1
|
Hassani H, Bousquet E, He X, Partoens B, Ghosez P. The anti-distortive polaron as an alternative mechanism for lattice-mediated charge trapping. Nat Commun 2025; 16:1688. [PMID: 39956841 PMCID: PMC11830791 DOI: 10.1038/s41467-025-56791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025] Open
Abstract
Polarons can naturally form in materials from the interaction of extra charge carriers with the atomic lattice. Ubiquitous, they are central to various phenomena such as high-Tc superconductivity, electrochromism, photovoltaics, photocatalysis or ion batteries. However, polaron formation remains poorly understood and mostly relies on historical models such as Landau-Pekar, Fröhlich, Holstein or Jahn-Teller polarons. Here, from advanced first-principles calculations, we show that the formation of intriguing medium-sized polarons in WO3 does not fit with traditional models but instead arises from the local undoing of distortive atomic motions inherent to the pristine phase, which lowers the bandgap through dynamical covalency effects and drives charge trapping. We introduce the concept of the anti-distortive polaron and rationalize it from a quantum-dot model. We demonstrate that anti-distortive polarons are generic to different families of compounds and clarify how this new concept opens concrete perspectives for a better control of the polaronic state and related properties.
Collapse
Affiliation(s)
- Hamideh Hassani
- Theoretical Materials Physics, Q-MAT, University of Liège, Liège, Belgium
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Eric Bousquet
- Theoretical Materials Physics, Q-MAT, University of Liège, Liège, Belgium
| | - Xu He
- Theoretical Materials Physics, Q-MAT, University of Liège, Liège, Belgium
| | - Bart Partoens
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Philippe Ghosez
- Theoretical Materials Physics, Q-MAT, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Yang L, Li L, Yu ZM, Wu M, Yao Y. Two-Dimensional Topological Ferroelectric Metal with Giant Shift Current. PHYSICAL REVIEW LETTERS 2024; 133:186801. [PMID: 39547151 DOI: 10.1103/physrevlett.133.186801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
The pursuit for "ferroelectric metal," which combines seemingly incompatible spontaneous electric polarization and metallicity, has been assiduously ongoing but remains elusive. Unlike traditional ferroelectrics with a wide band gap, ferroelectric (FE) metals can naturally incorporate nontrivial band topology near the Fermi level, endowing them with additional exotic properties. Here, we show first-principles evidence that the metallic PtBi_{2} monolayer is an intrinsic two-dimensional (2D) topological FE metal, characterized by out-of-plane polarization and a moderate switching barrier. Moreover, it exhibits a topologically nontrivial electronic structure with Z_{2} invariant equal to 1, leading to a significant FE bulk photovoltaic effect. A slight strain can further enhance this effect to a remarkable level, which far surpasses that of previously reported 2D and 3D FE materials. Our Letter provides an important step toward realizing intrinsic monolayer topological FE metals and paves a promising way for future nonlinear optical devices.
Collapse
Affiliation(s)
| | | | - Zhi-Ming Yu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
| | | | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
- International Center for Quantum Materials, Beijing Institute of Technology, Zhuhai 519000, China
| |
Collapse
|
3
|
Wu S, Huang FT, Xu X, Ritz ET, Birol T, Cheong SW, Blumberg G. Polar charge density wave in a superconductor with crystallographic chirality. Nat Commun 2024; 15:9276. [PMID: 39468076 PMCID: PMC11519370 DOI: 10.1038/s41467-024-53627-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Symmetry plays an important role in determining the physical properties in condensed matter physics, as the symmetry operations of any physical property must include the symmetry operations of the point group of the crystal. As a consequence, crystallographic polarity and chirality are expected to have an impact on the Cooper pairing in a superconductor. While superconductivity with crystallographic polarity and chirality have both been found in a few crystalline phases separately; however, their coexistence and material realizations have not been studied. Here, by utilizing transport, Raman scattering, and transmission electron microscopy, we unveil a unique realization of superconductivity in single-crystalline Mo3Al2C (superconducting Tc=8 K) with a polar charge-density-wave phase and well-defined crystallographic chirality. We show that the intriguing charge density wave order leads to a noncentrosymmetric-nonpolar to polar transition below T*=155K via breaking both the translational and rotational symmetries. Superconductivity emerges in this polar and chiral crystal structure below Tc=8 K. Our results establish that Mo3Al2C is a superconductor with crystallographic polarity and chirality simultaneously, and motivate future studies of unconventional superconductivity in this category.
Collapse
Affiliation(s)
- Shangfei Wu
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Fei-Ting Huang
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
- Keck Center for Quantum Magnetism, Rutgers University, Piscataway, NJ, USA
| | - Xianghan Xu
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA
- Keck Center for Quantum Magnetism, Rutgers University, Piscataway, NJ, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Ethan T Ritz
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
- Department of Engineering, Harvey Mudd College, Claremont, CA, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA.
| | - Sang-Wook Cheong
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
- Keck Center for Quantum Magnetism, Rutgers University, Piscataway, NJ, USA.
| | - Girsh Blumberg
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, USA.
- National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
| |
Collapse
|
4
|
Dong M, Zhang Y, Cao J, Chen H, Lu Q, Wang H, Wu J. Polar Metallicity Controlled by Epitaxial Strain Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408329. [PMID: 39206774 PMCID: PMC11516258 DOI: 10.1002/advs.202408329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Indexed: 09/04/2024]
Abstract
The discovery of polar metal opens the door to incorporating electric polarization into electronics with the potential to invigorate next-generation multifunctional electronic devices. Especially, electric polarization can be induced by geometric design in non-polar perovskite oxides. Here, the epitaxial strain exerted on the deposited single-crystalline NdNiO3 thin films is systematically varied in both sign and amplitude by choosing substrates with different lattice mismatch. The pseudocubic NdNiO3(111) film, which is non-polar in its bulk state, is induced to be polar under both compressive and tensile strain. The fine-tuning of epitaxial strain is realized by continuously varying the film thickness using the "thickness-wedge" growth technique, and from the elucidated thickness dependence, the electric polarization and metallicity can be further optimized. Moreover, transitioning from isotropic to anisotropic epitaxial strain gives rise to an ideal polar metal state in the pseudocubic NdNiO3(102) film on an orthorhombic substrate, achieving a remarkably low resistivity of 173 µΩ cm at room temperature. The metal-insulator transition in NdNiO3 is completely suppressed and the polar metal state becomes the ground state at all temperatures. These results demonstrate alluring possibilities of induction and manipulation of both electric polarization and electric transport properties in functional perovskite oxides by epitaxial strain engineering.
Collapse
Affiliation(s)
- Mingdong Dong
- Department of PhysicsSchool of ScienceWestlake UniversityHangzhou310030China
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- Key Laboratory for Quantum Materials of Zhejiang ProvinceSchool of ScienceWestlake UniversityHangzhou310030China
- School of PhysicsZhejiang UniversityHangzhou310027China
| | - Yichi Zhang
- Department of PhysicsSchool of ScienceWestlake UniversityHangzhou310030China
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- Key Laboratory for Quantum Materials of Zhejiang ProvinceSchool of ScienceWestlake UniversityHangzhou310030China
- School of PhysicsZhejiang UniversityHangzhou310027China
| | - Jing‐ming Cao
- Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310030China
| | - Haowen Chen
- School of EngineeringWestlake UniversityHangzhou310030China
| | - Qiyang Lu
- School of EngineeringWestlake UniversityHangzhou310030China
| | - Hong‐fei Wang
- Department of ChemistrySchool of ScienceWestlake UniversityHangzhou310030China
| | - Jie Wu
- Department of PhysicsSchool of ScienceWestlake UniversityHangzhou310030China
- Research Center for Industries of the FutureWestlake UniversityHangzhou310030China
- Key Laboratory for Quantum Materials of Zhejiang ProvinceSchool of ScienceWestlake UniversityHangzhou310030China
| |
Collapse
|
5
|
Li J, Green RJ, Domínguez C, Levitan A, Tseng Y, Catalano S, Fowlie J, Sutarto R, Rodolakis F, Korol L, McChesney JL, Freeland JW, Van der Marel D, Gibert M, Comin R. Signatures of polarized chiral spin disproportionation in rare earth nickelates. Nat Commun 2024; 15:7427. [PMID: 39198459 PMCID: PMC11358138 DOI: 10.1038/s41467-024-51576-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
In rare earth nickelates (RENiO3), electron-lattice coupling drives a concurrent metal-to-insulator and bond disproportionation phase transition whose microscopic origin has long been the subject of active debate. Of several proposed mechanisms, here we test the hypothesis that pairs of self-doped ligand holes spatially condense to provide local spin moments that are antiferromagnetically coupled to Ni spins. These singlet-like states provide a basis for long-range bond and spiral spin order. Using magnetic resonant X-ray scattering on NdNiO3 thin films, we observe the chiral nature of the spin-disproportionated state, with spin spirals propagating along the crystallographic (101)ortho direction. These spin spirals are found to preferentially couple to X-ray helicity, establishing the presence of a hitherto-unobserved macroscopic chirality. The presence of this chiral magnetic configuration suggests a potential multiferroic coupling between the noncollinear magnetic arrangement and improper ferroelectric behavior as observed in prior studies on NdNiO3 (101)ortho films and RENiO3 single crystals. Experimentally-constrained theoretical double-cluster calculations confirm the presence of an energetically stable spin-disproportionated state with Zhang-Rice singlet-like combinations of Ni and ligand moments.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | - Robert J Green
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Claribel Domínguez
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1121 Geneva 4, Switzerland
| | - Abraham Levitan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yi Tseng
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Sara Catalano
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1121 Geneva 4, Switzerland
| | - Jennifer Fowlie
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1121 Geneva 4, Switzerland
| | - Ronny Sutarto
- Canadian Light Source, Saskatoon, SK, S7N 2V3, Canada
| | - Fanny Rodolakis
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Lucas Korol
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | | | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Dirk Van der Marel
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1121 Geneva 4, Switzerland
| | - Marta Gibert
- Institute of Solid State Physics, Vienna University of Technology, Vienna, Austria
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
6
|
Shin Y, Poeppelmeier KR, Rondinelli JM. Informatics-Based Learning of Oxygen Vacancy Ordering Principles in Oxygen-Deficient Perovskites. Inorg Chem 2024; 63:12785-12802. [PMID: 38954760 DOI: 10.1021/acs.inorgchem.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Ordered oxygen vacancies (OOVs) in perovskites can exhibit long-range order and may be used to direct materials properties through modifications in electronic structures and broken symmetries. Based on the various vacancy patterns observed in previously known compounds, we explore the ordering principles of oxygen-deficient perovskite oxides with ABO2.5 stoichiometry to identify other OOV variants. We performed first-principles calculations to assess the OOV stability on a data set of 50 OOV structures generated from our bespoke algorithm. The algorithm employs uniform planar vacancy patterns on (111) pseudocubic perovskite layers and the approach proves effective for generating stable OOV patterns with minimal computational loads. We find as expected that the major factors determining the stability of OOV structures include coordination preferences of transition metals and elastic penalties resulting from the assemblies of polyhedra. Cooperative rotational modes of polyhedra within the OOV structures reduce elastic instabilities by optimizing the bond valence of A- and B cations. This finding explains the observed formation of vacancy channels along low-index crystallographic directions in prototypical OOV phases. The identified ordering principles enable us to devise other stable vacancy patterns with longer periodicity for targeted property design in yet to be synthesized compounds.
Collapse
Affiliation(s)
- Yongjin Shin
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Kenneth R Poeppelmeier
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Zhang J, Shen S, Puggioni D, Wang M, Sha H, Xu X, Lyu Y, Peng H, Xing W, Walters LN, Liu L, Wang Y, Hou D, Xi C, Pi L, Ishizuka H, Kotani Y, Kimata M, Nojiri H, Nakamura T, Liang T, Yi D, Nan T, Zang J, Sheng Z, He Q, Zhou S, Nagaosa N, Nan CW, Tokura Y, Yu R, Rondinelli JM, Yu P. A correlated ferromagnetic polar metal by design. NATURE MATERIALS 2024; 23:912-919. [PMID: 38605196 DOI: 10.1038/s41563-024-01856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024]
Abstract
Polar metals have recently garnered increasing interest because of their promising functionalities. Here we report the experimental realization of an intrinsic coexisting ferromagnetism, polar distortion and metallicity in quasi-two-dimensional Ca3Co3O8. This material crystallizes with alternating stacking of oxygen tetrahedral CoO4 monolayers and octahedral CoO6 bilayers. The ferromagnetic metallic state is confined within the quasi-two-dimensional CoO6 layers, and the broken inversion symmetry arises simultaneously from the Co displacements. The breaking of both spatial-inversion and time-reversal symmetries, along with their strong coupling, gives rise to an intrinsic magnetochiral anisotropy with exotic magnetic field-free non-reciprocal electrical resistivity. An extraordinarily robust topological Hall effect persists over a broad temperature-magnetic field phase space, arising from dipole-induced Rashba spin-orbit coupling. Our work not only provides a rich platform to explore the coupling between polarity and magnetism in a metallic system, with extensive potential applications, but also defines a novel design strategy to access exotic correlated electronic states.
Collapse
Affiliation(s)
- Jianbing Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Shengchun Shen
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Danilo Puggioni
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Meng Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Haozhi Sha
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Xueli Xu
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Yingjie Lyu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Huining Peng
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Wandong Xing
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Lauren N Walters
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Linhan Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China
| | - Yujia Wang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - De Hou
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Chuanying Xi
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Li Pi
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Hiroaki Ishizuka
- Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
| | - Yoshinori Kotani
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, Hyogo, Japan
| | - Motoi Kimata
- Institute of Materials Research, Tohoku University, Sendai, Japan
| | - Hiroyuki Nojiri
- Institute of Materials Research, Tohoku University, Sendai, Japan
| | - Tetsuya Nakamura
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai, Japan
| | - Tian Liang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Frontier Science Center for Quantum Information, Beijing, China
| | - Di Yi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Tianxiang Nan
- School of Integrated Circuits, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham, NH, USA
| | - Zhigao Sheng
- High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei, China
| | - Qing He
- Department of Physics, Durham University, Durham, UK
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
- Frontier Science Center for Quantum Information, Beijing, China
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
| | - Rong Yu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
- MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing, China.
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
- Frontier Science Center for Quantum Information, Beijing, China.
| |
Collapse
|
8
|
Gibson QD, Wen D, Lin H, Zanella M, Daniels LM, Robertson CM, Claridge JB, Alaria J, Dyer MS, Rosseinsky MJ. Control of Polarity in Kagome-NiAs Bismuthides. Angew Chem Int Ed Engl 2024; 63:e202403670. [PMID: 38470158 PMCID: PMC11497289 DOI: 10.1002/anie.202403670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
A 2×2×1 superstructure of the P63/mmc NiAs structure is reported in which kagome nets are stabilized in the octahedral transition metal layers of the compounds Ni0.7Pd0.2Bi, Ni0.6Pt0.4Bi, and Mn0.99Pd0.01Bi. The ordered vacancies that yield the true hexagonal kagome motif lead to filling of trigonal bipyramidal interstitial sites with the transition metal in this family of "kagome-NiAs" type materials. Further ordering of vacancies within these interstitial layers can be compositionally driven to simultaneously yield kagome-connected layers and a net polarization along the c axes in Ni0.9Bi and Ni0.79Pd0.08Bi, which adopt Fmm2 symmetry. The polar and non-polar materials exhibit different electronic transport behaviour, reflecting the tuneability of both structure and properties within the NiAs-type bismuthide materials family.
Collapse
Affiliation(s)
- Quinn D. Gibson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Dongsheng Wen
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Hai Lin
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Marco Zanella
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Luke M. Daniels
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Craig M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - John B. Claridge
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Jonathan Alaria
- Department of PhysicsUniversity of LiverpoolOliver Lodge LaboratoryLiverpoolL69 7ZEUnited Kingdom
| | - Matthew S. Dyer
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| | - Matthew J. Rosseinsky
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Present Address for Quinn D. GibsonAberdeen Centre for Energy and SustainabilityDepartment of ChemistryUniversity of AberdeenAberdeenAB24, 3FXUnited Kingdom
| |
Collapse
|
9
|
Yin H, Zhu H, Wang S, Jin K. Novel 2DEG System at the HfO 2/STO Interface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26915-26921. [PMID: 38717847 DOI: 10.1021/acsami.4c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Multifunctional integration in a single device has always been a hot research topic, especially for contradictory phenomena, one of which is the coexistence of ferroelectricity and metallicity. The complex oxide heterostructures, as symmetric breaking systems, provide a great possibility to incorporate different properties. Moreover, finding a series of oxide heterostructures to achieve this goal remains as a challenge. Here, taking the advantage of different physical phenomena, we use H2 plasma to pretreat the SrTiO3 (STO) substrate and then fabricate HfO2/STO heterostructures with it. The novel, well-repeatable metallic two-dimensional electron gas (2DEG) is directly obtained at the heterointerfaces without any further complex procedures, while the obvious ferroelectric-like behavior and Rashba spin-orbit coupling are also observed. The understanding of the mechanism, as well as the modified facile preparation procedure, would be meaningful for further development of ferroelectric metal in complex oxide heterostructures.
Collapse
Affiliation(s)
- Hang Yin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huapei Zhu
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties and MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Rahimi S, Jalali-Asadabadi S, Blaha P, Jalali-Asadabadi F. Nonzero spontaneous electric polarization in metals: novel predictive methods and applications. Sci Rep 2024; 14:672. [PMID: 38182613 PMCID: PMC10770415 DOI: 10.1038/s41598-023-49463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024] Open
Abstract
Ferroelectricity in metals has advanced since the initial discovery of nonmagnetic ferroelectric-like metal LiOsO[Formula: see text], anchored in the Anderson and Blount prediction. However, evaluating the spontaneous electric polarization (SEP) of this metal has been hindered by experimental and theoretical obstacles. The experimental challenge arises from difficulties in switching polarization using an external electric field, while the theoretical limitation lies in existing methods applicable only to nonmetals. Zabalo and Stengel (Phys Rev Lett 126:127601, 2021, https://doi.org/10.1103/PhysRevLett.126.127601 ) addressed the experimental obstacle by proposing flexoelectricity as an alternative for practical polarization switching in LiOsO[Formula: see text], which requires a critical bending radius similar to BaTiO[Formula: see text]. In this study, we focus on resolving the theoretical obstacle by modifying the Berry phase and Wannier functions approaches within density functional theory plus modern theory of polarization. By employing these modifications, we calculate the SEP of LiOsO[Formula: see text], comparable to the polarization of BaTiO[Formula: see text]. We validate our predictions using various ways. This study confirms the coexistence of ferroelectricity and metallicity in this new class of ferroelectric-like metals. Moreover, by addressing the theoretical limitation and providing new insights into polarization properties, our study complements the experimental flexoelectricity proposal and opens avenues for further exploration and manipulation of polarization characteristics. The developed approaches, incorporating modified Berry phase and Wannier function techniques, offer promising opportunities for studying and designing novel materials, including bio- and nano-ferroelectric-like metals. This study contributes to the advancement of ferroelectricity in metals and provides a foundation for future research in this exciting field.
Collapse
Affiliation(s)
- Shahrbano Rahimi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan, 81746-73441, Iran
| | - S Jalali-Asadabadi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan, 81746-73441, Iran.
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC, 1060, Vienna, Austria
| | - Farhad Jalali-Asadabadi
- Department of Physics, Faculty of Physics, University of Isfahan (UI), Hezar Jerib Avenue, Isfahan, 81746-73441, Iran
| |
Collapse
|
11
|
Hu Y, Rogée L, Wang W, Zhuang L, Shi F, Dong H, Cai S, Tay BK, Lau SP. Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides. Nat Commun 2023; 14:8470. [PMID: 38123543 PMCID: PMC10733392 DOI: 10.1038/s41467-023-44298-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Engineering piezo/ferroelectricity in two-dimensional materials holds significant implications for advancing the manufacture of state-of-the-art multifunctional materials. The inborn nonstoichiometric propensity of two-dimensional transition metal dichalcogenides provides a spiffy ready-available solution for breaking inversion centrosymmetry, thereby conducing to circumvent size effect challenges in conventional perovskite oxide ferroelectrics. Here, we show the extendable and ubiquitous piezo/ferroelectricity within nonstoichiometric two-dimensional transition metal dichalcogenides that are predominantly centrosymmetric during standard stoichiometric cases. The emerged piezo/ferroelectric traits are aroused from the sliding of van der Waals layers and displacement of interlayer metal atoms triggered by the Frankel defects of heterogeneous interlayer native metal atom intercalation. We demonstrate two-dimensional chromium selenides nanogenerator and iron tellurides ferroelectric multilevel memristors as two representative applications. This innovative approach to engineering piezo/ferroelectricity in ultrathin transition metal dichalcogenides may provide a potential avenue to consolidate piezo/ferroelectricity with featured two-dimensional materials to fabricate multifunctional materials and distinguished multiferroic.
Collapse
Affiliation(s)
- Yi Hu
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
| | - Lukas Rogée
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Weizhen Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Lyuchao Zhuang
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Fangyi Shi
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Hui Dong
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Songhua Cai
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Beng Kang Tay
- Centre for Micro- and Nano-Electronics (CMNE), School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 638798, Singapore
- IRL 3288 CINTRA (CNRS-NTU-THALES Research Alliances), Nanyang Technological University, Singapore, 637553, Singapore
| | - Shu Ping Lau
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China.
| |
Collapse
|
12
|
Liang Q, Zheng F, Li M. Polar metals in strain-engineered KNbO 3/CaNbO 3 superlattices: a first-principles study. Phys Chem Chem Phys 2023; 25:30596-30605. [PMID: 37930035 DOI: 10.1039/d3cp02897f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Polar metals have generated significant interest since the ferroelectric-like structural transition in metallic LiOsO3 was discovered. Herein, we report on a strain-modulated polar metal in the ferroelectric/metal superlattice of 1 : 1 KNbO3/CaNbO3. Using first-principles calculations, we have investigated the structural distortions, including polar distortions and octahedral rotations, and layer-by-layer electronic structures in the KNbO3/CaNbO3 superlattice under different epitaxial strains. Along the stacking direction, the superlattice has almost parallel polar displacements under compressive strain, whereas both in-plane and out-of-plane antiferroelectric-like polar displacements are robust under intermediate strain, which is connected to the octahedral tilting pattern and interlayer electron transfer. In addition, the in-plane polar distortions are enhanced by tensile strains and have a sudden increase at 4% tensile strain. The metallicity is mainly contributed by d electrons from Nb atoms. And orbital-resolved electron distributions in each layer show that d-orbital splitting is related not only to the epitaxial strain but also to the direction of polar displacements. Our results suggest an efficient way to tune polar distortions as well as local metallicity via epitaxial strains in the superlattice.
Collapse
Affiliation(s)
- Qihang Liang
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China.
| | - Fawei Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Menglei Li
- Department of Physics, Capital Normal University, Beijing 100048, P. R. China.
| |
Collapse
|
13
|
Yin Y, Gong Q, Yi M, Guo W. Monolayer polar metals with large piezoelectricity derived from MoSi 2N 4. MATERIALS HORIZONS 2023; 10:5177-5184. [PMID: 37718912 DOI: 10.1039/d3mh00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The advancement of two-dimensional polar metals tends to be limited by the incompatibility between electric polarity and metallicity as well as dimension reduction. Here, we report polar and metallic Janus monolayers of the MoSi2N4 family by breaking the out-of-plane structural symmetry through Z (P/As) substitution of N. Despite the semiconducting nature of MoSi2X4 (X = N/P/As), four Janus MoSi2NxZ4-x monolayers are found to be polar metals owing to the weak coupling between the conducting electrons and electric polarity. The metallicity is originated from the Z substitution induced delocalization of occupied electrons in Mo-d orbitals. The out-of-plane electric polarizations around 1.5-15.7 pC m-1 are determined by the asymmetric out-of-plane charge distribution due to the non-centrosymmetric Janus structure. The corresponding out-of-plane piezoelectricity is further revealed as high as 18.7-73.3 pC m-1 and 0.05-0.25 pm V-1 for the piezoelectric strain and stress coefficients, respectively. The results demonstrate polar metallicity and high out-of-plane piezoelectricity in Janus MoSi2NxZ4-x monolayers and open new vistas for exploiting unusual coexisting properties in monolayers derived from the MoSi2N4 family.
Collapse
Affiliation(s)
- Yan Yin
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science & College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China.
| | - Qihua Gong
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science & College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics & College of Physics, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China
| | - Min Yi
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science & College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China.
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control for Aerospace Structures & Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education & Institute for Frontier Science & College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China.
| |
Collapse
|
14
|
Man P, Huang L, Zhao J, Ly TH. Ferroic Phases in Two-Dimensional Materials. Chem Rev 2023; 123:10990-11046. [PMID: 37672768 DOI: 10.1021/acs.chemrev.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) ferroics, namely ferroelectric, ferromagnetic, and ferroelastic materials, are attracting rising interest due to their fascinating physical properties and promising functional applications. A variety of 2D ferroic phases, as well as 2D multiferroics and the novel 2D ferrovalleytronics/ferrotoroidics, have been recently predicted by theory, even down to the single atomic layers. Meanwhile, some of them have already been experimentally verified. In addition to the intrinsic 2D ferroics, appropriate stacking, doping, and defects can also artificially regulate the ferroic phases of 2D materials. Correspondingly, ferroic ordering in 2D materials exhibits enormous potential for future high density memory devices, energy conversion devices, and sensing devices, among other applications. In this paper, the recent research progresses on 2D ferroic phases are comprehensively reviewed, with emphasis on chemistry and structural origin of the ferroic properties. In addition, the promising applications of the 2D ferroics for information storage, optoelectronics, and sensing are also briefly discussed. Finally, we envisioned a few possible pathways for the future 2D ferroics research and development. This comprehensive overview on the 2D ferroic phases can provide an atlas for this field and facilitate further exploration of the intriguing new materials and physical phenomena, which will generate tremendous impact on future functional materials and devices.
Collapse
Affiliation(s)
- Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, P. R. China
| |
Collapse
|
15
|
Wang C, You L, Cobden D, Wang J. Towards two-dimensional van der Waals ferroelectrics. NATURE MATERIALS 2023; 22:542-552. [PMID: 36690757 DOI: 10.1038/s41563-022-01422-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/27/2022] [Indexed: 05/05/2023]
Abstract
The discovery of ferroelectricity in two-dimensional (2D) van der Waals (vdW) materials has brought important functionalities to the 2D materials family, and may trigger a revolution in next-generation nanoelectronics and spintronics. In this Perspective, we briefly review recent progress in the field of 2D vdW ferroelectrics, focusing on the mechanisms that drive spontaneous polarization in 2D systems, unique properties brought about by the reduced lattice dimensionality and promising applications of 2D vdW ferroelectrics. We finish with an outlook for challenges that need to be addressed and our view on possible future research directions.
Collapse
Affiliation(s)
- Chuanshou Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, China.
| | - David Cobden
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Junling Wang
- Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, China.
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
16
|
Zhang Y, Tan Y, Dong Y, Dai L, Ren C, Zhang F, Zeng L, An F, Li C, Huang B, Zhong G, Li J. High-Throughput Scanning Second-Harmonic-Generation Microscopy for Polar Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300348. [PMID: 36916868 DOI: 10.1002/adma.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/06/2023] [Indexed: 05/12/2023]
Abstract
The Materials Genome Initiative aims to discover, develop, manufacture, and deploy advanced materials at twice the speed of conventional approaches. To achieve this, high-throughput characterization is essential for the rapid screening of candidate materials. In this study, a high-throughput scanning second-harmonic-generation microscope with automatic partitioning, accurate positioning, and fast scanning is developed that can rapidly probe and screen polar materials. Using this technique, typical ferroelectrics, including periodically poled lithium niobate crystals and PbZr0.2 Ti0.8 O3 (PZT) thin films are first investigated, whereby the microscopic domain structures are clearly revealed. This technique is then applied to a compositional-gradient (100-x)%BaTiO3 -x%SrTiO3 film and a thickness-gradient PZT film to demonstrate its high-throughput capabilities. Since the second-harmonic-generation signal is correlated with the macroscopic remnant polarization over the probed region determined by the laser spot, it is free of artifacts arising from leakage current and electrostatic interference, while materials' symmetries and domain structures must be carefully considered in the data analysis. It is believed that this work can help promote the high-throughput development of polar materials and contribute to the Materials Genome Initiative.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yangchun Tan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Yangda Dong
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Liyufen Dai
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Chuanlai Ren
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Fengyuan Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Lingping Zeng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Feng An
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Changjian Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Boyuan Huang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Gaokuo Zhong
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China
| | - Jiangyu Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
17
|
Lesne E, Saǧlam YG, Battilomo R, Mercaldo MT, van Thiel TC, Filippozzi U, Noce C, Cuoco M, Steele GA, Ortix C, Caviglia AD. Designing spin and orbital sources of Berry curvature at oxide interfaces. NATURE MATERIALS 2023; 22:576-582. [PMID: 36928382 PMCID: PMC10156604 DOI: 10.1038/s41563-023-01498-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/31/2023] [Indexed: 05/05/2023]
Abstract
Quantum materials can display physical phenomena rooted in the geometry of electronic wavefunctions. The corresponding geometric tensor is characterized by an emergent field known as the Berry curvature (BC). Large BCs typically arise when electronic states with different spin, orbital or sublattice quantum numbers hybridize at finite crystal momentum. In all the materials known to date, the BC is triggered by the hybridization of a single type of quantum number. Here we report the discovery of the first material system having both spin- and orbital-sourced BC: LaAlO3/SrTiO3 interfaces grown along the [111] direction. We independently detect these two sources and probe the BC associated to the spin quantum number through the measurements of an anomalous planar Hall effect. The observation of a nonlinear Hall effect with time-reversal symmetry signals large orbital-mediated BC dipoles. The coexistence of different forms of BC enables the combination of spintronic and optoelectronic functionalities in a single material.
Collapse
Affiliation(s)
- Edouard Lesne
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany.
| | - Yildiz G Saǧlam
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Raffaele Battilomo
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Utrecht, the Netherlands
| | | | - Thierry C van Thiel
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Ulderico Filippozzi
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Canio Noce
- Dipartimento di Fisica 'E. R. Caianiello', Universitá di Salerno, Fisciano, Italy
| | - Mario Cuoco
- CNR-SPIN c/o Universita' di Salerno, Fisciano, Italy
| | - Gary A Steele
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Carmine Ortix
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Utrecht, the Netherlands.
- Dipartimento di Fisica 'E. R. Caianiello', Universitá di Salerno, Fisciano, Italy.
| | - Andrea D Caviglia
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Guo S, Wang B, Wolf D, Lubk A, Xia W, Wang M, Xiao Y, Cui J, Pravarthana D, Dou Z, Leistner K, Li RW, Hühne R, Nielsch K. Hierarchically Engineered Manganite Thin Films with a Wide-Temperature-Range Colossal Magnetoresistance Response. ACS NANO 2023; 17:2517-2528. [PMID: 36651833 DOI: 10.1021/acsnano.2c10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colossal magnetoresistance is of great fundamental and technological significance in condensed-matter physics, magnetic memory, and sensing technologies. However, its relatively narrow working temperature window is still a severe obstacle for potential applications due to the nature of the material-inherent phase transition. Here, we realized hierarchical La0.7Sr0.3MnO3 thin films with well-defined (001) and (221) crystallographic orientations by combining substrate modification with conventional thin-film deposition. Microscopic investigations into its magnetic transition through electron holography reveal that the hierarchical microstructure significantly broadens the temperature range of the ferromagnetic-paramagnetic transition, which further widens the response temperature range of the macroscopic colossal magnetoresistance under the scheme of the double-exchange mechanism. Therefore, this work puts forward a method to alter the magnetic transition and thus to extend the magnetoresistance working window by nanoengineering, which might be a promising approach also for other phase-transition-related effects in functional oxides.
Collapse
Affiliation(s)
- Shanshan Guo
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Baomin Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- School of Physical Science and Technology, Ningbo University, Ningbo 315201, People's Republic of China
| | | | - Axel Lubk
- Leibniz IFW Dresden, Dresden 01069, Germany
- Institute of Solid State and Materials Physics, TU Dresden, Dresden 01069, Germany
| | - Weixing Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Mingkun Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yao Xiao
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Junfeng Cui
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dhanapal Pravarthana
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Zehua Dou
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Karin Leistner
- Leibniz IFW Dresden, Dresden 01069, Germany
- Electrochemical Sensors and Energy Storage, Faculty of Natural Sciences, Institute of Chemistry, TU Chemnitz, Chemnitz 09111, Germany
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | | | | |
Collapse
|
19
|
Mun J, Ko EK, Kang B, Gil B, Kim CH, Hahn S, Song J, Zhu Y, Sohn C, Noh TW, Kim M. Extended Oxygen Octahedral Tilt Proximity near Oxide Heterostructures. NANO LETTERS 2023; 23:1036-1043. [PMID: 36716295 DOI: 10.1021/acs.nanolett.2c04633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The oxide interfaces between materials with different structural symmetries have been actively studied due to their novel physical properties. However, the investigation of intriguing interfacial phenomena caused by the oxygen octahedral tilt (OOT) proximity effect has not been fully exploited, as there is still no clear understanding of what determines the proximity length and what the underlying control mechanism is. Here, we achieved scalability of the OOT proximity effect in SrRuO3 (SRO) by epitaxial strain near the SRO/SrTiO3 heterointerface. We demonstrated that the OOT proximity length scale of SRO is extended from 4 unit cells to 14 unit cells by employing advanced scanning transmission electron microscopy. We also suggest that this variation may originate from changes in phonon dispersions due to electron-phonon coupling in SRO. This study will provide in-depth insights into the structural gradients of correlated systems and facilitate potential device applications.
Collapse
Affiliation(s)
- Junsik Mun
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul08826, Republic of Korea
| | - Eun Kyo Ko
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Baekjune Kang
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Byeongjun Gil
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul08826, Republic of Korea
| | - Choong H Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Sungsoo Hahn
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Jeongkeun Song
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Changhee Sohn
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Miyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul08826, Republic of Korea
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
20
|
Feng H, Dolejsi M, Zhu N, Yim S, Loo W, Ma P, Zhou C, Craig GSW, Chen W, Wan L, Ruiz R, de Pablo JJ, Rowan SJ, Nealey PF. Optimized design of block copolymers with covarying properties for nanolithography. NATURE MATERIALS 2022; 21:1426-1433. [PMID: 36357686 DOI: 10.1038/s41563-022-01392-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The ability to impart multiple covarying properties into a single material represents a grand challenge in manufacturing. In the design of block copolymers (BCPs) for directed self-assembly and nanolithography, materials often balance orthogonal properties to meet constraints related to processing, structure and defectivity. Although iterative synthesis strategies deliver BCPs with attractive properties, identifying materials with all the required attributes has been difficult. Here we report a high-throughput synthesis and characterization platform for the discovery and optimization of BCPs with A-block-(B-random-C) architectures for lithographic patterning in semiconductor manufacturing. Starting from a parent BCP and using thiol-epoxy 'click' chemistry, we synthesize a library of BCPs that cover a large and complex parameter space. This allows us to readily identify feature-size-dependent BCP chemistries for 8-20-nm-pitch patterns. These blocks have similar surface energies for directed self-assembly, and control over the segregation strength to optimize the structure (favoured at higher segregation strengths) and defectivity (favoured at lower segregation strengths).
Collapse
Affiliation(s)
- Hongbo Feng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Moshe Dolejsi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Soonmin Yim
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Whitney Loo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Peiyuan Ma
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Chun Zhou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Gordon S W Craig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Wen Chen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Lei Wan
- Western Digital Corporation, San Jose, CA, USA
| | - Ricardo Ruiz
- The Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Stuart J Rowan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Zhang H, Yan C, Ge Z, Weinert M, Li L. Impenetrable Barrier at the Metal-Mott Insulator Junction in Polymorphic 1H and 1T NbSe 2 Lateral Heterostructure. J Phys Chem Lett 2022; 13:10713-10721. [PMID: 36367815 DOI: 10.1021/acs.jpclett.2c02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
When a metal makes contact with a band insulator, charge transfer occurs across the interface leading to band bending and a Schottky barrier with rectifying behavior. The nature of metal-Mott insulator junctions, however, is still debated due to challenges in experimental probes of such vertical heterojunctions with buried interfaces. Here, we grow lateral polymorphic heterostructures of single-layer metallic 1H and Mott insulating 1T NbSe2 by molecular beam epitaxy. We find a one-dimensional metallic channel along the interface due to the appearance of quasiparticle states with an intensity decay following 1/x2, indicating an impenetrable barrier. Near the interface, the Mott gap exhibits a strong spatial dependence arising from the difference in lattice constants between the two phases, consistent with our density functional theory calculations. These results provide clear experimental evidence for an impenetrable barrier at the metal-Mott insulator junction and the high tunability of a Mott insulator by strain.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
| | - Chenhui Yan
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Zhuozhi Ge
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Michael Weinert
- Department of Physics, University of Wisconsin, Milwaukee, Wisconsin 53201, United States
| | - Lian Li
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
22
|
Fernandez A, Acharya M, Lee HG, Schimpf J, Jiang Y, Lou D, Tian Z, Martin LW. Thin-Film Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108841. [PMID: 35353395 DOI: 10.1002/adma.202108841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Over the last 30 years, the study of ferroelectric oxides has been revolutionized by the implementation of epitaxial-thin-film-based studies, which have driven many advances in the understanding of ferroelectric physics and the realization of novel polar structures and functionalities. New questions have motivated the development of advanced synthesis, characterization, and simulations of epitaxial thin films and, in turn, have provided new insights and applications across the micro-, meso-, and macroscopic length scales. This review traces the evolution of ferroelectric thin-film research through the early days developing understanding of the roles of size and strain on ferroelectrics to the present day, where such understanding is used to create complex hierarchical domain structures, novel polar topologies, and controlled chemical and defect profiles. The extension of epitaxial techniques, coupled with advances in high-throughput simulations, now stands to accelerate the discovery and study of new ferroelectric materials. Coming hand-in-hand with these new materials is new understanding and control of ferroelectric functionalities. Today, researchers are actively working to apply these lessons in a number of applications, including novel memory and logic architectures, as well as a host of energy conversion devices.
Collapse
Affiliation(s)
- Abel Fernandez
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Han-Gyeol Lee
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jesse Schimpf
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yizhe Jiang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Djamila Lou
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Zishen Tian
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
23
|
Bai H, Su X, Zhang Q, Uher C, Tang X, Wu J. Electrically Tunable Antiferroelectric to Paraelectric Switching in a Semiconductor. NANO LETTERS 2022; 22:4083-4089. [PMID: 35549361 DOI: 10.1021/acs.nanolett.2c00787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The monoclinic α-Cu2Se phase is the first multipolar antiferroelectric semiconductor identified recently by electron microscopy. As a semiconductor, although there are no delocalized electrons to form a static macroscopic polarization, a spontaneous and localized antiferroelectric polarization was found along multiple directions. In conventional ferroelectrics, the polarity can be switched by an applied electric field, and a ferroelectric to paraelectric transition can be modulated by temperature. Here, we show that a reversible and robust antiferroelectric to paraelectric switching in a Cu2Se semiconductor can be tuned electrically by low-voltage and high-frequency electric pulses, and the structural transformations are imaged directly by transmission electron microscopy (TEM). The atomic mechanism of the transformation was assigned to an electrically triggered cation rearrangement with a low-energy barrier. Due to differences of the antiferroelectric and paraelectric phases regarding their electrical, mechanical, and optical properties, such an electrically tunable transformation has a great potential in various applications in microelectronics.
Collapse
Affiliation(s)
- Hui Bai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Xianli Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
24
|
Wei XK, Dunin-Borkowski RE, Mayer J. Structural Phase Transition and In-Situ Energy Storage Pathway in Nonpolar Materials: A Review. MATERIALS 2021; 14:ma14247854. [PMID: 34947446 PMCID: PMC8707040 DOI: 10.3390/ma14247854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/27/2022]
Abstract
Benefitting from exceptional energy storage performance, dielectric-based capacitors are playing increasingly important roles in advanced electronics and high-power electrical systems. Nevertheless, a series of unresolved structural puzzles represent obstacles to further improving the energy storage performance. Compared with ferroelectrics and linear dielectrics, antiferroelectric materials have unique advantages in unlocking these puzzles due to the inherent coupling of structural transitions with the energy storage process. In this review, we summarize the most recent studies about in-situ structural phase transitions in PbZrO3-based and NaNbO3-based systems. In the context of the ultrahigh energy storage density of SrTiO3-based capacitors, we highlight the necessity of extending the concept of antiferroelectric-to-ferroelectric (AFE-to-FE) transition to broader antiferrodistortive-to-ferrodistortive (AFD-to-FD) transition for materials that are simultaneously ferroelastic. Combining discussion of the factors driving ferroelectricity, electric-field-driven metal-to-insulator transition in a (La1−xSrx)MnO3 electrode is emphasized to determine the role of ionic migration in improving the storage performance. We believe that this review, aiming at depicting a clearer structure–property relationship, will be of benefit for researchers who wish to carry out cutting-edge structure and energy storage exploration.
Collapse
Affiliation(s)
- Xian-Kui Wei
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
- Correspondence:
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany; (R.E.D.-B.); (J.M.)
- Gemeinschaftslabor für Elektronenmikroskopie (GFE), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
25
|
Bai H, Wu J, Su X, Peng H, Li Z, Yang D, Zhang Q, Uher C, Tang X. Electroresistance in multipolar antiferroelectric Cu 2Se semiconductor. Nat Commun 2021; 12:7207. [PMID: 34893623 PMCID: PMC8664818 DOI: 10.1038/s41467-021-27531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Electric field-induced changes in the electrical resistance of a material are considered essential and enabling processes for future efficient large-scale computations. However, the underlying physical mechanisms of electroresistance are currently remain largely unknown. Herein, an electrically reversible resistance change has been observed in the thermoelectric α-Cu2Se. The spontaneous electric dipoles formed by Cu+ ions displaced from their positions at the centers of Se-tetrahedrons in the ordered α-Cu2Se phase are examined, and α-Cu2Se phase is identified to be a multipolar antiferroelectric semiconductor. When exposed to the applied voltage, a reversible switching of crystalline domains aligned parallel to the polar axis results in an observed reversible resistance change. The study expands on opportunities for semiconductors with localized polar symmetry as the hardware basis for future computational architectures.
Collapse
Affiliation(s)
- Hui Bai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China.
| | - Xianli Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Haoyang Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
- Nanostructure Research Center, Wuhan University of Technology, 430070, Wuhan, China
| | - Zhi Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Dongwang Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Qingjie Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Ctirad Uher
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xinfeng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| |
Collapse
|
26
|
Ke C, Huang J, Liu S. Two-dimensional ferroelectric metal for electrocatalysis. MATERIALS HORIZONS 2021; 8:3387-3393. [PMID: 34672306 DOI: 10.1039/d1mh01556g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coexistence of metallicity and ferroelectricity has been an intriguing and controversial phenomenon as these two material properties are considered incompatible in bulk. We clarify the concept of the ferroelectric metal by revisiting the original definitions for ferroelectric and metal. Two-dimensional (2D) ferroelectrics with out-of-plane polarization can be engineered via layer stacking to a genuine ferroelectric metal characterized by switchable polarization and non-zero density of states at the Fermi level. We demonstrate that 2D ferroelectric metals can serve as electrically-tunable, high-quality electrocatalysts.
Collapse
Affiliation(s)
- Changming Ke
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Hangzhou, Zhejiang 310024, China
| | - Jiawei Huang
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shi Liu
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
27
|
Lee J, Kim GY, Jeong S, Yang M, Kim JW, Cho BG, Choi Y, Kim S, Choi JS, Lee TK, Kim J, Lee DR, Chang SH, Park S, Jung JH, Bark CW, Koo TY, Ryan PJ, Ihm K, Kim S, Choi SY, Kim TH, Lee S. Template Engineering of Metal-to-Insulator Transitions in Epitaxial Bilayer Nickelate Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54466-54475. [PMID: 34739229 DOI: 10.1021/acsami.1c13675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Understanding metal-to-insulator phase transitions in solids has been a keystone not only for discovering novel physical phenomena in condensed matter physics but also for achieving scientific breakthroughs in materials science. In this work, we demonstrate that the transport properties (i.e., resistivity and transition temperature) in the metal-to-insulator transitions of perovskite nickelates are tunable via the epitaxial heterojunctions of LaNiO3 and NdNiO3 thin films. A mismatch in the oxygen coordination environment and interfacial octahedral coupling at the oxide heterointerface allows us to realize an exotic phase that is unattainable in the parent compound. With oxygen vacancy formation for strain accommodation, the topmost LaNiO3 layer in LaNiO3/NdNiO3 bilayer thin films is structurally engineered and it electrically undergoes a metal-to-insulator transition that does not appear in metallic LaNiO3. Modification of the NdNiO3 template layer thickness provides an additional knob for tailoring the tilting angles of corner-connected NiO6 octahedra and the linked transport characteristics further. Our approaches can be harnessed to tune physical properties in complex oxides and to realize exotic physical phenomena through oxide thin-film heterostructuring.
Collapse
Affiliation(s)
- Jongmin Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Gi-Yeop Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seyeop Jeong
- Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Mihyun Yang
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Byeong-Gwan Cho
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sangmo Kim
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Jin San Choi
- Department of Physics, University of Ulsan and Energy Harvest-Storage Research Center (EHSRC), Ulsan 44610, Republic of Korea
| | - Tae Kwon Lee
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Jiwoong Kim
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Dong Ryeol Lee
- Department of Physics, Soongsil University, Seoul 06978, Republic of Korea
| | - Seo Hyoung Chang
- Department of Physics, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Jong Hoon Jung
- Department of Physics, Inha University, Incheon 22212, Republic of Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Tae-Young Koo
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Kyuwook Ihm
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sanghoon Kim
- Department of Physics, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Tae Heon Kim
- Department of Physics, University of Ulsan and Energy Harvest-Storage Research Center (EHSRC), Ulsan 44610, Republic of Korea
| | - Sanghan Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
28
|
Xia C, Chen Y, Chen H. Pressure-induced metal-insulator transition in oxygen-deficient LiNbO 3-type ferroelectrics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:025501. [PMID: 34624871 DOI: 10.1088/1361-648x/ac2e30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Hydrostatic pressure and oxygen vacancies usually have deleterious effects on ferroelectric materials because both tend to reduce their polarization. In this work we use first-principles calculations to study an important class of ferroelectric materials-LiNbO3-type ferroelectrics (LiNbO3as the prototype), and find that in oxygen-deficient LiNbO3-δ, hydrostatic pressure induces an unexpected metal-insulator transition between 8 and 9 GPa. Our calculations also find that strong polar displacements persist in both metallic and insulating oxygen-deficient LiNbO3-δand the size of polar displacements is comparable to pristine LiNbO3under the same pressure. These properties are distinct from widely used perovskite ferroelectric oxide BaTiO3, whose polarization is quickly suppressed by hydrostatic pressure and/or oxygen vacancies. The anomalous pressure-driven metal-insulator transition in oxygen-deficient LiNbO3-δarises from the change of an oxygen vacancy defect state. Hydrostatic pressure increases the polar displacements of oxygen-deficient LiNbO3-δ, which reduces the band width of the defect state and eventually turns it into an in-gap state. In the insulating phase, the in-gap state is further pushed away from the conduction band edge under hydrostatic pressure, which increases the fundamental gap. Our work shows that for LiNbO3-type strong ferroelectrics, oxygen vacancies and hydrostatic pressure combined can lead to new phenomena and potential functions, in contrast to the harmful effects occurring to perovskite ferroelectric oxides such as BaTiO3.
Collapse
Affiliation(s)
- Chengliang Xia
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200062, People's Republic of China
| | - Yue Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Hanghui Chen
- NYU-ECNU Institute of Physics, NYU Shanghai, Shanghai, 200062, People's Republic of China
- Department of Physics, New York University, New York 10003, United States of America
| |
Collapse
|
29
|
Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden-Popper phases. Nat Commun 2021; 12:5527. [PMID: 34545102 PMCID: PMC8452630 DOI: 10.1038/s41467-021-25889-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 09/03/2021] [Indexed: 11/08/2022] Open
Abstract
As the physical properties of ABX3 perovskite-based oxides strongly depend on the geometry of oxygen octahedra containing transition-metal cations, precise identification of the distortion, tilt, and rotation of the octahedra is an essential step toward understanding the structure-property correlation. Here we discover an important electrostatic origin responsible for remarkable Jahn-Teller-type tetragonal distortion of oxygen octahedra during atomic-level direct observation of two-dimensional [AX] interleaved shear faults in five different perovskite-type materials, SrTiO3, BaCeO3, LaCoO3, LaNiO3, and CsPbBr3. When the [AX] sublayer has a net charge, for example [LaO]+ in LaCoO3 and LaNiO3, substantial tetragonal elongation of oxygen octahedra at the fault plane is observed and this screens the strong repulsion between the consecutive [LaO]+ layers. Moreover, our findings on the distortion induced by local charge are identified to be a general structural feature in lanthanide-based An + 1BnX3n + 1-type Ruddlesden-Popper (RP) oxides with charged [LnO]+ (Ln = La, Pr, Nd, Eu, and Gd) sublayers, among more than 80 RP oxides and halides with high symmetry. The present study thus demonstrates that the local uneven electrostatics is a crucial factor significantly affecting the crystal structure of complex oxides.
Collapse
|
30
|
Su T, Cui Y, Lian Z, Hu M, Li M, Lu W, Ren W. Physics-Based Feature Makes Machine Learning Cognizing Crystal Properties Simple. J Phys Chem Lett 2021; 12:8521-8527. [PMID: 34464142 DOI: 10.1021/acs.jpclett.1c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Machine learning (ML) accelerates the rational design and discovery of materials, where the feature plays a critical role in the ML model training. We propose a low-cost electron probability waves (EPW) descriptor based on electronic structures, which is extracted from high-symmetry points in the Brillouin zone. In the task of distinguishing ferromagnetic or antiferromagnetic material, it achieves an accuracy (ACC) at 0.92 and an area under the receiver operating characteristic curve (AUC) at 0.83 by 10-fold cross-validation. Furthermore, EPW excels at classifying metal/semiconductors and judging the direct/indirect bandgap of semiconductors. The distribution of electron clouds is an essential criterion for the origin of ferromagnetism, and EPW acts as an emulation of the electronic structure, which is the key to the achievements. Our EPW-based ML model obtains ACC and AUC equivalent to crystal graph features-based deep learning models for tasks with physical recognitions in electronic states.
Collapse
Affiliation(s)
- Tianhao Su
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- International Centre of Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Yaning Cui
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- International Centre of Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Zhengheng Lian
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Minglang Hu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- International Centre of Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Minjie Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wencong Lu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
- International Centre of Quantum and Molecular Structures, Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
31
|
de la Barrera SC, Cao Q, Gao Y, Gao Y, Bheemarasetty VS, Yan J, Mandrus DG, Zhu W, Xiao D, Hunt BM. Direct measurement of ferroelectric polarization in a tunable semimetal. Nat Commun 2021; 12:5298. [PMID: 34489428 PMCID: PMC8421369 DOI: 10.1038/s41467-021-25587-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
Ferroelectricity, the electrostatic counterpart to ferromagnetism, has long been thought to be incompatible with metallicity due to screening of electric dipoles and external electric fields by itinerant charges. Recent measurements, however, demonstrated signatures of ferroelectric switching in the electrical conductance of bilayers and trilayers of WTe2, a semimetallic transition metal dichalcogenide with broken inversion symmetry. An especially promising aspect of this system is that the density of electrons and holes can be continuously tuned by an external gate voltage. This degree of freedom enables measurement of the spontaneous polarization as free carriers are added to the system. Here we employ capacitive sensing in dual-gated mesoscopic devices of bilayer WTe2 to directly measure the spontaneous polarization in the metallic state and quantify the effect of free carriers on the polarization in the conduction and valence bands, separately. We compare our results to a low-energy model for the electronic bands and identify the layer-polarized states that contribute to transport and polarization simultaneously. Bilayer WTe2 is thus shown to be a fully tunable ferroelectric metal and an ideal platform for exploring polar ordering, ferroelectric transitions, and applications in the presence of free carriers.
Collapse
Affiliation(s)
| | - Qingrui Cao
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yang Gao
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yuan Gao
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.,International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | | | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - David G Mandrus
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - Wenguang Zhu
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Xiao
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Benjamin M Hunt
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Zhang Y, Si W, Jia Y, Yu P, Yu R, Zhu J. Controlling Strain Relaxation by Interface Design in Highly Lattice-Mismatched Heterostructure. NANO LETTERS 2021; 21:6867-6874. [PMID: 34382816 DOI: 10.1021/acs.nanolett.1c01938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strain engineering plays an important role in tuning the microstructure and properties of heterostructures. The key to implement the strain modulation to heterostructures is controlling the strain relaxation, which is generally realized by varying the thickness of thin films or changing substrates. Here, we show that interface polarity can tailor the behavior of strain relaxation in a hexagonal manganite film, whose strain state can be tuned to different extents. Using scanning transmission electron microscopy, a reconstructed atomic layer with elongated interlayer spacing and minor in-plane rotation is observed at the interface, suggesting that the bond hierarchy at interface transits from three-dimension to two-dimension, which accounts for the strain-free heteroepitaxy. Utilizing interface polarity to control the strain relaxation highlights a conceptually opt route to optimize the strain engineering and the realization of strain-free heteroepitaxy in such highly lattice-mismatched heterostructure also provides possibility to transform more bulklike functional oxides to low dimensionality.
Collapse
Affiliation(s)
- Yang Zhang
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Ji Hua Laboratory, Foshan 528299, P.R. China
| | - Wenlong Si
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| | - Yanli Jia
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
33
|
Li S, Birol T. Free-Carrier-Induced Ferroelectricity in Layered Perovskites. PHYSICAL REVIEW LETTERS 2021; 127:087601. [PMID: 34477429 DOI: 10.1103/physrevlett.127.087601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Doping ferroelectrics with carriers is often detrimental to polarization. This makes the design and discovery of metals that undergo a ferroelectriclike transition challenging. In this Letter, we show from first principles that the oxygen octahedral rotations in perovskites are often enhanced by electron doping, and this can be used as a means to strengthen the structural polarization in certain hybrid-improper ferroelectrics-compounds in which the polarization is not stabilized by the long-range Coulomb interactions but is instead induced by a trilinear coupling to octahedral rotations. We use this design strategy to predict a cation ordered Ruddlesden-Popper compound that can be driven into a metallic ferroelectriclike phase via electrolyte gating.
Collapse
Affiliation(s)
- Shutong Li
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
34
|
Duan X, Huang J, Xu B, Liu S. A two-dimensional multiferroic metal with voltage-tunable magnetization and metallicity. MATERIALS HORIZONS 2021; 8:2316-2324. [PMID: 34846436 DOI: 10.1039/d1mh00939g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We design a multiferroic metal that combines seemingly incompatible ferromagnetism, ferroelectricity, and metallicity by hole doping a two-dimensional (2D) ferroelectric with high density of states near the Fermi level. The strong magnetoelectric effect is demonstrated in hole-doped and arsenic-doped monolayer α-In2Se3 using first-principles calculations. Taking advantage of the oppositely charged surfaces created by an out-of-plane polarization, the 2D magnetization and metallicity can be electrically switched on and off in an asymmetrically doped monolayer. The substitutional arsenic defect pair exhibits an intriguing electric field-tunable charge disproportionation process accompanied by an on-off switch of local magnetic moments. The charge ordering process can be controlled by tuning the relative strength of on-site Coulomb repulsion and defect dipole-polarization coupling via strain engineering. Our design principle relying on no transition metal broadens the materials design space for 2D multiferroic metals.
Collapse
Affiliation(s)
- Xu Duan
- Department of Physics, Fudan University, Shanghai 200433, China
| | | | | | | |
Collapse
|
35
|
Berger E, Jamnuch S, Uzundal CB, Woodahl C, Padmanabhan H, Amado A, Manset P, Hirata Y, Kubota Y, Owada S, Tono K, Yabashi M, Wang C, Shi Y, Gopalan V, Schwartz CP, Drisdell WS, Matsuda I, Freeland JW, Pascal TA, Zuerch M. Extreme Ultraviolet Second Harmonic Generation Spectroscopy in a Polar Metal. NANO LETTERS 2021; 21:6095-6101. [PMID: 34264679 PMCID: PMC8323121 DOI: 10.1021/acs.nanolett.1c01502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Indexed: 05/13/2023]
Abstract
The coexistence of ferroelectricity and metallicity seems paradoxical, since the itinerant electrons in metals should screen the long-range dipole interactions necessary for dipole ordering. The recent discovery of the polar metal LiOsO3 was therefore surprising [as discussed earlier in Y. Shi et al., Nat. Mater. 2013, 12, 1024]. It is thought that the coordination preferences of the Li play a key role in stabilizing the LiOsO3 polar metal phase, but an investigation from the combined viewpoints of core-state specificity and symmetry has yet to be done. Here, we apply the novel technique of extreme ultraviolet second harmonic generation (XUV-SHG) and find a sensitivity to the broken inversion symmetry in the polar metal phase of LiOsO3 with an enhanced feature above the Li K-edge that reflects the degree of Li atom displacement as corroborated by density functional theory calculations. These results pave the way for time-resolved probing of symmetry-breaking structural phase transitions on femtosecond time scales with element specificity.
Collapse
Affiliation(s)
- Emma Berger
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Sasawat Jamnuch
- ATLAS
Materials Science Laboratory, Department of Nano Engineering and Chemical
Engineering, University of California−San
Diego, La Jolla, California 92023, United States
| | - Can B. Uzundal
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Clarisse Woodahl
- University
of Florida, Gainesville, Florida 32611, United States
| | - Hari Padmanabhan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Angelique Amado
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Paul Manset
- Ecole Normale
Supérieure - PSL, Paris, France
| | - Yasuyuki Hirata
- National
Defense Academy of Japan, Yokosuka, Kanagawa 239-8686, Japan
| | - Yuya Kubota
- RIKEN
SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN
SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN
SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Makina Yabashi
- RIKEN
SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan
Synchrotron Radiation Research Institute (JASRI), Sayo, Hyogo 679-5198, Japan
| | - Cuixiang Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Youguo Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Venkatraman Gopalan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Craig P. Schwartz
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Walter S. Drisdell
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Joint
Center for Artificial Photosynthesis, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Iwao Matsuda
- Institute
for Solid State Physics, The University
of Tokyo, Kashiwa, Chiba 277-8581, Japan
- Trans-scale
Quantum Science Institute, The University
of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - John W. Freeland
- X-ray
Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tod A. Pascal
- ATLAS
Materials Science Laboratory, Department of Nano Engineering and Chemical
Engineering, University of California−San
Diego, La Jolla, California 92023, United States
- Materials
Science and Engineering, University of California−San
Diego, La Jolla, California 92023, United States
- Sustainable
Power and Energy Center, University of California−San
Diego, La Jolla, California 92023, United States
| | - Michael Zuerch
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Friedrich
Schiller University, 07743 Jena, Germany
| |
Collapse
|
36
|
Michel VF, Esswein T, Spaldin NA. Interplay between ferroelectricity and metallicity in BaTiO 3. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:8640-8649. [PMID: 34354835 PMCID: PMC8280966 DOI: 10.1039/d1tc01868j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 06/02/2023]
Abstract
We explore the interplay between ferroelectricity and metallicity, which are generally considered to be contra-indicated properties, in the prototypical ferroelectric barium titanate, BaTiO3. Using first-principles density functional theory, we calculate the effects of electron and hole doping, first by introducing a hypothetical background charge, and second through the introduction of explicit impurities (La, Nb and V for electron doping, and K, Al and Sc for hole doping). We find that, apart from a surprising increase in polarization at small hole concentrations, both charge-carrier types decrease the tendency towards ferroelectricity, with the strength of the polarization suppression, which is different for electrons and holes, determined by the detailed structure of the conduction and valence bands. Doping with impurity atoms increases the complexity and allows us to identify three factors that influence the ferroelectricity: structural effects arising largely from the size of the impurity ion, electronic effects from the introduction of charge carriers, and changes in unit-cell volume and shape. A competing balance between these contributions can result in an increase or decrease in ferroelectricity with doping.
Collapse
Affiliation(s)
- Veronica F Michel
- Materials Theory, Department of Materials, ETH Zürich Wolfgang-Pauli-Strasse 27 8093 Zürich Switzerland
| | - Tobias Esswein
- Materials Theory, Department of Materials, ETH Zürich Wolfgang-Pauli-Strasse 27 8093 Zürich Switzerland
| | - Nicola A Spaldin
- Materials Theory, Department of Materials, ETH Zürich Wolfgang-Pauli-Strasse 27 8093 Zürich Switzerland
| |
Collapse
|
37
|
Chae I, Zu R, Barhoumi Meddeb A, Ogawa Y, Chen Z, Gopalan V, Ounaies Z, Kim SH. Electric Field-Induced Polarization Responses of Noncentrosymmetric Crystalline Biopolymers in Different Frequency Regimes - A Case Study on Unidirectionally Aligned β-Chitin Crystals. Biomacromolecules 2021; 22:1901-1909. [PMID: 33797889 DOI: 10.1021/acs.biomac.0c01799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A dielectric medium containing noncentrosymmetric domains can exhibit piezoelectric and second-harmonic generation (SHG) responses when an electric field is applied. Since many crystalline biopolymers have noncentrosymmetric structures, there has been a great deal of interest in exploiting their piezoelectric and SHG responses for electromechanical and electro-optic devices, especially owing to their advantages such as biocompatibility and low density. However, exact mechanisms or origins of such polarization responses of crystalline biopolymers remain elusive due to the convolution of responses from multiple domains with varying degrees of structural disorder or difficulty of ensuring the unidirectional alignment of noncentrosymmetric domains. In this study, we investigate the polarization responses of a noncentrosymmetric crystalline biopolymer, namely, unidirectionally aligned β-chitin crystals interspersed in the amorphous protein matrix, which can be obtained naturally from tubeworm Lamellibrachia satsuma (LS) tube. The mechanisms governing polarization responses in different dynamic regimes covering optical (>1013 Hz), acoustic/ultrasonic (103-105 Hz), and low (10-2-102 Hz) frequencies are explained. Relationships between the polarization responses dominant in different frequencies are addressed. Also, electromechanical coupling responses, including piezoelectricity of the LS tube, are quantitatively discussed. The findings of this study can be applicable to other noncentrosymmetric crystalline biopolymers, elucidating their polarization responses.
Collapse
Affiliation(s)
- Inseok Chae
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rui Zu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Amira Barhoumi Meddeb
- Department of Mechanical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Zhe Chen
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Venkatraman Gopalan
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zoubeida Ounaies
- Department of Mechanical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
38
|
Hadjimichael M, Li Y, Zatterin E, Chahine GA, Conroy M, Moore K, Connell ENO, Ondrejkovic P, Marton P, Hlinka J, Bangert U, Leake S, Zubko P. Metal-ferroelectric supercrystals with periodically curved metallic layers. NATURE MATERIALS 2021; 20:495-502. [PMID: 33398118 DOI: 10.1038/s41563-020-00864-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Simultaneous manipulation of multiple boundary conditions in nanoscale heterostructures offers a versatile route to stabilizing unusual structures and emergent phases. Here, we show that a stable supercrystal phase comprising a three-dimensional ordering of nanoscale domains with tailored periodicities can be engineered in PbTiO3-SrRuO3 ferroelectric-metal superlattices. A combination of laboratory and synchrotron X-ray diffraction, piezoresponse force microscopy, scanning transmission electron microscopy and phase-field simulations reveals a complex hierarchical domain structure that forms to minimize the elastic and electrostatic energy. Large local deformations of the ferroelectric lattice are accommodated by periodic lattice modulations of the metallic SrRuO3 layers with curvatures up to 107 m-1. Our results show that multidomain ferroelectric systems can be exploited as versatile templates to induce large curvatures in correlated materials, and present a route for engineering correlated materials with modulated structural and electronic properties that can be controlled using electric fields.
Collapse
Affiliation(s)
- Marios Hadjimichael
- London Centre for Nanotechnology, London, UK.
- Department of Physics and Astronomy, University College London, London, UK.
- Department of Quantum Matter Physics, University of Geneva, Geneva, Switzerland.
| | - Yaqi Li
- Department of Physics and Astronomy, University College London, London, UK
| | - Edoardo Zatterin
- Department of Physics and Astronomy, University College London, London, UK
- The European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Gilbert A Chahine
- Université Grenoble Alpes, CNRS, Grenoble INP, SIMAP, Grenoble, France
| | - Michele Conroy
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kalani Moore
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Eoghan N O' Connell
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Petr Ondrejkovic
- Institute of Physics of the Czech Academy of Sciences, Praha, Czech Republic
| | - Pavel Marton
- Institute of Physics of the Czech Academy of Sciences, Praha, Czech Republic
| | - Jiri Hlinka
- Institute of Physics of the Czech Academy of Sciences, Praha, Czech Republic
| | - Ursel Bangert
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Steven Leake
- The European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Pavlo Zubko
- London Centre for Nanotechnology, London, UK.
- Department of Physics and Astronomy, University College London, London, UK.
| |
Collapse
|
39
|
Zabalo A, Stengel M. Switching a Polar Metal via Strain Gradients. PHYSICAL REVIEW LETTERS 2021; 126:127601. [PMID: 33834822 DOI: 10.1103/physrevlett.126.127601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Although rare, spontaneous breakdown of inversion symmetry sometimes occurs in a material which is metallic: these are commonly known as polar metals or ferroelectric metals. Their polarization, however, is difficult to switch via an electric field, which limits the experimental control over band topology. Here we investigate, via first-principles theory, flexoelectricity as a possible way around this obstacle with the well-known polar metal LiOsO_{3}. The flexocoupling coefficients are computed for this metal with high accuracy with an approach based on real-space sums of the interatomic force constants. A Landau-Ginzburg-Devonshire-type first-principles Hamiltonian is built and a critical bending radius to switch the material is estimated, whose order of magnitude is comparable to that of BaTiO_{3}.
Collapse
Affiliation(s)
- Asier Zabalo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Massimiliano Stengel
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avanats, 08010 Barcelona, Spain
| |
Collapse
|
40
|
Liu X, Singh S, Drouin-Touchette V, Asaba T, Brewer J, Zhang Q, Cao Y, Pal B, Middey S, Kumar PSA, Kareev M, Gu L, Sarma DD, Shafer P, Arenholz E, Freeland JW, Li L, Vanderbilt D, Chakhalian J. Proximate Quantum Spin Liquid on Designer Lattice. NANO LETTERS 2021; 21:2010-2017. [PMID: 33617255 DOI: 10.1021/acs.nanolett.0c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Complementary to bulk synthesis, here we propose a designer lattice with extremely high magnetic frustration and demonstrate the possible realization of a quantum spin liquid state from both experiments and theoretical calculations. In an ultrathin (111) CoCr2O4 slice composed of three triangular and one kagome cation planes, the absence of a spin ordering or freezing transition is demonstrated down to 0.03 K, in the presence of strong antiferromagnetic correlations in the energy scale of 30 K between Co and Cr sublattices, leading to the frustration factor of ∼1000. Persisting spin fluctuations are observed at low temperatures via low-energy muon spin relaxation. Our calculations further demonstrate the emergence of highly degenerate magnetic ground states at the 0 K limit, due to the competition among multiply altered exchange interactions. These results collectively indicate the realization of a proximate quantum spin liquid state on the synthetic lattice.
Collapse
Affiliation(s)
- Xiaoran Liu
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sobhit Singh
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Victor Drouin-Touchette
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Tomoya Asaba
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jess Brewer
- TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Yanwei Cao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Banabir Pal
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Srimanta Middey
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - P S Anil Kumar
- Department of Physics, Indian Institute of Science, Bengaluru 560012, India
| | - Mikhail Kareev
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lin Gu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - D D Sarma
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkley National Laboratory, Berkeley, California 94720, United States
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkley National Laboratory, Berkeley, California 94720, United States
| | - John W Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lu Li
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David Vanderbilt
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jak Chakhalian
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
41
|
Yao L, Inkinen S, Komsa HP, van Dijken S. Structural Phase Transitions to 2D and 3D Oxygen Vacancy Patterns in a Perovskite Film Induced by Electrical and Mechanical Nanoprobing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006273. [PMID: 33590636 DOI: 10.1002/smll.202006273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Oxygen vacancy migration and ordering in perovskite oxides enable manipulation of material properties through changes in the cation oxidation state and the crystal lattice. In thin-films, oxygen vacancies conventionally order into equally spaced planes. Here, it is shown that the planar 2D symmetry is broken if a mechanical nanoprobe restricts the chemical lattice expansion that the vacancies generate. Using in situ scanning transmission electron microscopy, a transition from a perovskite structure to a 3D vacancy-ordered phase in an epitaxial La2/3 Sr1/3 MnO3- δ film during voltage pulsing under local mechanical straining is imaged. The never-before-seen ordering pattern consists of a complex network of distorted oxygen tetrahedra, pentahedra, and octahedra that, together, produce a corrugated atomic structure with lattice constants varying between 3.5 and 4.6 Å. The giant lattice distortions respond sensitively to strain variations, offering prospects for non-volatile nanoscale physical property control driven by voltage and gated by strain.
Collapse
Affiliation(s)
- Lide Yao
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto, FI-00076, Finland
| | - Sampo Inkinen
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto, FI-00076, Finland
| | - Hannu-Pekka Komsa
- Department of Applied Physics, Aalto University School of Science, P.O. Box 11100, Aalto, FI-00076, Finland
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, FI-90014, Finland
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, Aalto, FI-00076, Finland
| |
Collapse
|
42
|
Xu DD, Ma RR, Fu AP, Guan Z, Zhong N, Peng H, Xiang PH, Duan CG. Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nat Commun 2021; 12:655. [PMID: 33510155 PMCID: PMC7844287 DOI: 10.1038/s41467-021-20945-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/28/2020] [Indexed: 11/19/2022] Open
Abstract
Solid-liquid interface is a key concept of many research fields, enabling numerous physical phenomena and practical applications. For example, electrode-electrolyte interfaces with electric double layers have been widely used in energy storage and regulating physical properties of functional materials. Creating a specific interface allows emergent functionalities and effects. Here, we show the artificial control of ferroelectric-liquid interfacial structures to switch polarization states reversibly in a van der Waals layered ferroelectric CuInP2S6 (CIPS). We discover that upward and downward polarization states can be induced by spontaneous physical adsorption of dodecylbenzenesulphonate anions and N,N-diethyl-N-methyl-N-(2-methoxyethyl)-ammonium cations, respectively, at the ferroelectric-liquid interface. This distinctive approach circumvents the structural damage of CIPS caused by Cu-ion conductivity during electrical switching process. Moreover, the polarized state features super-long retention time (>1 year). The interplay between ferroelectric dipoles and adsorbed organic ions has been studied systematically by comparative experiments and first-principles calculations. Such ion adsorption-induced reversible polarization switching in a van der Waals ferroelectric enriches the functionalities of solid-liquid interfaces, offering opportunities for liquid-controlled two-dimensional ferroelectric-based devices. Whether it is possible to achieve polarization inversion in a ferroelectric without any energy consumption is an open question. Here, the authors demonstrate an energy-free approach to control the polarization state of CuInP2S6, a typical room-temperature van der Waals layered ferroelectric.
Collapse
Affiliation(s)
- Dong-Dong Xu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ru-Ru Ma
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ai-Ping Fu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhao Guan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
43
|
Ye M, Hu S, Zhu Y, Zhang Y, Ke S, Xie L, Zhang Y, Hu S, Zhang D, Luo Z, Gu M, He J, Zhang P, Zhang W, Chen L. Electric Polarization Switching on an Atomically Thin Metallic Oxide. NANO LETTERS 2021; 21:144-150. [PMID: 33306405 DOI: 10.1021/acs.nanolett.0c03417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom. Polarization switching and metallic screening are well-known examples of mutually exclusive properties that cannot coexist in bulk solids. Here we report the fabrication of (SrRuO3)1/(BaTiO3)10 superlattices that exhibits reversible polarization switching in an atomically thin metallic layer. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of two-dimensional (2D) metallicity in the SrRuO3 layer accompanied by the breaking of inversion symmetry, supporting electric polarization along the out-of-plane direction. Such a 2D ferroelectric-like metal paves a novel way to engineer a quantum multistate with unusual coexisting properties, such as ferroelectrics and metals, manipulated by external fields.
Collapse
Affiliation(s)
- Mao Ye
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songbai Hu
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanmin Zhu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yubo Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shanming Ke
- School of Materials Science and Engineering, Nanchang University, Nanchang 330031, China
| | - Lin Xie
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Zhang
- School of Materials Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Sixia Hu
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dongwen Zhang
- College of Science, National University of Defense Technology, Hunan 410073, China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Meng Gu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaqing He
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peihong Zhang
- Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Wenqing Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
44
|
Yun H, Topsakal M, Prakash A, Jalan B, Jeong JS, Birol T, Mkhoyan KA. Metallic line defect in wide-bandgap transparent perovskite BaSnO 3. SCIENCE ADVANCES 2021; 7:7/3/eabd4449. [PMID: 33523903 PMCID: PMC7810381 DOI: 10.1126/sciadv.abd4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
A line defect with metallic characteristics has been found in optically transparent BaSnO3 perovskite thin films. The distinct atomic structure of the defect core, composed of Sn and O atoms, was visualized by atomic-resolution scanning transmission electron microscopy (STEM). When doped with La, dopants that replace Ba atoms preferentially segregate to specific crystallographic sites adjacent to the line defect. The electronic structure of the line defect probed in STEM with electron energy-loss spectroscopy was supported by ab initio theory, which indicates the presence of Fermi level-crossing electronic bands that originate from defect core atoms. These metallic line defects also act as electron sinks attracting additional negative charges in these wide-bandgap BaSnO3 films.
Collapse
Affiliation(s)
- Hwanhui Yun
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mehmet Topsakal
- Nuclear Science and Technology Department, Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Abhinav Prakash
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jong Seok Jeong
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
- Analytical Sciences Center, LG Chem Ltd., Daejeon, Republic of Korea
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Andre Mkhoyan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
45
|
Zeng H, Takahashi T, Seki T, Kanai M, Zhang G, Hosomi T, Nagashima K, Shibata N, Yanagida T. Oxygen-Induced Reversible Sn-Dopant Deactivation between Indium Tin Oxide and Single-Crystalline Oxide Nanowire Leading to Interfacial Switching. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52929-52936. [PMID: 33169981 DOI: 10.1021/acsami.0c16108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An impurity doping in semiconductors is an important irreversible process of manipulating the electrical properties of advanced electron devices. Here, we report an unusual reversible dopant activation/deactivation phenomenon, which emerges at an interface between indium tin oxide (ITO) and single-crystalline oxide channel. We found that the interface electrical resistance between ITO electrodes and single-crystalline oxide nanowire channel can be repeatedly switched between a metallic state and a near-insulative state by applying thermal treatments in air or vacuum. Interestingly, this electrical switching phenomenon disappears when the oxide nanowire changes from the single-crystalline structure to the lithography-defined polycrystalline structure. Atmosphere-controlled annealing experiments reveal that atmospheric oxygen induces repeatable change in the interfacial electrical resistance. Systematic investigations on metal cation species and channel crystallinity demonstrate that the observed electrical switching is related to an interface-specific reversible Sn-dopant activation/deactivation of ITO electrode in contact with a single-crystalline oxide channel.
Collapse
Affiliation(s)
- Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takehito Seki
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Guozhu Zhang
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Naoya Shibata
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
46
|
Wei XK, Bihlmayer G, Zhou X, Feng W, Kolen'ko YV, Xiong D, Liu L, Blügel S, Dunin-Borkowski RE. Discovery of Real-Space Topological Ferroelectricity in Metallic Transition Metal Phosphides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003479. [PMID: 33029890 DOI: 10.1002/adma.202003479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Ferroelectric metals-with coexisting ferroelectricity and structural asymmetry-challenge traditional perceptions because free electrons screen electrostatic forces between ions, the driving force of breaking the spatial inversion symmetry. Despite ferroelectric metals having been unveiled one after another, topologically switchable polar objects with metallicity have never been identified so far. Here, the discovery of real-space topological ferroelectricity in metallic and non-centrosymmetric Ni2 P is reported. Protected by the rotation-inversion symmetry operation, it is found that the balanced polarity of alternately stacked polyhedra couples intimately with elemental valence states, which are verified using quantitative electron energy-loss spectroscopy. First-principles calculations reveal that an applied in-plane compressive strain creates a tunable bilinear double-well potential and reverses the polyhedral polarity on a unit-cell scale. The dual roles of nickel cations, including polar displacement inside polyhedral cages and a 3D bonding network, facilitate the coexistence of topological polarity with metallicity. In addition, the switchable in-plane polyhedral polarity gives rise to a spin-orbit-coupling-induced spin texture with large momentum-dependent spin splitting. These findings point out a new direction for exploring valence-polarity-spin correlative interactions via topological ferroelectricity in metallic systems with structural asymmetry.
Collapse
Affiliation(s)
- Xian-Kui Wei
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Gustav Bihlmayer
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich GmbH and JARA, Jülich, 52425, Germany
| | - Xiaodong Zhou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Wanxiang Feng
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yury V Kolen'ko
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Dehua Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Stefan Blügel
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich GmbH and JARA, Jülich, 52425, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| |
Collapse
|
47
|
Zhang Y, Wang J, Ghosez P. Unraveling the Suppression of Oxygen Octahedra Rotations in A_{3}B_{2}O_{7} Ruddlesden-Popper Compounds: Engineering Multiferroicity and Beyond. PHYSICAL REVIEW LETTERS 2020; 125:157601. [PMID: 33095620 DOI: 10.1103/physrevlett.125.157601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The competition between polar distortions and BO_{6} octahedra rotations is well known to be critical in explaining the ground state of various ABO_{3} perovskites. Here, we show from first-principles calculations that a similar competition between interlayer rumpling and rotations is playing a key role in layered Ruddlesden-Popper (RP) perovskites. This competition explains the suppression of oxygen octahedra rotations and hybrid improper ferroelectricity in A_{3}B_{2}O_{7} compounds with rare-earth ions in the rocksalt layer and also appears relevant to other phenomena like negative thermal expansion and the dimensionality determined band gap in RP systems. Moreover, we highlight that RP perovskites offer more flexibility than ABO_{3} perovskites in controlling such a competition and four distinct strategies are proposed to tune it. These strategies are shown to be promising for designing new multiferroics. They are generic and might also be exploited for tuning negative thermal expansion and band gap.
Collapse
Affiliation(s)
- Yajun Zhang
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, B-4000 Liège, Belgium
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Jie Wang
- Department of Engineering Mechanics and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Philippe Ghosez
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, B-4000 Liège, Belgium
| |
Collapse
|
48
|
Kim JR, Jang J, Go KJ, Park SY, Roh CJ, Bonini J, Kim J, Lee HG, Rabe KM, Lee JS, Choi SY, Noh TW, Lee D. Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern. Nat Commun 2020; 11:4944. [PMID: 33009380 PMCID: PMC7532175 DOI: 10.1038/s41467-020-18741-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/10/2020] [Indexed: 11/09/2022] Open
Abstract
Nonequilibrium atomic structures can host exotic and technologically relevant properties in otherwise conventional materials. Oxygen octahedral rotation forms a fundamental atomic distortion in perovskite oxides, but only a few patterns are predominantly present at equilibrium. This has restricted the range of possible properties and functions of perovskite oxides, necessitating the utilization of nonequilibrium patterns of octahedral rotation. Here, we report that a designed metastable pattern of octahedral rotation leads to robust room-temperature ferroelectricity in CaTiO3, which is otherwise nonpolar down to 0 K. Guided by density-functional theory, we selectively stabilize the metastable pattern, distinct from the equilibrium pattern and cooperative with ferroelectricity, in heteroepitaxial films of CaTiO3. Atomic-scale imaging combined with deep neural network analysis confirms a close correlation between the metastable pattern and ferroelectricity. This work reveals a hidden but functional pattern of oxygen octahedral rotation and opens avenues for designing multifunctional materials.
Collapse
Affiliation(s)
- Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Jinhyuk Jang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Se Young Park
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
- Department of Physics, Soongsil University, Seoul, 07027, Korea.
| | - Chang Jae Roh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - John Bonini
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854-8019, USA
| | - Jinkwon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Han Gyeol Lee
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Karin M Rabe
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854-8019, USA
| | - Jong Seok Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
| | - Daesu Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Asia Pacific Center for Theoretical Physics, Pohang, 37673, Korea.
| |
Collapse
|
49
|
Roh CJ, Jung MC, Kim JR, Go KJ, Kim J, Oh HJ, Jo YR, Shin YJ, Choi JG, Kim BJ, Noh DY, Choi SY, Noh TW, Han MJ, Lee JS. Polar Metal Phase Induced by Oxygen Octahedral Network Relaxation in Oxide Thin Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003055. [PMID: 32914531 DOI: 10.1002/smll.202003055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
ABO3 perovskite materials and their derivatives have inherent structural flexibility due to the corner sharing network of the BO6 octahedron, and the large variety of possible structural distortions and strong coupling between lattice and charge/spin degrees of freedom have led to the emergence of intriguing properties, such as high-temperature superconductivity, colossal magnetoresistance, and improper ferroelectricity. Here, an unprecedented polar ferromagnetic metal phase in SrRuO3 (SRO) thin films is presented, arising from the strain-controlled oxygen octahedral rotation (OOR) pattern. For compressively strained SRO films grown on SrTiO3 substrate, oxygen octahedral network relaxation is accompanied by structural phase separation into strained tetragonal and bulk-like orthorhombic phases, and the asymmetric OOR evolution across the phase boundary allows formation of the polar phase, while bulk metallic and ferromagnetic properties are maintained. From the results, it is expected that other oxide perovskite thin films will also yield similar structural environments with variation of OOR patterns, and thereby provide promising opportunities for atomic scale control of material properties through strain engineering.
Collapse
Affiliation(s)
- Chang Jae Roh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Myung-Chul Jung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinkwon Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Ho Jun Oh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yong-Ryun Jo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yeong Jae Shin
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Jeong Gi Choi
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Bong-Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Do Young Noh
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Myung Joon Han
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jong Seok Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
50
|
Xu T, Zhang J, Zhu Y, Wang J, Shimada T, Kitamura T, Zhang TY. Two-dimensional polar metal of a PbTe monolayer by electrostatic doping. NANOSCALE HORIZONS 2020; 5:1400-1406. [PMID: 32845273 DOI: 10.1039/d0nh00188k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polar metals characterized by the simultaneous coexistence of a polar structure and metallicity have been a long-sought goal due to the promise of novel electronic devices. Developing such materials at low dimensions remains challenging since both conducting electrons and reduced dimensions are supposed to quench the polar state. Here, based on first-principles calculations, we report the discovery of a non-centrosymmetric polar structure in two-dimensional (2D) metallic materials with electrostatic doping, even though ferroelectricity is unconventional at the atomic scale. We revealed that the PbTe monolayer is intrinsically ferroelectric with pronounced out-of-plane electric polarization originating from its non-centrosymmetric buckled structure. Moreover, the polar distortions can be preserved with carrier doping in the monolayer, which further enables the doped PbTe monolayer to act as a 2D polar metal. With an effective Hamiltonian extracted from the parametrized energy space, we found that the special elastic-polar mode interaction is of great importance for the existence of robust polar instability (i.e., soft phonon mode associated with polar distortion) in the doped system. The application of this doping strategy is not specific to the present crystal, but is rather general to other 2D ferroelectrics to bring about the fascinating non-centrosymmetric metallic state. Our findings thus change the conventional knowledge in 2D materials and will facilitate the development of multifunctional materials in low dimensions.
Collapse
Affiliation(s)
- Tao Xu
- Materials Genome Institute, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | |
Collapse
|