1
|
Silva Tortorelli L, Garad M, Megemont M, Haga-Yamanaka S, Goel A, Yang H. Variations of neuronal properties in the region of locus coeruleus of mice. Brain Res 2024; 1845:149289. [PMID: 39442646 DOI: 10.1016/j.brainres.2024.149289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Neurons in the locus coeruleus (LC) have been traditionally viewed as a homogenous population. Recent studies begin to reveal their heterogeneity at multiple levels, ranging from molecular compositions to projection targets. To further uncover variations of neuronal properties in the LC, we took a genetic-based tagging approach to identify these neurons. Our data revealed diverse spike waveforms among neurons in the LC region, including a considerable fraction of narrow-spiking units. While all wide-spiking units possessed the regular waveform polarity (negative-positive deflection), the narrow units can be further divided based on opposing waveform polarities. Under anesthesia, wide units emitted action potential at a higher rate than the narrow units. Under wakefulness, only one subtype of narrow units exhibited fast-spiking phenotype. These neurons also had long latencies to optogenetic stimulation. In-situ hybridization further supported the existence of a small population of putative GABAergic neurons in the LC core. Together, our data reveal characteristic differences among neurons in the LC region, and suggest that a fraction of electrophysiologically-identified narrow-spiking neurons can be fast-spiking interneurons, and their fast-spiking feature is masked by anesthesia.
Collapse
Affiliation(s)
- Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Marine Megemont
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Sachiko Haga-Yamanaka
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Anubhuti Goel
- Department of Psychology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA; Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Zhu H, Xu G. Electrochemical biosensors for dopamine. Clin Chim Acta 2024:120039. [PMID: 39550057 DOI: 10.1016/j.cca.2024.120039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Dopamine (DA), a key catecholamine, plays a pivotal role in the regulation of human cognition and emotions. It has profound effects on the hormonal, memory, and cardiovascular systems. Anomalies like Alzheimer's, Parkinson's, schizophrenia, and senile dementia are linked to abnormal DA levels. Consequently, the precise determination of DA levels in biological systems is critical for the accurate diagnosis and treatment of these disorders. Among all analytical techniques, electrochemical studies provide the most selective and highly sensitive methods for detecting DA in biological samples. Ascorbic acid and uric acid are two examples of small biomolecules that can obstruct the detection of DA in biological fluids. To address this issue, numerous attempts have been made to modify bare electrodes to separate the signals of these substances and enhance the electrocatalytic activity towards DA. Various surface modifiers, including coatings, conducting polymers, ionic liquids, nanomaterials, and inorganic complexes, have been employed in the modification process. Despite the reported success in DA detection using electrochemical sensors, many of these approaches are deemed too complex and costly for real-world applications. Therefore, this review aims to provide an overview of DA electrochemical biosensors that are practical for real-world applications.
Collapse
Affiliation(s)
- Hang Zhu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China; Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine, Putian University, Putian, Fujian 351100, China.
| | - Guifen Xu
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian 351100, China
| |
Collapse
|
3
|
Aquino-Miranda G, Jalloul D, Zhang XO, Li S, Kirouac GJ, Beierlein M, Do Monte FH. Functional properties of corticothalamic circuits targeting paraventricular thalamic neurons. Neuron 2024:S0896-6273(24)00731-1. [PMID: 39504962 DOI: 10.1016/j.neuron.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/02/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
Corticothalamic projections to sensorimotor thalamic nuclei show modest firing rates and serve to modulate the activity of thalamic relay neurons. By contrast, here we find that high-order corticothalamic projections from the prelimbic (PL) cortex to the anterior paraventricular thalamic nucleus (aPVT) maintain high-frequency activity and evoke strong synaptic excitation of aPVT neurons in rats. In a significant fraction of aPVT cells, such high-frequency excitation of PL-aPVT projections leads to a rapid decay of action potential amplitudes, followed by a depolarization block (DB) that strongly limits aPVT maximum firing rates, thereby regulating both defensive and appetitive behaviors in a frequency-dependent manner. Strong inhibitory inputs from the anteroventral portion of the thalamic reticular nucleus (avTRN) inhibit the firing rate of aPVT neurons during periods of high-spike fidelity but restore it during prominent DB, suggesting that avTRN activity can modulate the effects of PL inputs on aPVT firing rates to ultimately control motivated behaviors.
Collapse
Affiliation(s)
- Guillermo Aquino-Miranda
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| | - Dounya Jalloul
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Xu O Zhang
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Sa Li
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Gilbert J Kirouac
- Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Avenue, Winnipeg, MB R3E 0W2, Canada
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA
| | - Fabricio H Do Monte
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Verduzco-Mendoza A, Mota-Rojas D, Olmos-Hernández A, Avila-Luna A, García-García K, Gálvez-Rosas A, Hidalgo-Bravo A, Ríos C, Parra-Cid C, Montes S, García-López J, Ramos-Languren LE, Pérez-Severiano F, González-Piña R, Bueno-Nava A. Changes in Noradrenergic Synthesis and Dopamine Beta-Hydroxylase Activity in Response to Oxidative Stress after Iron-induced Brain Injury. Neurochem Res 2024; 49:3043-3059. [PMID: 39105899 DOI: 10.1007/s11064-024-04222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- Programa de Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Daniel Mota-Rojas
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Adriana Olmos-Hernández
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Avila-Luna
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Karla García-García
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Arturo Gálvez-Rosas
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Alberto Hidalgo-Bravo
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Camilo Ríos
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana CBS, Unidad Xochimilco, Ciudad de México, Mexico
| | - Carmen Parra-Cid
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, calle 16 y lago de Chapala, Aztlán, Tamaulipas, Mexico
| | - Julieta García-López
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico
| | - Laura E Ramos-Languren
- Facultad de Psicología, División de Estudios Profesionales, Universidad Nacional Autónoma de Mexico, Av. Universidad 3040, Col, Copilco Universidad Alcaldía Coyoacán, Ciudad de México, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSa, Insurgentes Sur 3877, Ciudad de México, Mexico
| | - Rigoberto González-Piña
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, 11340, Ciudad de México, Mexico
- Clínica de Rehabilitación del Daño Cerebral CLIREDACE "Dr. Hugo Iván González Gutiérrez", Monterrey 243, Col. Roma Sur, Alcaldía Cuauhtémoc, Ciudad de México, Mexico
| | - Antonio Bueno-Nava
- Dirección de Investigación, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calzada México-Xochimilco 289, Arenal de Guadalupe, Ciudad de México, Mexico.
- Laboratorio de Neurofisiología Química de la Discapacidad, Coordinación de Neurociencias Básica, Arenal de Guadalupe, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, SSa, Calz. México-Xochimilco 289, Ciudad de México, 14389, Mexico.
| |
Collapse
|
5
|
Tian G, Bartas K, Hui M, Chen L, Vasquez JJ, Azouz G, Derdeyn P, Manville RW, Ho EL, Fang AS, Li Y, Tyler I, Setola V, Aoto J, Abbott GW, Beier KT. Molecular and circuit determinants in the globus pallidus mediating control of cocaine-induced behavioral plasticity. Neuron 2024; 112:3470-3485.e12. [PMID: 39153478 PMCID: PMC11502257 DOI: 10.1016/j.neuron.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/12/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPePV) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTADA) cells projecting to the dorsomedial striatum (DMS). Interestingly, GPePV cell activity in cocaine-naive mice is correlated with behavioral responses following cocaine, effectively predicting cocaine sensitivity. Expression of the voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability following cocaine was downregulated, contributing to the elevation in GPePV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPePV cell excitability and impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its therapeutic potential to counteract psychostimulant use disorder.
Collapse
Affiliation(s)
- Guilian Tian
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Katrina Bartas
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Lingxuan Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Jose J Vasquez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ghalia Azouz
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Pieter Derdeyn
- Program in Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Erick L Ho
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Amanda S Fang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yuan Li
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Isabella Tyler
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Vincent Setola
- Department of Neuroscience, West Virginia University, Morgantown, WV, USA; Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV, USA
| | - Jason Aoto
- University of Colorado Anschutz School of Medicine, Department of Pharmacology, Aurora, CO, USA
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
6
|
Sulaman BA, Zhang Y, Matosevich N, Kjærby C, Foustoukos G, Andersen M, Eban-Rothschild A. Emerging Functions of Neuromodulation during Sleep. J Neurosci 2024; 44:e1277242024. [PMID: 39358018 PMCID: PMC11450531 DOI: 10.1523/jneurosci.1277-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/04/2024] Open
Abstract
Neuromodulators act on multiple timescales to affect neuronal activity and behavior. They function as synaptic fine-tuners and master coordinators of neuronal activity across distant brain regions and body organs. While much research on neuromodulation has focused on roles in promoting features of wakefulness and transitions between sleep and wake states, the precise dynamics and functions of neuromodulatory signaling during sleep have received less attention. This review discusses research presented at our minisymposium at the 2024 Society for Neuroscience meeting, highlighting how norepinephrine, dopamine, and acetylcholine orchestrate brain oscillatory activity, control sleep architecture and microarchitecture, regulate responsiveness to sensory stimuli, and facilitate memory consolidation. The potential of each neuromodulator to influence neuronal activity is shaped by the state of the synaptic milieu, which in turn is influenced by the organismal or systemic state. Investigating the effects of neuromodulator release across different sleep substates and synaptic environments offers unique opportunities to deepen our understanding of neuromodulation and explore the distinct computational opportunities that arise during sleep. Moreover, since alterations in neuromodulatory signaling and sleep are implicated in various neuropsychiatric disorders and because existing pharmacological treatments affect neuromodulatory signaling, gaining a deeper understanding of the less-studied aspects of neuromodulators during sleep is of high importance.
Collapse
Affiliation(s)
- Bibi Alika Sulaman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yiyao Zhang
- Neuroscience Institute, New York University, New York, New York 10016
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| | - Celia Kjærby
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Georgios Foustoukos
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Mie Andersen
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen 2200, Denmark
| | | |
Collapse
|
7
|
Yao F, Chang X, Zhou B, Zhou W. Olfaction modulates cortical arousal independent of perceived odor intensity and pleasantness. Neuroimage 2024; 299:120843. [PMID: 39251115 DOI: 10.1016/j.neuroimage.2024.120843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Throughout history, various odors have been harnessed to invigorate or relax the mind. The mechanisms underlying odors' diverse arousal effects remain poorly understood. We conducted five experiments (184 participants) to investigate this issue, using pupillometry, electroencephalography, and the attentional blink paradigm, which exemplifies the limit in attentional capacity. Results demonstrated that exposure to citral, compared to vanillin, enlarged pupil size, reduced resting-state alpha oscillations and alpha network efficiency, augmented beta-gamma oscillations, and enhanced the coordination between parietal alpha and frontal beta-gamma activities. In parallel, it attenuated the attentional blink effect. These effects were observed despite citral and vanillin being comparable in perceived odor intensity, pleasantness, and nasal pungency, and were unlikely driven by semantic biases. Our findings reveal that odors differentially alter the small-worldness of brain network architecture, and thereby brain state and arousal. Furthermore, they establish arousal as a unique dimension in olfactory space, distinct from intensity and pleasantness.
Collapse
Affiliation(s)
- Fangshu Yao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; School of Psychology, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoyue Chang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
8
|
Nigro M, Tortorelli LS, Garad M, Dinh K, Zlebnik NE, Yang H. Locus coeruleus modulation of prefrontal dynamics and encoding of flexible rule switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.13.571356. [PMID: 38168151 PMCID: PMC10760137 DOI: 10.1101/2023.12.13.571356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of pharmacology and lesion studies, the underlying neurophysiological correlates and mechanisms that support flexible rule switching are under active investigation. To address this question, we trained mice to distinguish complex sensory cues comprising different perceptual dimensions (set shifting). Endoscopic calcium imaging revealed that medial prefrontal cortex (mPFC) neurons exhibited pronounced dynamic changes during rule switching. Notably, prominent encoding capacity in the mPFC was associated with switching across, but not within perceptual dimensions. We then showed the functional importance of the ascending input from the locus coeruleus (LC), as LC inhibition impaired rule switching behavior and impeded mPFC dynamic processes and encoding. Our results highlight the pivotal role of the mPFC in set shifting processes and demonstrate the profound impact of ascending neuromodulation on shaping prefrontal neural dynamics and behavioral flexibility.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Kevin Dinh
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Natalie E Zlebnik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
9
|
Yu J, Ji S, Tao H, Shan X, Yan Y, Sun X, Tu X, Li L, Deng C. Cell-specific expression of Cre recombinase in rat noradrenergic neurons via CRISPR-Cas9 system. Neuroscience 2024; 556:31-41. [PMID: 39067682 DOI: 10.1016/j.neuroscience.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/01/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Noradrenergic neurons play a crucial role in the functioning of the nervous system. They formed compact small clusters in the central nervous system. To target noradrenergic neurons in combination with viral tracing and achieve cell-type specific functional manipulation using chemogenetic or optogenetic tools, new transgenic animal lines are needed, especially rat models for their advantages in large body size with facilitating easy operation, physiological parameter monitoring, and accommodating complex behavioral and cognitive studies. In this study, we successfully generated a transgenic rat strain capable of expressing Cre recombinase under the control of the dopamine beta-hydroxylase (DBH) gene promoter using the CRISPR-Cas9 system. Our validation process included co-immunostaining with Cre and DBH antibodies, confirming the specific expression of Cre recombinase. Furthermore, stereotaxic injection of a fluorescence-labeled AAV-DIO virus illustrated the precise Cre-loxP-mediated recombination activity in noradrenergic neurons within the locus coeruleus (LC). Through crossbreeding with the LSL-fluorescence reporter rat line, DBH-Cre rats proved instrumental in delineating the position and structure of noradrenergic neuron clusters A1, A2, A6 (LC), and A7 in rats. Additionally, our specific activation of the LC noradrenergic neurons showed effective behavioral readout using chemogenetics of this rat line. Our results underscore the effectiveness and specificity of Cre recombinase in noradrenergic neurons, serving as a robust tool for cell-type specific targeting of small-sized noradrenergic nuclei. This approach enhances our understanding of their anatomical, physiological, and pathological roles, contributing to a more profound comprehension of noradrenergic neuron function in the nervous system.
Collapse
Affiliation(s)
- Jingwei Yu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shuqin Ji
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Huixin Tao
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaochun Shan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Yan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiangzhou Sun
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiang'an Tu
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 101408, China; CAS Key Laboratory of Brain Connectome and Manipulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
10
|
Ripamonte GC, Fonseca EM, Frias AT, Patrone LGA, Vilela-Costa HH, Silva KSC, Szawka RE, Bícego KC, Zangrossi H, Plummer NW, Jensen P, Gargaglioni LH. Locus coeruleus noradrenaline depletion and its differential impact on CO 2-induced panic and hyperventilation in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111063. [PMID: 38908504 PMCID: PMC11323958 DOI: 10.1016/j.pnpbp.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Heloísa H Vilela-Costa
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
11
|
Kuo CC, McCall JG. Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598059. [PMID: 38895281 PMCID: PMC11185789 DOI: 10.1101/2024.06.08.598059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Selective manipulation of neural circuits using optogenetics and chemogenetics holds great translational potential but requires genetic access to neurons. Here, we demonstrate a general framework for identifying genetic tool-independent, pharmacological strategies for neural circuit-selective modulation. We developed an economically accessible calcium imaging-based approach for large-scale pharmacological scans of endogenous receptor-mediated neural activity. As a testbed for this approach, we used the mouse locus coeruleus due to the combination of its widespread, modular efferent neural circuitry and its wide variety of endogenously expressed GPCRs. Using machine learning-based action potential deconvolution and retrograde tracing, we identified an agonist cocktail that selectively inhibits medial prefrontal cortex-projecting locus coeruleus neurons. In vivo, this cocktail produces synergistic antinociception, consistent with selective pharmacological blunting of this neural circuit. This framework has broad utility for selective targeting of other neural circuits under different physiological and pathological states, facilitating non-genetic translational applications arising from cell type-selective discoveries.
Collapse
Affiliation(s)
- Chao-Cheng Kuo
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St. Louis and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Karaba LA, Robinson HL, Harvey RE, Chen W, Fernandez-Ruiz A, Oliva A. A hippocampal circuit mechanism to balance memory reactivation during sleep. Science 2024; 385:738-743. [PMID: 39146421 PMCID: PMC11428313 DOI: 10.1126/science.ado5708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/14/2024] [Indexed: 08/17/2024]
Abstract
Memory consolidation involves the synchronous reactivation of hippocampal cells active during recent experience in sleep sharp-wave ripples (SWRs). How this increase in firing rates and synchrony after learning is counterbalanced to preserve network stability is not understood. We discovered a network event generated by an intrahippocampal circuit formed by a subset of CA2 pyramidal cells to cholecystokinin-expressing (CCK+) basket cells, which fire a barrage of action potentials ("BARR") during non-rapid eye movement sleep. CA1 neurons and assemblies that increased their activity during learning were reactivated during SWRs but inhibited during BARRs. The initial increase in reactivation during SWRs returned to baseline through sleep. This trend was abolished by silencing CCK+ basket cells during BARRs, resulting in higher synchrony of CA1 assemblies and impaired memory consolidation.
Collapse
Affiliation(s)
- Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Heath L Robinson
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Ryan E Harvey
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Weiwei Chen
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| |
Collapse
|
13
|
Basu A, Yang JH, Yu A, Glaeser-Khan S, Rondeau JA, Feng J, Krystal JH, Li Y, Kaye AP. Frontal Norepinephrine Represents a Threat Prediction Error Under Uncertainty. Biol Psychiatry 2024; 96:256-267. [PMID: 38316333 PMCID: PMC11269024 DOI: 10.1016/j.biopsych.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND To adapt to threats in the environment, animals must predict them and engage in defensive behavior. While the representation of a prediction error signal for reward has been linked to dopamine, a neuromodulatory prediction error for aversive learning has not been identified. METHODS We measured and manipulated norepinephrine release during threat learning using optogenetics and a novel fluorescent norepinephrine sensor. RESULTS We found that norepinephrine response to conditioned stimuli reflects aversive memory strength. When delays between auditory stimuli and footshock are introduced, norepinephrine acts as a prediction error signal. However, temporal difference prediction errors do not fully explain norepinephrine dynamics. To explain noradrenergic signaling, we used an updated reinforcement learning model with uncertainty about time and found that it explained norepinephrine dynamics across learning and variations in temporal and auditory task structure. CONCLUSIONS Norepinephrine thus combines cognitive and affective information into a predictive signal and links time with the anticipation of danger.
Collapse
Affiliation(s)
- Aakash Basu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - Jen-Hau Yang
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Abigail Yu
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | | | - Jocelyne A Rondeau
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China; Peking University-IDG/McGovern Institute for Brain Research, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut; Clinical Neuroscience Division, Veterans Administration National Center for PTSD, West Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
14
|
España JC, Yasoda-Mohan A, Vanneste S. The Locus Coeruleus in Chronic Pain. Int J Mol Sci 2024; 25:8636. [PMID: 39201323 PMCID: PMC11354431 DOI: 10.3390/ijms25168636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Pain perception is the consequence of a complex interplay between activation and inhibition. Noradrenergic pain modulation inhibits nociceptive transmission and pain perception. The main source of norepinephrine (NE) in the central nervous system is the Locus Coeruleus (LC), a small but complex cluster of cells in the pons. The aim of this study is to review the literature on the LC-NE inhibitory system, its influence on chronic pain pathways and its frequent comorbidities. The literature research showed that pain perception is the consequence of nociceptive and environmental processing and is modulated by the LC-NE system. If perpetuated in time, nociceptive inputs can generate neuroplastic changes in the central nervous system that reduce the inhibitory effects of the LC-NE complex and facilitate the development of chronic pain and frequent comorbidities, such as anxiety, depression or sleeping disturbances. The exact mechanisms involved in the LC functional shift remain unknown, but there is some evidence that they occur through plastic changes in the medial and lateral pathways and their brain projections. Additionally, there are other influencing factors, like developmental issues, neuroinflammatory glial changes, NE receptor affinity and changes in LC neuronal firing rates.
Collapse
Affiliation(s)
- Jorge Castejón España
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Compass Physio, A83 YW96 Enfield, Ireland
| | - Anusha Yasoda-Mohan
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute for Neuroscience, School of Psychology, Trinity College Dublin, D02 PN40 Dublin, Ireland; (J.C.E.); (A.Y.-M.)
- Global Brain Health Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Brain Research Centre for Advanced, International, Innovative and Interdisciplinary Neuromodulation, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Park G, Park Y, Yang S, Cho Y, Serikov A, Jung D, Seo DC, Lee SE, Nam MH, Kim D, Kim J. Neurotensin-specific corticothalamic circuit regulates innate response conflict. Curr Biol 2024; 34:3473-3487.e6. [PMID: 39067450 DOI: 10.1016/j.cub.2024.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Animals must simultaneously select and balance multiple action contingencies in ambiguous situations: for instance, evading danger during feeding. This has rarely been examined in the context of information selection; despite corticothalamic pathways that mediate sensory attention being relatively well characterized, neural mechanisms filtering conflicting actions remain unclear. Here, we develop a new loom/feed test to observe conflict between naturally induced fear and feeding and identify a novel anterior cingulate cortex (ACC) output to the ventral anterior and ventral lateral thalamus (VA/VL) that adjusts selectivity between these innate actions. Using micro-endoscopy and fiber photometry, we reveal that activity in corticofugal outputs was lowered during unbalanced/singularly occupied periods, as were the resulting decreased thalamic initiation-related signals for less-favored actions, suggesting that the integration of ACC-thalamic firing may directly regulate the output of behavior choices. Accordingly, the optoinhibition of ACC-VA/VL circuits induced high bias toward feeding at the expense of defense. To identify upstream "commander" cortical cells gating this output, we established dual-order tracing (DOT)-translating ribosome affinity purification (TRAP)-a scheme to label upstream neurons with transcriptome analysis-and found a novel population of neurotensin-positive interneurons (ACCNts). The photoexcitation of ACCNts cells indeed caused similarly hyper-selective behaviors. Collectively, this new "corticofugal action filter" scheme suggests that communication in multi-step cingulate circuits may critically influence the summation of motor signals in thalamic outputs, regulating bias between innate action types.
Collapse
Affiliation(s)
- Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yongjun Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Cho
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Dajung Jung
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Daesoo Kim
- Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
16
|
Ma J, O'Malley JJ, Kreiker M, Leng Y, Khan I, Kindel M, Penzo MA. Convergent direct and indirect cortical streams shape avoidance decisions in mice via the midline thalamus. Nat Commun 2024; 15:6598. [PMID: 39097600 PMCID: PMC11297946 DOI: 10.1038/s41467-024-50941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Current concepts of corticothalamic organization in the mammalian brain are mainly based on sensory systems, with less focus on circuits for higher-order cognitive functions. In sensory systems, first-order thalamic relays are driven by subcortical inputs and modulated by cortical feedback, while higher-order relays receive strong excitatory cortical inputs. The applicability of these principles beyond sensory systems is uncertain. We investigated mouse prefronto-thalamic projections to the midline thalamus, revealing distinct top-down control. Unlike sensory systems, this pathway relies on indirect modulation via the thalamic reticular nucleus (TRN). Specifically, the prelimbic area, which influences emotional and motivated behaviors, impacts instrumental avoidance responses through direct and indirect projections to the paraventricular thalamus. Both pathways promote defensive states, but the indirect pathway via the TRN is essential for organizing avoidance decisions through disinhibition. Our findings highlight intra-thalamic circuit dynamics that integrate cortical cognitive signals and their role in shaping complex behaviors.
Collapse
Affiliation(s)
- Jun Ma
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
- Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, 221004, Xuzhou, China
| | - John J O'Malley
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Malaz Kreiker
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Yan Leng
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Isbah Khan
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Morgan Kindel
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA
| | - Mario A Penzo
- Section on the Neural Circuits of Emotion and Motivation, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Liu Z, Sun W, Ng YH, Dong H, Quake SR, Südhof TC. The cortical amygdala consolidates a socially transmitted long-term memory. Nature 2024; 632:366-374. [PMID: 38961294 PMCID: PMC11306109 DOI: 10.1038/s41586-024-07632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Social communication guides decision-making, which is essential for survival. Social transmission of food preference (STFP) is an ecologically relevant memory paradigm in which an animal learns a desirable food odour from another animal in a social context, creating a long-term memory1,2. How food-preference memory is acquired, consolidated and stored is unclear. Here we show that the posteromedial nucleus of the cortical amygdala (COApm) serves as a computational centre in long-term STFP memory consolidation by integrating social and sensory olfactory inputs. Blocking synaptic signalling by the COApm-based circuit selectively abolished STFP memory consolidation without impairing memory acquisition, storage or recall. COApm-mediated STFP memory consolidation depends on synaptic inputs from the accessory olfactory bulb and on synaptic outputs to the anterior olfactory nucleus. STFP memory consolidation requires protein synthesis, suggesting a gene-expression mechanism. Deep single-cell and spatially resolved transcriptomics revealed robust but distinct gene-expression signatures induced by STFP memory formation in the COApm that are consistent with synapse restructuring. Our data thus define a neural circuit for the consolidation of a socially communicated long-term memory, thereby mechanistically distinguishing protein-synthesis-dependent memory consolidation from memory acquisition, storage or retrieval.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| | - Wenfei Sun
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yi Han Ng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hua Dong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Initiative, Redwood City, CA, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Wang F, Sun H, Chen M, Feng B, Lu Y, Lyu M, Cui D, Zhai Y, Zhang Y, Zhu Y, Wang C, Wu H, Ma X, Zhu F, Wang Q, Li Y. The thalamic reticular nucleus orchestrates social memory. Neuron 2024; 112:2368-2385.e11. [PMID: 38701789 DOI: 10.1016/j.neuron.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Social memory has been developed in humans and other animals to recognize familiar conspecifics and is essential for their survival and reproduction. Here, we demonstrated that parvalbumin-positive neurons in the sensory thalamic reticular nucleus (sTRNPvalb) are necessary and sufficient for mice to memorize conspecifics. sTRNPvalb neurons receiving glutamatergic projections from the posterior parietal cortex (PPC) transmit individual information by inhibiting the parafascicular thalamic nucleus (PF). Mice in which the PPCCaMKII→sTRNPvalb→PF circuit was inhibited exhibited a disrupted ability to discriminate familiar conspecifics from novel ones. More strikingly, a subset of sTRNPvalb neurons with high electrophysiological excitability and complex dendritic arborizations is involved in the above corticothalamic pathway and stores social memory. Single-cell RNA sequencing revealed the biochemical basis of these subset cells as a robust activation of protein synthesis. These findings elucidate that sTRNPvalb neurons modulate social memory by coordinating a hitherto unknown corticothalamic circuit and inhibitory memory engram.
Collapse
Affiliation(s)
- Feidi Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Huan Sun
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingyue Chen
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Air Force Medical University (Fourth Military Medical University), Xi'an 710032, China
| | - Yu Lu
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mi Lyu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Zhang
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yaomin Zhu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Changhe Wang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Core Facilities Sharing Platform, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
19
|
Jo AY, Xie Y, Rodrigues A, Sandoval Ortega RA, Creasy KT, Beier KT, Blendy JA, Corder G. VTA μ-opioidergic neurons facilitate low sociability in protracted opioid withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602522. [PMID: 39026700 PMCID: PMC11257471 DOI: 10.1101/2024.07.08.602522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Opioids initiate dynamic maladaptation in brain reward and affect circuits that occur throughout chronic exposure and withdrawal that persist beyond cessation. Protracted withdrawal is characterized by negative affective behaviors such as heightened anxiety, irritability, dysphoria, and anhedonia, which pose a significant risk factor for relapse. While the ventral tegmental area (VTA) and mu-opioid receptors (MORs) are critical for opioid reinforcement, the specific contributions of VTAMOR neurons in mediating protracted withdrawal-induced negative affect is not fully understood. In our study, we elucidate the role of VTAMOR neurons in mediating negative affect and altered brain-wide neuronal activities following opioid exposure and withdrawal in male and female mice. Utilizing a chronic oral morphine administration model, we observe increased social deficit, anxiety-related, and despair-like behaviors during protracted withdrawal. VTAMOR neurons show heightened neuronal FOS activation at the onset of withdrawal and connect to an array of brain regions that mediate reward and affective processes. Viral re-expression of MORs selectively within the VTA of MOR knockout mice demonstrates that the disrupted social interaction observed during protracted withdrawal is facilitated by this neural population, without affecting other protracted withdrawal behaviors. Lastly, VTAMORs contribute to heightened neuronal FOS activation in the anterior cingulate cortex (ACC) in response to an acute morphine challenge, suggesting their unique role in modulating ACC-specific neuronal activity. These findings identify VTAMOR neurons as critical modulators of low sociability during protracted withdrawal and highlight their potential as a mechanistic target to alleviate negative affective behaviors associated with opioid withdrawal.
Collapse
Affiliation(s)
- Adrienne Y. Jo
- Dept. of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yihan Xie
- Dept. of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kate Townsend Creasy
- Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Beier
- Dept. of Physiology and Biophysics, Neurobiology and Behavior, Biomedical Engineering, Pharmaceutical Sciences, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Julie A. Blendy
- Dept. of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Sima J, Zhang Y, Farriday D, Ahn AYE, Lopez ER, Jin C, Harrell J, Darmohray D, Silverman D, Dan Y. Restoration of locus coeruleus noradrenergic transmission during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601820. [PMID: 39005471 PMCID: PMC11244971 DOI: 10.1101/2024.07.03.601820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Sleep is indispensable for health and wellbeing, but its basic function remains elusive. The locus coeruleus (LC) powerfully promotes arousal by releasing noradrenaline. We found that noradrenaline transmission is reduced by prolonged wakefulness and restored during sleep. Fiber-photometry imaging of noradrenaline using its biosensor showed that its release evoked by optogenetic LC neuron activation was strongly attenuated by three hours of sleep deprivation and restored during subsequent sleep. This is accompanied by the reduction and recovery of the wake-promoting effect of the LC neurons. The reduction of both LC evoked noradrenaline release and wake-inducing potency is activity dependent, and the rate of noradrenaline transmission recovery depends on mammalian target of rapamycin (mTOR) signaling. The decline and recovery of noradrenaline transmission also occur in spontaneous sleep-wake cycles on a timescale of minutes. Together, these results reveal an essential role of sleep in restoring transmission of a key arousal-promoting neuromodulator.
Collapse
Affiliation(s)
- Jiao Sima
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yuchen Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Declan Farriday
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Andy Young-Eon Ahn
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Eduardo Ramirez Lopez
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Chennan Jin
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Jade Harrell
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Dana Darmohray
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Daniel Silverman
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
21
|
Hughes AC, Pittman BG, Xu B, Gammons JW, Webb CM, Nolen HG, Chapman P, Bikoff JB, Schwarz LA. A single-vector intersectional AAV strategy for interrogating cellular diversity and brain function. Nat Neurosci 2024; 27:1400-1410. [PMID: 38802592 DOI: 10.1038/s41593-024-01659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
As discovery of cellular diversity in the brain accelerates, so does the need for tools that target cells based on multiple features. Here we developed Conditional Viral Expression by Ribozyme Guided Degradation (ConVERGD), an adeno-associated virus-based, single-construct, intersectional targeting strategy that combines a self-cleaving ribozyme with traditional FLEx switches to deliver molecular cargo to specific neuronal subtypes. ConVERGD offers benefits over existing intersectional expression platforms, such as expanded intersectional targeting with up to five recombinase-based features, accommodation of larger and more complex payloads and a vector that is easy to modify for rapid toolkit expansion. In the present report we employed ConVERGD to characterize an unexplored subpopulation of norepinephrine (NE)-producing neurons within the rodent locus coeruleus that co-express the endogenous opioid gene prodynorphin (Pdyn). These studies showcase ConVERGD as a versatile tool for targeting diverse cell types and reveal Pdyn-expressing NE+ locus coeruleus neurons as a small neuronal subpopulation capable of driving anxiogenic behavioral responses in rodents.
Collapse
Affiliation(s)
- Alex C Hughes
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Human Cell Types, Allen Institute for Brain Science, Seattle, WA, USA
| | - Brittany G Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jesse W Gammons
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charis M Webb
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hunter G Nolen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phillip Chapman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay A Schwarz
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Wietek J, Nozownik A, Pulin M, Saraf-Sinik I, Matosevich N, Gowrishankar R, Gat A, Malan D, Brown BJ, Dine J, Imambocus BN, Levy R, Sauter K, Litvin A, Regev N, Subramaniam S, Abrera K, Summarli D, Goren EM, Mizrachi G, Bitton E, Benjamin A, Copits BA, Sasse P, Rost BR, Schmitz D, Bruchas MR, Soba P, Oren-Suissa M, Nir Y, Wiegert JS, Yizhar O. A bistable inhibitory optoGPCR for multiplexed optogenetic control of neural circuits. Nat Methods 2024; 21:1275-1287. [PMID: 38811857 PMCID: PMC11239505 DOI: 10.1038/s41592-024-02285-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Information is transmitted between brain regions through the release of neurotransmitters from long-range projecting axons. Understanding how the activity of such long-range connections contributes to behavior requires efficient methods for reversibly manipulating their function. Chemogenetic and optogenetic tools, acting through endogenous G-protein-coupled receptor pathways, can be used to modulate synaptic transmission, but existing tools are limited in sensitivity, spatiotemporal precision or spectral multiplexing capabilities. Here we systematically evaluated multiple bistable opsins for optogenetic applications and found that the Platynereis dumerilii ciliary opsin (PdCO) is an efficient, versatile, light-activated bistable G-protein-coupled receptor that can suppress synaptic transmission in mammalian neurons with high temporal precision in vivo. PdCO has useful biophysical properties that enable spectral multiplexing with other optogenetic actuators and reporters. We demonstrate that PdCO can be used to conduct reversible loss-of-function experiments in long-range projections of behaving animals, thereby enabling detailed synapse-specific functional circuit mapping.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Adrianna Nozownik
- Center for Molecular Neurobiology, Hamburg, Germany
- Paris Brain Institute, Institut du Cerveau (ICM), CNRS UMR 7225, INSERM U1127, Sorbonne Université, Paris, France
| | - Mauro Pulin
- Center for Molecular Neurobiology, Hamburg, Germany
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Matosevich
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
| | - Asaf Gat
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Daniela Malan
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Bobbie J Brown
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Julien Dine
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
- Boehringer Ingelheim Pharma GmbH & Co. KG; CNS Diseases, Biberach an der Riss, Germany
| | | | - Rivka Levy
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | | | - Anna Litvin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Suraj Subramaniam
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Khalid Abrera
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Dustin Summarli
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Eva Madeline Goren
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- University of Michigan, Ann Arbor, MI, USA
| | - Gili Mizrachi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Bitton
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Asaf Benjamin
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Bryan A Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Sasse
- Institut für Physiologie I, University of Bonn, Bonn, Germany
| | - Benjamin R Rost
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Neuroscience Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Einstein Center for Neurosciences, Berlin, Germany
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
- Center for Excellence in the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Soba
- LIMES-Institute, University of Bonn, Bonn, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - J Simon Wiegert
- Center for Molecular Neurobiology, Hamburg, Germany
- MCTN, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Ofer Yizhar
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
24
|
Fu X, Tasker JG. Neuromodulation of inhibitory synaptic transmission in the basolateral amygdala during fear and anxiety. Front Cell Neurosci 2024; 18:1421617. [PMID: 38994327 PMCID: PMC11236696 DOI: 10.3389/fncel.2024.1421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
The basolateral amygdala plays pivotal roles in the regulation of fear and anxiety and these processes are profoundly modulated by different neuromodulatory systems that are recruited during emotional arousal. Recent studies suggest activities of BLA interneurons and inhibitory synaptic transmission in BLA principal cells are regulated by neuromodulators to influence the output and oscillatory network states of the BLA, and ultimately the behavioral expression of fear and anxiety. In this review, we first summarize a cellular mechanism of stress-induced anxiogenesis mediated by the interaction of glucocorticoid and endocannabinoid signaling at inhibitory synapses in the BLA. Then we discuss cell type-specific activity patterns induced by neuromodulators converging on the Gq signaling pathway in BLA perisomatic parvalbumin-expressing (PV) and cholecystokinin-expressing (CCK) basket cells and their effects on BLA network oscillations and fear learning.
Collapse
Affiliation(s)
- Xin Fu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeffrey G. Tasker
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
25
|
Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y. Top-down brain circuits for operant bradycardia. Science 2024; 384:1361-1368. [PMID: 38900870 DOI: 10.1126/science.adl3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024]
Abstract
Heart rate (HR) can be voluntarily regulated when individuals receive real-time feedback. In a rat model of HR biofeedback, the neocortex and medial forebrain bundle were stimulated as feedback and reward, respectively. The rats reduced their HR within 30 minutes, achieving a reduction of approximately 50% after 5 days of 3-hour feedback. The reduced HR persisted for at least 10 days after training while the rats exhibited anxiolytic behavior and an elevation in blood erythrocyte count. This bradycardia was prevented by inactivating anterior cingulate cortical (ACC) neurons projecting to the ventromedial thalamic nucleus (VMT). Theta-rhythm stimulation of the ACC-to-VMT pathway replicated the bradycardia. VMT neurons projected to the dorsomedial hypothalamus (DMH) and DMH neurons projected to the nucleus ambiguus, which innervates parasympathetic neurons in the heart.
Collapse
Affiliation(s)
- Airi Yoshimoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shota Morikawa
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eriko Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruki Takeuchi
- Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| |
Collapse
|
26
|
Scala I, Miccoli M, Pafundi PC, Rizzo PA, Vitali F, Bellavia S, Giovanni JD, Colò F, Marca GD, Guglielmi V, Brunetti V, Broccolini A, Di Iorio R, Monforte M, Calabresi P, Frisullo G. Automated Pupillometry Is Able to Discriminate Patients with Acute Stroke from Healthy Subjects: An Observational, Cross-Sectional Study. Brain Sci 2024; 14:616. [PMID: 38928617 PMCID: PMC11202086 DOI: 10.3390/brainsci14060616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Automated pupillometry (AP) is a handheld, non-invasive tool that is able to assess pupillary light reflex dynamics and is useful for the detection of intracranial hypertension. Limited evidence is available on acute ischemic stroke (AIS) patients. The primary objective was to evaluate the ability of AP to discriminate AIS patients from healthy subjects (HS). Secondly, we aimed to compute a predictive score for AIS diagnosis based on clinical, demographic, and AP variables. METHODS We included 200 consecutive patients admitted to a comprehensive stroke center who underwent AP assessment through NPi-200 (NeurOptics®) within 72 h of stroke onset and 200 HS. The mean values of AP parameters and the absolute differences between the AP parameters of the two eyes were considered in the analyses. Predictors of stroke diagnosis were identified through univariate and multivariate logistic regressions; we then computed a nomogram based on each variable's β coefficient. Finally, we developed a web app capable of displaying the probability of stroke diagnosis based on the predictive algorithm. RESULTS A high percentage of pupil constriction (CH, p < 0.001), a low constriction velocity (CV, p = 0.002), and high differences between these two parameters (p = 0.036 and p = 0.004, respectively) were independent predictors of AIS. The highest contribution in the predictive score was provided by CH, the Neurological Pupil Index, CV, and CV absolute difference, disclosing the important role of AP in the discrimination of stroke patients. CONCLUSIONS The results of our study suggest that AP parameters, and in particular, those concerning pupillary constriction, may be useful for the early diagnosis of AIS.
Collapse
Affiliation(s)
- Irene Scala
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Massimo Miccoli
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Pia Clara Pafundi
- Facility of Epidemiology and Biostatistics, Gemelli Generator, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Pier Andrea Rizzo
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Francesca Vitali
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Simone Bellavia
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Jacopo Di Giovanni
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Francesca Colò
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
| | - Giacomo Della Marca
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Valeria Guglielmi
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Valerio Brunetti
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Aldobrando Broccolini
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Riccardo Di Iorio
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Mauro Monforte
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Paolo Calabresi
- Department of Neuroscience, Catholic University of Sacred Heart, 00168 Rome, Italy; (I.S.); (M.M.); (P.A.R.); (F.V.); (S.B.); (J.D.G.); (F.C.); (G.D.M.); (V.B.); (A.B.); (P.C.)
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| | - Giovanni Frisullo
- Dipartimento di Neuroscienze, Organi di Senso e Torace, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (V.G.); (R.D.I.); (M.M.)
| |
Collapse
|
27
|
Feng J, Dong H, Lischinsky JE, Zhou J, Deng F, Zhuang C, Miao X, Wang H, Li G, Cai R, Xie H, Cui G, Lin D, Li Y. Monitoring norepinephrine release in vivo using next-generation GRAB NE sensors. Neuron 2024; 112:1930-1942.e6. [PMID: 38547869 PMCID: PMC11364517 DOI: 10.1016/j.neuron.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 01/21/2024] [Accepted: 03/01/2024] [Indexed: 06/22/2024]
Abstract
Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.
Collapse
Affiliation(s)
- Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Julieta E Lischinsky
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jingheng Zhou
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xiaolei Miao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ruyi Cai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Viellard JMA, Melleu FF, Tamais AM, de Almeida AP, Zerbini C, Ikebara JM, Domingues K, de Lima MAX, Oliveira FA, Motta SC, Canteras NS. A subiculum-hypothalamic pathway functions in dynamic threat detection and memory updating. Curr Biol 2024; 34:2657-2671.e7. [PMID: 38810639 DOI: 10.1016/j.cub.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Animals need to detect threats, initiate defensive responses, and, in parallel, remember where the threat occurred to avoid the possibility of re-encountering it. By probing animals capable of detecting and avoiding a shock-related threatening location, we were able to reveal a septo-hippocampal-hypothalamic circuit that is also engaged in ethological threats, including predatory and social threats. Photometry analysis focusing on the dorsal premammillary nucleus (PMd), a critical interface of this circuit, showed that in freely tested animals, the nucleus appears ideal to work as a threat detector to sense dynamic changes under threatening conditions as the animal approaches and avoids the threatening source. We also found that PMd chemogenetic silencing impaired defensive responses by causing a failure of threat detection rather than a direct influence on any behavioral responses and, at the same time, updated fear memory to a low-threat condition. Optogenetic silencing of the main PMd targets, namely the periaqueductal gray and anterior medial thalamus, showed that the projection to the periaqueductal gray influences both defensive responses and, to a lesser degree, contextual memory, whereas the projection to the anterior medial thalamus has a stronger influence on memory processes. Our results are important for understanding how animals deal with the threat imminence continuum, revealing a circuit that is engaged in threat detection and that, at the same time, serves to update the memory process to accommodate changes under threatening conditions.
Collapse
Affiliation(s)
- Juliette M A Viellard
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil; Institut des Maladies Neurodégénératives, Université de Bordeaux, CNRS UMR 5293, Bordeaux, France
| | - Fernando F Melleu
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alicia M Tamais
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Alisson P de Almeida
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Carolina Zerbini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Juliane M Ikebara
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Karolina Domingues
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Miguel A X de Lima
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Fernando A Oliveira
- Cellular and Molecular Neurobiology Laboratory (LaNeC)-Center for Mathematics, Computing and Cognition (CMCC), Federal University of ABC, São Bernardo do Campo, SP 09606-045, Brazil
| | - Simone C Motta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
29
|
Salazar Leon LE, Brown AM, Kaku H, Sillitoe RV. Purkinje cell dysfunction causes disrupted sleep in ataxic mice. Dis Model Mech 2024; 17:dmm050379. [PMID: 38563553 PMCID: PMC11190574 DOI: 10.1242/dmm.050379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Purkinje cell dysfunction disrupts movement and causes disorders such as ataxia. Recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxic mouse model generated by silencing Purkinje cell neurotransmission (L7Cre;Vgatfx/fx) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity was unaltered in the mutant mice, although their sleep parameters and ECoG patterns were modified. The L7Cre;Vgatfx/fx mutant mice had decreased wakefulness and rapid eye movement (REM) sleep, whereas non-REM sleep was increased. The mutants had an extended latency to REM sleep, which is also observed in human patients with ataxia. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders.
Collapse
Affiliation(s)
- Luis E. Salazar Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Amanda M. Brown
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Heet Kaku
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Roy V. Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
30
|
Tian G, Bartas K, Hui M, Chen L, Vasquez JJ, Azouz G, Derdeyn P, Manville RW, Ho EL, Fang AS, Li Y, Tyler I, Setola V, Aoto J, Abbott GW, Beier KT. Molecular and circuit determinants in the globus pallidus mediating control of cocaine-induced behavioral plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596557. [PMID: 38853899 PMCID: PMC11160764 DOI: 10.1101/2024.05.29.596557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe PV ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown. Here we show that GPe PV cells control cocaine reward and sensitization by inhibiting GABAergic neurons in the substantia nigra pars reticulata (SNr GABA ), and ultimately, selectively modulating the activity of ventral tegmental area dopamine (VTA DA ) cells projecting to the lateral shell of the nucleus accumbens (NAcLat). A major input to GPe PV cells is the indirect pathway of the dorsomedial striatum (DMS D 2 ), which receives DAergic innervation from collaterals of VTA DA →NAcLat cells, making this a closed-loop circuit. Cocaine likely facilitates reward and sensitization not directly through actions in the GPe, but rather in the upstream DMS, where the cocaine-induced elevation of DA triggers a depression in DMS D 2 cell activity. This cocaine-induced elevation in DA levels can be blocked by inhibition of GPe PV cells, closing the loop. Interestingly, the level of GPe PV cell activity prior to cocaine administration is correlated with the extent of reward and sensitization that animals experience in response to future administration of cocaine, indicating that GPe PV cell activity is a key predictor of future behavioral responses to cocaine. Single nucleus RNA-sequencing of GPe cells indicated that genes encoding voltage-gated potassium channels KCNQ3 and KCNQ5 that control intrinsic cellular excitability are downregulated in GPe PV cells following a single cocaine exposure, contributing to the elevation in GPe PV cell excitability. Acutely activating channels containing KCNQ3 and/or KCNQ5 using the small molecule carnosic acid, a key psychoactive component of Salvia rosmarinus (rosemary) extract, reduced GPe PV cell excitability and also impaired cocaine reward, sensitization, and volitional cocaine intake, indicating its potential as a therapeutic to counteract psychostimulant use disorder. Our findings illuminate the molecular and circuit mechanisms by which the GPe orchestrates brain-wide changes in response to cocaine that are required for reward, sensitization, and self-administration behaviors.
Collapse
|
31
|
Chintalacheruvu N, Kalelkar A, Boutin J, Breton-Provencher V, Huda R. A cortical locus for modulation of arousal states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595859. [PMID: 38826269 PMCID: PMC11142248 DOI: 10.1101/2024.05.24.595859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fluctuations in global arousal are key determinants of spontaneous cortical activity and function. Several subcortical structures, including neuromodulator nuclei like the locus coeruleus (LC), are involved in the regulation of arousal. However, much less is known about the role of cortical circuits that provide top-down inputs to arousal-related subcortical structures. Here, we investigated the role of a major subdivision of the prefrontal cortex, the anterior cingulate cortex (ACC), in arousal modulation. Pupil size, facial movements, heart rate, and locomotion were used as non-invasive measures of arousal and behavioral state. We designed a closed loop optogenetic system based on machine vision and found that real time inhibition of ACC activity during pupil dilations suppresses ongoing arousal events. In contrast, inhibiting activity in a control cortical region had no effect on arousal. Fiber photometry recordings showed that ACC activity scales with the magnitude of spontaneously occurring pupil dilations/face movements independently of locomotion. Moreover, optogenetic ACC activation increases arousal independently of locomotion. In addition to modulating global arousal, ACC responses to salient sensory stimuli scaled with the size of evoked pupil dilations. Consistent with a role in sustaining saliency-linked arousal events, pupil responses to sensory stimuli were suppressed with ACC inactivation. Finally, our results comparing arousal-related ACC and norepinephrinergic LC neuron activity support a role for the LC in initiation of arousal events which are modulated in real time by the ACC. Collectively, our experiments identify the ACC as a key cortical site for sustaining momentary increases in arousal and provide the foundation for understanding cortical-subcortical dynamics underlying the modulation of arousal states.
Collapse
Affiliation(s)
- Nithik Chintalacheruvu
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Jöel Boutin
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Vincent Breton-Provencher
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| |
Collapse
|
32
|
Concetti C, Viskaitis P, Grujic N, Duss SN, Privitera M, Bohacek J, Peleg-Raibstein D, Burdakov D. Exploratory Rearing Is Governed by Hypothalamic Melanin-Concentrating Hormone Neurons According to Locus Ceruleus. J Neurosci 2024; 44:e0015242024. [PMID: 38575343 PMCID: PMC11112542 DOI: 10.1523/jneurosci.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.
Collapse
Affiliation(s)
- Cristina Concetti
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Paulius Viskaitis
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Nikola Grujic
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Sian N Duss
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Mattia Privitera
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Johannes Bohacek
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Daria Peleg-Raibstein
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| | - Denis Burdakov
- Department of Health Sciences and Technology, Neuroscience Center Zürich (ZNZ), Swiss Federal Institute of Technology (ETH Zürich), Zürich 8092, Switzerland
| |
Collapse
|
33
|
Lefton KB, Wu Y, Yen A, Okuda T, Zhang Y, Dai Y, Walsh S, Manno R, Dougherty JD, Samineni VK, Simpson PC, Papouin T. Norepinephrine Signals Through Astrocytes To Modulate Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595135. [PMID: 38826209 PMCID: PMC11142048 DOI: 10.1101/2024.05.21.595135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Locus coeruleus (LC)-derived norepinephrine (NE) drives network and behavioral adaptations to environmental saliencies by reconfiguring circuit connectivity, but the underlying synapse-level mechanisms are elusive. Here, we show that NE remodeling of synaptic function is independent from its binding on neuronal receptors. Instead, astrocytic adrenergic receptors and Ca2+ dynamics fully gate the effect of NE on synapses as the astrocyte-specific deletion of adrenergic receptors and three independent astrocyte-silencing approaches all render synapses insensitive to NE. Additionally, we find that NE suppression of synaptic strength results from an ATP-derived and adenosine A1 receptor-mediated control of presynaptic efficacy. An accompanying study from Chen et al. reveals the existence of an analogous pathway in the larval zebrafish and highlights its importance to behavioral state transitions. Together, these findings fuel a new model wherein astrocytes are a core component of neuromodulatory systems and the circuit effector through which norepinephrine produces network and behavioral adaptations, challenging an 80-year-old status quo.
Collapse
Affiliation(s)
- Katheryn B Lefton
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| | - Yifan Wu
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| | - Allen Yen
- Department of Genetics, Washington University in St. Louis, 63110, MO, USA
| | - Takao Okuda
- Department of Anesthesiology, Washington University in St. Louis, 63110, MO, USA
| | - Yufen Zhang
- Department of Anesthesiology, Washington University in St. Louis, 63110, MO, USA
| | - Yanchao Dai
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| | - Sarah Walsh
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| | - Rachel Manno
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis, 63110, MO, USA
| | - Vijay K Samineni
- Department of Anesthesiology, Washington University in St. Louis, 63110, MO, USA
| | - Paul C Simpson
- Deparment of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California San Francisco, 94143, CA, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University in St. Louis, 63110, MO, USA
| |
Collapse
|
34
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
35
|
Kim AJ, Nguyen K, Mather M. Eye movements reveal age differences in how arousal modulates saliency priority but not attention processing speed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592619. [PMID: 38766110 PMCID: PMC11100628 DOI: 10.1101/2024.05.06.592619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The arousal-biased competition theory posits that inducing arousal increases attentional priority of salient stimuli while reducing priority of non-pertinent stimuli. However, unlike in young adults, older adults rarely exhibit shifts in priority under increased arousal, and prior studies have proposed different neural mechanisms to explain how arousal differentially modulates selective attention in older adults. Therefore, we investigated how the threat of unpredictable shock differentially modulates attentional control mechanisms in young and older adults by observing eye movements. Participants completed two oculomotor search tasks in which the salient distractor was typically captured by attention (singleton search) or proactively suppressed (feature search). We found that arousal did not modulate attentional priority for any stimulus among older adults nor affect the speed of attention processing in either age group. Furthermore, we observed that arousal modulated pupil sizes and found a correlation between evoked pupil responses and oculomotor function. Our findings suggest age differences in how the locus coeruleus-noradrenaline system interacts with neural networks of attention and oculomotor function.
Collapse
Affiliation(s)
- Andy Jeesu Kim
- University of Southern California, School of Gerontology
| | | | - Mara Mather
- University of Southern California, School of Gerontology
| |
Collapse
|
36
|
Gugel A, Ingebretsen EA, Hake HS, Gantz SC. LC-derived excitatory synaptic transmission to dorsal raphe serotonin neurons is inhibited by activation of alpha2-adrenergic receptors. Neuropsychopharmacology 2024; 49:1014-1023. [PMID: 38368493 PMCID: PMC11039657 DOI: 10.1038/s41386-024-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
In the central nervous system, noradrenaline transmission controls the degree to which we are awake, alert, and attentive. Aberrant noradrenaline transmission is associated with pathological forms of hyper- and hypo-arousal that present in numerous neuropsychiatric disorders often associated with dysfunction in serotonin transmission. In vivo, noradrenaline regulates the release of serotonin because noradrenergic input drives the serotonin neurons to fire action potentials via activation of excitatory α1-adrenergic receptors (α1-AR). Despite the critical influence of noradrenaline on the activity of dorsal raphe serotonin neurons, the source of noradrenergic afferents has not been resolved and the presynaptic mechanisms that regulate noradrenaline-dependent synaptic transmission have not been described. Using an acute brain slice preparation from male and female mice and electrophysiological recordings from dorsal raphe serotonin neurons, we found that selective optogenetic activation of locus coeruleus terminals in the dorsal raphe was sufficient to produce an α1-AR-mediated excitatory postsynaptic current (α1-AR-EPSC). Activation of inhibitory α2-adrenergic receptors (α2-AR) with UK-14,304 eliminated the α1-AR-EPSC via presynaptic inhibition of noradrenaline release, likely via inhibition of voltage-gated calcium channels. In a subset of serotonin neurons, activation of postsynaptic α2-AR produced an outward current through activation of GIRK potassium conductance. Further, in vivo activation of α2-AR by systemic administration of clonidine reduced the expression of c-fos in the dorsal raphe serotonin neurons, indicating reduced neural activity. Thus, α2-AR are critical regulators of serotonin neuron excitability.
Collapse
Affiliation(s)
- Aleigha Gugel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Erik A Ingebretsen
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Holly S Hake
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
37
|
Glaeser-Khan S, Savalia NK, Cressy J, Feng J, Li Y, Kwan AC, Kaye AP. Spatiotemporal Organization of Prefrontal Norepinephrine Influences Neuronal Activity. eNeuro 2024; 11:ENEURO.0252-23.2024. [PMID: 38702188 PMCID: PMC11134306 DOI: 10.1523/eneuro.0252-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 05/06/2024] Open
Abstract
Norepinephrine (NE), a neuromodulator released by locus ceruleus (LC) neurons throughout the cortex, influences arousal and learning through extrasynaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the prefrontal cortex (PFC) affect neuronal firing, we employed in vivo two-photon imaging of layer 2/3 of the PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. In this proof of principle study, we found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.
Collapse
Affiliation(s)
| | - Neil K Savalia
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut 06510
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, Connecticut 06511
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Jianna Cressy
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- Clinical Neuroscience Division, VA National Center for PTSD, West Haven, Connecticut 06515
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - Alfred P Kaye
- Department of Psychiatry, Yale University, New Haven, Connecticut 06511
- Clinical Neuroscience Division, VA National Center for PTSD, West Haven, Connecticut 06515
| |
Collapse
|
38
|
Bernat N, Campbell RR, Nam H, Basu M, Odesser T, Elyasaf G, Engeln M, Chandra R, Golden S, Ament S, Lobo MK, Kupchik YM. Multimodal Interrogation of Ventral Pallidum Projections Reveals Projection-Specific Signatures and Effects on Cocaine Reward. J Neurosci 2024; 44:e1469232024. [PMID: 38485256 PMCID: PMC11063828 DOI: 10.1523/jneurosci.1469-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The ventral pallidum (VP) is a central hub in the reward circuitry with diverse projections that have different behavioral roles attributed mostly to the connectivity with the downstream target. However, different VP projections may represent, as in the striatum, separate neuronal populations that differ in more than just connectivity. In this study, we performed in mice of both sexes a multimodal dissection of four major projections of the VP-to the lateral hypothalamus (VP→LH), ventral tegmental area (VP→VTA), lateral habenula (VP→LHb), and mediodorsal thalamus (VP→MDT)-with physiological, anatomical, genetic, and behavioral tools. We also tested for physiological differences between VP neurons receiving input from nucleus accumbens medium spiny neurons (MSNs) that express either the D1 (D1-MSNs) or the D2 (D2-MSNs) dopamine receptor. We show that each VP projection (1) when inhibited during a cocaine conditioned place preference (CPP) test affects performance differently, (2) receives a different pattern of inputs using rabies retrograde labeling, (3) shows differentially expressed genes using RNA sequencing, and (4) has projection-specific characteristics in excitability and synaptic input characteristics using whole-cell patch clamp. VP→LH and VP→VTA projections have different effects on CPP and show low overlap in circuit tracing experiments, as VP→VTA neurons receive more striatal input, while VP→LH neurons receive more olfactory input. Additionally, VP→VTA neurons are less excitable, while VP→LH neurons are more excitable than the average VP neuron, a difference driven mainly by D2-MSN-responding neurons. Thus, VP→VTA and VP→LH neurons may represent largely distinct populations of VP neurons.
Collapse
Affiliation(s)
- Nimrod Bernat
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Rianne R Campbell
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Hyungwoo Nam
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mahashweta Basu
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Tal Odesser
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Gal Elyasaf
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michel Engeln
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- CNRS, INCIA, UMR 5287, University of Bordeaux, Bordeaux F-33000, France
| | - Ramesh Chandra
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Shana Golden
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Seth Ament
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Mary Kay Lobo
- Departments of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Yonatan M Kupchik
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- IMRIC Center for Addiction Research (ICARe), The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
39
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Smith M, Dodis GE, Vanderplow AM, Gonzalez S, Rhee Y, Gogliotti RG. Potentiation of the M 1 muscarinic acetylcholine receptor normalizes neuronal activation patterns and improves apnea severity in Mecp2+/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.586099. [PMID: 38659804 PMCID: PMC11042204 DOI: 10.1101/2024.04.15.586099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder that is caused by loss-of-function mutations in the methyl-CpG binding protein 2 ( MeCP2 ) gene. RTT patients experience a myriad of debilitating symptoms, which include respiratory phenotypes that are often associated with lethality. Our previous work established that expression of the M 1 muscarinic acetylcholine receptor (mAchR) is decreased in RTT autopsy samples, and that potentiation of the M 1 receptor improves apneas in a mouse model of RTT; however, the population of neurons driving this rescue is unclear. Loss of Mecp2 correlates with excessive neuronal activity in cardiorespiratory nuclei. Since M 1 is found on cholinergic interneurons, we hypothesized that M 1 -potentiating compounds decrease apnea frequency by tempering brainstem hyperactivity. To test this, Mecp2 +/- and Mecp2 +/+ mice were screened for apneas before and after administration of the M 1 positive allosteric modulator (PAM) VU0453595 (VU595). Brains from the same mice were then imaged for c-Fos, ChAT, and Syto16 using whole-brain light-sheet microscopy to establish genotype and drug-dependent activation patterns that could be correlated with VU595's efficacy on apneas. The vehicle-treated Mecp2 +/- brain exhibited broad hyperactivity when coupled with the phenotypic prescreen, which was significantly decreased by administration of VU595, particularly in regions known to modulate the activity of respiratory nuclei (i.e. hippocampus and striatum). Further, the extent of apnea rescue in each mouse showed a significant positive correlation with c-Fos expression in non-cholinergic neurons in the striatum, thalamus, dentate gyrus, and within the cholinergic neurons of the brainstem. These results indicate that Mecp2 +/- mice are prone to hyperactivity in brain regions that regulate respiration, which can be normalized through M 1 potentiation.
Collapse
|
41
|
Terrier C, Greco-Vuilloud J, Cavelius M, Thevenet M, Mandairon N, Didier A, Richard M. Long-term olfactory enrichment promotes non-olfactory cognition, noradrenergic plasticity and remodeling of brain functional connectivity in older mice. Neurobiol Aging 2024; 136:133-156. [PMID: 38364691 DOI: 10.1016/j.neurobiolaging.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024]
Abstract
Brain functional and structural changes lead to cognitive decline during aging, but a high level of cognitive stimulation during life can improve cognitive performances in the older adults, forming the cognitive reserve. Noradrenaline has been proposed as a molecular link between environmental stimulation and constitution of the cognitive reserve. Taking advantage of the ability of olfactory stimulation to activate noradrenergic neurons of the locus coeruleus, we used repeated olfactory enrichment sessions over the mouse lifespan to enable the cognitive reserve buildup. Mice submitted to olfactory enrichment, whether started in early or late adulthood, displayed improved olfactory discrimination at late ages and interestingly, improved spatial memory and cognitive flexibility. Moreover, olfactory and non-olfactory cognitive performances correlated with increased noradrenergic innervation in the olfactory bulb and dorsal hippocampus. Finally, c-Fos mapping and connectivity analysis revealed task-specific remodeling of functional neural networks in enriched older mice. Long-term olfactory enrichment thus triggers structural noradrenergic plasticity and network remodeling associated with better cognitive aging and thereby forms a promising mouse model of the cognitive reserve buildup.
Collapse
Affiliation(s)
- Claire Terrier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Juliette Greco-Vuilloud
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Matthias Cavelius
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Marc Thevenet
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Nathalie Mandairon
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France
| | - Anne Didier
- Institut universitaire de France (IUF), France
| | - Marion Richard
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, NEUROPOP, F-69500, Bron, France.
| |
Collapse
|
42
|
Wang Y, Deng T, Zhao X, Shao L, Chen J, Fu C, He W, Wang X, Wang H, Yuan F, Wang S. Control of breathing by orexinergic signaling in the nucleus tractus solitarii. Sci Rep 2024; 14:7473. [PMID: 38553555 PMCID: PMC10980752 DOI: 10.1038/s41598-024-58075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Orexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, China
| | - Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hanqiao Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
| |
Collapse
|
43
|
Li B, Cao Y, Yuan H, Yu Z, Miao S, Yang C, Gong Z, Xie W, Li C, Bai W, Tang W, Zhao D, Yu S. The crucial role of locus coeruleus noradrenergic neurons in the interaction between acute sleep disturbance and headache. J Headache Pain 2024; 25:31. [PMID: 38443795 PMCID: PMC10913606 DOI: 10.1186/s10194-024-01714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/07/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Both epidemiological and clinical studies have indicated that headache and sleep disturbances share a complex relationship. Although headache and sleep share common neurophysiological and anatomical foundations, the mechanism underlying their interaction remains poorly understood. The structures of the diencephalon and brainstem, particularly the locus coeruleus (LC), are the primary sites where the sleep and headache pathways intersect. To better understand the intricate nature of the relationship between headache and sleep, our study focused on investigating the role and function of noradrenergic neurons in the LC during acute headache and acute sleep disturbance. METHOD To explore the relationship between acute headache and acute sleep disturbance, we primarily employed nitroglycerin (NTG)-induced migraine-like headache and acute sleep deprivation (ASD) models. Initially, we conducted experiments to confirm that ASD enhances headache and that acute headache can lead to acute sleep disturbance. Subsequently, we examined the separate roles of the LC in sleep and headache. We observed the effects of drug-induced activation and inhibition and chemogenetic manipulation of LC noradrenergic neurons on ASD-induced headache facilitation and acute headache-related sleep disturbance. This approach enabled us to demonstrate the bidirectional function of LC noradrenergic neurons. RESULTS Our findings indicate that ASD facilitated the development of NTG-induced migraine-like headache, while acute headache affected sleep quality. Furthermore, activating the LC reduced the headache threshold and increased sleep latency, whereas inhibiting the LC had the opposite effect. Additional investigations demonstrated that activating LC noradrenergic neurons further intensified pain facilitation from ASD, while inhibiting these neurons reduced this pain facilitation. Moreover, activating LC noradrenergic neurons exacerbated the impact of acute headache on sleep quality, while inhibiting them alleviated this influence. CONCLUSION The LC serves as a significant anatomical and functional region in the interaction between acute sleep disturbance and acute headache. The involvement of LC noradrenergic neurons is pivotal in facilitating headache triggered by ASD and influencing the effects of headache on sleep quality.
Collapse
Affiliation(s)
- Bozhi Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Ya Cao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Huijuan Yuan
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhe Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shuai Miao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chunxiao Yang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- School of Medicine, Nankai University, Tianjin, China
| | - Zihua Gong
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wei Xie
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Chenhao Li
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Medical School of Chinese PLA, Beijing, 100853, People's Republic of China
| | - Wenhao Bai
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Wenjing Tang
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Dengfa Zhao
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
- Neurology Institute of Chinese PLA General Hospital, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China
| | - Shengyuan Yu
- Department of Neurology, the First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, People's Republic of China.
| |
Collapse
|
44
|
Koevoet D, Strauch C, Van der Stigchel S, Mathôt S, Naber M. Revealing visual working memory operations with pupillometry: Encoding, maintenance, and prioritization. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1668. [PMID: 37933423 DOI: 10.1002/wcs.1668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 11/08/2023]
Abstract
Pupillary dynamics reflect effects of distinct and important operations of visual working memory: encoding, maintenance, and prioritization. Here, we review how pupil size predicts memory performance and how it provides novel insights into the mechanisms of each operation. Visual information must first be encoded into working memory with sufficient precision. The depth of this encoding process couples to arousal-linked baseline pupil size as well as a pupil constriction response before and after stimulus onset, respectively. Subsequently, the encoded information is maintained over time to ensure it is not lost. Pupil dilation reflects the effortful maintenance of information, wherein storing more items is accompanied by larger dilations. Lastly, the most task-relevant information is prioritized to guide upcoming behavior, which is reflected in yet another dilatory component. Moreover, activated content in memory can be pupillometrically probed directly by tagging visual information with distinct luminance levels. Through this luminance-tagging mechanism, pupil light responses reveal whether dark or bright items receive more attention during encoding and prioritization. Together, conceptualizing pupil responses as a sum of distinct components over time reveals insights into operations of visual working memory. From this viewpoint, pupillometry is a promising avenue to study the most vital operations through which visual working memory works. This article is categorized under: Psychology > Attention Psychology > Memory Psychology > Theory and Methods.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | | | - Sebastiaan Mathôt
- Department of Psychology, University of Groningen, Groningen, The Netherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
Lu W, Wen J. Neuroinflammation and Post-Stroke Depression: Focus on the Microglia and Astrocytes. Aging Dis 2024:AD.2024.0214-1. [PMID: 38421829 DOI: 10.14336/ad.2024.0214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024] Open
Abstract
Post-stroke depression (PSD), a frequent and disabling complication of stroke, has a strong impact on almost thirty percent of stroke survivors. The pathogenesis of PSD is not completely clear so far. Neuroinflammation following stroke is one of underlying mechanisms that involves in the pathophysiology of PSD and plays an important function in the development of depression and is regarded as a sign of depression. During the neuroinflammation after ischemic stroke onset, both astrocytes and microglia undergo a series of morphological and functional changes and play pro-inflammatory or anti-inflammatory effect in the pathological process of stroke. Importantly, astrocytes and microglia exert dual roles in the pathological process of PSD due to the phenotypic transformation. We summarize the latest evidence of neuroinflammation involving in PSD in this review, focus on the phenotypic transformation of microglia and astrocytes following ischemic stroke and reveal the dual roles of both microglia and astrocytes in the PSD via modulating the neuroinflammation.
Collapse
Affiliation(s)
- Weizhuo Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Medical Branch, Hefei Technology College, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Xu P, Peng J, Yuan T, Chen Z, He H, Wu Z, Li T, Li X, Wang L, Gao L, Yan J, Wei W, Li CT, Luo ZG, Chen Y. High-throughput mapping of single-neuron projection and molecular features by retrograde barcoded labeling. eLife 2024; 13:e85419. [PMID: 38390967 PMCID: PMC10914349 DOI: 10.7554/elife.85419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/22/2024] [Indexed: 02/24/2024] Open
Abstract
Deciphering patterns of connectivity between neurons in the brain is a critical step toward understanding brain function. Imaging-based neuroanatomical tracing identifies area-to-area or sparse neuron-to-neuron connectivity patterns, but with limited throughput. Barcode-based connectomics maps large numbers of single-neuron projections, but remains a challenge for jointly analyzing single-cell transcriptomics. Here, we established a rAAV2-retro barcode-based multiplexed tracing method that simultaneously characterizes the projectome and transcriptome at the single neuron level. We uncovered dedicated and collateral projection patterns of ventromedial prefrontal cortex (vmPFC) neurons to five downstream targets and found that projection-defined vmPFC neurons are molecularly heterogeneous. We identified transcriptional signatures of projection-specific vmPFC neurons, and verified Pou3f1 as a marker gene enriched in neurons projecting to the lateral hypothalamus, denoting a distinct subset with collateral projections to both dorsomedial striatum and lateral hypothalamus. In summary, we have developed a new multiplexed technique whose paired connectome and gene expression data can help reveal organizational principles that form neural circuits and process information.
Collapse
Affiliation(s)
- Peibo Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Peng
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech UniversityShanghaiChina
| | - Tingli Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
| | - Hui He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyan Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
| | - Ting Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech UniversityShanghaiChina
| | - Xiaodong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Luyue Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of ScienceShanghaiChina
| | - Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
- School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of ScienceShanghaiChina
- Lingang LaboratoryShanghaiChina
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
- School of Future Technology, University of Chinese Academy of SciencesBeijingChina
- Lingang LaboratoryShanghaiChina
| | - Zhen-Ge Luo
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech UniversityShanghaiChina
| | - Yuejun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired TechnologyShanghaiChina
- Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
47
|
Lui S, Brink AK, Corbit LH. Optogenetic stimulation of the locus coeruleus enhances appetitive extinction in rats. eLife 2024; 12:RP89267. [PMID: 38386378 PMCID: PMC10942613 DOI: 10.7554/elife.89267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Extinction is a specific example of learning where a previously reinforced stimulus or response is no longer reinforced, and the previously learned behaviour is no longer necessary and must be modified. Current theories suggest extinction is not the erasure of the original learning but involves new learning that acts to suppress the original behaviour. Evidence for this can be found when the original behaviour recovers following the passage of time (spontaneous recovery) or reintroduction of the reinforcement (i.e. reinstatement). Recent studies have shown that pharmacological manipulation of noradrenaline (NA) or its receptors can influence appetitive extinction; however, the role and source of endogenous NA in these effects are unknown. Here, we examined the role of the locus coeruleus (LC) in appetitive extinction. Specifically, we tested whether optogenetic stimulation of LC neurons during extinction of a food-seeking behaviour would enhance extinction evidenced by reduced spontaneous recovery in future tests. LC stimulation during extinction trials did not change the rate of extinction but did serve to reduce subsequent spontaneous recovery, suggesting that stimulation of the LC can augment reward-related extinction. Optogenetic inhibition of the LC during extinction trials reduced responding during the trials where it was applied, but no long-lasting changes in the retention of extinction were observed. Since not all LC cells expressed halorhodopsin, it is possible that more complete LC inhibition or pathway-specific targeting would be more effective at suppressing extinction learning. These results provide further insight into the neural basis of appetitive extinction, and in particular the role of the LC. A deeper understanding of the physiological bases of extinction can aid development of more effective extinction-based therapies.
Collapse
Affiliation(s)
- Simon Lui
- Department of Psychology, University of TorontoTorontoCanada
| | | | - Laura H Corbit
- Department of Psychology, University of TorontoTorontoCanada
- Cell and Systems Biology, University of TorontoTorontoCanada
| |
Collapse
|
48
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
49
|
Jordan R. The locus coeruleus as a global model failure system. Trends Neurosci 2024; 47:92-105. [PMID: 38102059 DOI: 10.1016/j.tins.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Predictive processing models posit that brains constantly attempt to predict their sensory inputs. Prediction errors signal when these predictions are incorrect and are thought to be instructive signals that drive corrective plasticity. Recent findings support the idea that the locus coeruleus (LC) - a brain-wide neuromodulatory system - signals several types of prediction error. I discuss how these findings support models proposing that the LC signals global model failures: instances where predictions about the world are strongly violated. Focusing on the cortex, I explore the utility of this signal in learning rate control, how the LC circuit may compute the signal, and how this view may aid our understanding of neurodivergence.
Collapse
Affiliation(s)
- Rebecca Jordan
- Simons Initiative for the Developing Brain, University of Edinburgh, 1 George Square, EH8 9JZ, Edinburgh, UK.
| |
Collapse
|
50
|
Li SH, Li S, Kirouac GJ. Analysis of Monosynaptic Inputs to Thalamic Paraventricular Nucleus Neurons Innervating the Shell of the Nucleus Accumbens and Central Extended Amygdala. Neuroscience 2024; 537:151-164. [PMID: 38056620 DOI: 10.1016/j.neuroscience.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The paraventricular nucleus of the thalamus (PVT) sends dense projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and the lateral region of central nucleus of the amygdala (CeL). Projection specific modulation of these pathways has been shown to regulate appetitive and aversive behavioral responses. The present investigation applied an intersectional monosynaptic rabies tracing approach to quantify the brain-wide sources of afferent input to PVT neurons that primarily project to the NAcSh, BSTDL and CeL. The results demonstrate that these projection neurons receive monosynaptic input from similar brain regions. The prefrontal cortex and the ventral subiculum of the hippocampus were major sources of input to the PVT projection neurons. In addition, the lateral septal nucleus, thalamic reticular nucleus and the hypothalamic medial preoptic area, dorsomedial, ventromedial, and arcuate nuclei were sources of input. The subfornical organ, parasubthalamic nucleus, periaqueductal gray matter, lateral parabrachial nucleus, and nucleus of the solitary tract were consistent but lesser sources of input. This input-output relationship is consistent with recent observations that PVT neurons have axons that bifurcate extensively to divergently innervate the NAcSh, BSTDL and CeL.
Collapse
Affiliation(s)
- Shuang Hong Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Sa Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada
| | - Gilbert J Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada; Department of Psychiatry, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0W2, Canada.
| |
Collapse
|