL. The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor. Biotechnol Bioeng 2025; 122:95-109. [PMID: 39369338 DOI: 10.1002/bit.28857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.
Collapse
Affiliation(s)
- Wei-Hsuan Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Che Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Huei Lee
- Department of Electric Engineering, Chien Hsin University of Science and Technology, Taoyuan, Taiwan
| | - Kai-Fan Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Caputo L, Stamenkovic C, Tierney MT, Falzarano MS, Bassel-Duby R, Ferlini A, Olson EN, Puri PL, Sacco A. Modulation of the JAK2-STAT3 pathway promotes expansion and maturation of human iPSCs-derived myogenic progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.09.624203. [PMID: 39713478 PMCID: PMC11661153 DOI: 10.1101/2024.12.09.624203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Generation of in vitro induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation in vivo as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation. Here we demonstrate that modulation of the JAK2/STAT3 signaling pathway during an in vitro skeletal muscle differentiation protocol, increases the yield of PAX7+ and CD54+ SMPCs and drive them to a postnatal maturation stage, in both human ES and patient-derived iPSCs. Importantly, upon removal of the inhibition from the cultures, the obtained SMPCs are able to differentiate into multinucleated myotubes in vitro. These findings reveal that modulation of the JAK2/STAT3 signaling pathway is a potential therapeutic avenue to generate SMPCs in vitro with increase potential for cell-therapy approaches.
Collapse
Affiliation(s)
- Luca Caputo
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Matthew T. Tierney
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Rhonda Bassel-Duby
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | - Eric N. Olson
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, Development, Aging and Regeneration Program, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Sullivan BP, Larson AA, Shams AS, McMillin SL, Ebeling MC, Peng S, Kyba M, Lowe DA. Estradiol deficiency as a consequence of aging contributes to the depletion of the satellite cell pool in female mice. Aging Cell 2024:e14441. [PMID: 39641290 DOI: 10.1111/acel.14441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
The effects of aging on the satellite cell pool have primarily been studied in male mice, where the role of cell-intrinsic versus environmental changes on satellite cell function remains contentious. Estradiol is necessary for maintenance of satellite cell pool size in adult female mice-here we investigate the hypothesis that in females, estradiol is a major environmental driver of age-associated effects on satellite cells. In 24-26 month-old ovarian senescent mice, we find the satellite cell pool size is severely diminished in certain muscles (TA and EDL) but only marginally affected in others (soleus and gastrocnemius). Supplementation with 17-beta estradiol significantly increases satellite cell pool size in the TA and EDL. To assess cell-intrinsic versus environmental regulation, we perform two transplantation experiments, Adult or Aged satellite cells transplanted into Adult recipients, and Adult satellite cells transplanted into Adult or Aged mice. These results demonstrate that the aged environment dominates over cell-autonomous age in terms of the specification of satellite cell pool size. Transcriptional profiling on satellite cells from Adult, Aged and ovariectomized mice revealed commonalities across the two estradiol-deficient conditions, Aged and ovariectomized, in GO terms from differentially expressed genes. Our findings support the hypothesis that the lack of estradiol contributes to reductions in satellite cell number in Aged female muscle, yet cells that remain are functional in terms of proliferative potential and self-renewal capacity. These findings have implications for sex hormone treatment of menopausal women and highlight the vital role of estradiol in the maintenance of the satellite cell pool.
Collapse
Affiliation(s)
- Brian P Sullivan
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexie A Larson
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ahmed S Shams
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Human Anatomy and Embryology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shawna L McMillin
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mara C Ebeling
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sydney Peng
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dawn A Lowe
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Guo R, Wu Z, Liu A, Li Q, Han T, Shen C. Hypoxic preconditioning-engineered bone marrow mesenchymal stem cell-derived exosomes promote muscle satellite cell activation and skeletal muscle regeneration via the miR-210-3p/KLF7 mechanism. Int Immunopharmacol 2024; 142:113143. [PMID: 39306891 DOI: 10.1016/j.intimp.2024.113143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Sarcopenia is a gradual and widespread decline in muscle mass and function in skeletal muscle, leading to significant implications for individuals and society. Currently, there is a lack of effective treatment methods for sarcopenia. Muscle satellite cells(SCs) play a crucial role in the occurrence and development of sarcopenia, and their proliferation and differentiation abilities are closely related to the progression of disease. This study evaluated the effects of exosomes derived from hypoxic preconditioning bone marrow mesenchymal stem cells (BMSCs) on the proliferation of SCs and skeletal muscle regeneration. We found that the capacity for the proliferation and differentiation of SCs in elderly rats was notably diminished, leading us to create a sarcopenia model in elderly rats. By separating and extracting exosomes from BMSCs treated with normoxic (N-Exos) and hypoxic (H-Exos) conditions, in vivo and in vitro studies showed that both N-Exos and H-Exos can regulate the proliferation and differentiation of SCs in elderly rats, and promote skeletal muscle regeneration and functional recovery. The beneficial effects of H-Exos were also more significant than those of the N-Exos group. In vitro studies demonstrated that H-Exos could influence the expression of the KLF7 gene and protein in SCs by delivering miR-210-3P. This, in turn, impacted the phosphorylation of the PI3K/AKT signaling pathway and contributed to the function of SCs. H-Exos stimulated SCs and promoted skeletal muscle regeneration during sarcopenia by delivering miR-210-3P to target the KLF7/PI3K/AKT signaling pathway. This may serve as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ruocheng Guo
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Zuomeng Wu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Ao Liu
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Qiuwei Li
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Tianyu Han
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Cailiang Shen
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China; Laboratory of Spinal and Spinal Cord Injury Regeneration and Repair, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
5
|
Chinvattanachot G, Rivas D, Duque G. Mechanisms of muscle cells alterations and regeneration decline during aging. Ageing Res Rev 2024; 102:102589. [PMID: 39566742 DOI: 10.1016/j.arr.2024.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Skeletal muscles are essential for locomotion and body metabolism regulation. As muscles age, they lose strength, elasticity, and metabolic capability, leading to ineffective motion and metabolic derangement. Both cellular and extracellular alterations significantly influence muscle aging. Satellite cells (SCs), the primary muscle stem cells responsible for muscle regeneration, become exhausted, resulting in diminished population and functionality during aging. This decline in SC function impairs intercellular interactions as well as extracellular matrix production, further hindering muscle regeneration. Other muscle-resident cells, such as fibro-adipogenic progenitors (FAPs), pericytes, and immune cells, also deteriorate with age, reducing local growth factor activities and responsiveness to stress or injury. Systemic signaling, including hormonal changes, contributes to muscle cellular catabolism and disrupts muscle homeostasis. Collectively, these cellular and environmental components interact, disrupting muscle homeostasis and regeneration in advancing age. Understanding these complex interactions offers insights into potential regenerative strategies to mitigate age-related muscle degeneration.
Collapse
Affiliation(s)
- Guntarat Chinvattanachot
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr. Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, Tan QH, Low SY, Chin HS, Wong CS, Huang SY, Fu NY, Nishiyama J, Harmston N, Tang HW. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024; 20:2632-2654. [PMID: 38963021 PMCID: PMC11587838 DOI: 10.1080/15548627.2024.2374693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.Abbreviations: DEAF1: Deformed epidermal autoregulatory factor-1; FOXO: Forkhead box O; MuSC: Muscle Stem Cell; PAX7: Paired box 7; PIK3C3: Phosphatidylinositol 3-kinase catalytic subunit type 3.
Collapse
Affiliation(s)
- Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Kenon Chua
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Shin Yi Low
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hui San Chin
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Seng Wong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nai Yang Fu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Walter LD, Orton JL, Ntekas I, Fong EHH, Maymi VI, Rudd BD, De Vlaminck I, Elisseeff JH, Cosgrove BD. Transcriptomic analysis of skeletal muscle regeneration across mouse lifespan identifies altered stem cell states. NATURE AGING 2024; 4:1862-1881. [PMID: 39578558 PMCID: PMC11645289 DOI: 10.1038/s43587-024-00756-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2024] [Indexed: 11/24/2024]
Abstract
In aging, skeletal muscle regeneration declines due to alterations in both myogenic and non-myogenic cells and their interactions. This regenerative dysfunction is not understood comprehensively or with high spatiotemporal resolution. We collected an integrated atlas of 273,923 single-cell transcriptomes and high-resolution spatial transcriptomic maps from muscles of young, old and geriatric mice (~5, 20 and 26 months old) at multiple time points following myotoxin injury. We identified eight immune cell types that displayed accelerated or delayed dynamics by age. We observed muscle stem cell states and trajectories specific to old and geriatric muscles and evaluated their association with senescence by scoring experimentally derived and curated gene signatures in both single-cell and spatial transcriptomic data. This revealed an elevation of senescent-like muscle stem cell subsets within injury zones uniquely in aged muscles. This Resource provides a holistic portrait of the altered cellular states underlying muscle regenerative decline across mouse lifespan.
Collapse
Affiliation(s)
- Lauren D Walter
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
| | - Jessica L Orton
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ioannis Ntekas
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Viviana I Maymi
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA
- Department of Microbiology & Immunology, Cornell University, Ithaca, NY, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin D Cosgrove
- Genetics, Genomics and Development Graduate Program, Cornell University, Ithaca, NY, USA.
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Wang Z, Peng Q, Zhang Z, You X, Duan H, Sha R, Yuan N, Li Z, Xie Z, Han J, Feng Y. SRSF1 Is Crucial for Maintaining Satellite Cell Homeostasis During Skeletal Muscle Growth and Regeneration. J Cachexia Sarcopenia Muscle 2024; 15:2629-2641. [PMID: 39381961 PMCID: PMC11634495 DOI: 10.1002/jcsm.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The splicing factor SRSF1 emerges as a mater regulator of cell proliferation, displaying high expression in actively proliferative satellite cells (SCs). In SRSF1 knockout mice (KO) generated via MyoD-Cre, early mortality and muscle atrophy are observed during postnatal muscle growth. Despite these findings, the precise mechanisms through which SRSF1 loss influences SCs' functions and its role in muscle regeneration remain to be elucidated. METHODS To unravel the exact mechanisms underlying the impact of SRSF1 deficiency SC functions, we employed single-cell RNA sequencing (scRNA-seq) on a mononuclear cell suspension isolated from the newborn diaphragm of KO and control mice. Concurrently, we subjected diaphragm muscles to RNA-seq analysis to identify dysregulated splicing events associated with SRSF1 deletion. For the analysis of the effect of SRSF1 deletion on muscle regeneration, we generated mice with inducible SC-specific Srsf1 ablation through Pax7-CreER. SRSF1 ablation was induced by intraperitoneal injection of tamoxifen. Using cardiotoxin-induced muscle injury, we examined the consequences of SRSF1 depletion on SC function through HE staining, immunostaining and EdU incorporation assay. C2C12 myoblasts and isolated myoblasts were employed to assess stem cell function and senescence. RESULTS Utilizing scRNA-seq analysis, we observed a noteworthy increase in activated and proliferating myoblasts when SRSF1 was absent. This increase was substantial, with the proportion rising from 28.68% in the control group to 77.06% in the knockout group. However, these myoblasts experienced mitotic abnormalities in the absence of SRSF1, resulting in cell cycle arrest and the onset of cellular senescence. In the knockout mice, the proportion of Pax7+ cells within improper niche positioning increased significantly to 25% compared to 12% in the control cells (n ≥ 10, p < 0.001). Furthermore, there was an observation of persistent cell cycle exit specifically in the Pax7+ cells deficient in SRSF1 (n = 6, p < 0.001). SRSF1 plays a pivotal role in regulating the splicing of Fgfr1op2, favouring the full-length isoform crucial for mitotic spindle organization. Disrupting SRSF1 in C2C12 and primary myoblasts results in multipolar spindle formation (p < 0.001) and dysregulated splicing of Fgfr1op2 and triggers cellular senescence. Consequently, adult SCs lacking SRSF1 initially activate upon injury but face substantial challenge in proliferation (n = 4, p < 0.001), leading to a failure in muscle regeneration. CONCLUSIONS SRSF1 plays a critical role in SCs by ensuring proper splicing, maintaining mitotic progression and preventing premature senescence. These findings underscore the significant role of SRSF1 in controlling SC proliferation during skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- Zhenzhen Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Qian Peng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhige Zhang
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Xue You
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| | - Huimin Duan
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| | - Rula Sha
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Ningyang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhigang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Zhiqin Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
| | - Jun Han
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Ying Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences, Chinese Academy of SciencesShanghaiChina
- Lin He's Academician Workstation of New Medicine and Clinical Translation in Jining Medical University, Jining Medical UniversityJiningChina
| |
Collapse
|
9
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
10
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
11
|
Calvo-Rubio M, Garcia-Domiguez E, Tamayo-Torres E, Soto-Rodríguez S, Olaso-Gonzalez G, Ferrucci L, de Cabo R, Gómez-Cabrera MC. The repeated bout effect evokes the training-induced skeletal muscle cellular memory. Free Radic Biol Med 2024; 225:247-254. [PMID: 39343184 DOI: 10.1016/j.freeradbiomed.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Physical exercise is well-established as beneficial for health. With the 20th-century epidemiological transition, promoting healthy habits like exercise has become crucial for preventing chronic diseases. Stress can yield adaptive long-term benefits, potentially transmitted trans-generationally. Physical training exposes individuals to metabolic, thermal, mechanical, and oxidative stressors, activating cell signaling pathways that regulate gene expression and adaptive responses, thereby enhancing stress tolerance - a phenomenon known as hormesis. Muscle memory is the capacity of skeletal muscle to respond differently to environmental stimuli in an adaptive (positive) or maladaptive (negative) manner if the stimuli have been encountered previously. The Repeated Bout Effect encompasses our skeletal muscle capacity to activate an intrinsic protective mechanism that reacts to eccentric exercise-induced damage by activating an adaptive response that resists subsequent damage stimuli. Deciphering the molecular mechanism of this phenomenon would allow the incorporation of muscle memory in training programs for professional athletes, active individuals looking for the health benefits of exercise training, and patients with "exercise intolerance." Moreover, enhancing the adaptive response of muscle memory could promote healing in individuals who traditionally do not recover after immobilization. The improvement could be part of an exercise program but could also be targeted pharmacologically. This review explores Repeated Bout Effect mechanisms: neural adaptations, tendon and muscle fiber property changes, extracellular matrix remodeling, and improved inflammatory responses.
Collapse
Affiliation(s)
- Miguel Calvo-Rubio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Esther Garcia-Domiguez
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia; Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Eva Tamayo-Torres
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Silvana Soto-Rodríguez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Gloria Olaso-Gonzalez
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain.
| | - Luigi Ferrucci
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Maria Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| |
Collapse
|
12
|
Zhang ZK, Guan D, Xu J, Li X, Zhang N, Yao S, Zhang G, Zhang BT. Long Noncoding RNA lncRNA-3 Recruits PRC2 for MyoD1 Silencing to Suppress Muscle Regeneration During Aging. Int J Mol Sci 2024; 25:12478. [PMID: 39596542 PMCID: PMC11594582 DOI: 10.3390/ijms252212478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Lowered muscle regenerative capacity in the elderly greatly contributes to the development of multiple diseases. The specific roles of long noncoding RNAs (lncRNAs) in muscle regenerative capacity during aging remain unknown. Here, we identify an elevated lncRNA (lncRNA-3), in association with reduced MyoD expression and suppressed muscle regenerative capacity, in the skeletal muscle of aged mice. LncRNA-3 could interact with both the MyoD1 promoter and RbAp46/48, a subunit of Polycomb repressive complex 2 (PRC2). LncRNA-3 could recruit PRC2 to the MyoD1 promoter and enhance the MyoD1 silencing, which, in turn, suppressed the muscle regenerative capacity. Muscle-specific lncRNA-3 knockdown could restore the muscle regenerative capacity in the aged mice. Exogenous RbAp46/48 binding motif (Rb-motif-2) treatment in skeletal muscle could compete for the lncRNA-3 binding, and therefore, enhance the muscle regenerative capacity in the aged mice. Taken together, lncRNA-3 requires PRC2 for MyoD1 silencing to suppress muscle regenerative capacity during aging. These findings provide a novel therapeutic target and a new strategy to elevate the muscle regenerative capacity in the aged population.
Collapse
Affiliation(s)
- Zong-Kang Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| | - Daogang Guan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jintao Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| | - Xiaofang Li
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| | - Ning Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| | - Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.-K.Z.)
| |
Collapse
|
13
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
14
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
15
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
dos Santos TW, Pereira QC, Fortunato IM, Oliveira FDS, Alvarez MC, Ribeiro ML. Body Composition and Senescence: Impact of Polyphenols on Aging-Associated Events. Nutrients 2024; 16:3621. [PMID: 39519454 PMCID: PMC11547493 DOI: 10.3390/nu16213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is a dynamic and progressive process characterized by the gradual accumulation of cellular damage. The continuous functional decline in the intrinsic capacity of living organisms to precisely regulate homeostasis leads to an increased susceptibility and vulnerability to diseases. Among the factors contributing to these changes, body composition-comprised of fat mass and lean mass deposits-plays a crucial role in the trajectory of a disability. Particularly, visceral and intermuscular fat deposits increase with aging and are associated with adverse health outcomes, having been linked to the pathogenesis of sarcopenia. Adipose tissue is involved in the secretion of bioactive factors that can ultimately mediate inter-organ pathology, including skeletal muscle pathology, through the induction of a pro-inflammatory profile such as a SASP, cellular senescence, and immunosenescence, among other events. Extensive research has shown that natural compounds have the ability to modulate the mechanisms associated with cellular senescence, in addition to exhibiting anti-inflammatory, antioxidant, and immunomodulatory potential, making them interesting strategies for promoting healthy aging. In this review, we will discuss how factors such as cellular senescence and the presence of a pro-inflammatory phenotype can negatively impact body composition and lead to the development of age-related diseases, as well as how the use of polyphenols can be a functional measure for restoring balance, maintaining tissue quality and composition, and promoting health.
Collapse
Affiliation(s)
- Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Quélita Cristina Pereira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Isabela Monique Fortunato
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Fabrício de Sousa Oliveira
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| | - Marisa Claudia Alvarez
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
- Hematology and Transfusion Medicine Center, University of Campinas/Hemocentro, UNICAMP, Rua Carlos Chagas 480, Campinas 13083-878, SP, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University, Av. Sao Francisco de Assis, 218, Braganca Paulista 12916-900, SP, Brazil; (T.W.d.S.); (Q.C.P.); (I.M.F.); (F.d.S.O.); (M.C.A.)
| |
Collapse
|
17
|
Daigh LH, Saha D, Rosenthal DL, Ferrick KR, Meyer T. Uncoupling of mTORC1 from E2F activity maintains DNA damage and senescence. Nat Commun 2024; 15:9181. [PMID: 39448567 PMCID: PMC11502682 DOI: 10.1038/s41467-024-52820-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
DNA damage is a primary trigger for cellular senescence, which in turn causes organismal aging and is a promising target of anti-aging therapies. Most DNA damage occurs when DNA is fragile during DNA replication in S phase, but senescent cells maintain DNA damage long-after DNA replication has stopped. How senescent cells induce DNA damage and why senescent cells fail to repair damaged DNA remain open questions. Here, we combine reversible expression of the senescence-inducing CDK4/6 inhibitory protein p16INK4 (p16) with live single-cell analysis and show that sustained mTORC1 signaling triggers senescence in non-proliferating cells by increasing transcriptional DNA damage and inflammation signaling that persists after p16 is degraded. Strikingly, we show that activation of E2F transcriptional program, which is regulated by CDK4/6 activity and promotes expression of DNA repair proteins, repairs transcriptionally damaged DNA without requiring DNA replication. Together, our study suggests that senescence can be maintained by ongoing mTORC1-induced transcriptional DNA damage that cannot be sufficiently repaired without induction of protective E2F target genes.
Collapse
Affiliation(s)
- Leighton H Daigh
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Debarya Saha
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David L Rosenthal
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Katherine R Ferrick
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
18
|
Qiu J, Yue F, Kim KH, Chen X, Khedr MA, Chen J, Gu L, Ren J, Ferreira CR, Ellis J, Kuang S. Overexpression of CPT1A disrupts the maintenance and regenerative function of muscle stem cells. FASEB J 2024; 38:e70071. [PMID: 39382025 PMCID: PMC11486317 DOI: 10.1096/fj.202400947r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024]
Abstract
The skeletal muscle satellite cells (SCs) mediate regeneration of myofibers upon injury. As they switch from maintenance (quiescence) to regeneration, their relative reliance on glucose and fatty acid metabolism alters. To explore the contribution of mitochondrial fatty acid oxidation (FAO) pathway to SCs and myogenesis, we examined the role of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO. CPT1A is highly expressed in quiescent SCs (QSCs) compared with activated and proliferating SCs, and its expression level decreases during myogenic differentiation. Myod1Cre-driven overexpression (OE) of Cpt1a in embryonic myoblasts (Cpt1aMTG) reduces muscle weight, grip strength, and contractile force without affecting treadmill endurance of adult mice. Adult Cpt1aMTG mice have reduced number of SC, impairing muscle regeneration and promoting lipid infiltration. Similarly, Pax7CreER-driven, tamoxifen-inducible Cpt1a-OE in QSCs of adult muscles (Cpt1aPTG) leads to depletion of SCs and compromises muscle regeneration. The reduced proliferation of Cpt1a-OE SCs is associated with elevated level of acyl-carnitine, and acyl-carnitine treatment impedes proliferation of wildtype SCs. These findings indicate that aberrant level of CPT1A elevates acyl-carnitine to impair the maintenance, proliferation and regenerative function of SCs.
Collapse
Affiliation(s)
- Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- These authors contributed equally to this work
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
- These authors contributed equally to this work
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Lijie Gu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Junxiao Ren
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Christina R. Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West, Lafayette, IN 47907, USA
| | - Jessica Ellis
- Department of Physiology and East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University Greenville, NC 27834, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN 47907, USA
- Departments of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
19
|
Franulic F, Salech F, Rivas D, Duque G. Deciphering Osteosarcopenia through the hallmarks of aging. Mech Ageing Dev 2024; 222:111997. [PMID: 39396681 DOI: 10.1016/j.mad.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/06/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Osteosarcopenia is a major driver of functional loss and a risk factor for falls, fractures, disability and mortality in older adults, urgently requiring the development of effective interventions to address it. The hallmarks of aging provide a theoretical and practical framework that allows for the structured organization of current knowledge and the planning of new development lines. This article comprehensively reviews the currently available literature on the role of the hallmarks of aging in the development of osteosarcopenia, thereby offering a panoramic view of the state of the art and knowledge gaps in this field.
Collapse
Affiliation(s)
- Francisca Franulic
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile
| | - Felipe Salech
- Sección de Geriatría, Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago de Chile, Chile; Ageing and Quality of life Nucleus, INTA, Universidad de Chile, Santiago de Chile, Chile; Centre FONDAP for Aging, Brain and Metabolism GERO, Universidad de Chile, Santiago de Chile, Chile
| | - Daniel Rivas
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Gustavo Duque
- Bone, Muscle & Geroscience Group, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Dr Joseph Kaufmann Chair in Geriatric Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Li F, Zhang F, Shi H, Xia H, Wei X, Liu S, Wu T, Li Y, Shu F, Chen M, Li J, Duan R. Aerobic exercise suppresses CCN2 secretion from senescent muscle stem cells and boosts muscle regeneration in aged mice. J Cachexia Sarcopenia Muscle 2024; 15:1733-1749. [PMID: 38925632 PMCID: PMC11446704 DOI: 10.1002/jcsm.13526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/18/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging negatively impacts tissue repair, particularly in skeletal muscle, where the regenerative capacity of muscle stem cells (MuSCs) diminishes with age. Although aerobic exercise is known to attenuate skeletal muscle atrophy, its specific impact on the regenerative and repair capacity of MuSCs remains unclear. METHODS Mice underwent moderate-intensity continuous training (MICT) from 9 months (aged + Ex-9M) or 20 months (aged + Ex-20M) to 25 months, with age-matched (aged) and adult controls. Histological examinations and MuSC transplantation assays assessed aerobic exercise effects on MuSC function and muscle regeneration. CCN2/connective tissue growth factor modulation (overexpression and knockdown) in MuSCs and AICAR supplementation effects were explored. RESULTS Aged mice displayed significantly reduced running duration (65.33 ± 4.32 vs. 161.9 ± 1.29 min, mean ± SD, P < 0.001) and distance (659.17 ± 103.64 vs. 3058.28 ± 46.26 m, P < 0.001) compared with adults. This reduction was accompanied by skeletal muscle weight loss and decreased myofiber cross-sectional area (CSA). However, MICT initiated at 9 or 20 months led to a marked increase in running duration (142.75 ± 3.14 and 133.86 ± 20.47 min, respectively, P < 0.001 compared with aged mice) and distance (2347.58 ± 145.11 and 2263 ± 643.87 m, respectively, P < 0.001). Additionally, MICT resulted in increased skeletal muscle weight and enhanced CSA. In a muscle injury model, aged mice exhibited fewer central nuclear fibres (CNFs; 266.35 ± 68.66/mm2), while adult, aged + Ex-9M and aged + Ex-20M groups showed significantly higher CNF counts (610.82 ± 46.76, 513.42 ± 47.19 and 548.29 ± 71.82/mm2, respectively; P < 0.001 compared with aged mice). MuSCs isolated from aged mice displayed increased CCN2 expression, which was effectively suppressed by MICT. Transplantation of MuSCs overexpressing CCN2 (Lenti-CCN2, Lenti-CON as control) into injured tibialis anterior muscle compromised regeneration capacity, resulting in significantly fewer CNFs in the Lenti-CCN2 group compared with Lenti-CON (488.07 ± 27.63 vs. 173.99 ± 14.28/mm2, P < 0.001) at 7 days post-injury (dpi). Conversely, knockdown of CCN2 (Lenti-CCN2shR, Lenti-NegsiR as control) in aged MuSCs improved regeneration capacity, significantly increasing the CNF count from 254.5 ± 26.36 to 560.39 ± 48.71/mm2. Lenti-CCN2 MuSCs also increased fibroblast proliferation and exacerbated skeletal muscle fibrosis, while knockdown of CCN2 in aged MuSCs mitigated this pattern. AICAR supplementation, mimicking exercise, replicated the beneficial effects of aerobic exercise by mitigating muscle weight decline, enhancing satellite cell activity and reducing fibrosis. CONCLUSIONS Aerobic exercise effectively reverses the decline in endurance capacity and mitigates muscle atrophy in aged mice. It inhibits CCN2 secretion from senescent MuSCs, thereby enhancing skeletal muscle regeneration and preventing fibrosis in aged mice. AICAR supplementation mimics the beneficial effects of aerobic exercise.
Collapse
Affiliation(s)
- Fan Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Fulong Zhang
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
- School of Physical EducationShanxi Datong UniversityDatongChina
| | - Haiwang Shi
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Honglin Xia
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Xiaobei Wei
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Siqi Liu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Tao Wu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Yuecheng Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Feng Shu
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Mengjie Chen
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Jie Li
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| | - Rui Duan
- School of Physical Education and Sports ScienceSouth China Normal UniversityGuangzhou510006China
| |
Collapse
|
21
|
Zhou D, Shi Y, Zhang D, Zuo J, Zeng C, Mamtawla G, Huang L, Gao X, Zhang L, Wang X. Liver-secreted FGF21 induces sarcopenia by inhibiting satellite cell myogenesis via klotho beta in decompensated cirrhosis. Redox Biol 2024; 76:103333. [PMID: 39226764 PMCID: PMC11403507 DOI: 10.1016/j.redox.2024.103333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND & AIMS Sarcopenia, a prevalent condition, significantly impacts the prognosis of patients with decompensated cirrhosis (DC). Serum fibroblast growth factor 21 (FGF21) levels are significantly higher in DC patients with sarcopenia. Satellite cells (SCs) play a role in aging- and cancer-induced sarcopenia. Here, we investigated the roles of FGF21 and SCs in DC-related sarcopenia as well as the underlying mechanisms. METHODS We developed two DC mouse models and performed in vivo and in vitro experiments. Klotho beta (KLB) knockout mice in SCs were constructed to investigate the role of KLB downstream of FGF21. In addition, biological samples were collected from patients with DC and control patients to validate the results. RESULTS Muscle wasting and impaired SC myogenesis were observed in the DC mouse model and patients with DC. Elevated circulating levels of liver-derived FGF21 were observed, which were significantly negatively correlated with skeletal muscle mass/skeletal muscle index. Liver-secreted FGF21 induces SC dysfunction, contributing to sarcopenia. Mechanistically, FGF21 in the DC state exhibits enhanced interactions with KLB on SC surfaces, leading to downstream phosphatase and tensin homolog upregulation. This inhibits the protein kinase B (PI3K/Akt) pathway, hampering SC proliferation and differentiation, and blocking new myotube formation to repair atrophy. Neutralizing circulating FGF21 using neutralizing antibodies, knockdown of hepatic FGF21 by adeno-associated virus, or knockout of KLB in SCs effectively improved or reversed DC-related sarcopenia. CONCLUSIONS Hepatocyte-derived FGF21 mediates liver-muscle crosstalk, which impairs muscle regeneration via the inhibition of the PI3K/Akt pathway, thereby demonstrating a novel therapeutic strategy for DC-related sarcopenia.
Collapse
Affiliation(s)
- Da Zhou
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Yifan Shi
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Donghua Zhang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Junbo Zuo
- Department of General Surgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 210002, China; Department of General Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 210002, China
| | - Chenghao Zeng
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Gulsudum Mamtawla
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - LongChang Huang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xuejin Gao
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Li Zhang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China
| | - Xinying Wang
- Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
22
|
Cuijpers I, Dohmen CGM, Bouwman FG, Troost FJ, Sthijns MMJPE. Hesperetin but not ellagic acid increases myosin heavy chain expression and cell fusion in C2C12 myoblasts in the presence of oxidative stress. Front Nutr 2024; 11:1377071. [PMID: 39285862 PMCID: PMC11402829 DOI: 10.3389/fnut.2024.1377071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Skeletal muscle regeneration is impaired in elderly. An oxidative stress-induced decrease in differentiation capacity of muscle satellite cells is a key factor in this process. The aim of this study is to investigate whether orange polyphenol hesperetin and pomegranate polyphenol ellagic acid enhance myoblast differentiation in the presence and absence of oxidative stress, and to explore underlying mechanisms. Methods C2C12 myoblasts were proliferated for 24 h and differentiated for 120 h while exposed to hesperetin (5, 20, 50 μM), ellagic acid (0.05, 0.1 μM) or a combination (20 μM hesperetin, 0.05 μM ellagic acid) with and without oxidative stress-inducing compound menadione (9 μM) during 24 h of proliferation and during the first 5 h of differentiation. The number of proliferating cells was assessed using fluorescent labeling of incorporated 5-ethynyl-2'-deoxyuridine. Myosin heavy chain expression was assessed by fluorescence microscopy and cell fusion index was calculated. Furthermore, protein expression of phosphorylated p38 and myomixer were assessed using Western blot. Results None of the compounds induced effects on cell proliferation. Without menadione, 50 μM hesperetin increased fusion index by 12.6% compared to control (p < 0.01), while ellagic acid did not affect measured parameters of differentiation. Menadione treatment did not change myosin heavy chain expression and fusion index. In combination with menadione, 20 μM hesperetin increased myosin heavy chain expression by 35% (p < 0.01) and fusion index by 7% (p = 0.04) compared to menadione. Furthermore, the combination of menadione with hesperetin and ellagic acid increased myosin heavy chain expression by 35% compared to menadione (p = 0.02). Hesperetin and ellagic acid did not change p38 phosphorylation and myomixer expression compared to control, while treatment with menadione increased p38 phosphorylation (p < 0.01) after 5 h and decreased myomixer expression (p = 0.04) after 72 h of differentiation. Conclusion and discussion Hesperetin increased myosin heavy chain expression in the presence of oxidative stress induced by menadione, and increased cell fusion both in the presence and absence of menadione. Ellagic acid did not affect the measured parameters of myoblast differentiation. Therefore, hesperetin should be considered as nutritional prevention or treatment strategy to maintain muscle function in age-related diseases such as sarcopenia. Future research should focus on underlying mechanisms and translation of these results to clinical practice.
Collapse
Affiliation(s)
- Iris Cuijpers
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Colin G M Dohmen
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Freek G Bouwman
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Freddy J Troost
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| | - Mireille M J P E Sthijns
- Department of Human Biology, Institute of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University Campus Venlo, Venlo, Netherlands
| |
Collapse
|
23
|
Ivanov D, Drobintseva A, Rodichkina V, Mironova E, Zubareva T, Krylova Y, Morozkina S, Marasco MGP, Mazzoccoli G, Nasyrov R, Kvetnoy I. Inflammaging: Expansion of Molecular Phenotype and Role in Age-Associated Female Infertility. Biomedicines 2024; 12:1987. [PMID: 39335502 PMCID: PMC11428237 DOI: 10.3390/biomedicines12091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) in primary human endometrial cells obtained from female subjects of young reproductive age (<35 years of age). We assessed the expression levels of IL-6, IL-8, IL-1α, MMP3, SIRT-1, SIRT-6, TERF-1, and CALR at the mRNA level by RT-qPCR and at the protein level by immunofluorescence and confocal microscopy in primary human endometrial cells upon induction of genotoxic stress and compared them to untreated cells. Statistically significant differences were found for the expression of SIRT-1, SIRT-6, and TERF, which were found to be decreased upon induction of cell senescence through genotoxic stress, while IL-6, IL-8, IL-1α, MMP3, and p16 were found to be increased in senescent cells. We propose that these molecules, in addition to SAS-linked factors, could represent novel markers, and eventually potential therapeutic targets, for the aging-associated dysfunction of the female reproductive system.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Anna Drobintseva
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Valeriia Rodichkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Ekaterina Mironova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Tatyana Zubareva
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Yuliya Krylova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Svetlana Morozkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Maria Greta Pia Marasco
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Ruslan Nasyrov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Igor Kvetnoy
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| |
Collapse
|
24
|
Balnis J, Tufts A, Jackson EL, Drake LA, Singer DV, Lacomis D, Lee CG, Elias JA, Doles JD, Maher LJ, Jen A, Coon JJ, Jourd’heuil D, Singer HA, Vincent CE, Jaitovich A. Succinate dehydrogenase-complex II regulates skeletal muscle cellular respiration and contractility but not muscle mass in genetically induced pulmonary emphysema. SCIENCE ADVANCES 2024; 10:eado8549. [PMID: 39167644 PMCID: PMC11338223 DOI: 10.1126/sciadv.ado8549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Reduced skeletal muscle mass and oxidative capacity coexist in patients with pulmonary emphysema and are independently associated with higher mortality. If reduced cellular respiration contributes to muscle atrophy in that setting remains unknown. Using a mouse with genetically induced pulmonary emphysema that recapitulates muscle dysfunction, we found that reduced activity of succinate dehydrogenase (SDH) is a hallmark of its myopathic changes. We generated an inducible, muscle-specific SDH knockout mouse that demonstrates lower mitochondrial oxygen consumption, myofiber contractility, and exercise endurance. Respirometry analyses show that in vitro complex I respiration is unaffected by loss of SDH subunit C in muscle mitochondria, which is consistent with the pulmonary emphysema animal data. SDH knockout initially causes succinate accumulation associated with a down-regulated transcriptome but modest proteome effects. Muscle mass, myofiber type composition, and overall body mass constituents remain unaltered in the transgenic mice. Thus, while SDH regulates myofiber respiration in experimental pulmonary emphysema, it does not control muscle mass or other body constituents.
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Ankita Tufts
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Emily L. Jackson
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Lisa A. Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - David Lacomis
- Departments of Pathology and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jack A. Elias
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Jason D. Doles
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Annie Jen
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - David Jourd’heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A. Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical College, Albany, NY, USA
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
25
|
Yao G. Quiescence-Origin Senescence: A New Paradigm in Cellular Aging. Biomedicines 2024; 12:1837. [PMID: 39200301 PMCID: PMC11351160 DOI: 10.3390/biomedicines12081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cellular senescence, traditionally viewed as a consequence of proliferating and growing cells overwhelmed by extensive stresses and damage, has long been recognized as a critical cellular aging mechanism. Recent research, however, has revealed a novel pathway termed "quiescence-origin senescence", where cells directly transition into senescence from the quiescent state, bypassing cell proliferation and growth. This opinion paper presents a framework conceptualizing a continuum between quiescence and senescence with quiescence deepening as a precursor to senescence entry. We explore the triggers and controllers of this process and discuss its biological implications. Given that the majority of cells in the human body are dormant rather than proliferative, understanding quiescence-origin senescence has significant implications for tissue homeostasis, aging, cancer, and various disease processes. The new paradigm in exploring this previously overlooked senescent cell population may reshape our intervention strategies for age-related diseases and tissue regeneration.
Collapse
Affiliation(s)
- Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
26
|
Catarinella G, Bracaglia A, Skafida E, Procopio P, Ruggieri V, Parisi C, De Bardi M, Borsellino G, Madaro L, Puri PL, Sacco A, Latella L. STAT3 inhibition recovers regeneration of aged muscles by restoring autophagy in muscle stem cells. Life Sci Alliance 2024; 7:e202302503. [PMID: 38843935 PMCID: PMC11157169 DOI: 10.26508/lsa.202302503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.
Collapse
Affiliation(s)
| | - Andrea Bracaglia
- IRCCS Fondazione Santa Lucia, Rome, Italy
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Emilia Skafida
- IRCCS Fondazione Santa Lucia, Rome, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Veronica Ruggieri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Parisi
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Luca Madaro
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Roma "La Sapienza", Rome, Italy
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lucia Latella
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
27
|
Peng Y, Du J, Li R, Günther S, Wettschureck N, Offermanns S, Wang Y, Schneider A, Braun T. RhoA-mediated G 12-G 13 signaling maintains muscle stem cell quiescence and prevents stem cell loss. Cell Discov 2024; 10:76. [PMID: 39009565 PMCID: PMC11251043 DOI: 10.1038/s41421-024-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.
Collapse
Affiliation(s)
- Yundong Peng
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
| | - Jingjing Du
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rui Li
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nina Wettschureck
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Andre Schneider
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Member of the German Center for Cardiovascular Research (DZHK), member of the German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
28
|
Majchrzak K, Hentschel E, Hönzke K, Geithe C, von Maltzahn J. We need to talk-how muscle stem cells communicate. Front Cell Dev Biol 2024; 12:1378548. [PMID: 39050890 PMCID: PMC11266305 DOI: 10.3389/fcell.2024.1378548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Skeletal muscle is one of the tissues with the highest ability to regenerate, a finely controlled process which is critically depending on muscle stem cells. Muscle stem cell functionality depends on intrinsic signaling pathways and interaction with their immediate niche. Upon injury quiescent muscle stem cells get activated, proliferate and fuse to form new myofibers, a process involving the interaction of multiple cell types in regenerating skeletal muscle. Receptors in muscle stem cells receive the respective signals through direct cell-cell interaction, signaling via secreted factors or cell-matrix interactions thereby regulating responses of muscle stem cells to external stimuli. Here, we discuss how muscle stem cells interact with their immediate niche focusing on how this controls their quiescence, activation and self-renewal and how these processes are altered in age and disease.
Collapse
Affiliation(s)
- Karolina Majchrzak
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Erik Hentschel
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Katja Hönzke
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Christiane Geithe
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
| | - Julia von Maltzahn
- Faculty of Health Sciences Brandenburg, Brandenburg University of Technology Cottbus–Senftenberg, Senftenberg, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
- Faculty for Environment and Natural Sciences, Brandenburg University of Technology Cottbus—Senftenberg, Senftenberg, Germany
| |
Collapse
|
29
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
30
|
Nicholson T, Dhaliwal A, Quinlan JI, Allen SL, Williams FR, Hazeldine J, McGee KC, Sullivan J, Breen L, Elsharkawy AM, Armstrong MJ, Jones SW, Greig CA, Lord JM. Accelerated aging of skeletal muscle and the immune system in patients with chronic liver disease. Exp Mol Med 2024; 56:1667-1681. [PMID: 39026032 PMCID: PMC11297261 DOI: 10.1038/s12276-024-01287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024] Open
Abstract
Patients with chronic liver disease (CLD) often present with significant frailty, sarcopenia, and impaired immune function. However, the mechanisms driving the development of these age-related phenotypes are not fully understood. To determine whether accelerated biological aging may play a role in CLD, epigenetic, transcriptomic, and phenotypic assessments were performed on the skeletal muscle tissue and immune cells of CLD patients and age-matched healthy controls. Accelerated biological aging of the skeletal muscle tissue of CLD patients was detected, as evidenced by an increase in epigenetic age compared with chronological age (mean +2.2 ± 4.8 years compared with healthy controls at -3.0 ± 3.2 years, p = 0.0001). Considering disease etiology, age acceleration was significantly greater in both the alcohol-related (ArLD) (p = 0.01) and nonalcoholic fatty liver disease (NAFLD) (p = 0.0026) subgroups than in the healthy control subgroup, with no age acceleration observed in the immune-mediated subgroup or healthy control subgroup (p = 0.3). The skeletal muscle transcriptome was also enriched for genes associated with cellular senescence. Similarly, blood cell epigenetic age was significantly greater than that in control individuals, as calculated using the PhenoAge (p < 0.0001), DunedinPACE (p < 0.0001), or Hannum (p = 0.01) epigenetic clocks, with no difference using the Horvath clock. Analysis of the IMM-Age score indicated a prematurely aged immune phenotype in CLD patients that was 2-fold greater than that observed in age-matched healthy controls (p < 0.0001). These findings suggested that accelerated cellular aging may contribute to a phenotype associated with advanced age in CLD patients. Therefore, therapeutic interventions to reduce biological aging in CLD patients may improve health outcomes.
Collapse
Affiliation(s)
- Thomas Nicholson
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Amritpal Dhaliwal
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jonathan I Quinlan
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, UK
| | - Sophie L Allen
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, UK
| | - Felicity R Williams
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Kirsty C McGee
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Leigh Breen
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, UK
| | - Ahmed M Elsharkawy
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Liver Transplantation Unit, Queen Elizabeth Hospital, Birmingham, UK
| | - Matthew J Armstrong
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Liver Transplantation Unit, Queen Elizabeth Hospital, Birmingham, UK
| | - Simon W Jones
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
| | - Carolyn A Greig
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, UK
| | - Janet M Lord
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, UK.
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Birmingham, UK.
| |
Collapse
|
31
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
32
|
Boccardi V, Orr ME, Polidori MC, Ruggiero C, Mecocci P. Focus on senescence: Clinical significance and practical applications. J Intern Med 2024; 295:599-619. [PMID: 38446642 DOI: 10.1111/joim.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The older population is increasing worldwide, and life expectancy is continuously rising, predominantly thanks to medical and technological progress. Healthspan refers to the number of years an individual can live in good health. From a gerontological viewpoint, the mission is to extend the life spent in good health, promoting well-being and minimizing the impact of aging-related diseases to slow the aging process. Biologically, aging is a malleable process characterized by an intra- and inter-individual heterogeneous and dynamic balance between accumulating damage and repair mechanisms. Cellular senescence is a key component of this process, with senescent cells accumulating in different tissues and organs, leading to aging and age-related disease susceptibility over time. Removing senescent cells from the body or slowing down the burden rate has been proposed as an efficient way to reduce age-dependent deterioration. In animal models, senotherapeutic molecules can extend life expectancy and lifespan by either senolytic or senomorphic activity. Much research shows that dietary and physical activity-driven lifestyle interventions protect against senescence. This narrative review aims to summarize the current knowledge on targeting senescent cells to reduce the risk of age-related disease in animal models and their translational potential for humans. We focused on studies that have examined the potential role of senotherapeutics in slowing the aging process and modifying age-related disease burdens. The review concludes with a general discussion of the mechanisms underlying this unique trajectory and its implications for future research.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miranda Ethel Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Salisbury VA Medical Center, Salisbury, North Carolina, USA
| | - M Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmelinda Ruggiero
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Xiong W, Han Z, Ding S, Wang H, Du Y, Cui W, Zhang M. In Situ Remodeling of Efferocytosis via Lesion-Localized Microspheres to Reverse Cartilage Senescence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400345. [PMID: 38477444 PMCID: PMC11109622 DOI: 10.1002/advs.202400345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Zeyu Han
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Sheng‐Long Ding
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| | - Haoran Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Ming‐Zhu Zhang
- Department of Foot and Ankle SurgeryBeijing Tongren HospitalCapital Medical UniversityBeijing100730P. R. China
| |
Collapse
|
34
|
Wang X, Fukumoto T, Noma KI. Therapeutic strategies targeting cellular senescence for cancer and other diseases. J Biochem 2024; 175:525-537. [PMID: 38366629 PMCID: PMC11058315 DOI: 10.1093/jb/mvae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.
Collapse
Affiliation(s)
- Xuebing Wang
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
35
|
Coppola C, Greco M, Munir A, Musarò D, Quarta S, Massaro M, Lionetto MG, Maffia M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr Issues Mol Biol 2024; 46:4063-4105. [PMID: 38785519 PMCID: PMC11119992 DOI: 10.3390/cimb46050251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Osteoarthritis (OA) stands as a prevalent and progressively debilitating clinical condition globally, impacting joint structures and leading to their gradual deterioration through inflammatory mechanisms. While both non-modifiable and modifiable factors contribute to its onset, numerous aspects of OA pathophysiology remain elusive despite considerable research strides. Presently, diagnosis heavily relies on clinician expertise and meticulous differential diagnosis to exclude other joint-affecting conditions. Therapeutic approaches for OA predominantly focus on patient education for self-management alongside tailored exercise regimens, often complemented by various pharmacological interventions primarily targeting pain alleviation. However, pharmacological treatments typically exhibit short-term efficacy and local and/or systemic side effects, with prosthetic surgery being the ultimate resolution in severe cases. Thus, exploring the potential integration or substitution of conventional drug therapies with natural compounds and extracts emerges as a promising frontier in enhancing OA management. These alternatives offer improved safety profiles and possess the potential to target specific dysregulated pathways implicated in OA pathogenesis, thereby presenting a holistic approach to address the condition's complexities.
Collapse
Affiliation(s)
- Chiara Coppola
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Marco Greco
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Anas Munir
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Lecce-Arnesano, 73100 Lecce, Italy; (C.C.); (A.M.)
| | - Debora Musarò
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Stefano Quarta
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), 73100 Lecce, Italy;
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Science and Technology, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy; (M.G.); (D.M.); (S.Q.); (M.G.L.)
| | - Michele Maffia
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
36
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
37
|
Nolt GL, Keeble AR, Wen Y, Strong AC, Thomas NT, Valentino TR, Brightwell CR, Murach KA, Patrizia S, Weinstabl H, Gollner A, McCarthy JJ, Fry CS, Franti M, Filareto A, Peterson CA, Dungan CM. Inhibition of p53-MDM2 binding reduces senescent cell abundance and improves the adaptive responses of skeletal muscle from aged mice. GeroScience 2024; 46:2153-2176. [PMID: 37872294 PMCID: PMC10828311 DOI: 10.1007/s11357-023-00976-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Skeletal muscle adaptation to external stimuli, such as regeneration following injury and hypertrophy in response to resistance exercise, are blunted with advanced age. The accumulation of senescent cells, along with defects in myogenic progenitor cell (MPC) proliferation, have been strongly linked as contributing factors to age-associated impairment in muscle adaptation. p53 plays an integral role in all these processes, as upregulation of p53 causes apoptosis in senescent cells and prevents mitotic catastrophe in MPCs from old mice. The goal of this study was to determine if a novel pharmaceutical agent (BI01), which functions by upregulating p53 through inhibition of binding to MDM2, the primary p53 regulatory protein, improves muscle regeneration and hypertrophy in old mice. BI01 effectively reduced the number of senescent cells in vitro but had no effect on MPC survival or proliferation at a comparable dose. Following repeated oral gavage with 2 mg/kg of BI01 (OS) or vehicle (OV), old mice (24 months) underwent unilateral BaCl2 injury in the tibialis anterior (TA) muscle, with PBS injections serving as controls. After 7 days, satellite cell number was higher in the TA of OS compared to OV mice, as was the expression of genes involved in ATP production. By 35 days, old mice treated with BI01 displayed reduced senescent cell burden, enhanced regeneration (higher muscle mass and fiber cross-sectional area) and restoration of muscle function relative to OV mice. To examine the impact of 2 mg/kg BI01 on muscle hypertrophy, the plantaris muscle was subjected to 28 days of mechanical overload (MOV) in OS and OV mice. In response to MOV, OS mice had larger plantaris muscles and muscle fibers than OV mice, particularly type 2b + x fibers, associated with reduced senescent cells. Together our data show that BI01 is an effective senolytic agent that may also augment muscle metabolism to enhance muscle regeneration and hypertrophy in old mice.
Collapse
Affiliation(s)
- Georgia L Nolt
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Alexander R Keeble
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Yuan Wen
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Aubrey C Strong
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Nicholas T Thomas
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Taylor R Valentino
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Camille R Brightwell
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Kevin A Murach
- Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Sini Patrizia
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Harald Weinstabl
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - Andreas Gollner
- Boehringer Ingelheim RCV, Boehringer Ingelheim Pharmaceuticals Inc., Vienna, Austria
| | - John J McCarthy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Christopher S Fry
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY, USA
| | - Michael Franti
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Antonio Filareto
- Regenerative Medicine, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT, 06877, USA.
| | - Charlotte A Peterson
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA
| | - Cory M Dungan
- The Center for Muscle Biology, University of Kentucky, Lexington, KY, USA.
- Department of Physical Therapy, University of Kentucky, Lexington, KY, USA.
- Department of Health, Human Performance, and Recreation, Baylor University, One Bear Place #97313, Waco, TX, 76706, USA.
| |
Collapse
|
38
|
Sun R, Feng J, Wang J. Underlying Mechanisms and Treatment of Cellular Senescence-Induced Biological Barrier Interruption and Related Diseases. Aging Dis 2024; 15:612-639. [PMID: 37450933 PMCID: PMC10917536 DOI: 10.14336/ad.2023.0621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Given its increasing prevalence, aging is of great concern to researchers worldwide. Cellular senescence is a physiological or pathological cellular state caused by aging and a prominent risk factor for the interruption of the integrity and functionality of human biological barriers. Health barriers play an important role in maintaining microenvironmental homeostasis within the body. The senescence of barrier cells leads to barrier dysfunction and age-related diseases. Cellular senescence has been reported to be a key target for the prevention of age-related barrier diseases, including Alzheimer's disease, Parkinson's disease, age-related macular degeneration, diabetic retinopathy, and preeclampsia. Drugs such as metformin, dasatinib, quercetin, BCL-2 inhibitors, and rapamycin have been shown to intervene in cellular senescence and age-related diseases. In this review, we conclude that cellular senescence is involved in age-related biological barrier impairment. We further outline the cellular pathways and mechanisms underlying barrier impairment caused by cellular senescence and describe age-related barrier diseases associated with senescent cells. Finally, we summarize the currently used anti-senescence pharmacological interventions and discuss their therapeutic potential for preventing age-related barrier diseases.
Collapse
Affiliation(s)
- Ruize Sun
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| | - Jue Wang
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
39
|
Kamal M, Joanisse S, Parise G. Bleomycin-treated myoblasts undergo p21-associated cellular senescence and have severely impaired differentiation. GeroScience 2024; 46:1843-1859. [PMID: 37751045 PMCID: PMC10828175 DOI: 10.1007/s11357-023-00929-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
As we age, the ability to regenerate and repair skeletal muscle damage declines, partially due to increasing dysfunction of muscle resident stem cells-satellite cells (SC). Recent evidence implicates cellular senescence, which is the irreversible arrest of proliferation, as a potentiator of SC impairment during aging. However, little is known about the role of senescence in SC, and there is a large discrepancy in senescence classification within skeletal muscle. The purpose of this study was to develop a model of senescence in skeletal muscle myoblasts and identify how common senescence-associated biomarkers respond. Low-passage C2C12 myoblasts were treated with bleomycin or vehicle and then evaluated for cytological and molecular senescence markers, proliferation status, cell cycle kinetics, and differentiation potential. Bleomycin treatment caused double-stranded DNA breaks, which upregulated p21 mRNA and protein, potentially through NF-κB and senescence-associated super enhancer (SASE) signaling (p < 0.01). Consequently, cell proliferation was abruptly halted due to G2/M-phase arrest (p < 0.01). Bleomycin-treated myoblasts displayed greater senescence-associated β-galactosidase staining (p < 0.01), which increased over several days. These myoblasts remained senescent following 6 days of differentiation and had significant impairments in myotube formation (p < 0.01). Furthermore, our results show that senescence can be maintained despite the lack of p16 gene expression in C2C12 myoblasts. In conclusion, bleomycin treatment provides a valid model of damage-induced senescence that was associated with elevated p21, reduced myoblast proliferation, and aberrant cell cycle kinetics, while confirming that a multi-marker approach is needed for the accurate classification of senescence within skeletal muscle.
Collapse
Affiliation(s)
- Michael Kamal
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Sophie Joanisse
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sport Medicine Research Centre, Institute of Sport, Manchester Metropolitan University, Manchester, UK
| | - Gianni Parise
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
40
|
Marzetti E, Lozanoska-Ochser B, Calvani R, Landi F, Coelho-Júnior HJ, Picca A. Restoring Mitochondrial Function and Muscle Satellite Cell Signaling: Remedies against Age-Related Sarcopenia. Biomolecules 2024; 14:415. [PMID: 38672432 PMCID: PMC11048011 DOI: 10.3390/biom14040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
- DAHFMO Unit of Histology and Medical Embryology, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Francesco Landi
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Rome, Italy;
| | - Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; (R.C.); (F.L.)
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy;
| |
Collapse
|
41
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
42
|
Potes Y, Bermejo-Millo JC, Mendes C, Castelão-Baptista JP, Díaz-Luis A, Pérez-Martínez Z, Solano JJ, Sardão VA, Oliveira PJ, Caballero B, Coto-Montes A, Vega-Naredo I. p66Shc signaling and autophagy impact on C2C12 myoblast differentiation during senescence. Cell Death Dis 2024; 15:200. [PMID: 38459002 PMCID: PMC10923948 DOI: 10.1038/s41419-024-06582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
During aging, muscle regenerative capacities decline, which is concomitant with the loss of satellite cells that enter in a state of irreversible senescence. However, what mechanisms are involved in myogenic senescence and differentiation are largely unknown. Here, we showed that early-passage or "young" C2C12 myoblasts activated the redox-sensitive p66Shc signaling pathway, exhibited a strong antioxidant protection and a bioenergetic profile relying predominantly on OXPHOS, responses that decrease progressively during differentiation. Furthermore, autophagy was increased in myotubes. Otherwise, late-passage or "senescent" myoblasts led to a highly metabolic profile, relying on both OXPHOS and glycolysis, that may be influenced by the loss of SQSTM1/p62 which tightly regulates the metabolic shift from aerobic glycolysis to OXPHOS. Furthermore, during differentiation of late-passage C2C12 cells, both p66Shc signaling and autophagy were impaired and this coincides with reduced myogenic capacity. Our findings recognized that the lack of p66Shc compromises the proliferation and the onset of the differentiation of C2C12 myoblasts. Moreover, the Atg7 silencing favored myoblasts growth, whereas interfered in the viability of differentiated myotubes. Then, our work demonstrates that the p66Shc signaling pathway, which highly influences cellular metabolic status and oxidative environment, is critical for the myogenic commitment and differentiation of C2C12 cells. Our findings also support that autophagy is essential for the metabolic switch observed during the differentiation of C2C12 myoblasts, confirming how its regulation determines cell fate. The regulatory roles of p66Shc and autophagy mechanisms on myogenesis require future attention as possible tools that could predict and measure the aging-related state of frailty and disability.
Collapse
Affiliation(s)
- Yaiza Potes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| | - Juan C Bermejo-Millo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Catarina Mendes
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - José P Castelão-Baptista
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- PDBEB - Doctoral Program in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Andrea Díaz-Luis
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Zulema Pérez-Martínez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Microbiology service, University Central Hospital of Asturias, Oviedo, Spain
| | - Juan J Solano
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Geriatric Service, Monte Naranco Hospital, Av. Doctores Fernández Vega, Oviedo, Spain
| | - Vilma A Sardão
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA-Portugal - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Beatriz Caballero
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ana Coto-Montes
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Ignacio Vega-Naredo
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain.
| |
Collapse
|
43
|
He L, Sun H, Wang H. 3D organization of enhancers in MuSCs. Curr Top Dev Biol 2024; 158:407-431. [PMID: 38670714 DOI: 10.1016/bs.ctdb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle stem cells (MuSCs), also known as satellite cells, are essential for muscle growth and injury induced regeneration. In healthy adult muscle, MuSCs remain in a quiescent state located in a specialized niche beneath the basal lamina. Upon injury, these dormant MuSCs can quickly activate to re-enter the cell cycle and differentiate into new myofibers, while a subset undergoes self-renewal and returns to quiescence to restore the stem cell pool. The myogenic lineage progression is intricately controlled by complex intrinsic and extrinsic cues and coupled with dynamic transcriptional programs. In transcriptional regulation, enhancers are key regulatory elements controlling spatiotemporal gene expression through physical contacting promoters of target genes. The three-dimensional (3D) chromatin architecture is known to orchestrate the establishment of proper enhancer-promoter interactions throughout development and aging. However, studies dissecting the 3D organization of enhancers in MuSCs are just emerging. Here, we provide an overview of the general properties of enhancers and newly developed methods for assessing their activity. In particular, we summarize recent discoveries regarding the 3D rewiring of enhancers during MuSC specification, lineage progression as well as aging.
Collapse
Affiliation(s)
- Liangqiang He
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Huating Wang
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, New Territories, Hong Kong SAR, P.R. China; Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China.
| |
Collapse
|
44
|
Robertson R, Li S, Filippelli RL, Chang NC. Muscle stem cell dysfunction in rhabdomyosarcoma and muscular dystrophy. Curr Top Dev Biol 2024; 158:83-121. [PMID: 38670717 DOI: 10.1016/bs.ctdb.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Muscle stem cells (MuSCs) are crucial to the repair and homeostasis of mature skeletal muscle. MuSC dysfunction and dysregulation of the myogenic program can contribute to the development of pathology ranging from cancers like rhabdomyosarcoma (RMS) or muscle degenerative diseases such as Duchenne muscular dystrophy (DMD). Both diseases exhibit dysregulation at nearly all steps of myogenesis. For instance, MuSC self-renewal processes are altered. In RMS, this leads to the creation of tumor propagating cells. In DMD, impaired asymmetric stem cell division creates a bias towards producing self-renewing stem cells instead of committing to differentiation. Hyperproliferation of these cells contribute to tumorigenesis in RMS and symmetric expansion of the self-renewing MuSC population in DMD. Both diseases also exhibit a repression of factors involved in terminal differentiation, halting RMS cells in the proliferative stage and thus driving tumor growth. Conversely, the MuSCs in DMD exhibit impaired differentiation and fuse prematurely, affecting myonuclei maturation and the integrity of the dystrophic muscle fiber. Finally, both disease states cause alterations to the MuSC niche. Various elements of the niche such as inflammatory and migratory signaling that impact MuSC behavior are dysregulated. Here we show how these seemingly distantly related diseases indeed have similarities in MuSC dysfunction, underlying the importance of considering MuSCs when studying the pathophysiology of muscle diseases.
Collapse
Affiliation(s)
- Rebecca Robertson
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Shulei Li
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada
| | - Romina L Filippelli
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| | - Natasha C Chang
- Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
45
|
Santarelli P, Rosti V, Vivo M, Lanzuolo C. Chromatin organization of muscle stem cell. Curr Top Dev Biol 2024; 158:375-406. [PMID: 38670713 DOI: 10.1016/bs.ctdb.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The proper functioning of skeletal muscles is essential throughout life. A crucial crosstalk between the environment and several cellular mechanisms allows striated muscles to perform successfully. Notably, the skeletal muscle tissue reacts to an injury producing a completely functioning tissue. The muscle's robust regenerative capacity relies on the fine coordination between muscle stem cells (MuSCs or "satellite cells") and their specific microenvironment that dictates stem cells' activation, differentiation, and self-renewal. Critical for the muscle stem cell pool is a fine regulation of chromatin organization and gene expression. Acquiring a lineage-specific 3D genome architecture constitutes a crucial modulator of muscle stem cell function during development, in the adult stage, in physiological and pathological conditions. The context-dependent relationship between genome structure, such as accessibility and chromatin compartmentalization, and their functional effects will be analysed considering the improved 3D epigenome knowledge, underlining the intimate liaison between environmental encounters and epigenetics.
Collapse
Affiliation(s)
- Philina Santarelli
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Valentina Rosti
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy
| | - Maria Vivo
- Università degli studi di Salerno, Fisciano, Italy.
| | - Chiara Lanzuolo
- INGM Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy; CNR Institute of Biomedical Technologies, Milan, Italy.
| |
Collapse
|
46
|
Okubo M, Morishita M, Odani T, Sakaguchi H, Kikutani T, Kokabu S. The importance of taste on swallowing function. Front Nutr 2024; 11:1356165. [PMID: 38385009 PMCID: PMC10879290 DOI: 10.3389/fnut.2024.1356165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
The world's population is aging. Pneumonia is the leading cause of death among the older adults, with aspiration pneumonia being particularly common. Aspiration pneumonia is caused by a decline in swallowing function. Causes can include age-related sarcopenia of swallowing muscles, cognitive decline, cerebrovascular and other diseases or even changes in individual taste preference. Currently, the main treatment approach for dysphagia is resistance training of swallowing-related muscles. This approach has not been effective and establishment of novel methods are required. In this review, we introduce and discuss the relationship between taste, taste preference, carbonation and swallowing function. Taste and preference improve swallowing function. Recently, it has been shown that a carbonated beverage that combines the functionality of a thickening agent, the appeal of taste, and the stimulation of carbonation improves swallowing function. This may be very useful in the recovery of swallowing function. It is important to note that deliciousness is based not only on taste and preference, but also on visual information such as food form. Umami taste receptors are expressed not only in taste buds but also in skeletal muscle and small intestine. These receptors may be involved in homeostasis of the amino acid metabolic network, i.e., the process of amino acid ingestion, intestine absorption, and storage in skeletal muscle. Proper stimulation of umami receptors in organs other than taste buds may help maintain nutritional status and muscle mass. Umami receptors are therefore a potential therapeutic target for dysphagia.
Collapse
Affiliation(s)
- Masahiko Okubo
- Department of Dentistry and Oral Surgery, Ongata Hospital, Hachioji, Tokyo, Japan
| | - Motoyoshi Morishita
- Department of Physical Therapy, Faculty of Rehabilitation, Reiwa Health Sciences University, Fukuoka, Japan
| | - Tomoko Odani
- Department of Dentistry, Kawaguchi Cupola Rehabilitation Hospital, Kawaguchi, Saitama, Japan
| | - Hideo Sakaguchi
- Department of Dentistry, Ryohoku Hospital, Hachioji, Tokyo, Japan
| | - Takeshi Kikutani
- Division of Clinical Oral Rehabilitation, Nippon Dental University Graduate School of Life Dentistry, Iidabashi, Tokyo, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Japan
| |
Collapse
|
47
|
Xie Z, Liu C, Sun C, Lu Y, Wu S, Liu Y, Wang Q, Wan Y, Wang Y, Yu M, Meng L, Deng J, Zhang W, Wang Z, Yang C, Yuan Y, Xie Z. A novel biomarker of fibrofatty replacement in dystrophinopathies identified by integrating transcriptome, magnetic resonance imaging, and pathology data. J Cachexia Sarcopenia Muscle 2024; 15:98-111. [PMID: 38146684 PMCID: PMC10834313 DOI: 10.1002/jcsm.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND We aimed to analyse genome-wide transcriptome differences between Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) patients and identify biomarkers that correlate well with muscle magnetic resonance imaging (MRI) and histological fibrofatty replacement in both patients, which have not been reported. METHODS One hundred and one male patients with dystrophinopathies (55 DMD and 46 BMD) were enrolled. Muscle-derived genome-wide RNA-sequencing was performed in 31 DMD patients, 29 BMD patients, and 11 normal controls. Fibrofatty replacement was scored on muscle MRI and histological levels in all patients. A unique pipeline, single-sample gene set enrichment analysis combined with Spearman's rank correlations (ssGSEA-Cor) was developed to identify the most correlated gene signature for fibrofatty replacement. Quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, and single-nucleus RNA-sequencing (snRNA-seq) were performed in the remaining patients to validate the most correlated gene signature. RESULTS Comparative transcriptomic analysis revealed that 31 DMD muscles were characterized by a significant increase of inflammation/immune response and extracellular matrix remodelling compared with 29 BMD muscles (P < 0.05). The ssGSEA-Cor pipeline revealed that the gene set of CDKN2A and CDKN2B was the most correlated gene signature for fibrofatty replacement (histological rs = 0.744, P < 0.001; MRI rs = 0.718, P < 0.001). Muscle qRT-PCR confirmed that CDKN2A mRNA expression in both 15 DMD (median = 25.007, P < 0.001) and 12 BMD (median = 5.654, P < 0.001) patients were significantly higher than that in controls (median = 1.101), while no significant difference in CDKN2B mRNA expression was found among DMD, BMD, and control groups. In the 27 patients, muscle CDKN2A mRNA expression respectively correlated with muscle MRI (rs = 0.883, P < 0.001) and histological fibrofatty replacement (rs = 0.804, P < 0.001) and disease duration (rs = 0.645, P < 0.001) and North Star Ambulatory Assessment total scores (rs = -0.698, P < 0.001). Muscle western blot analysis confirmed that both four DMD (median = 2.958, P < 0.05) and four BMD (median = 1.959, P < 0.01) patients had a significantly higher level of CDKN2A protein expression than controls (median = 1.068). The snRNA-seq analysis of two DMD muscles revealed that CDKN2A was mainly expressed in fibro-adipogenic progenitors, satellite cells, and myoblasts. CONCLUSIONS We identify CDKN2A expression as a novel biomarker of fibrofatty replacement, which might be a new target for antifibrotic therapy in dystrophinopathies.
Collapse
Affiliation(s)
- Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Chang Liu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chengyue Sun
- Department of NeurologyPeking University People's HospitalBeijingChina
| | - Yanyu Lu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Shiyi Wu
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yilin Liu
- Department of PathologyPeking Union Medical College HospitalBeijingChina
| | - Qi Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yalan Wan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Yikang Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Meng Yu
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Lingchao Meng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Jianwen Deng
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Wei Zhang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhaoxia Wang
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yun Yuan
- Department of NeurologyPeking University First HospitalBeijingChina
| | - Zhiying Xie
- Department of NeurologyPeking University First HospitalBeijingChina
| |
Collapse
|
48
|
Chui JS, Izuel‐Idoype T, Qualizza A, de Almeida RP, Piessens L, van der Veer BK, Vanmarcke G, Malesa A, Athanasouli P, Boon R, Vriens J, van Grunsven L, Koh KP, Verfaillie CM, Lluis F. Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF-κВ and WNT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307554. [PMID: 38037844 PMCID: PMC10870039 DOI: 10.1002/advs.202307554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 12/02/2023]
Abstract
Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53-independent quiescent state in immature hepatoma cells and in pluripotent stem cell-derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity-regulated growth arrest followed by cell maturation, mediated by activation of NF-κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long-term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
Collapse
Affiliation(s)
- Jonathan Sai‐Hong Chui
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Teresa Izuel‐Idoype
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Alessandra Qualizza
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Rita Pires de Almeida
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Lindsey Piessens
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Gert Vanmarcke
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Aneta Malesa
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Paraskevi Athanasouli
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Ruben Boon
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis and Reproductive MedicineDepartment of Development and RegenerationKU LeuvenHerestraat 49Leuven3000Belgium
| | - Leo van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit BrusselLaarbeeklaan 103Brussels1090Belgium
| | - Kian Peng Koh
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Catherine M. Verfaillie
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| | - Frederic Lluis
- KU LeuvenDepartment of Development and RegenerationStem Cell InstituteHerestraat 49Leuven3000Belgium
| |
Collapse
|
49
|
Bahat G, Ozkok S. The Current Landscape of Pharmacotherapies for Sarcopenia. Drugs Aging 2024; 41:83-112. [PMID: 38315328 DOI: 10.1007/s40266-023-01093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
Sarcopenia is a skeletal muscle disorder characterized by progressive and generalized decline in muscle mass and function. Although it is mostly known as an age-related disorder, it can also occur secondary to systemic diseases such as malignancy or organ failure. It has demonstrated a significant relationship with adverse outcomes, e.g., falls, disabilities, and even mortality. Several breakthroughs have been made to find a pharmaceutical therapy for sarcopenia over the years, and some have come up with promising findings. Yet still no drug has been approved for its treatment. The key factor that makes finding an effective pharmacotherapy so challenging is the general paradigm of standalone/single diseases, traditionally adopted in medicine. Today, it is well known that sarcopenia is a complex disorder caused by multiple factors, e.g., imbalance in protein turnover, satellite cell and mitochondrial dysfunction, hormonal changes, low-grade inflammation, senescence, anorexia of aging, and behavioral factors such as low physical activity. Therefore, pharmaceuticals, either alone or combined, that exhibit multiple actions on these factors simultaneously will likely be the drug of choice to manage sarcopenia. Among various drug options explored throughout the years, testosterone still has the most cumulated evidence regarding its effects on muscle health and its safety. A mas receptor agonist, BIO101, stands out as a recent promising pharmaceutical. In addition to the conventional strategies (i.e., nutritional support and physical exercise), therapeutics with multiple targets of action or combination of multiple therapeutics with different targets/modes of action appear to promise greater benefit for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Gulistan Bahat
- Division of Geriatrics, Department of Internal Medicine, Istanbul Medical School, Istanbul University, Capa, 34390, Istanbul, Turkey.
| | - Serdar Ozkok
- Division of Geriatrics, Department of Internal Medicine, Hatay Training and Research Hospital, Hatay, 31040, Turkey
| |
Collapse
|
50
|
Careccia G, Mangiavini L, Cirillo F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int J Mol Sci 2023; 25:512. [PMID: 38203683 PMCID: PMC10778731 DOI: 10.3390/ijms25010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Skeletal muscle regeneration is a complex process involving the generation of new myofibers after trauma, competitive physical activity, or disease. In this context, adult skeletal muscle stem cells, also known as satellite cells (SCs), play a crucial role in regulating muscle tissue homeostasis and activating regeneration. Alterations in their number or function have been associated with various pathological conditions. The main factors involved in the dysregulation of SCs' activity are inflammation, oxidative stress, and fibrosis. This review critically summarizes the current knowledge on the role of SCs in skeletal muscle regeneration. It examines the changes in the activity of SCs in three of the most common and severe muscle disorders: sarcopenia, muscular dystrophy, and cancer cachexia. Understanding the molecular mechanisms involved in their dysregulations is essential for improving current treatments, such as exercise, and developing personalized approaches to reactivate SCs.
Collapse
Affiliation(s)
- Giorgia Careccia
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Federica Cirillo
- IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
- Institute for Molecular and Translational Cardiology (IMTC), 20097 San Donato Milanese, Italy
| |
Collapse
|