1
|
Shouib R, Eitzen G. Inflammatory gene regulation by Cdc42 in airway epithelial cells. Cell Signal 2024; 122:111321. [PMID: 39067837 DOI: 10.1016/j.cellsig.2024.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cytokine release from airway epithelial cells is a key immunological process that coordinates an immune response in the lungs. We propose that the Rho GTPase, Cdc42, regulates both transcription and trafficking of cytokines, ultimately affecting the essential process of cytokine release and subsequent inflammation in the lungs. Here, we examined the pro-inflammatory transcriptional profile that occurs in bronchial epithelial cells (BEAS-2B) in response to TNF-α using RNA-Seq and differential gene expression analysis. To interrogate the role of Cdc42 in inflammatory gene expression, we used a pharmacological inhibitor of Cdc42, ML141, and determined changes in the transcriptomic profile induced by Cdc42 inhibition. Our results indicated that Cdc42 inhibition with ML141 resulted in a unique inflammatory phenotype concomitant with increased gene expression of ER stress genes, Golgi membrane and vesicle transport genes. To further interrogate the inflammatory pathways regulated by Cdc42, we made BEAS-2B knockdown strains for the signaling targets TRIB3, DUSP5, SESN2 and BMP4, which showed high differential expression in response to Cdc42 inhibition. Depletion of DUSP5 and TRIB3 reduced the pro-inflammatory response triggered by Cdc42 inhibition as shown by a reduction in cytokine transcript levels. Depletion of SESN2 and BMP4 did not affect cytokine transcript level, however, Golgi fragmentation was reduced. These results provide further evidence that in airway epithelial cells, Cdc42 is part of a signaling network that controls inflammatory gene expression and secretion by regulating Golgi integrity. Summary sentence:We define the Cdc42-regulated gene networks for inflammatory signaling in airway epithelial cells which includes regulation of ER stress response and vesicle trafficking pathways.
Collapse
Affiliation(s)
- Rowayna Shouib
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
3
|
Duan R, Marafi D, Xia ZJ, Ng BG, Maroofian R, Sumya FT, Saad AK, Du H, Fatih JM, Hunter JV, Elbendary HM, Baig SM, Abdullah U, Ali Z, Efthymiou S, Murphy D, Mitani T, Withers MA, Jhangiani SN, Coban-Akdemir Z, Calame DG, Pehlivan D, Gibbs RA, Posey JE, Houlden H, Lupashin VV, Zaki MS, Freeze HH, Lupski JR. Biallelic missense variants in COG3 cause a congenital disorder of glycosylation with impairment of retrograde vesicular trafficking. J Inherit Metab Dis 2023; 46:1195-1205. [PMID: 37711075 PMCID: PMC10873070 DOI: 10.1002/jimd.12679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.
Collapse
Affiliation(s)
- Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, Kuwait
| | - Zhi-Jie Xia
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Bobby G. Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Farhana Taher Sumya
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ahmed K. Saad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jawid M. Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jill V. Hunter
- Department of Pediatric Radiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Hasnaa M. Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Shahid M. Baig
- Department of Biological and Biomedical Sciences, The Aga Khan University, Karachi, Pakistan
- Pakistan Science Foundation (PSF), Islamabad, Pakistan
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Zafar Ali
- Centre for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Marjorie A. Withers
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Daniel G. Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Vladimir V. Lupashin
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maha S. Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hudson H. Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
4
|
Pang S, Luo Z, Dong W, Gao S, Chen W, Liu N, Zhang X, Gao X, Li J, Gao K, Shi X, Guan F, Zhang L, Zhang L. Integrin β1/FAK/SRC signal pathway is involved in autism spectrum disorder in Tspan7 knockout rats. Life Sci Alliance 2023; 6:e202201616. [PMID: 36625203 PMCID: PMC9768919 DOI: 10.26508/lsa.202201616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
TSPAN7 is related to various neurological disorders including autism spectrum disorder (ASD). However, the underlying synaptic mechanism of TSPAN7 in ASD is still unclear. Here, we showed that Tspan7 knockout rats exhibited ASD-like and ID-like behavioral phenotypes, brain structure alterations including decreased hippocampal and cortical volume, and related pathological changes including reduced hippocampal neurons number, neuronal complexity, dendritic spines, and synapse-associated proteins. Then, we found that TSPAN7 deletion interrupted the integrin β1/FAK/SRC signal pathway that was followed by the down-regulation of PSD95, SYN, and GluR1/2, which are key synaptic integrity-related proteins. Furthermore, reactivation of SRC restored the expression of synaptic integrity-related proteins in primary neurons of TSPAN7 knockout brains. Taken together, our results suggested that TSPAN7 knockout caused ASD-like and ID-like behaviors in rats and impaired neuronal synapses possibly through the down-regulation of the integrin β1/FAK/SRC signal pathway, which might be a new mechanism on regulation of synaptic proteins expression and on ASD pathogenesis by mutated TSPAN7. These findings provide novel insights into the role of TSPAN7 in psychiatric diseases and highlight integrin β1/FAK/SRC as a potential target for ASD therapy.
Collapse
Affiliation(s)
- Shuo Pang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuohui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Li
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xudong Shi
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Diseases, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China, Institute of Laboratory Animal Science, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Taylor RJ, Tagiltsev G, Briggs JAG. The structure of COPI vesicles and regulation of vesicle turnover. FEBS Lett 2023; 597:819-835. [PMID: 36513395 DOI: 10.1002/1873-3468.14560] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
COPI-coated vesicles mediate transport between Golgi stacks and retrograde transport from the Golgi to the endoplasmic reticulum. The COPI coat exists as a stable heptameric complex in the cytosol termed coatomer and is recruited en bloc to the membrane for vesicle formation. Recruitment of COPI onto membranes is mediated by the Arf family of small GTPases, which, in their GTP-bound state, bind both membrane and coatomer. Arf GTPases also influence cargo selection, vesicle scission and vesicle uncoating. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) regulate nucleotide binding by Arf GTPases. To understand the mechanism of COPI-coated vesicle trafficking, it is necessary to characterize the interplay between coatomer and Arf GTPases and their effectors. It is also necessary to understand interactions between coatomer and cargo, cargo adaptors/receptors and tethers facilitating binding to the target membrane. Here, we summarize current knowledge of COPI coat protein structure; we describe how structural and biochemical studies contributed to this knowledge; we review mechanistic insights into COPI vesicle biogenesis and disassembly; and we discuss the potential to answer open questions in the field.
Collapse
Affiliation(s)
- Rebecca J Taylor
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Grigory Tagiltsev
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
Chen Y, Kang J, Zhen R, Zhang L, Chen C. A genome-wide CRISPR screen identifies the CCT chaperonin as a critical regulator of vesicle trafficking. FASEB J 2023; 37:e22757. [PMID: 36607310 DOI: 10.1096/fj.202201580r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.
Collapse
Affiliation(s)
- Yongtian Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jing Kang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ru Zhen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liyang Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Caiyong Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Li YY, Kuroki K, Shimakami T, Murai K, Kawaguchi K, Shirasaki T, Nio K, Sugimoto S, Nishikawa T, Okada H, Orita N, Takayama H, Wang Y, Thi Bich PD, Ishida A, Iwabuchi S, Hashimoto S, Shimaoka T, Tabata N, Watanabe-Takahashi M, Nishikawa K, Yanagawa H, Seiki M, Matsushima K, Yamashita T, Kaneko S, Honda M. Hepatitis B Virus Utilizes a Retrograde Trafficking Route via the Trans-Golgi Network to Avoid Lysosomal Degradation. Cell Mol Gastroenterol Hepatol 2023; 15:533-558. [PMID: 36270602 PMCID: PMC9868690 DOI: 10.1016/j.jcmgh.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infection is difficult to cure owing to the persistence of covalently closed circular viral DNA (cccDNA). We performed single-cell transcriptome analysis of newly established HBV-positive and HBV-negative hepatocellular carcinoma cell lines and found that dedicator of cytokinesis 11 (DOCK11) was crucially involved in HBV persistence. However, the roles of DOCK11 in the HBV lifecycle have not been clarified. METHODS The cccDNA levels were measured by Southern blotting and real-time detection polymerase chain reaction in various hepatocytes including PXB cells by using an HBV-infected model. The retrograde trafficking route of HBV capsid was investigated by super-resolution microscopy, proximity ligation assay, and time-lapse analysis. The downstream molecules of DOCK11 and underlying mechanism were examined by liquid chromatography-tandem mass spectrometry, immunoblotting, and enzyme-linked immunosorbent assay. RESULTS The cccDNA levels were strongly increased by DOCK11 overexpression and repressed by DOCK11 suppression. Interestingly, DOCK11 functionally associated with retrograde trafficking proteins in the trans-Golgi network (TGN), Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with HBV capsid, to open an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. Clinically, DOCK11 levels in liver biopsies from patients with chronic hepatitis B were significantly reduced by entecavir treatment, and this reduction correlated with HBV surface antigen levels. CONCLUSIONS HBV uses a retrograde trafficking route via EEs-TGN-ER for infection that is facilitated by DOCK11 and serves to maintain cccDNA. Therefore, DOCK11 is a potential therapeutic target to prevent persistent HBV infection.
Collapse
Affiliation(s)
- Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuyuki Kuroki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kazuhisa Murai
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Saiho Sugimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Tomoki Nishikawa
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Hideo Takayama
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Ying Wang
- Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan
| | - Phuong Doan Thi Bich
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Astuya Ishida
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Sadahiro Iwabuchi
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Shinichi Hashimoto
- Department of Molecular Pathophysiology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - Takeshi Shimaoka
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | | | | | - Kiyotaka Nishikawa
- Department of Molecular Life Sciences, Doshisha University, Kyoto, Japan
| | | | - Motoharu Seiki
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; Department of Clinical Laboratory Medicine, Kanazawa University Graduate School of Health Medicine, Kanazawa, Japan.
| |
Collapse
|
8
|
Choi H, Park K, Hsu VW, Park SY. Studying the Role of Lipid Geometry in COPI Vesicle Formation. Methods Mol Biol 2023; 2557:519-528. [PMID: 36512234 PMCID: PMC11403707 DOI: 10.1007/978-1-0716-2639-9_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Coat Protein I (COPI) complex forms vesicles from Golgi membrane for retrograde transport among the Golgi stacks, and also from the Golgi to the endoplasmic reticulum (ER). We have been elucidating the mechanistic details of COPI vesicle formation through a reconstitution system that involves the incubation of Golgi membrane with purified components. This approach has enabled us recently to gain new insight into how certain lipids are critical for the fission stage of COPI vesicle formation. Lipid geometry has been proposed to act in the formation of transport carriers by promoting membrane curvature. However, evidence for this role has come from studies using simplified membranes, while confirmation in the more physiologic setting of native membranes has been challenging, as such membranes contain a complex composition of lipids and proteins. We have recently refined the COPI reconstitution system to overcome this experimental obstacle. This has led us to identify an unanticipated type of lipid geometry needed for COPI vesicle fission. This chapter describes the approach that we have developed to enable this discovery. The methodologies include: (i) preparation Golgi membrane from cells that are deficient in a particular lipid enzyme activity and (ii) functional rescue of this deficiency by introducing the product of the lipid enzyme, with experiments being performed at the in vitro level to gain mechanistic clarity and at the in vivo level to confirm physiologic relevance.
Collapse
Affiliation(s)
- Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
9
|
Shouib R, Eitzen G. Cdc42 regulates cytokine expression and trafficking in bronchial epithelial cells. Front Immunol 2022; 13:1069499. [PMID: 36618374 PMCID: PMC9816864 DOI: 10.3389/fimmu.2022.1069499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells can respond to incoming pathogens, allergens and stimulants through the secretion of cytokines and chemokines. These pro-inflammatory mediators activate inflammatory signaling cascades that allow a robust immune response to be mounted. However, uncontrolled production and release of cytokines and chemokines can result in chronic inflammation and appears to be an underlying mechanism for the pathogenesis of pulmonary disorders such as asthma and COPD. The Rho GTPase, Cdc42, is an important signaling molecule that we hypothesize can regulate cytokine production and release from epithelial cells. We treated BEAS-2B lung epithelial cells with a set of stimulants to activate inflammatory pathways and cytokine release. The production, trafficking and secretion of cytokines were assessed when Cdc42 was pharmacologically inhibited with ML141 drug or silenced with lentiviral-mediated shRNA knockdown. We found that Cdc42 inhibition with ML141 differentially affected gene expression of a subset of cytokines; transcription of IL-6 and IL-8 were increased while MCP-1 was decreased. However, Cdc42 inhibition or depletion disrupted IL-8 trafficking and reduced its secretion even though transcription was increased. Cytokines transiting through the Golgi were particularly affected by Cdc42 disruption. Our results define a role for Cdc42 in the regulation of cytokine production and release in airway epithelial cells. This underscores the role of Cdc42 in coupling receptor activation to downstream gene expression and also as a regulator of cytokine secretory pathways.
Collapse
|
10
|
Zhu F, Li Y, Li X. miR-134 Inhibits Cervical Cancer Cell Invasion via Targeting Cortactin. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cervical cancer is a common malignancy, and miR-134 involves in multiple tumors. The present study aims to explore its expression and role in cervical cancer. miR-134 level in cervical cancer and para-carcinoma tissues was detected by RT-PCR. Cells were transfected with miR-134 mimics
or inhibitor followed by measuring cell behaviors. The results of bioinformatics analysis showed that miR-134 targeted the downstream CTTN. miR-134 inhibited the biological behaviors of cervical cancer cells through suppressing the downstream cell division cycle 42 (Cdc42)/neural Wiskott-Aldrich
syndrome protein (N-WASP) signals. Moreover, miR-134, through regulating CTTN, negatively regulated invasion and inhibited the degradation of extracellular matrix in cervical cancer cells. In conclusion, miR-134 targets CTTN to inhibit the invasion of cervical cancer, thereby inhibiting metastasis.
Collapse
Affiliation(s)
- Fang Zhu
- Department of Obstetrics and Gynecology, Handan First Hospital, Handan City, Hebei Province, 056000, China
| | - Yachai Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, 050031, China
| | - Xiaodan Li
- Department of Obstetrics and Gynecology, Handan First Hospital, Handan City, Hebei Province, 056000, China
| |
Collapse
|
11
|
Zhang L, Cao Y, Dai X, Zhang X. Deciphering the role of DOCK8 in tumorigenesis by regulating immunity and the application of nanotechnology in DOCK8 deficiency therapy. Front Pharmacol 2022; 13:1065029. [PMID: 36386145 PMCID: PMC9664064 DOI: 10.3389/fphar.2022.1065029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
The dedicator of cytokinesis 8 (DOCK8) immunodeficiency syndrome is a severe immune disorder and characterized by serum IgE levels elevation, fungal and viral infections, dermatitis and food allergies. It was well known that DOCK8 is crucial for the survival and function of multiple immune related cells. However, the critical role of DOCK8 on tumorigenesis through regulating immunity is poorly investigated. Accumulating evidences indicated that DOCK8 could affect tumorigenesis by regulating the immunity through immune cells, including NK cells, T cells, B cells and dendritic cells. Here, we summarized and discussed the critical role of DOCK8 in cytoskeleton reconstruction, CD4+ T cell differentiation, immune synaptic formation, tumor immune infiltration, tumor immune surveillance and tumorigenesis. Furthermore, the potential roles of nanotechnology in improving the hematopoietic stem cell transplantation-based therapy for DOCK8 deficiency diseases are also highlighted and discussed.
Collapse
Affiliation(s)
- Longhui Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yang Cao
- Clinical Laboratory, The Eastern Division of the First Hospital, Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Rui Q, Tan X, Liu F, Bao Y. An Update on the Key Factors Required for Plant Golgi Structure Maintenance. FRONTIERS IN PLANT SCIENCE 2022; 13:933283. [PMID: 35837464 PMCID: PMC9274083 DOI: 10.3389/fpls.2022.933283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Plant Golgi apparatus serves as the central station of the secretory pathway and is the site where protein modification and cell wall matrix polysaccharides synthesis occur. The polarized and stacked cisternal structure is a prerequisite for Golgi function. Our understanding of Golgi structure maintenance and trafficking are largely obtained from mammals and yeast, yet, plant Golgi has many different aspects. In this review, we summarize the key players in Golgi maintenance demonstrated by genetic studies in plants, which function in ER-Golgi, intra-Golgi and post-Golgi transport pathways. Among these, we emphasize on players in intra-Golgi trafficking.
Collapse
|
13
|
Comparison of the Cisterna Maturation-Progression Model with the Kiss-and-Run Model of Intra-Golgi Transport: Role of Cisternal Pores and Cargo Domains. Int J Mol Sci 2022; 23:ijms23073590. [PMID: 35408951 PMCID: PMC8999060 DOI: 10.3390/ijms23073590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Golgi complex is the central station of the secretory pathway. Knowledge about the mechanisms of intra-Golgi transport is inconsistent. Here, we compared the explanatory power of the cisterna maturation-progression model and the kiss-and-run model. During intra-Golgi transport, conventional cargoes undergo concentration and form cisternal distensions or distinct membrane domains that contain only one membrane cargo. These domains and distension are separated from the rest of the Golgi cisternae by rows of pores. After the arrival of any membrane cargo or a large cargo aggregate at the Golgi complex, the cis-Golgi SNAREs become enriched within the membrane of cargo-containing domains and then replaced by the trans-Golgi SNAREs. During the passage of these domains, the number of cisternal pores decreases. Restoration of the cisternal pores is COPI-dependent. Our observations are more in line with the kiss-and-run model.
Collapse
|
14
|
Okabayashi K, Nakamura M, Narita T. Cdc42 activates paracellular transport in polarised submandibular gland cells. Arch Oral Biol 2021; 132:105276. [PMID: 34634536 DOI: 10.1016/j.archoralbio.2021.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The physiological expression of cell division cycle 42 (cdc42) in major salivary glands, and paracellular transport of fluorescein isothiocyanate-dextran (FITC-dextran) in SMIE cells, which regulate cdc42 expression, was investigated to clarify the involvement of cdc42 in salivary production. DESIGN The physiological expression of cdc42 in the rat submandibular gland, parotid gland, sublingual gland, and SMIE cells was detected using SDS-PAGE and western blotting. The paracellular transport of FITC-dextran in transwells was compared in transfected SMIE cells, exhibiting up- or downregulated cdc42 expression. RESULTS Cdc42 was expressed in all major salivary glands and SMIE cells. SMIE cells transfected with the cdc42 plasmid had an increase efflux. In addition, SMIE cells transfected with the cdc42 siRNA showed decreased efflux. CONCLUSION We suggest that cdc42 enhances paracellular transport in salivary glands without any morphological changes, including cell-cell adhesion.
Collapse
Affiliation(s)
- Ken Okabayashi
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Mari Nakamura
- Laboratory of Veterinary Biochemistry, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; Laboratory of Molecular Biology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan; Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health, Shinjuku, Tokyo, Japan
| | - Takanori Narita
- Laboratory of Molecular Biology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan.
| |
Collapse
|
15
|
Bainter W, Platt CD, Park SY, Stafstrom K, Wallace JG, Peters ZT, Massaad MJ, Becuwe M, Salinas SA, Jones J, Beaussant-Cohen S, Jaber F, Yang JS, Walther TC, Orange JS, Rao C, Rakoff-Nahoum S, Tsokos M, Naseem SUR, Al-Tamemi S, Chou J, Hsu VW, Geha RS. Combined immunodeficiency due to a mutation in the γ1 subunit of the coat protein I complex. J Clin Invest 2021; 131:140494. [PMID: 33529166 DOI: 10.1172/jci140494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The coat protein I (COPI) complex mediates retrograde trafficking from the Golgi to the endoplasmic reticulum (ER). Five siblings with persistent bacterial and viral infections and defective humoral and cellular immunity had a homozygous p.K652E mutation in the γ1 subunit of COPI (γ1-COP). The mutation disrupts COPI binding to the KDEL receptor and impairs the retrieval of KDEL-bearing chaperones from the Golgi to the ER. Homozygous Copg1K652E mice had increased ER stress in activated T and B cells, poor antibody responses, and normal numbers of T cells that proliferated normally, but underwent increased apoptosis upon activation. Exposure of the mutants to pet store mice caused weight loss, lymphopenia, and defective T cell proliferation that recapitulated the findings in the patients. The ER stress-relieving agent tauroursodeoxycholic acid corrected the immune defects of the mutants and reversed the phenotype they acquired following exposure to pet store mice. This study establishes the role of γ1-COP in the ER retrieval of KDEL-bearing chaperones and thereby the importance of ER homeostasis in adaptive immunity.
Collapse
Affiliation(s)
- Wayne Bainter
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Craig D Platt
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seung-Yeol Park
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Kelsey Stafstrom
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacqueline G Wallace
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary T Peters
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michel Becuwe
- Department of Genetics and Complex Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Sandra Andrea Salinas
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer Jones
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Beaussant-Cohen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Faris Jaber
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias C Walther
- Department of Genetics and Complex Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jordan S Orange
- Division of Immunogenetics, Department of Pediatrics, Morgan Stanley Children's Hospital of New York Presbyterian, Columbia University Irving Medical Center, New York, New York, USA
| | - Chitong Rao
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Salem Al-Tamemi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Janet Chou
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Sechi S, Karimpour-Ghahnavieh A, Frappaolo A, Di Francesco L, Piergentili R, Schininà E, D’Avino PP, Giansanti MG. Identification of GOLPH3 Partners in Drosophila Unveils Potential Novel Roles in Tumorigenesis and Neural Disorders. Cells 2021; 10:cells10092336. [PMID: 34571985 PMCID: PMC8468827 DOI: 10.3390/cells10092336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood. We recently showed that PI(4)P-GOLPH3 couples membrane trafficking with contractile ring assembly during cytokinesis in dividing Drosophila spermatocytes. Here, we use affinity purification coupled with mass spectrometry (AP-MS) to identify the protein-protein interaction network (interactome) of Drosophila GOLPH3 in testes. Analysis of the GOLPH3 interactome revealed enrichment for proteins involved in vesicle-mediated trafficking, cell proliferation and cytoskeleton dynamics. In particular, we found that dGOLPH3 interacts with the Drosophila orthologs of Fragile X mental retardation protein and Ataxin-2, suggesting a potential role in the pathophysiology of disorders of the nervous system. Our findings suggest novel molecular targets associated with GOLPH3 that might be relevant for therapeutic intervention in cancers and other human diseases.
Collapse
Affiliation(s)
- Stefano Sechi
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Angela Karimpour-Ghahnavieh
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Laura Di Francesco
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Roberto Piergentili
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
| | - Eugenia Schininà
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (L.D.F.); (E.S.)
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK;
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale A. Moro 5, 00185 Roma, Italy; (S.S.); (A.K.-G.); (A.F.); (R.P.)
- Correspondence: ; Tel.: +39-064-991-2555
| |
Collapse
|
17
|
Lei Z, Wang J, Zhang L, Liu CH. Ubiquitination-Dependent Regulation of Small GTPases in Membrane Trafficking: From Cell Biology to Human Diseases. Front Cell Dev Biol 2021; 9:688352. [PMID: 34277632 PMCID: PMC8281112 DOI: 10.3389/fcell.2021.688352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/04/2023] Open
Abstract
Membrane trafficking is critical for cellular homeostasis, which is mainly carried out by small GTPases, a class of proteins functioning in vesicle budding, transport, tethering and fusion processes. The accurate and organized membrane trafficking relies on the proper regulation of small GTPases, which involves the conversion between GTP- and GDP-bound small GTPases mediated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Emerging evidence indicates that post-translational modifications (PTMs) of small GTPases, especially ubiquitination, play an important role in the spatio-temporal regulation of small GTPases, and the dysregulation of small GTPase ubiquitination can result in multiple human diseases. In this review, we introduce small GTPases-mediated membrane trafficking pathways and the biological processes of ubiquitination-dependent regulation of small GTPases, including the regulation of small GTPase stability, activity and localization. We then discuss the dysregulation of small GTPase ubiquitination and the associated human membrane trafficking-related diseases, focusing on the neurological diseases and infections. An in-depth understanding of the molecular mechanisms by which ubiquitination regulates small GTPases can provide novel insights into the membrane trafficking process, which knowledge is valuable for the development of more effective and specific therapeutics for membrane trafficking-related human diseases.
Collapse
Affiliation(s)
- Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Abstract
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
19
|
Restelli E, Capone V, Pozzoli M, Ortolan D, Quaglio E, Corbelli A, Fiordaliso F, Beznoussenko GV, Artuso V, Roiter I, Sallese M, Chiesa R. Activation of Src family kinase ameliorates secretory trafficking in mutant prion protein cells. J Biol Chem 2021; 296:100490. [PMID: 33662396 PMCID: PMC8059059 DOI: 10.1016/j.jbc.2021.100490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
Fatal familial insomnia (FFI), genetic Creutzfeldt-Jakob disease (gCJD), and Gerstmann-Sträussler-Scheinker (GSS) syndrome are neurodegenerative disorders linked to prion protein (PrP) mutations. The pathogenic mechanisms are not known, but increasing evidence points to mutant PrP misfolding and retention in the secretory pathway. We previously found that the D178N/M129 mutation associated with FFI accumulates in the Golgi of neuronal cells, impairing post-Golgi trafficking. In this study we further characterized the trafficking defect induced by the FFI mutation and tested the 178N/V129 variant linked to gCJD and a nine-octapeptide repeat insertion associated with GSS. We used transfected HeLa cells, embryonic fibroblasts and primary neurons from transgenic mice, and fibroblasts from carriers of the FFI mutation. In all these cell types, the mutant PrPs showed abnormal intracellular localizations, accumulating in the endoplasmic reticulum (ER) and Golgi. To test the efficiency of the membrane trafficking system, we monitored the intracellular transport of the temperature-sensitive vesicular stomatite virus glycoprotein (VSV-G), a well-established cargo reporter, and of endogenous procollagen I (PC-I). We observed marked alterations in secretory trafficking, with VSV-G accumulating mainly in the Golgi complex and PC-I in the ER and Golgi. A redacted version of mutant PrP with reduced propensity to misfold did not impair VSV-G trafficking, nor did artificial ER or Golgi retention of wild-type PrP; this indicates that both misfolding and intracellular retention were required to induce the transport defect. Pharmacological activation of Src family kinase (SFK) improved intracellular transport, suggesting that mutant PrP impairs secretory trafficking through corruption of SFK-mediated signaling.
Collapse
Affiliation(s)
- Elena Restelli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Vanessa Capone
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Manuela Pozzoli
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Davide Ortolan
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Quaglio
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandro Corbelli
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | | | | | - Ignazio Roiter
- ULSS 2 Marca Trevigiana, Ca' Foncello Hospital, Treviso, Italy
| | - Michele Sallese
- Department of Innovative Technologies in Medicine & Dentistry, University G. D'Annunzio, Chieti, Italy; Center for Advanced Studies and Technology (CAST), University G. D'Annunzio, Chieti, Italy
| | - Roberto Chiesa
- Laboratory of Prion Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
20
|
The Close Relationship between the Golgi Trafficking Machinery and Protein Glycosylation. Cells 2020; 9:cells9122652. [PMID: 33321764 PMCID: PMC7764369 DOI: 10.3390/cells9122652] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in N- and O-linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae. In this review, we describe the molecular machinery involved in vesicle trafficking and tethering at the Golgi apparatus and the effects of mutations in the context of glycan biosynthesis and human diseases.
Collapse
|
21
|
Lepelley A, Martin-Niclós MJ, Le Bihan M, Marsh JA, Uggenti C, Rice GI, Bondet V, Duffy D, Hertzog J, Rehwinkel J, Amselem S, Boulisfane-El Khalifi S, Brennan M, Carter E, Chatenoud L, Chhun S, Coulomb l’Hermine A, Depp M, Legendre M, Mackenzie KJ, Marey J, McDougall C, McKenzie KJ, Molina TJ, Neven B, Seabra L, Thumerelle C, Wislez M, Nathan N, Manel N, Crow YJ, Frémond ML. Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J Exp Med 2020; 217:e20200600. [PMID: 32725128 PMCID: PMC7596811 DOI: 10.1084/jem.20200600] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/04/2020] [Accepted: 07/06/2020] [Indexed: 01/01/2023] Open
Abstract
Heterozygous missense mutations in coatomer protein subunit α, COPA, cause a syndrome overlapping clinically with type I IFN-mediated disease due to gain-of-function in STING, a key adaptor of IFN signaling. Recently, increased levels of IFN-stimulated genes (ISGs) were described in COPA syndrome. However, the link between COPA mutations and IFN signaling is unknown. We observed elevated levels of ISGs and IFN-α in blood of symptomatic COPA patients. In vitro, both overexpression of mutant COPA and silencing of COPA induced STING-dependent IFN signaling. We detected an interaction between COPA and STING, and mutant COPA was associated with an accumulation of ER-resident STING at the Golgi. Given the known role of the coatomer protein complex I, we speculate that loss of COPA function leads to enhanced type I IFN signaling due to a failure of Golgi-to-ER STING retrieval. These data highlight the importance of the ER-Golgi axis in the control of autoinflammation and inform therapeutic strategies in COPA syndrome.
Collapse
Affiliation(s)
- Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | | | - Melvin Le Bihan
- Immunity and Cancer Department, Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Joseph A. Marsh
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Carolina Uggenti
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Gillian I. Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Vincent Bondet
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Darragh Duffy
- Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Jonny Hertzog
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Serge Amselem
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Genetics Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Siham Boulisfane-El Khalifi
- Emergency, Infectious Disease and Pediatric Rheumatology Department, Centre Hospitalier Régional Universitaire Lille, University of Lille, Lille, France
| | - Mary Brennan
- Department of Paediatric Rheumatology, Royal Hospital for Sick Children, Edinburgh, UK
| | - Edwin Carter
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Lucienne Chatenoud
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique UMR8253, Institut National de la Santé et de la Recherche Médicale UMR1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Stéphanie Chhun
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Laboratory of Immunology, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut Necker-Enfants Malades, Centre National de la Recherche Scientifique UMR8253, Institut National de la Santé et de la Recherche Médicale UMR1151, Team Immunoregulation and Immunopathology, Paris, France
| | - Aurore Coulomb l’Hermine
- Pathology Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Marine Depp
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Genetics Department, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Karen J. Mackenzie
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Jonathan Marey
- Pneumology Department, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Catherine McDougall
- Department of Paediatric Respiratory Medicine, Royal Hospital for Sick Children, Edinburgh, UK
| | - Kathryn J. McKenzie
- Paediatric Pathology Department, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Thierry Jo Molina
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Pathology Department, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
| | - Bénédicte Neven
- Paris Descartes University, Université de Paris, Sorbonne-Paris-Cité, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Department, Hôpital Necker-Enfants Malades, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR 1163, Laboratory of Immunogenetics of Paediatric Autoimmunity, Imagine Institute, Paris, France
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| | - Caroline Thumerelle
- Pediatric Pneumology Department, Hôpital Jeanne de Flandre, Centre Hospitalier Régional Universitaire Lille, Lille, France
| | - Marie Wislez
- Pneumology Department, Cochin Hospital, Assistance Publique–Hôpitaux de Paris, Centre-Université de Paris, Paris, France
- Cordeliers Research Center, Université Paris Descartes, Université de Paris, UMRS1138 Inflammation, Complement and Cancer Team, Paris, France
| | - Nadia Nathan
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale/UMRS_933, Trousseau University Hospital, Paris, France
- Pediatric Pulmonology Department and Reference Center for Rare Lung Disease RespiRare, Trousseau University Hospital, Assistance Publique–Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, Paris-Sciences-et-Lettres Research University, Institut National de la Santé et de la Recherche Médicale U932, Paris, France
| | - Yanick J. Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, Paris, France
| |
Collapse
|
22
|
Abstract
Rho GTPases are known to play an essential role in fundamental processes such as defining cell shape, polarity and migration. As such, the majority of Rho GTPases localize and function at, or close to, the plasma membrane. However, it is becoming increasingly clear that a number of Rho family proteins are also associated with the Golgi complex, where they not only regulate events at this organelle but also more widely across the cell. Given the central location of this organelle, and the numerous membrane trafficking pathways that connect it to both the endocytic and secretory systems of cells, it is clear that the Golgi is fundamental for maintaining cellular homoeostasis. In this review, we describe these GTPases in the context of how they regulate Golgi architecture, membrane trafficking into and away from this organelle, and cell polarity and migration. We summarize the key findings that show the growing importance of the pool of Rho GTPases associated with Golgi function, namely Cdc42, RhoA, RhoD, RhoBTB1 and RhoBTB3, and we discuss how they act in concert with other key families of molecules associated with the Golgi, including Rab GTPases and matrix proteins.
Collapse
Affiliation(s)
- Margaritha M Mysior
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| | - Jeremy C Simpson
- Cell Screening Laboratory, School of Biology & Environmental Science, University College Dublin (UCD), Dublin Ireland
| |
Collapse
|
23
|
Valdembri D, Serini G. Angiogenesis: The Importance of RHOJ-Mediated Trafficking of Active Integrins. Curr Biol 2020; 30:R652-R654. [PMID: 32516616 DOI: 10.1016/j.cub.2020.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In endothelial cells, trafficking of active α5β1 integrins and polarized fibronectin secretion are important for vascular morphogenesis. A new study unveils how the endothelial small GTPase RHOJ, by repressing trafficking of active α5β1 integrins, controls fibronectin polymerization and in vivo angiogenesis.
Collapse
Affiliation(s)
- Donatella Valdembri
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| | - Guido Serini
- Candiolo Cancer Institute - FPO, IRCCS, 10060 Candiolo (TO), Italy; Department of Oncology, University of Torino School of Medicine, 10060 Candiolo (TO), Italy.
| |
Collapse
|
24
|
Long M, Kranjc T, Mysior MM, Simpson JC. RNA Interference Screening Identifies Novel Roles for RhoBTB1 and RhoBTB3 in Membrane Trafficking Events in Mammalian Cells. Cells 2020; 9:cells9051089. [PMID: 32354068 PMCID: PMC7291084 DOI: 10.3390/cells9051089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
In the endomembrane system of mammalian cells, membrane traffic processes require a high degree of regulation in order to ensure their specificity. The range of molecules that participate in trafficking events is truly vast, and much attention to date has been given to the Rab family of small GTPases. However, in recent years, a role in membrane traffic for members of the Rho GTPase family, in particular Cdc42, has emerged. This prompted us to develop and apply an image-based high-content screen, initially focussing on the Golgi complex, using RNA interference to systematically perturb each of the 21 Rho family members and assess their importance to the overall organisation of this organelle. Analysis of our data revealed previously unreported roles for two atypical Rho family members, RhoBTB1 and RhoBTB3, in membrane traffic events. We find that depletion of RhoBTB3 affects the morphology of the Golgi complex and causes changes in the trafficking speeds of carriers operating at the interface of the Golgi and endoplasmic reticulum. In addition, RhoBTB3 was found to be present on these carriers. Depletion of RhoBTB1 was also found to cause a disturbance to the Golgi architecture, however, this phenotype seems to be linked to endocytosis and retrograde traffic pathways. RhoBTB1 was found to be associated with early endosomal intermediates, and changes in the levels of RhoBTB1 not only caused profound changes to the organisation and distribution of endosomes and lysosomes, but also resulted in defects in the delivery of two different classes of cargo molecules to downstream compartments. Together, our data reveal new roles for these atypical Rho family members in the endomembrane system.
Collapse
|
25
|
Li L, Li H, Wang L, Wu S, Lv L, Tahir A, Xiao X, Wong CKC, Sun F, Ge R, Cheng CY. Role of cell polarity and planar cell polarity (PCP) proteins in spermatogenesis. Crit Rev Biochem Mol Biol 2020; 55:71-87. [PMID: 32207344 DOI: 10.1080/10409238.2020.1742091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on cell polarity proteins and planar cell polarity (PCP) proteins date back to almost 40 years ago in Drosophila and C. elegans when these proteins were shown to be crucial to support apico-basal polarity and also directional alignment of polarity cells across the plane of an epithelium during morphogenesis. In adult mammals, cell polarity and PCP are most notable in cochlear hair cells. However, the role of these two groups of proteins to support spermatogenesis was not explored until a decade earlier when several proteins that confer cell polarity and PCP proteins were identified in the rat testis. Since then, there are several reports appearing in the literature to examine the role of both cell polarity and PCP in supporting spermatogenesis. Herein, we provide an overview regarding the role of cell polarity and PCP proteins in the testis, evaluating these findings in light of studies in other mammalian epithelial cells/tissues. Our goal is to provide a timely evaluation of these findings, and provide some thought provoking remarks to guide future studies based on an evolving concept in the field.
Collapse
Affiliation(s)
- Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Huitao Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lingling Wang
- Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| | - Lixiu Lv
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Anam Tahir
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiang Xiao
- Department of Reproductive Physiology, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Renshan Ge
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Center for Biomedical Research, The Mary M. Wohlford Laboratory for Male Contraceptive Research, Population Council, New York, USA
| |
Collapse
|
26
|
Taverner A, MacKay J, Laurent F, Hunter T, Liu K, Mangat K, Song L, Seto E, Postlethwaite S, Alam A, Chandalia A, Seung M, Saberi M, Feng W, Mrsny RJ. Cholix protein domain I functions as a carrier element for efficient apical to basal epithelial transcytosis. Tissue Barriers 2020; 8:1710429. [PMID: 31928299 PMCID: PMC7063863 DOI: 10.1080/21688370.2019.1710429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cholix (Chx) is expressed by the intestinal pathogen Vibrio cholerae as a single chain of 634 amino acids (~70.7 kDa protein) that folds into three distinct domains, with elements of the second and third domains being involved in accessing the cytoplasm of nonpolarized cells and inciting cell death via ADP-ribosylation of elongation factor 2, respectively. In order to reach nonpolarized cells within the intestinal lamina propria, however, Chx must cross the polarized epithelial barrier in an intact form. Here, we provide in vitro and in vivo demonstrations that a nontoxic Chx transports across intestinal epithelium via a vesicular trafficking pathway that rapidly achieves vesicular apical to basal (A→B) transcytosis and avoids routing to lysosomes. Specifically, Chx traffics in apical endocytic Rab7+ vesicles and in basal exocytic Rab11+ vesicles with a transition between these domains occurring in the ER-Golgi intermediate compartment (ERGIC) through interactions with the lectin mannose-binding protein 1 (LMAN1) protein that undergoes an intracellular re-distribution that coincides with the re-organization of COPI+ and COPII+ vesicular structures. Truncation studies demonstrated that domain I of Chx alone was sufficient to efficiently complete A→B transcytosis and capable of ferrying genetically conjoined human growth hormone (hGH). These studies provide evidence for a pathophysiological strategy where native Chx exotoxin secreted in the intestinal lumen by nonpandemic V. cholerae can reach nonpolarized cells within the lamina propria in an intact form by using a nondestructive pathway to cross in the intestinal epithelial that appears useful for oral delivery of biopharmaceuticals.One-Sentence Summary: Elements within the first domain of the Cholix exotoxin protein are essential and sufficient for the apical to basal transcytosis of this Vibrio cholerae-derived virulence factor across polarized intestinal epithelial cells.
Collapse
Affiliation(s)
- Alistair Taverner
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Julia MacKay
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Floriane Laurent
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England
| | - Tom Hunter
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Keyi Liu
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Lisa Song
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Elbert Seto
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Aatif Alam
- Applied Molecular Transport, South San Francisco, CA, USA
| | | | - Minji Seung
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Mazi Saberi
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Weijun Feng
- Applied Molecular Transport, South San Francisco, CA, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, England.,Applied Molecular Transport, South San Francisco, CA, USA
| |
Collapse
|
27
|
Olayioye MA, Noll B, Hausser A. Spatiotemporal Control of Intracellular Membrane Trafficking by Rho GTPases. Cells 2019; 8:cells8121478. [PMID: 31766364 PMCID: PMC6952795 DOI: 10.3390/cells8121478] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.
Collapse
|
28
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
29
|
Kokubun H, Jin H, Aoe T. Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex. Int J Mol Sci 2019; 20:ijms20225614. [PMID: 31717602 PMCID: PMC6888596 DOI: 10.3390/ijms20225614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular activities, such as growth and secretion, are dependent on correct protein folding and intracellular protein transport. Injury, like ischemia, malnutrition, and invasion of toxic substances, affect the folding environment in the endoplasmic reticulum (ER). The ER senses this information, following which cells adapt their response to varied situations through the unfolded protein response. Activation of the KDEL receptor, resulting from the secretion from the ER of chaperones containing the KDEL sequence, plays an important role in this adaptation. The KDEL receptor was initially shown to be necessary for the retention of KDEL sequence-containing proteins in the ER. However, it has become clear that the activated KDEL receptor also regulates bidirectional transport between the ER and the Golgi complex, as well as from the Golgi to the secretory pathway. In addition, it has been suggested that the signal for KDEL receptor activation may also affect several other cellular activities. In this review, we discuss KDEL receptor-mediated bidirectional transport and signaling and describe disease models and human diseases related to KDEL receptor dysfunction.
Collapse
Affiliation(s)
- Hiroshi Kokubun
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
- Correspondence: ; Tel.: +81-436-62-1211
| |
Collapse
|
30
|
Meents MJ, Motani S, Mansfield SD, Samuels AL. Organization of Xylan Production in the Golgi During Secondary Cell Wall Biosynthesis. PLANT PHYSIOLOGY 2019; 181:527-546. [PMID: 31431513 PMCID: PMC6776863 DOI: 10.1104/pp.19.00715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/02/2019] [Indexed: 05/16/2023]
Abstract
Secondary cell wall (SCW) production during xylem development requires massive up-regulation of hemicellulose (e.g. glucuronoxylan) biosynthesis in the Golgi. Although mutant studies have revealed much of the xylan biosynthetic machinery, the precise arrangement of these proteins and their products in the Golgi apparatus is largely unknown. We used a fluorescently tagged xylan backbone biosynthetic protein (IRREGULAR XYLEM9; IRX9) as a marker of xylan production in the Golgi of developing protoxylem tracheary elements in Arabidopsis (Arabidopsis thaliana). Both live-cell confocal and transmission electron microscopy (TEM) revealed SCW deposition is accompanied by a significant proliferation of Golgi stacks. Furthermore, although Golgi stacks were randomly distributed, the organization of the cytoplasm ensured their close proximity to developing SCWs. Quantitative immuno-TEM revealed IRX9 is present in a specific subdomain of the Golgi stack and was most abundant in the ring of the inner margins of medial cisternae where fenestrations are abundant. Conversely, the xylan product accumulated in swollen trans cisternal margins and the Trans-Golgi network (TGN). The irx9 mutant lacked this expansion for both the cisternal margins and the TGN, whereas Golgi stack proliferation was unaffected. Golgi in irx9 also displayed dramatic changes in their structure, with increases in cisternal fenestration and tubulation. Our data support a new model where xylan biosynthesis and packaging into secretory vesicles are localized in distinct structural and functional domains of the Golgi. Rather than polysaccharide biosynthesis occurring in the center of the cisternae, IRX9 and the xylan product are arranged in successive concentric rings in Golgi cisternae.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Sanya Motani
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| | - A Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4 British Columbia
| |
Collapse
|
31
|
Saraste J, Prydz K. A New Look at the Functional Organization of the Golgi Ribbon. Front Cell Dev Biol 2019; 7:171. [PMID: 31497600 PMCID: PMC6713163 DOI: 10.3389/fcell.2019.00171] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
A characteristic feature of vertebrate cells is a Golgi ribbon consisting of multiple cisternal stacks connected into a single-copy organelle next to the centrosome. Despite numerous studies, the mechanisms that link the stacks together and the functional significance of ribbon formation remain poorly understood. Nevertheless, these questions are of considerable interest, since there is increasing evidence that Golgi fragmentation – the unlinking of the stacks in the ribbon – is intimately connected not only to normal physiological processes, such as cell division and migration, but also to pathological states, including neurodegeneration and cancer. Challenging a commonly held view that ribbon architecture involves the formation of homotypic tubular bridges between the Golgi stacks, we present an alternative model, based on direct interaction between the biosynthetic (pre-Golgi) and endocytic (post-Golgi) membrane networks and their connection with the centrosome. We propose that the central domains of these permanent pre- and post-Golgi networks function together in the biogenesis and maintenance of the more transient Golgi stacks, and thereby establish “linker compartments” that dynamically join the stacks together. This model provides insight into the reversible fragmentation of the Golgi ribbon that takes place in dividing and migrating cells and its regulation along a cell surface – Golgi – centrosome axis. Moreover, it helps to understand transport pathways that either traverse or bypass the Golgi stacks and the positioning of the Golgi apparatus in differentiated neuronal, epithelial, and muscle cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center, University of Bergen, Bergen, Norway
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
33
|
The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nat Commun 2019; 10:3409. [PMID: 31363100 PMCID: PMC6667475 DOI: 10.1038/s41467-019-11324-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Studies on vesicle formation by the Coat Protein I (COPI) complex have contributed to a basic understanding of how vesicular transport is initiated. Phosphatidic acid (PA) and diacylglycerol (DAG) have been found previously to be required for the fission stage of COPI vesicle formation. Here, we find that PA with varying lipid geometry can all promote early fission, but only PA with shortened acyl chains promotes late fission. Moreover, diacylglycerol (DAG) acts after PA in late fission, with this role of DAG also requiring shorter acyl chains. Further highlighting the importance of the short-chain lipid geometry for late fission, we find that shorter forms of PA and DAG promote the vesiculation ability of COPI fission factors. These findings advance a general understanding of how lipid geometry contributes to membrane deformation for vesicle fission, and also how proteins and lipids coordinate their actions in driving this process.
Collapse
|
34
|
Phuyal S, Farhan H. Multifaceted Rho GTPase Signaling at the Endomembranes. Front Cell Dev Biol 2019; 7:127. [PMID: 31380367 PMCID: PMC6646525 DOI: 10.3389/fcell.2019.00127] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
The Rho family of small GTPases orchestrates fundamental biological processes such as cell cycle progression, cell migration, and actin cytoskeleton dynamics, and their aberrant signaling is linked to numerous human diseases and disorders. Traditionally, active Rho GTPase proteins were proposed to reside and function predominantly at the plasma membrane. While this view still holds true, it is emerging that active pool of multiple Rho GTPases are in part localized to endomembranes such as endosomes and the Golgi. In this review, we will focus on the intracellular pools and discuss how their local activation contributes to the shaping of various cellular processes. Our main focus will be on Rho signaling from the endosomes, Golgi, mitochondria and nucleus and how they regulate multiple cellular events such as receptor trafficking, cell proliferation and differentiation, cell migration and polarity.
Collapse
Affiliation(s)
- Santosh Phuyal
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
35
|
Ernst AM, Toomre D, Bogan JS. Acylation - A New Means to Control Traffic Through the Golgi. Front Cell Dev Biol 2019; 7:109. [PMID: 31245373 PMCID: PMC6582194 DOI: 10.3389/fcell.2019.00109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
The Golgi is well known to act as center for modification and sorting of proteins for secretion and delivery to other organelles. A key sorting step occurs at the trans-Golgi network and is mediated by protein adapters. However, recent data indicate that sorting also occurs much earlier, at the cis-Golgi, and uses lipid acylation as a novel means to regulate anterograde flux. Here, we examine an emerging role of S-palmitoylation/acylation as a mechanism to regulate anterograde routing. We discuss the critical Golgi-localized DHHC S-palmitoyltransferase enzymes that orchestrate this lipid modification, as well as their diverse protein clients (e.g., MAP6, SNAP25, CSP, LAT, β-adrenergic receptors, GABA receptors, and GLUT4 glucose transporters). Critically, for integral membrane proteins, S-acylation can act as new a “self-sorting” signal to concentrate these cargoes in rims of Golgi cisternae, and to promote their rapid traffic through the Golgi or, potentially, to bypass the Golgi. We discuss this mechanism and examine its potential relevance to human physiology and disease, including diabetes and neurodegenerative diseases.
Collapse
Affiliation(s)
- Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jonathan S Bogan
- Department of Cell Biology, Yale School of Medicine, Yale University, New Haven, CT, United States.,Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
36
|
Reunert J, Rust S, Grüneberg M, Seelhöfer A, Kurz D, Ocker V, Weber D, Fingerhut R, Marquardt T. Transient N-glycosylation abnormalities likely due to a de novo loss-of-function mutation in the delta subunit of coat protein I. Am J Med Genet A 2019; 179:1371-1375. [PMID: 31075182 DOI: 10.1002/ajmg.a.61190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Accurate glycosylation of proteins is essential for their function and their intracellular transport. Numerous diseases have been described, where either glycosylation or intracellular transport of proteins is impaired. Coat protein I (COPI) is involved in anterograde and retrograde transport of proteins between endoplasmic reticulum and Golgi, where glycosylation takes place, but no association of defective COPI proteins and glycosylation defects has been described so far. We identified a patient whose phenotype at a first glance was reminiscent of PGM1 deficiency, a disease that also affects N-glycosylation of proteins. More detailed analyses revealed a different disease with a glycosylation deficiency that was only detectable during episodes of acute illness of the patient. Trio-exome analysis revealed a de novo loss-of-function mutation in ARCN1, coding for the delta-COP subunit of COPI. We hypothesize that the capacity of flow through Golgi is reduced by this defect and at high protein synthesis rates, this bottleneck also manifests as transient glycosylation deficiency.
Collapse
Affiliation(s)
- Janine Reunert
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Marianne Grüneberg
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Anja Seelhöfer
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| | - Daniel Kurz
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Volker Ocker
- Department of Paediatrics, Olgahospital, Stuttgart, Germany
| | - Dorothea Weber
- Gemeinschaftspraxis für Kinderheilkunde, Bensheim, Germany
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory and Division of Metabolism, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
37
|
Homma Y, Kinoshita R, Kuchitsu Y, Wawro PS, Marubashi S, Oguchi ME, Ishida M, Fujita N, Fukuda M. Comprehensive knockout analysis of the Rab family GTPases in epithelial cells. J Cell Biol 2019; 218:2035-2050. [PMID: 31072826 PMCID: PMC6548125 DOI: 10.1083/jcb.201810134] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/26/2019] [Accepted: 04/12/2019] [Indexed: 12/23/2022] Open
Abstract
Rab small GTPases (∼60 genes in mammals) are the master regulators of intracellular membrane trafficking. Homma et al. establish a comprehensive collection of knockout epithelial cell lines for all the mammalian Rabs, revealing that Rab6 is required for basement membrane formation and soluble cargo secretion. The Rab family of small GTPases comprises the largest number of proteins (∼60 in mammals) among the regulators of intracellular membrane trafficking, but the precise function of many Rabs and the functional redundancy and diversity of Rabs remain largely unknown. Here, we generated a comprehensive collection of knockout (KO) MDCK cells for the entire Rab family. We knocked out closely related paralogs simultaneously (Rab subfamily knockout) to circumvent functional compensation and found that Rab1A/B and Rab5A/B/C are critical for cell survival and/or growth. In addition, we demonstrated that Rab6-KO cells lack the basement membrane, likely because of the inability to secrete extracellular matrix components. Further analysis revealed the general requirement of Rab6 for secretion of soluble cargos. Transport of transmembrane cargos to the plasma membrane was also significantly delayed in Rab6-KO cells, but the phenotype was relatively mild. Our Rab-KO collection, which shares the same background, would be a valuable resource for analyzing a variety of membrane trafficking events.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Riko Kinoshita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Paulina S Wawro
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Soujiro Marubashi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mai E Oguchi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Naonobu Fujita
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| |
Collapse
|
38
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
39
|
He X, Drelich A, Yu S, Chang Q, Gong D, Zhou Y, Qu Y, Yuan Y, Su Z, Qiu Y, Tang SJ, Gaitas A, Ksiazek T, Xu Z, Zhou J, Feng Z, Wakamiya M, Lu F, Gong B. Exchange protein directly activated by cAMP plays a critical role in regulation of vascular fibrinolysis. Life Sci 2019; 221:1-12. [PMID: 30738042 DOI: 10.1016/j.lfs.2019.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023]
Abstract
Plasmin-mediated fibrinolysis at the surface of vascular endothelial cells (SVEC) plays a key role in maintaining vascular hemostasis, in which the cAMP pathway participates. After externalization to the SVEC, annexin A2 (ANXA2) serves as a platform for conversion of plasminogen to plasmin. Here we describe a regulatory role of the exchange protein directly activated by cAMP (EPAC) in ANXA2 externalization and vascular fibrinolysis. Knockout of EPAC1 in mice results in a decreased ANXA2 expression on the SVEC associated with increased fibrin deposition and fibrinolytic dysfunction. Reduced levels of EPAC1 are also found in endocardial tissues beneath atrial mural thrombi in patients. Notably, administration of recombinant ANXA2 ameliorates fibrinolytic dysfunction in the EPAC1-null mice. Mechanistically, EPAC1 regulates the SVEC plasminogen conversion depended on ANXA2. EPAC1 promotes tyrosine-23 phosphorylation of ANXA2, a prerequisite for its recruitment to the SVEC. Our data thus reveal a novel regulatory role for EPAC1 in vascular fibrinolysis.
Collapse
Affiliation(s)
- Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shangyi Yu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dejun Gong
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yixuan Zhou
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Yue Qu
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yuan Qiu
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zhiyun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Fanglin Lu
- Department of Cardiovascular Surgery, Changhai Hospital, Shanghai 200433, China.
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
40
|
Ernst AM, Syed SA, Zaki O, Bottanelli F, Zheng H, Hacke M, Xi Z, Rivera-Molina F, Graham M, Rebane AA, Björkholm P, Baddeley D, Toomre D, Pincet F, Rothman JE. S-Palmitoylation Sorts Membrane Cargo for Anterograde Transport in the Golgi. Dev Cell 2019; 47:479-493.e7. [PMID: 30458139 DOI: 10.1016/j.devcel.2018.10.024] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/07/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022]
Abstract
While retrograde cargo selection in the Golgi is known to depend on specific signals, it is unknown whether anterograde cargo is sorted, and anterograde signals have not been identified. We suggest here that S-palmitoylation of anterograde cargo at the Golgi membrane interface is an anterograde signal and that it results in concentration in curved regions at the Golgi rims by simple physical chemistry. The rate of transport across the Golgi of two S-palmitoylated membrane proteins is controlled by S-palmitoylation. The bulk of S-palmitoylated proteins in the Golgi behave analogously, as revealed by click chemistry-based fluorescence and electron microscopy. These palmitoylated cargos concentrate in the most highly curved regions of the Golgi membranes, including the fenestrated perimeters of cisternae and associated vesicles. A palmitoylated transmembrane domain behaves similarly in model systems.
Collapse
Affiliation(s)
- Andreas M Ernst
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Saad A Syed
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Omar Zaki
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | - Hong Zheng
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Moritz Hacke
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Aleksander A Rebane
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Patrik Björkholm
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - David Baddeley
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Derek Toomre
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Frederic Pincet
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA; Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ, CNRS, Paris, France
| | - James E Rothman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
41
|
Yang JS, Hsu JW, Park SY, Li J, Oldham WM, Beznoussenko GV, Mironov AA, Loscalzo J, Hsu VW. GAPDH inhibits intracellular pathways during starvation for cellular energy homeostasis. Nature 2018; 561:263-267. [PMID: 30209366 PMCID: PMC6152935 DOI: 10.1038/s41586-018-0475-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Starvation poses a fundamental challenge to cell survival. Whereas the role of autophagy in promoting energy homeostasis in this setting has been extensively characterized1, other mechanisms are less well understood. Here we reveal that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) inhibits coat protein I (COPI) transport by targeting a GTPase-activating protein (GAP) towards ADP-ribosylation factor 1 (ARF1) to suppress COPI vesicle fission. GAPDH inhibits multiple other transport pathways, also by targeting ARF GAPs. Further characterization suggests that this broad inhibition is activated by the cell during starvation to reduce energy consumption. These findings reveal a remarkable level of coordination among the intracellular transport pathways that underlies a critical mechanism of cellular energy homeostasis.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jia-Wei Hsu
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Seung-Yeol Park
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
43
|
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. ANNALS OF BOTANY 2018; 121:1107-1125. [PMID: 29415210 PMCID: PMC5946954 DOI: 10.1093/aob/mcy005] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Secondary cell walls (SCWs) form the architecture of terrestrial plant biomass. They reinforce tracheary elements and strengthen fibres to permit upright growth and the formation of forest canopies. The cells that synthesize a strong, thick SCW around their protoplast must undergo a dramatic commitment to cellulose, hemicellulose and lignin production. SCOPE This review puts SCW biosynthesis in a cellular context, with the aim of integrating molecular biology and biochemistry with plant cell biology. While SCWs are deposited in diverse tissue and cellular contexts including in sclerenchyma (fibres and sclereids), phloem (fibres) and xylem (tracheids, fibres and vessels), the focus of this review reflects the fact that protoxylem tracheary elements have proven to be the most amenable experimental system in which to study the cell biology of SCWs. CONCLUSIONS SCW biosynthesis requires the co-ordination of plasma membrane cellulose synthases, hemicellulose production in the Golgi and lignin polymer deposition in the apoplast. At the plasma membrane where the SCW is deposited under the guidance of cortical microtubules, there is a high density of SCW cellulose synthase complexes producing cellulose microfibrils consisting of 18-24 glucan chains. These microfibrils are extruded into a cell wall matrix rich in SCW-specific hemicelluloses, typically xylan and mannan. The biosynthesis of eudicot SCW glucuronoxylan is taken as an example to illustrate the emerging importance of protein-protein complexes in the Golgi. From the trans-Golgi, trafficking of vesicles carrying hemicelluloses, cellulose synthases and oxidative enzymes is crucial for exocytosis of SCW components at the microtubule-rich cell membrane domains, producing characteristic SCW patterns. The final step of SCW biosynthesis is lignification, with monolignols secreted by the lignifying cell and, in some cases, by neighbouring cells as well. Oxidative enzymes such as laccases and peroxidases, embedded in the polysaccharide cell wall matrix, determine where lignin is deposited.
Collapse
Affiliation(s)
- Miranda J Meents
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Yoichiro Watanabe
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
44
|
Lažetić V, Joseph BB, Bernazzani SM, Fay DS. Actin organization and endocytic trafficking are controlled by a network linking NIMA-related kinases to the CDC-42-SID-3/ACK1 pathway. PLoS Genet 2018; 14:e1007313. [PMID: 29608564 PMCID: PMC5897031 DOI: 10.1371/journal.pgen.1007313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/12/2018] [Accepted: 03/19/2018] [Indexed: 01/07/2023] Open
Abstract
Molting is an essential process in the nematode Caenorhabditis elegans during which the epidermal apical extracellular matrix, termed the cuticle, is detached and replaced at each larval stage. The conserved NIMA-related kinases NEKL-2/NEK8/NEK9 and NEKL-3/NEK6/NEK7, together with their ankyrin repeat partners, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, are essential for normal molting. In nekl and mlt mutants, the old larval cuticle fails to be completely shed, leading to entrapment and growth arrest. To better understand the molecular and cellular functions of NEKLs during molting, we isolated genetic suppressors of nekl molting-defective mutants. Using two independent approaches, we identified CDC-42, a conserved Rho-family GTPase, and its effector protein kinase, SID-3/ACK1. Notably, CDC42 and ACK1 regulate actin dynamics in mammals, and actin reorganization within the worm epidermis has been proposed to be important for the molting process. Inhibition of NEKL-MLT activities led to strong defects in the distribution of actin and failure to form molting-specific apical actin bundles. Importantly, this phenotype was reverted following cdc-42 or sid-3 inhibition. In addition, repression of CDC-42 or SID-3 also suppressed nekl-associated defects in trafficking, a process that requires actin assembly and disassembly. Expression analyses indicated that components of the NEKL-MLT network colocalize with both actin and CDC-42 in specific regions of the epidermis. Moreover, NEKL-MLT components were required for the normal subcellular localization of CDC-42 in the epidermis as well as wild-type levels of CDC-42 activation. Taken together, our findings indicate that the NEKL-MLT network regulates actin through CDC-42 and its effector SID-3. Interestingly, we also observed that downregulation of CDC-42 in a wild-type background leads to molting defects, suggesting that there is a fine balance between NEKL-MLT and CDC-42-SID-3 activities in the epidermis.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Braveen B. Joseph
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - Sarina M. Bernazzani
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
| | - David S. Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY
- * E-mail:
| |
Collapse
|
45
|
Abstract
The coat protein complex I (COPI) allows the precise sorting of lipids and proteins between Golgi cisternae and retrieval from the Golgi to the ER. This essential role maintains the identity of the early secretory pathway and impinges on key cellular processes, such as protein quality control. In this Cell Science at a Glance and accompanying poster, we illustrate the different stages of COPI-coated vesicle formation and revisit decades of research in the context of recent advances in the elucidation of COPI coat structure. By calling attention to an array of questions that have remained unresolved, this review attempts to refocus the perspectives of the field.
Collapse
Affiliation(s)
- Eric C Arakel
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany .,Max-Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
46
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
47
|
Li J, Miao L, Zhao C, Shaikh Qureshi WM, Shieh D, Guo H, Lu Y, Hu S, Huang A, Zhang L, Cai CL, Wan LQ, Xin H, Vincent P, Singer HA, Zheng Y, Cleaver O, Fan ZC, Wu M. CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development 2017; 144:1635-1647. [PMID: 28465335 PMCID: PMC5450847 DOI: 10.1242/dev.147173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/16/2017] [Indexed: 01/26/2023]
Abstract
The epicardium contributes to multiple cardiac lineages and is essential for cardiac development and regeneration. However, the mechanism of epicardium formation is unclear. This study aimed to establish the cellular and molecular mechanisms underlying the dissociation of pro-epicardial cells (PECs) from the pro-epicardium (PE) and their subsequent translocation to the heart to form the epicardium. We used lineage tracing, conditional deletion, mosaic analysis and ligand stimulation in mice to determine that both villous protrusions and floating cysts contribute to PEC translocation to myocardium in a CDC42-dependent manner. We resolved a controversy by demonstrating that physical contact of the PE with the myocardium constitutes a third mechanism for PEC translocation to myocardium, and observed a fourth mechanism in which PECs migrate along the surface of the inflow tract to reach the ventricles. Epicardial-specific Cdc42 deletion disrupted epicardium formation, and Cdc42 null PECs proliferated less, lost polarity and failed to form villous protrusions and floating cysts. FGF signaling promotes epicardium formation in vivo, and biochemical studies demonstrated that CDC42 is involved in the trafficking of FGF receptors to the cell membrane to regulate epicardium formation. Highlighted article: During epicardial formation in mice, four different mechanisms of pro-epicardial cell translocation to the myocardium can be identified, with CDC42 playing a key role.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lianjie Miao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.,Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chen Zhao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | | | - David Shieh
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Hua Guo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yangyang Lu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Saiyang Hu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Alice Huang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Lu Zhang
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Chen-Leng Cai
- Developmental and Regenerative Biology, Mount Sinai Hospital, New York, NY 10029, USA
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th street, Biotech 2147, Troy, NY 12180, USA
| | - Hongbo Xin
- Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.,School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Peter Vincent
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ondine Cleaver
- Molecular Biology, UT Southwestern, Dallas, TX 75390, USA
| | - Zhen-Chuan Fan
- International Collaborative Research Center for Health Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Mingfu Wu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
48
|
Land-locked mammalian Golgi reveals cargo transport between stable cisternae. Nat Commun 2017; 8:432. [PMID: 28874656 PMCID: PMC5585379 DOI: 10.1038/s41467-017-00570-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 07/10/2017] [Indexed: 12/19/2022] Open
Abstract
The Golgi is composed of a stack of cis, medial, trans cisternae that are biochemically distinct. The stable compartments model postulates that permanent cisternae communicate through bi-directional vesicles, while the cisternal maturation model postulates that transient cisternae biochemically mature to ensure anterograde transport. Testing either model has been constrained by the diffraction limit of light microscopy, as the cisternae are only 10-20 nm thick and closely stacked in mammalian cells. We previously described the unstacking of Golgi by the ectopic adhesion of Golgi cisternae to mitochondria. Here, we show that cargo processing and transport continue-even when individual Golgi cisternae are separated and "land-locked" between mitochondria. With the increased spatial separation of cisternae, we show using three-dimensional live imaging that cis-Golgi and trans-Golgi remain stable in their composition and size. Hence, we provide new evidence in support of the stable compartments model in mammalian cells.The different composition of Golgi cisternae gave rise to two different models for intra-Golgi traffic: one where stable cisternae communicate via vesicles and another one where cisternae biochemically mature to ensure anterograde transport. Here, the authors provide evidence in support of the stable compartments model.
Collapse
|
49
|
Kage F, Steffen A, Ellinger A, Ranftler C, Gehre C, Brakebusch C, Pavelka M, Stradal T, Rottner K. FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42. Sci Rep 2017; 7:9791. [PMID: 28852060 PMCID: PMC5575334 DOI: 10.1038/s41598-017-09952-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
The Rho-family small GTPase Cdc42 localizes at plasma membrane and Golgi complex and aside from protrusion and migration operates in vesicle trafficking, endo- and exocytosis as well as establishment and/or maintenance of cell polarity. The formin family members FMNL2 and -3 are actin assembly factors established to regulate cell edge protrusion during migration and invasion. Here we report these formins to additionally accumulate and function at the Golgi apparatus. As opposed to lamellipodia, Golgi targeting of these proteins required both their N-terminal myristoylation and the interaction with Cdc42. Moreover, Golgi association of FMNL2 or -3 induced a phalloidin-detectable actin meshwork around the Golgi. Importantly, functional interference with FMNL2/3 formins by RNAi or CRISPR/Cas9-mediated gene deletion invariably induced Golgi fragmentation in different cell lines. Furthermore, absence of these proteins led to enlargement of endosomes as well as defective maturation and/or sorting into late endosomes and lysosomes. In line with Cdc42 - recently established to regulate anterograde transport through the Golgi by cargo sorting and carrier formation - FMNL2/3 depletion also affected anterograde trafficking of VSV-G from the Golgi to the plasma membrane. Our data thus link FMNL2/3 formins to actin assembly-dependent functions of Cdc42 in anterograde transport through the Golgi apparatus.
Collapse
Affiliation(s)
- Frieda Kage
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Carmen Ranftler
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Christian Gehre
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Cord Brakebusch
- Biomedical Institute, BRIC, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Margit Pavelka
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Theresia Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany. .,Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
50
|
Zsakai A, Sipos R, Takacs-Vellai K, Szabo A, Bodzsar EB. The relationship between reproductive and biochemical ageing at the time of the menopausal transition. Exp Gerontol 2017; 98:162-168. [PMID: 28843511 DOI: 10.1016/j.exger.2017.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/04/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
The biochemical ageing status of women in the menopausal transition was studied using quantitative analysis of age- and autophagy-related gene activities (CDC42 and MAP1LC3 genes were selected as target genes). Free estradiol and progesterone levels in saliva were estimated. General linear models were used to determine the relationship between lifestyle, health status, socioeconomic factors and CDC42 and MAP1LC3 gene expression levels. Gene expression analysis revealed (1) an increasing expression of CDC42 gene after 45years in women, (2) expression level of CDC42 gene associated with menopausal status, (3) while endocrine status was found to associate with the expression of both of the studied age-related genes, (4) the "never used hormonal contraceptives" and "obese nutritional status" were the strongest factors for increased level of age-related gene expressions, and (5) changes in gene expression levels by ageing should be studied by considering not only chronological, but also biological ages. Gene expression profile of ageing has mostly been studied in model systems or human blood samples, but rarely in human saliva samples. The concordance of results between the present and former gene expression analyses, and the simplicity of saliva sample collection emphasizes the importance of saliva tissue samples in gene expression analyses especially in epidemiological surveys.
Collapse
Affiliation(s)
- Annamaria Zsakai
- Department of Biological Anthropology, Eotvos Lorand University, Pazmany P. 1/c, 1117 Budapest, Hungary.
| | - Rita Sipos
- Biomi Ltd, Szent-Gyorgyi Albert ut 4, 2100 Godollo, Hungary.
| | - Krisztina Takacs-Vellai
- Department of Biological Anthropology, Eotvos Lorand University, Pazmany P. 1/c, 1117 Budapest, Hungary
| | - Attila Szabo
- Department of Microbiology, Eotvos Lorand University, Pazmany P. 1/c, 1117 Budapest, Hungary
| | - Eva B Bodzsar
- Department of Biological Anthropology, Eotvos Lorand University, Pazmany P. 1/c, 1117 Budapest, Hungary.
| |
Collapse
|