1
|
Rieseberg TP, Holzhausen A, Bierenbroodspot MJ, Zhang W, Abreu IN, de Vries J. Conserved carotenoid pigmentation in reproductive organs of Charophyceae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230372. [PMID: 39343025 PMCID: PMC11449214 DOI: 10.1098/rstb.2023.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Sexual reproduction in Charophyceae abounds in complex traits. Their gametangia develop as intricate structures, with oogonia spirally surrounded by envelope cells and richly pigmented antheridia. The red-probably protectant-pigmentation of antheridia is conserved across Charophyceae. Chara tomentosa is, however, unique in exhibiting this pigmentation and also in vegetative tissue. Here, we investigated the two sympatric species, C. tomentosa and Chara baltica, and compared their molecular chassis for pigmentation. Using reversed phase C30 high performance liquid chromatography (RP-C30-HPLC), we uncover that the major pigments are β-carotene, δ-carotene and γ-carotene; using headspace solid-phase microextraction coupled to gas chromatography equipped with a mass spectrometer (HS-SPME-GC-MS), we pinpoint that the unusually large carotenoid pool in C. tomentosa gives rise to diverse volatile apocarotenoids, including abundant 6-methyl-5-hepten-2-one. Based on transcriptome analyses, we uncover signatures of the unique biology of Charophycaee and genes for pigment production, including monocyclized carotenoids. The rich carotenoid pool probably serves as a substrate for diverse carotenoid-derived metabolites, signified not only by (i) the volatile apocarotenoids we detected but (ii) the high expression of a gene coding for a cytochrome P450 enzyme related to land plant proteins involved in the biosynthesis of carotenoid-derived hormones. Overall, our data shed light on a key protection strategy of sexual reproduction in the widespread group of macroalgae. The genetic underpinnings of this are shared across hundreds of millions of years of plant and algal evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Anja Holzhausen
- Department of Crop Physiology, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty Heimann-Str. 5 , Halle (Saale) 06120, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Wanchen Zhang
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Ilka N Abreu
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Plant Biochemistry, Albrecht Haller Institute of Plant Science, Justus-von-Liebig-Weg, University of Goettingen , Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, Justus-von-Liebig Weg 11, University of Goettingen , Goettingen 37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Campus Institute Data Science, University of Goettingen , Goettingen 37077, Germany
| |
Collapse
|
2
|
Guo A, Nie H, Li H, Li B, Cheng C, Jiang K, Zhu S, Zhao N, Hua J. The miR3367-lncRNA67-GhCYP724B module regulates male sterility by modulating brassinosteroid biosynthesis and interacting with Aorf27 in Gossypium hirsutum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39526576 DOI: 10.1111/jipb.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Cytoplasmic male sterile (CMS) lines play a crucial role in utilization of heterosis in crop plants. However, the mechanism underlying the manipulation of male sterility in cotton by long non-coding RNA (lncRNA) and brassinosteroids (BRs) remains elusive. Here, using an integrative approach combining lncRNA transcriptomic profiles with virus-induced gene silencing experiments, we identify a flower bud-specific lncRNA in the maintainer line 2074B, lncRNA67, negatively modulating with male sterility in upland cotton (Gossypium hirsutum). lncRNA67 positively regulates cytochrome P274B (GhCYP724B), which acted as an eTM (endogenous target mimic) for miR3367. The suppression of GhCYP724B induced symptoms of BR deficiency and male semi-sterility in upland cotton as well as in tobacco, which resulted from a reduction in the endogenous BR contents. GhCYP724B regulates BRs synthesis by interacting with GhDIM and GhCYP90B, two BRs biosynthesis proteins. Additionally, GhCYP724B suppressed a unique chimeric open reading frame (Aorf27) in 2074A mitochondrial genome. Ectopic expression of Aorf27 in yeast inhibited cellular growth, and over expression of Aorf27 in tobacco showed male sterility. Overall, the results proved that the miR3367-lncRNA67-GhCYP724B module positively regulates male sterility by modulating BRs biosynthesis. The findings uncovered the function of lncRNA67-GhCYP724B in male sterility, providing a new mechanism for understanding male sterility in upland cotton.
Collapse
Affiliation(s)
- Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Cheng Cheng
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
3
|
Wu J, Liu R, Xie Y, Zhao S, Yan M, Sun N, Zhan Y, Li F, Yu S, Feng Z, Li L. Association of GhGeBP genes with fiber quality and early maturity related traits in upland cotton. BMC Genomics 2024; 25:1058. [PMID: 39516804 PMCID: PMC11545813 DOI: 10.1186/s12864-024-10983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Transcription Factors (TFs) are key regulators of how plants grow and develop. Among the diverse TF families, the Glabrous-enhancer binding protein (GeBP) family plays a key role in trichome initiation and leaf development. The specific roles of GeBP TFs in plants remain largely unexplored, although GeBP transcription factors play important roles in plants. This study identified 16 GhGeBP genes in Gossypium hirsutum, ranging from 534 bp (GhGeBP14) to 1560 bp (GhGeBP2). Phylogenetic analysis grouped 16 GhGeBP genes clustered into three subgroups, unevenly distributed across 14 chromosomes. Analysis of the cis-acting elements revealed 408 motifs in the 2 kb upstream regions of the promoters, including stress-responsive, phytohormone-responsive, and light-responsive elements. Tissue-specific expression analysis showed 8 GhGeBP genes were highly expressed across all tissues, while GhGeBP4 and GhGeBP12 were down-regulated under conditions of drought, salt, cold, and heat stress. A genome-wide association study (GWAS) identified GhGeBP4 was associated with fiber micronaire (FM) and fiber strength (FS), while GhGeBP9 was linked to the node of the first fruiting branch (NFFB) and flowering time (FT). Haplotype analysis revealed that GhGeBP4-HAP2 exhibited higher fiber quality traits, while GhGeBP9-HAP2 was associated with early maturity. The results of this study offer significant insights that are worthy of further investigation into the role of the GhGeBP gene family in G. hirsutum and promising targets for marker-assisted selection strategies in cotton breeding programs, particularly for improving fiber quality and early maturity traits.
Collapse
Affiliation(s)
- Jiayan Wu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Ruijie Liu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yuxin Xie
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuqi Zhao
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
- Cotton and Wheat Research Institute, Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, 438000, China
| | - Mengyuan Yan
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Nan Sun
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yihua Zhan
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Feifei Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shuxun Yu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Zhen Feng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Libei Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Liu Y, Wei Z, Pei Y, Yang L, Zou X, Pei Y, Zhang T, Miao P, Gan L, Liu J, Yang Z, Peng J, Li F, Wang Z. Membrane Interactions of GET1 and GET2 Facilitate Fiber Cell Initiation through the Guided Entry of the TA Protein Pathway in Cotton. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24283-24299. [PMID: 39467771 DOI: 10.1021/acs.jafc.4c06208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The guided entry of TA proteins (GET) pathway, which is responsible for the post-translational targeting and insertion of the tail-anchored (TA) protein into the endoplasmic reticulum (ER), plays an important role in physiological processes such as protein sorting, vesicle trafficking, cell apoptosis, and enzymatic reactions in which the GET1/2 complex is indispensable. However, a comprehensive study of the GET1 and GET2 genes and the GET pathway in cotton has not yet been carried out. Here, 12 GET1 and 21 GET2 genes were identified in nine representative plant species, and the phylogenetic relationships, gene structures, protein motifs, cis-regulatory elements (CREs), and temporal and spatial expression profiles were analyzed thoroughly. Our study indicated that GhGET1s and GhGET2s might be localized on ER membranes. According to expression profiling and CREs analysis, GhGET2-A02 was identified as a promising candidate for fiber cell development, interacting with two GhGET1s in the membrane, with a binding bias toward GhGET1-A06. Silencing of GhGET1-A06 or GhGET2-A02 reduced fiber initiation and elongation. In summary, our research provides important evidence for understanding the gene families and functions of GET1 and GET2 in cotton and provides clues for molecular breeding of high-quality cotton fiber varieties.
Collapse
Affiliation(s)
- Yang Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Zhenzhen Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfei Pei
- Hainan Seed Industry Laboratory, Sanya 572000, China
| | - Lu Yang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Xianyan Zou
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Yayue Pei
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Tianen Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Pengfei Miao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Lei Gan
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan, China
| |
Collapse
|
5
|
Liú R, Xiāo X, Gōng J, Lǐ J, Yán H, Gě Q, Lú Q, Lǐ P, Pān J, Shāng H, Shí Y, Chén Q, Yuán Y, Gǒng W. Genetic linkage analysis of stable QTLs in Gossypium hirsutum RIL population revealed function of GhCesA4 in fiber development. J Adv Res 2024; 65:33-46. [PMID: 38065406 PMCID: PMC11519737 DOI: 10.1016/j.jare.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
INTRODUCTION Upland cotton is an important allotetrapolyploid crop providing natural fibers for textile industry. Under the present high-level breeding and production conditions, further simultaneous improvement of fiber quality and yield is facing unprecedented challenges due to their complex negative correlations. OBJECTIVES The study was to adequately identify quantitative trait loci (QTLs) and dissect how they orchestrate the formation of fiber quality and yield. METHODS A high-density genetic map (HDGM) based on an intraspecific recombinant inbred line (RIL) population consisting of 231 individuals was used to identify QTLs and QTL clusters of fiber quality and yield traits. The weighted gene correlation network analysis (WGCNA) package in R software was utilized to identify WGCNA network and hub genes related to fiber development. Gene functions were verified via virus-induced gene silencing (VIGS) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 strategies. RESULTS An HDGM consisting of 8045 markers was constructed spanning 4943.01 cM of cotton genome. A total of 295 QTLs were identified based on multi-environmental phenotypes. Among 139 stable QTLs, including 35 newly identified ones, seventy five were of fiber quality and 64 yield traits. A total of 33 QTL clusters harboring 74 QTLs were identified. Eleven candidate hub genes were identified via WGCNA using genes in all stable QTLs and QTL clusters. The relative expression profiles of these hub genes revealed their correlations with fiber development. VIGS and CRISPR/Cas9 edition revealed that the hub gene cellulose synthase 4 (GhCesA4, GH_D07G2262) positively regulate fiber length and fiber strength formation and negatively lint percentage. CONCLUSION Multiple analyses demonstrate that the hub genes harbored in the QTLs orchestrate the fiber development. The hub gene GhCesA4 has opposite pleiotropic effects in regulating trait formation of fiber quality and yield. The results facilitate understanding the genetic basis of negative correlation between cotton fiber quality and yield.
Collapse
Affiliation(s)
- Ruìxián Liú
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China
| | - Xiànghuī Xiāo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jǔwǔ Gōng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jùnwén Lǐ
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hàoliàng Yán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qún Gě
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Quánwěi Lú
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Péngtāo Lǐ
- College of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
| | - Jìngtāo Pān
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Hǎihóng Shāng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yùzhēn Shí
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Qúanjiā Chén
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China.
| | - Yǒulù Yuán
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, Xinjiang, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Wànkuí Gǒng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China.
| |
Collapse
|
6
|
Yan M, Dong Z, Pan T, Li L, Zhou Z, Li W, Ke Z, Feng Z, Yu S. Systematical characterization of Rab7 gene family in Gossypium and potential functions of GhRab7B3-A gene in drought tolerance. BMC Genomics 2024; 25:1023. [PMID: 39482579 PMCID: PMC11529164 DOI: 10.1186/s12864-024-10930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Cotton serves as a primary source of natural fibers crucial for the textile industry. However, environmental elements such as drought have posed challenges to cotton cultivation, resulting in adverse impacts on both production and fiber quality. Improving cotton's resilience to drought could mitigate yield losses and foster the expansion of cotton farming. Rab7 protein, widely present in organisms, controls the degradation and recycling of cargo, and has a potential role in biotic and abiotic tolerance. However, comprehensive exploration of the Rab7 gene family in Gossypium remains scarce. RESULTS Herein, we identified a total of 10, 10, 20, and 20 Rab7 genes through genome-wide analysis in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Collinearity analysis unveiled the pivotal role of whole genome or segmental duplication events in the expansion of GhRab7s. Study of gene architecture, conserved protein motifs, and domains suggested the conservation of structure and function throughout evolution. Exploration of cis-regulatory elements revealed the responsiveness of GhRab7 genes to abiotic stress, corroborated by transcriptome analysis under diverse environmental stresses. Notably, the greatly induced expression of GhRab7B3-A under drought treatment prompted us to investigate its function through virus-induced gene silencing (VIGS) assays. Silencing GhRab7B3-A led to exacerbated dehydration and wilting compared with the control. Additionally, inhibition of stomatal closure, antioxidant enzyme activities and expression patterns of genes responsive to abiotic stress were observed in GhRab7B3-A silenced plants. CONCLUSIONS This study sheds light on Rab7 members in cotton, identifies a gene linked to drought stress, and paves the way for additional investigation of Rab7 genes associated with drought stress tolerance.
Collapse
Affiliation(s)
- Mengyuan Yan
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhiwei Dong
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tian Pan
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Libei Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ziyue Zhou
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wen Li
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhanbo Ke
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhen Feng
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Shuxun Yu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Kaur H, Shannon LM, Samac DA. A stepwise guide for pangenome development in crop plants: an alfalfa (Medicago sativa) case study. BMC Genomics 2024; 25:1022. [PMID: 39482604 PMCID: PMC11526573 DOI: 10.1186/s12864-024-10931-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND The concept of pangenomics and the importance of structural variants is gaining recognition within the plant genomics community. Due to advancements in sequencing and computational technology, it has become feasible to sequence the entire genome of numerous individuals of a single species at a reasonable cost. Pangenomes have been constructed for many major diploid crops, including rice, maize, soybean, sorghum, pearl millet, peas, sunflower, grapes, and mustards. However, pangenomes for polyploid species are relatively scarce and are available in only few crops including wheat, cotton, rapeseed, and potatoes. MAIN BODY In this review, we explore the various methods used in crop pangenome development, discussing the challenges and implications of these techniques based on insights from published pangenome studies. We offer a systematic guide and discuss the tools available for constructing a pangenome and conducting downstream analyses. Alfalfa, a highly heterozygous, cross pollinated and autotetraploid forage crop species, is used as an example to discuss the concerns and challenges offered by polyploid crop species. We conducted a comparative analysis using linear and graph-based methods by constructing an alfalfa graph pangenome using three publicly available genome assemblies. To illustrate the intricacies captured by pangenome graphs for a complex crop genome, we used five different gene sequences and aligned them against the three graph-based pangenomes. The comparison of the three graph pangenome methods reveals notable variations in the genomic variation captured by each pipeline. CONCLUSION Pangenome resources are proving invaluable by offering insights into core and dispensable genes, novel gene discovery, and genome-wide patterns of variation. Developing user-friendly online portals for linear pangenome visualization has made these resources accessible to the broader scientific and breeding community. However, challenges remain with graph-based pangenomes including compatibility with other tools, extraction of sequence for regions of interest, and visualization of genetic variation captured in pangenome graphs. These issues necessitate further refinement of tools and pipelines to effectively address the complexities of polyploid, highly heterozygous, and cross-pollinated species.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Laura M Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, 55108, USA
| | - Deborah A Samac
- USDA-ARS, Plant Science Research Unit, St. Paul, MN, 55108, USA
| |
Collapse
|
8
|
Hao J, Wen X, Zhu Y. A Genome-Wide Alternative Splicing Analysis of Gossypium arboreum and Gossypium raimondii During Fiber Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:2816. [PMID: 39409686 PMCID: PMC11479146 DOI: 10.3390/plants13192816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024]
Abstract
Alternative splicing (AS) is a crucial post-transcriptional regulatory mechanism that contributes to proteome complexity and versatility in different plant species. However, detailed AS exploration in diploid cotton during fiber development has not been reported. In this study, we comparatively analyzed G. arboreum and G. raimondii AS events during fiber development using transcriptome data and identified 9690 and 7617 AS events that were distributed in 6483 and 4859 genes, respectively. G. arboreum had more AS genes and AS events than G. raimondii, and most AS genes were distributed at both ends of all 13 chromosomes in both diploid cotton species. Four major AS types, including IR, SE, A3SS, and A5SS, were all experimentally validated through RT-PCR assays. G. arboreum and G. raimondii had only 1888 AS genes in common, accounting for one-third and one-half of the total number of AS genes, respectively. Furthermore, we found a lysine-specific demethylase coding gene with a different AS mechanism in G. arboreum and G. raimondii, in which AS isoforms lacked part of a key conserved domain. Our findings may provide new directions for the discovery of functional genes involved in cotton species differentiation.
Collapse
Affiliation(s)
- Jianfeng Hao
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
| | - Xingpeng Wen
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.H.)
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Nie H, Zhao N, Li B, Jiang K, Li H, Zhang J, Guo A, Hua J. Evolutionary comparison of lncRNAs in four cotton species and functional identification of LncR4682-PAS2-KCS19 module in fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39376043 DOI: 10.1111/tpj.17058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in various biological processes in plants. However, there have been few reports on the evolutionary signatures of lncRNAs in closely related cotton species. The lncRNA transcription patterns in two tetraploid cotton species and their putative diploid ancestors were compared in this paper. By performing deep RNA sequencing, we identified 280 429 lncRNAs from 21 tissues in four cotton species. lncRNA transcription evolves more rapidly than mRNAs, and exhibits more severe turnover phenomenon in diploid species compared to that in tetraploid species. Evolutionarily conserved lncRNAs exhibit higher expression levels, and lower tissue specificity compared with species-specific lncRNAs. Remarkably, tissue expression of homologous lncRNAs in Gossypium hirsutum and G. barbadense exhibited similar patterns, suggesting that these lncRNAs may be functionally conserved and selectively maintained during domestication. An orthologous lncRNA, lncR4682, was identified and validated in fibers of G. hirsutum and G. barbadense with the highest conservatism and expression abundance. Through virus-induced gene silencing in upland cotton, we found that lncR4682 and its target genes GHPAS2 and GHKCS19 positively regulated fiber elongation. In summary, the present study provides a systematic analysis of lncRNAs in four closely related cotton species, extending the understanding of transcriptional conservation of lncRNAs across cotton species. In addition, LncR4682-PAS2-KCS19 contributes to cotton fiber elongation by participating in the biosynthesis of very long-chain fatty acids.
Collapse
Affiliation(s)
- Hushuai Nie
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Bin Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Kaiyun Jiang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Huijing Li
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jingrou Zhang
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Anhui Guo
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, No. 2, Yuanmingyuan West Rd., Haidian District, Beijing, 100193, China
| |
Collapse
|
10
|
Khalilisamani N, Li Z, Pettolino FA, Moncuquet P, Reverter A, MacMillan CP. Leveraging transcriptomics-based approaches to enhance genomic prediction: integrating SNPs and gene networks for cotton fibre quality improvement. FRONTIERS IN PLANT SCIENCE 2024; 15:1420837. [PMID: 39372856 PMCID: PMC11450228 DOI: 10.3389/fpls.2024.1420837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Cultivated cotton plants are the world's largest source of natural fibre, where yield and quality are key traits for this renewable and biodegradable commodity. The Gossypium hirsutum cotton genome contains ~80K protein-coding genes, making precision breeding of complex traits a challenge. This study tested approaches to improving the genomic prediction (GP) accuracy of valuable cotton fibre traits to help accelerate precision breeding. With a biology-informed basis, a novel approach was tested for improving GP for key cotton fibre traits with transcriptomics of key time points during fibre development, namely, fibre cells undergoing primary, transition, and secondary wall development. Three test approaches included weighting of SNPs in DE genes overall, in target DE gene lists informed by gene annotation, and in a novel approach of gene co-expression network (GCN) clusters created with partial correlation and information theory (PCIT) as the prior information in GP models. The GCN clusters were nucleated with known genes for fibre biomechanics, i.e., fasciclin-like arabinogalactan proteins, and cluster size effects were evaluated. The most promising improvements in GP accuracy were achieved by using GCN clusters for cotton fibre elongation by 4.6%, and strength by 4.7%, where cluster sizes of two and three neighbours proved most effective. Furthermore, the improvements in GP were due to only a small number of SNPs, in the order of 30 per trait using the GCN cluster approach. Non-trait-specific biological time points, and genes, were found to have neutral effects, or even reduced GP accuracy for certain traits. As the GCN clusters were generated based on known genes for fibre biomechanics, additional candidate genes were identified for fibre elongation and strength. These results demonstrate that GCN clusters make a specific and unique contribution in improving the GP of cotton fibre traits. The findings also indicate that there is room for incorporating biology-based GCNs into GP models of genomic selection pipelines for cotton breeding to help improve precision breeding of target traits. The PCIT-GCN cluster approach may also hold potential application in other crops and trees for enhancing breeding of complex traits.
Collapse
Affiliation(s)
- Nima Khalilisamani
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Zitong Li
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | | | - Philippe Moncuquet
- Cotton Biotechnology, Agriculture and Food, CSIRO, Canberra, ACT, Australia
| | - Antonio Reverter
- Livestock and Aquatic Genomics, Agriculture and Food, CSIRO, St Lucia, QLD, Australia
| | | |
Collapse
|
11
|
Song Q, Du C, Xu Y, Wang J, Lin M, Zuo K. Transcriptional regulation of phospholipid transport in cotton fiber elongation by GhMYB30D04-GhHD1 interaction complex. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39287338 DOI: 10.1111/jipb.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Cotton fiber length is basically determined by well-coordinated gene expression and phosphatidylinositol phosphates (PIPs) accumulation during fiber elongation but the regulatory mechanism governing PIPs transport remains unknown. Here, we report a MYB transcription factor GhMYB30D04 in Gossypium hirsutum that promotes fiber elongation through modulating the expression of PIP transporter gene GhLTPG1. Knockout of GhMYB30D04 gene in cotton (KO) results in a reduction of GhLTPG1 transcripts with lower accumulation of PIPs, leading to shorter fibers and lower fiber yield. Conversely, GhMYB30D04 overexpression (GhMYB30D04-OE) causes richer PIPs and longer cotton fibers, mimicking the effects of exogenously applying PIPs on the ovules of GhMYB30D04-KO and wild type. Furthermore, GhMYB30D04 interacts with GhHD1, the crucial transcription factor of fiber initiation, to form an activation complex stabilized by PIPs, both of which upregulate GhLTPG1 expression. Comparative omics-analysis revealed that higher and extended expressions of LTPG1 in fiber elongation mainly correlate with the variations of the GhMYB30D04 gene between two cotton allotetraploids, contributing to longer fiber in G. babardense. Our work clarifies a mechanism by which GhHD1-GhMYB30D04 form a regulatory module of fiber elongation to tightly control PIP accumulation. Our work still has an implication that GhMYB30D04-GhHD1 associates with development transition from fiber initiation to elongation.
Collapse
Affiliation(s)
- Qingwei Song
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuanhui Du
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiyang Xu
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Lin
- College of Agriculture, Henan University, Kaifeng, 450046, China
| | - Kaijing Zuo
- Single Cell Research Center, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Cohen ZP, Perkin LC, Wagner TA, Liu J, Bell AA, Arick MA, Grover CE, Yu JZ, Udall JA, Suh CPC. Nematode-resistance loci in upland cotton genomes are associated with structural differences. G3 (BETHESDA, MD.) 2024; 14:jkae140. [PMID: 38934790 PMCID: PMC11373641 DOI: 10.1093/g3journal/jkae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 03/22/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Reniform and root-knot nematode are two of the most destructive pests of conventional upland cotton, Gossypium hirsutum L., and continue to be a major threat to cotton fiber production in semiarid regions of the Southern United States and Central America. Fortunately, naturally occurring tolerance to these nematodes has been identified in the Pima cotton species (Gossypium barbadense) and several upland cotton varieties (G. hirsutum), which has led to a robust breeding program that has successfully introgressed and stacked these independent resistant traits into several upland cotton lineages with superior agronomic traits, e.g. BAR 32-30 and BARBREN-713. This work identifies the genomic variations of these nematode-tolerant accessions by comparing their respective genomes to the susceptible, high-quality fiber-producing parental line of this lineage: Phytogen 355 (PSC355). We discover several large genomic differences within marker regions that harbor putative resistance genes as well as expression mechanisms shared by the two resistant lines, with respect to the susceptible PSC355 parental line. This work emphasizes the utility of whole-genome comparisons as a means of elucidating large and small nuclear differences by lineage and phenotype.
Collapse
Affiliation(s)
- Zachary P Cohen
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Lindsey C Perkin
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Tanya A Wagner
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Jinggao Liu
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Alois A Bell
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| | - Mark A Arick
- Biocomputing & Biotechnology, Institute for Genomics, Mississippi State University, Mississippi State, MS 39762, USA
| | | | - John Z Yu
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Joshua A Udall
- USDA Agricultural Research Service, Crop Germplasm Research Unit, College Station, TX 77845, USA
| | - Charles P C Suh
- USDA Agricultural Research Service, Insect Control and Cotton Disease Research Unit, College Station, TX 77845, USA
| |
Collapse
|
13
|
Shahzad K, Zhang M, Mubeen I, Zhang X, Guo L, Qi T, Feng J, Tang H, Qiao X, Wu J, Xing C. Integrative analyses of long and short-read RNA sequencing reveal the spliced isoform regulatory network of seedling growth dynamics in upland cotton. Funct Integr Genomics 2024; 24:156. [PMID: 39230785 DOI: 10.1007/s10142-024-01420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
The polyploid genome of cotton has significantly increased the transcript complexity. Recent advances in full-length transcript sequencing are now widely used to characterize the complete landscape of transcriptional events. Such studies in cotton can help us to explore the genetic mechanisms of the cotton seedling growth. Through long-read single-molecule RNA sequencing, this study compared the transcriptomes of three yield contrasting genotypes of upland cotton. Our analysis identified different numbers of spliced isoforms from 31,166, 28,716, and 28,713 genes in SJ48, Z98, and DT8 cotton genotypes, respectively, most of which were novel compared to previous cotton reference transcriptomes, and showed significant differences in the number of exon structures and coding sequence length due to intron retention. Quantification of isoform expression revealed significant differences in expression in the root and leaf of each genotype. An array of key isoform target genes showed protein kinase or phosphorylation functions, and their protein interaction network contained most of the circadian oscillator proteins. Spliced isoforms from the GIGANTEA (GI) protien were differentially regulated in each genotype and might be expected to regulate translational activities, including the sequence and function of target proteins. In addition, these spliced isoforms generate diurnal expression profiles in cotton leaves, which may alter the transcriptional regulatory network of seedling growth. Silencing of the novel spliced GI isoform Gh_A02G0645_N17 significantly affected biomass traits, contributed to variable growth, and increased transcription of the early flowering pathway gene ELF in cotton. Our high-throughput hybrid sequencing results will be useful to dissect functional differences among spliced isoforms in the polyploid cotton genome.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Iqra Mubeen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
14
|
Sun Y, Tian Z, Zuo D, Cheng H, Wang Q, Zhang Y, Lv L, Song G. Strigolactone-induced degradation of SMXL7 and SMXL8 contributes to gibberellin- and auxin-mediated fiber cell elongation in cotton. THE PLANT CELL 2024; 36:3875-3893. [PMID: 39046066 PMCID: PMC11371155 DOI: 10.1093/plcell/koae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Cotton (Gossypium) fiber length, a key trait determining fiber yield and quality, is highly regulated by a class of recently identified phytohormones, strigolactones (SLs). However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. Here, we show that the SL signaling repressors MORE AXILLARY GROWTH2-LIKE7 (GhSMXL7) and GhSMXL8 negatively regulate cotton fiber elongation. Specifically, GhSMXL7 and GhSMXL8 inhibit the polyubiquitination and degradation of the gibberellin (GA)-triggered DELLA protein (GhSLR1). Biochemical analysis revealed that GhSMXL7 and GhSMXL8 physically interact with GhSLR1, which interferes with the association of GhSLR1 with the E3 ligase GA INSENSITIVE2 (GhGID2), leading to the repression of GA signal transduction. GhSMXL7 also interacts with the transcription factor GhHOX3, preventing its binding to the promoters of essential fiber elongation regulatory genes. Moreover, both GhSMXL7 and GhSMXL8 directly bind to the promoter regions of the AUXIN RESPONSE FACTOR (ARF) genes GhARF18-10A, GhARF18-10D, and GhARF19-7D to suppress their expression. Cotton plants in which GhARF18-10A, GhARF18-10D, and GhARF19-7D transcript levels had been reduced by virus-induced gene silencing (VIGS) displayed reduced fiber length compared with control plants. Collectively, our findings reveal a mechanism illustrating how SL integrates GA and auxin signaling to coordinately regulate plant cell elongation at the single-cell level.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
15
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
16
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
17
|
Aqueel R, Badar A, Roy N, Ijaz UZ, Malik KA. Disease Resistance Correlates with Core Microbiome Diversity in Cotton. Curr Microbiol 2024; 81:302. [PMID: 39115581 PMCID: PMC11310248 DOI: 10.1007/s00284-024-03827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Understanding the resident microbial communities and their above and below ground interactions with plants will provide necessary information for crop disease protection and stress management. In this study, we show how diversity of core microbiome varies with disease susceptibility of a crop. To test this hypothesis, we have focused on identifying the core microbial species of cotton leaf curl disease (CLCuD) susceptible Gossypium hirsutum and CLCuD resistant Gossypium arboreum under viral infestation. Derivation of core membership is challenging as it depends on an occupancy threshold of microbial species in a sampling pool, whilst accounting for different plant compartments. We have used an abundance-occupancy distribution approach where we dynamically assess the threshold for core membership, whilst marginalizing for occupancy in four compartments of the cotton plant, namely, leaf epiphyte, leaf endophyte, rhizosphere, and root endophyte. Additionally, we also fit a neutral model to the returned core species to split them into three groups, those that are neutral, those that are selected by the plant environment, and finally those that are dispersal limited. We have found strong inverse relationship between diversity of core microbiome and disease susceptibility with the resistant variety, G. arboreum, possessing higher diversity of microbiota. A deeper understanding of this association will aid in the development of biocontrol agents for improving plant immunity against biotrophic pathogens.
Collapse
Affiliation(s)
- Rhea Aqueel
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK
| | - Ayesha Badar
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Nazish Roy
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Umer Zeeshan Ijaz
- Water & Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, G11 6EW, UK.
- National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland.
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, L69 7BE, UK.
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
18
|
Ju J, Li Y, Ling P, Luo J, Wei W, Yuan W, Wang C, Su J. H3K36 methyltransferase GhKMT3;1a and GhKMT3;2a promote flowering in upland cotton. BMC PLANT BIOLOGY 2024; 24:739. [PMID: 39095699 PMCID: PMC11295449 DOI: 10.1186/s12870-024-05457-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The SET domain group (SDG) genes encode histone lysine methyltransferases, which regulate gene transcription by altering chromatin structure and play pivotal roles in plant flowering determination. However, few studies have investigated their role in the regulation of flowering in upland cotton. RESULTS A total of 86 SDG genes were identified through genome-wide analysis in upland cotton (Gossypium hirsutum). These genes were unevenly distributed across 25 chromosomes. Cluster analysis revealed that the 86 GhSDGs were divided into seven main branches. RNA-seq data and qRT‒PCR analysis revealed that lysine methyltransferase 3 (KMT3) genes were expressed at high levels in stamens, pistils and other floral organs. Using virus-induced gene silencing (VIGS), functional characterization of GhKMT3;1a and GhKMT3;2a revealed that, compared with those of the controls, the GhKMT3;1a- and GhKMT3;2a-silenced plants exhibited later budding and flowering and lower plant heightwere shorter. In addition, the expression of flowering-related genes (GhAP1, GhSOC1 and GhFT) significantly decreased and the expression level of GhSVP significantly increased in the GhKMT3;1a- and GhKMT3;2a-silenced plants compared with the control plants. CONCLUSION A total of 86 SDG genes were identified in upland cotton, among which GhKMT3;1a and GhKMT3;2a might regulate flowering by affecting the expression of GhAP1, GhSOC1, GhFT and GhSVP. These findings will provide genetic resources for advanced molecular breeding in the future.
Collapse
Affiliation(s)
- Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenmin Yuan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
19
|
Wu C, Xiao S, Zhang X, Ren W, Shangguan X, Li S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Li P, Song G. GhHDZ76, a cotton HD-Zip transcription factor, involved in regulating the initiation and early elongation of cotton fiber development in G. hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112132. [PMID: 38788903 DOI: 10.1016/j.plantsci.2024.112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
In this study, the whole HD-Zip family members of G. hirsutum were identified, and GhHDZ76 was classified into the HD-Zip IV subgroup. GhHDZ76 was predominantly expressed in the 0-5 DPA of fiber development stage and localized in the nucleus. Overexpression of GhHDZ76 significantly increased the length and density of trichomes in Arabidopsis thaliana. The fiber length of GhHDZ76 knockout lines by CRISPR/Cas9 was significantly shorter than WT at the early elongation and mature stage, indicating that GhHDZ76 positively regulate the fiber elongation. Scanning electron microscopy showed that the number of ovule surface protrusion of 0 DPA of GhHDZ76 knockout lines was significantly lower than WT, suggesting that GhHDZ76 can also promote the initiation of fiber development. The transcript level of GhWRKY16, GhRDL1, GhEXPA1 and GhMYB25 genes related to fiber initiation and elongation in GhHDZ76 knockout lines were significantly decreased. Yeast two-hybrid and Luciferase complementation imaging (LCI) assays showed that GhHDZ76 can interact with GhWRKY16 directly. As a transcription factor, GhHDZ76 has transcriptional activation activity, which could bind to L1-box elements of the promoters of GhRDL1 and GhEXPA1. Double luciferase reporter assay showed that the GhWRKY16 could enhance the transcriptional activity of GhHDZ76 to pGhRDL1, but it did not promote the transcriptional activity of GhHDZ76 to pGhEXPA1. GhHDZ76 protein may also promote the transcriptional activity of GhWRKY16 to the downstream target gene GhMYB25. Our results provided a new gene resource for fiber development and a theoretical basis for the genetic improvement of cotton fiber quality.
Collapse
Affiliation(s)
- Cuicui Wu
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Shuiping Xiao
- Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Economic Crops Research Institute of Jiangxi Province, Nanchang 330000, China
| | - Xianliang Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), changji 831100, China
| | - Wenbin Ren
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Xiaoxia Shangguan
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China
| | - Shuyan Li
- Anyang Institute of Technology, Anyang 455000, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Pengbo Li
- Cotton Research Institute of Shanxi Agricultural University, Yuncheng 044000, China.
| | - Guoli Song
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
20
|
Conover JL, Grover CE, Sharbrough J, Sloan DB, Peterson DG, Wendel JF. Little evidence for homoeologous gene conversion and homoeologous exchange events in Gossypium allopolyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16386. [PMID: 39107998 DOI: 10.1002/ajb2.16386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
PREMISE A complicating factor in analyzing allopolyploid genomes is the possibility of physical interactions between homoeologous chromosomes during meiosis, resulting in either crossover (homoeologous exchanges) or non-crossover products (homoeologous gene conversion). Homoeologous gene conversion was first described in cotton by comparing SNP patterns in sequences from two diploid progenitors with those from the allopolyploid subgenomes. These analyses, however, did not explicitly consider other evolutionary scenarios that may give rise to similar SNP patterns as homoeologous gene conversion, creating uncertainties about the reality of the inferred gene conversion events. METHODS Here, we use an expanded phylogenetic sampling of high-quality genome assemblies from seven allopolyploid Gossypium species (all derived from the same polyploidy event), four diploid species (two closely related to each subgenome), and a diploid outgroup to derive a robust method for identifying potential genomic regions of gene conversion and homoeologous exchange. RESULTS We found little evidence for homoeologous gene conversion in allopolyploid cottons, and that only two of the 40 best-supported events were shared by more than one species. We did, however, reveal a single, shared homoeologous exchange event at one end of chromosome 1, which occurred shortly after allopolyploidization but prior to divergence of the descendant species. CONCLUSIONS Overall, our analyses demonstrated that homoeologous gene conversion and homoeologous exchanges are uncommon in Gossypium, affecting between zero and 24 genes per subgenome (0.0-0.065%) across the seven species. More generally, we highlighted the potential problems of using simple four-taxon tests to investigate patterns of homoeologous gene conversion in established allopolyploids.
Collapse
Affiliation(s)
- Justin L Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, 85718, AZ, USA
- Molecular and Cellular Biology Department, University of Arizona, Tucson, 85718, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| | - Joel Sharbrough
- Biology Department, New Mexico Institute of Mining and Technology, Socorro, 87801, NM, USA
| | - Daniel B Sloan
- Biology Department, Colorado State University, Fort Collins, 80521, CO, USA
| | - Daniel G Peterson
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, 39762, MS, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, 50010, IA, USA
| |
Collapse
|
21
|
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, Pyhäjärvi T, Salojärvi J, Lascoux M. Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles. Syst Biol 2024; 73:392-418. [PMID: 38613229 PMCID: PMC11282369 DOI: 10.1093/sysbio/syae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introgression allows polyploid species to acquire new genomic content from diploid progenitors or from other unrelated diploid or polyploid lineages, contributing to genetic diversity and facilitating adaptive allele discovery. In some cases, high levels of introgression elicit the replacement of large numbers of alleles inherited from the polyploid's ancestral species, profoundly reshaping the polyploid's genomic composition. In such complex polyploids, it is often difficult to determine which taxa were the progenitor species and which taxa provided additional introgressive blocks through subsequent hybridization. Here, we use population-level genomic data to reconstruct the phylogenetic history of Betula pubescens (downy birch), a tetraploid species often assumed to be of allopolyploid origin and which is known to hybridize with at least four other birch species. This was achieved by modeling polyploidization and introgression events under the multispecies coalescent and then using an approximate Bayesian computation rejection algorithm to evaluate and compare competing polyploidization models. We provide evidence that B. pubescens is the outcome of an autoploid genome doubling event in the common ancestor of B. pendula and its extant sister species, B. platyphylla, that took place approximately 178,000-188,000 generations ago. Extensive hybridization with B. pendula, B. nana, and B. humilis followed in the aftermath of autopolyploidization, with the relative contribution of each of these species to the B. pubescens genome varying markedly across the species' range. Functional analysis of B. pubescens loci containing alleles introgressed from B. nana identified multiple genes involved in climate adaptation, while loci containing alleles derived from B. humilis revealed several genes involved in the regulation of meiotic stability and pollen viability in plant species.
Collapse
Affiliation(s)
- J Luis Leal
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Pascal Milesi
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| | - Eva Hodková
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16521 Prague, Czech Republic
| | - Qiujie Zhou
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jennifer James
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Tanja Pyhäjärvi
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
- Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, P.O. Box 65 (Viikinkaari 1), 00014 Helsinki, Finland
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
- Science for Life Laboratory (SciLifeLab), Uppsala University, 75237 Uppsala, Sweden
| |
Collapse
|
22
|
Huang P, Lin Z, Zhang Y, Gao Y, Tan S, Wang S, Cao X, Shi H, Sun C, Bai J, Ma X. Genome-Wide Identification and Expression Analysis of ADK Gene Family Members in Cotton under Abiotic Stress. Int J Mol Sci 2024; 25:7821. [PMID: 39063069 PMCID: PMC11277214 DOI: 10.3390/ijms25147821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Adenosine kinase (ADK) is a key enzyme widely distributed in plants, playing an important role in maintaining cellular energy homeostasis and regulating plant growth, development, and responses to environmental stresses. However, research on ADK genes in cotton (Gossypium hirsutum), an economically significant crop, has been limited. This study identified 92 ADK genes from four cotton species (G. arboreum, G. raimondii, G. hirsutum, and G. barbadense) using HMMER and Local BLASTP methods and classified them into six groups. Chromosomal localization revealed a random distribution of ADK genes in G. hirsutum, with 13 genes located on the At subgenome and 14 genes on the Dt subgenome. Gene structure analysis showed consistency in exon-intron organization within subgroups, while conserved motif analysis identified subgroup-specific motifs, indicating functional diversity. Synteny and collinearity mapping analysis revealed that the primary expansion mechanisms of the ADK gene family in cotton are polyploidy and segmental duplication. Cis-regulatory elements in GhADK promoters were classified into light response, hormone response, developmental regulation, and stress response. We also analyzed the expression patterns of GhADK genes under a low temperature (4 °C) and drought conditions. Most GhADK genes responded to cold stress with different expression patterns, indicating their roles in rapid response and long-term cold adaptation. Under drought stress, expression patterns varied, with some genes showing sustained high expression levels. The qRT-PCR validation of transcriptomic data confirmed the stress-induced expression patterns of selected GhADK genes. Functional analysis through the VIGS silencing of GhADK25 demonstrated its importance in cold and drought stress responses, with silencing resulting in poor growth under stress, highlighting its significance in stress tolerance. This study provides a basis for further understanding the evolutionary relationships and functions of the cotton ADK gene family.
Collapse
Affiliation(s)
- Peijun Huang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (P.H.); (C.S.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Ziwei Lin
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Yuzhi Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Yu Gao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Songjuan Tan
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Shuai Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Xiaoyu Cao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Hongyan Shi
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (P.H.); (C.S.)
| | - Jiangping Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (P.H.); (C.S.)
| | - Xiongfeng Ma
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (P.H.); (C.S.)
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Z.L.); (Y.Z.); (Y.G.); (S.T.); (S.W.); (H.S.)
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 518000, China
| |
Collapse
|
23
|
Sun W, Xia L, Deng J, Sun S, Yue D, You J, Wang M, Jin S, Zhu L, Lindsey K, Zhang X, Yang X. Evolution and subfunctionalization of CIPK6 homologous genes in regulating cotton drought resistance. Nat Commun 2024; 15:5733. [PMID: 38977687 PMCID: PMC11231324 DOI: 10.1038/s41467-024-50097-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
The occurrence of whole-genome duplication or polyploidy may promote plant adaptability to harsh environments. Here, we clarify the evolutionary relationship of eight GhCIPK6 homologous genes in upland cotton (Gossypium hirsutum). Gene expression and interaction analyses indicate that GhCIPK6 homologous genes show significant functional changes after polyploidy. Among these, GhCIPK6D1 and GhCIPK6D3 are significantly up-regulated by drought stress. Functional studies reveal that high GhCIPK6D1 expression promotes cotton drought sensitivity, while GhCIPK6D3 expression promotes drought tolerance, indicating clear functional differentiation. Genetic and biochemical analyses confirm the synergistic negative and positive regulation of cotton drought resistance through GhCBL1A1-GhCIPK6D1 and GhCBL2A1-GhCIPK6D3, respectively, to regulate stomatal movement by controlling the directional flow of K+ in guard cells. These results reveal differentiated roles of GhCIPK6 homologous genes in response to drought stress in upland cotton following polyploidy. The work provides a different perspective for exploring the functionalization and subfunctionalization of duplicated genes in response to polyploidization.
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Linjie Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Simin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Dandan Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, P. R. China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
24
|
Liu J, Wang Z, Chen B, Wang G, Ke H, Zhang J, Jiao M, Wang Y, Xie M, Gu Q, Sun Z, Wu L, Wang X, Ma Z, Zhang Y. Genome-Wide Identification of the Alfin-like Gene Family in Cotton ( Gossypium hirsutum) and the GhAL19 Gene Negatively Regulated Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1831. [PMID: 38999670 PMCID: PMC11243875 DOI: 10.3390/plants13131831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024]
Abstract
Alfin-like (AL) is a small plant-specific gene family characterized by a PHD-finger-like structural domain at the C-terminus and a DUF3594 structural domain at the N-terminus, and these genes play prominent roles in plant development and abiotic stress response. In this study, we conducted genome-wide identification and analyzed the AL protein family in Gossypium hirsutum cv. NDM8 to assess their response to various abiotic stresses for the first time. A total of 26 AL genes were identified in NDM8 and classified into four groups based on a phylogenetic tree. Moreover, cis-acting element analysis revealed that multiple phytohormone response and abiotic stress response elements were highly prevalent in AL gene promoters. Further, we discovered that the GhAL19 gene could negatively regulate drought and salt stresses via physiological and biochemical changes, gene expression, and the VIGS assay. The study found there was a significant increase in POD and SOD activity, as well as a significant change in MDA in VIGS-NaCl and VIGS-PEG plants. Transcriptome analysis demonstrated that the expression levels of the ABA biosynthesis gene (GhNCED1), signaling genes (GhABI1, GhABI2, and GhABI5), responsive genes (GhCOR47, GhRD22, and GhERFs), and the stress-related marker gene GhLEA14 were regulated in VIGS lines under drought and NaCl treatment. In summary, GhAL19 as an AL TF may negatively regulate tolerance to drought and salt by regulating the antioxidant capacity and ABA-mediated pathway.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhicheng Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Jin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Mengjia Jiao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Meixia Xie
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
25
|
Wang P, Abbas M, He J, Zhou L, Cheng H, Guo H. Advances in genome sequencing and artificially induced mutation provides new avenues for cotton breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1400201. [PMID: 39015293 PMCID: PMC11250495 DOI: 10.3389/fpls.2024.1400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
Cotton production faces challenges in fluctuating environmental conditions due to limited genetic variation in cultivated cotton species. To enhance the genetic diversity crucial for this primary fiber crop, it is essential to augment current germplasm resources. High-throughput sequencing has significantly impacted cotton functional genomics, enabling the creation of diverse mutant libraries and the identification of mutant functional genes and new germplasm resources. Artificial mutation, established through physical or chemical methods, stands as a highly efficient strategy to enrich cotton germplasm resources, yielding stable and high-quality raw materials. In this paper, we discuss the good foundation laid by high-throughput sequencing of cotton genome for mutant identification and functional genome, and focus on the construction methods of mutant libraries and diverse sequencing strategies based on mutants. In addition, the important functional genes identified by the cotton mutant library have greatly enriched the germplasm resources and promoted the development of functional genomes. Finally, an innovative strategy for constructing a cotton CRISPR mutant library was proposed, and the possibility of high-throughput screening of cotton mutants based on a UAV phenotyping platform was discussed. The aim of this review was to expand cotton germplasm resources, mine functional genes, and develop adaptable materials in a variety of complex environments.
Collapse
Affiliation(s)
- Peilin Wang
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mubashir Abbas
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhan He
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Hebei Key Laboratory of Crop Genetics and Breeding, Shijiazhuang, Hebei, China
| | - Lili Zhou
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiming Guo
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, Hainan, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Zhang H, Xiao X, Li Z, Chen Y, Li P, Peng R, Lu Q, Wang Y. Exploring the plasmodesmata callose-binding protein gene family in upland cotton: unraveling insights for enhancing fiber length. PeerJ 2024; 12:e17625. [PMID: 38948221 PMCID: PMC11214431 DOI: 10.7717/peerj.17625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/02/2024] [Indexed: 07/02/2024] Open
Abstract
Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.
Collapse
Affiliation(s)
- Haibo Zhang
- College of Agriculture, Tarim University, Alar, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Xianghui Xiao
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Ziyin Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Pengtao Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Quanwei Lu
- College of Agriculture, Tarim University, Alar, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, Henan, China
| | - Youwu Wang
- College of Agriculture, Tarim University, Alar, China
| |
Collapse
|
27
|
Nardeli SM, Arge LWP, Artico S, de Moura SM, Tschoeke DA, de Freitas Guedes FA, Grossi-de-Sa MF, Martinelli AP, Alves-Ferreira M. Global gene expression profile and functional analysis reveal the conservation of reproduction-associated gene networks in Gossypium hirsutum. PLANT REPRODUCTION 2024; 37:215-227. [PMID: 38183442 DOI: 10.1007/s00497-023-00491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/29/2023] [Indexed: 01/08/2024]
Abstract
KEY MESSAGE Lastly, the bZIP gene family encompasses genes that have been reported to play a role in flower development, such as bZIP14 (FD). Notably, bZIP14 is essential for Flowering Locus T (FT) initiation of floral development in Arabidopsis (Abe et al. 2005). Cotton (Gossypium hirsutum L.) is the world's most extensively cultivated fiber crop. However, its reproductive development is poorly characterized at the molecular level. Thus, this study presents a detailed transcriptomic analysis of G. hirsutum at three different reproductive stages. We provide evidence that more than 64,000 genes are active in G. hirsutum during flower development, among which 94.33% have been assigned to functional terms and specific pathways. Gene set enrichment analysis (GSEA) revealed that the biological process categories of floral organ development, pollen exine formation, and stamen development were enriched among the genes expressed during the floral development of G. hirsutum. Furthermore, we identified putative Arabidopsis homologs involved in the G. hirsutum gene regulatory network (GRN) of pollen and flower development, including transcription factors such as WUSCHEL (WUS), INNER NO OUTER (INO), AGAMOUS-LIKE 66 (AGL66), SPOROCYTELESS/NOZZLE (SPL/NZZ), DYSFUNCTIONAL TAPETUM 1 (DYT1), ABORTED MICROSPORES (AMS), and ASH1-RELATED 3 (ASHR3), which are known crucial genes for plant reproductive success. The cotton MADS-box protein-protein interaction pattern resembles the previously described patterns for AGAMOUS (AG), SEEDSTICK (STK), SHATTERPROOF (SHP), and SEPALLATA3 (SEP3) homolog proteins from Arabidopsis. In addition to serving as a resource for comparative flower development studies, this work highlights the changes in gene expression profiles and molecular networks underlying stages that are valuable for cotton breeding improvement.
Collapse
Affiliation(s)
- Sarah Muniz Nardeli
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Luis Willian Pacheco Arge
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
| | - Sinara Artico
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
| | - Stéfanie Menezes de Moura
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
- Embrapa Genetic Resources and Biotechnology-Embrapa, Brasília, DF, Brazil
| | - Diogo Antonio Tschoeke
- Laboratório de Microbiologia, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
| | - Fernanda Alves de Freitas Guedes
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology-Embrapa, Brasília, DF, Brazil
- Catholic University of Brasília, Brasília, DF, Brazil
- National Institute of Science and Technology-INCT PlantStress Biotech, Embrapa, Brasília, DF, Brazil
| | | | - Marcio Alves-Ferreira
- Laboratório de Genética Molecular e Biotecnologia Vegetal, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, RJ, Brazil.
- National Institute of Science and Technology-INCT PlantStress Biotech, Embrapa, Brasília, DF, Brazil.
| |
Collapse
|
28
|
Zhang X, Jia S, He Y, Wen J, Li D, Yang W, Yue Y, Li H, Cheng K, Zhang X. Wall-associated kinase GhWAK13 mediates arbuscular mycorrhizal symbiosis and Verticillium wilt resistance in cotton. THE NEW PHYTOLOGIST 2024; 242:2180-2194. [PMID: 38095050 DOI: 10.1111/nph.19468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 05/14/2024]
Abstract
The cell wall is the major interface for arbuscular mycorrhizal (AM) symbiosis. However, the roles of cell wall proteins and cell wall synthesis in AM symbiosis remain unclear. We reported that a novel wall-associated kinase 13 (GhWAK13) positively regulates AM symbiosis and negatively regulates Verticillium wilt resistance in cotton. GhWAK13 transcription was induced by AM symbiosis and Verticillium dahliae (VD) infection. GhWAK13 is located in the plasma membrane and expressed in the arbuscule-containing cortical cells of mycorrhizal cotton roots. GhWAK13 silencing inhibited AM colonization and repressed gene expression of the mycorrhizal pathway. Moreover, GhWAK13 silencing improved Verticillium wilt resistance and triggered the expression of immunity genes. Therefore, GhWAK13 is considered an immune suppressor required for AM symbiosis and disease resistance. GhWAK7A, a positive regulator of Verticillium wilt resistance, was upregulated in GhWAK13-silenced cotton plants. Silencing GhWAK7A improved AM symbiosis. Oligogalacturonides application also suppressed AM symbiosis. Finally, GhWAK13 negatively affected the cellulose content by regulating the transcription of cellulose synthase genes. The results of this study suggest that immunity suppresses AM symbiosis in cotton. GhWAK13 affects AM symbiosis by suppressing immune responses.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangjie Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yiming He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jingshang Wen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Dongxiao Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Ying Yue
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Huiling Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
29
|
Li G, Che J, Gong J, Duan L, Zhang Z, Jiang X, Xu P, Fan S, Gong W, Shi Y, Liu A, Li J, Li P, Pan J, Deng X, Yuan Y, Shang H. Quantitative Trait Locus Mapping for Plant Height and Branch Number in CCRI70 Recombinant Inbred Line Population of Upland Cotton (Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:1509. [PMID: 38891318 PMCID: PMC11174691 DOI: 10.3390/plants13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Upland cotton accounts for a high percentage (95%) of the world's cotton production. Plant height (PH) and branch number (BN) are two important agronomic traits that have an impact on improving the level of cotton mechanical harvesting and cotton yield. In this research, a recombinant inbred line (RIL) population with 250 lines developed from the variety CCRI70 was used for constructing a high-density genetic map and identification of quantitative trait locus (QTL). The results showed that the map harbored 8298 single nucleotide polymorphism (SNP) markers, spanning a total distance of 4876.70 centimorgans (cMs). A total of 69 QTLs for PH (9 stable) and 63 for BN (11 stable) were identified and only one for PH was reported in previous studies. The QTLs for PH and BN harbored 495 and 446 genes, respectively. Combining the annotation information, expression patterns and previous studies of these genes, six genes could be considered as potential candidate genes for PH and BN. The results could be helpful for cotton researchers to better understand the genetic mechanism of PH and BN development, as well as provide valuable genetic resources for cotton breeders to manipulate cotton plant architecture to meet future demands.
Collapse
Affiliation(s)
- Gangling Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jincan Che
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Li Duan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory of Plant Stress Biology, College of Life Science, Henan University, Kaifeng 475001, China
| | - Zhen Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiao Jiang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Peng Xu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Senmiao Fan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Yuzhen Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Aiying Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Pengtao Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Jingtao Pan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Xiaoying Deng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Youlu Yuan
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| | - Haihong Shang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (G.L.); (J.C.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (J.G.); (L.D.); (X.J.); (P.X.); (S.F.); (W.G.); (A.L.); (J.L.); (P.L.); (J.P.); (X.D.)
| |
Collapse
|
30
|
Gu H, Pan Z, Jia M, Fang H, Li J, Qi Y, Yang Y, Feng W, Gao X, Ditta A, Khan MKR, Wang W, Cao Y, Wang B. Genome-wide identification and analysis of the cotton ALDH gene family. BMC Genomics 2024; 25:513. [PMID: 38789947 PMCID: PMC11127303 DOI: 10.1186/s12864-024-10388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are a family of enzymes that catalyze the oxidation of aldehyde molecules into the corresponding carboxylic acid, regulate the balance of aldehydes and protect plants from the poisoning caused by excessive accumulation of aldehydes; however, this gene family has rarely been studied in cotton. RESULTS In the present study, genome-wide identification was performed, and a total of 114 ALDH family members were found in three cotton species, Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii. The ALDH genes were divided into six subgroups by evolutionary analysis. ALDH genes in the same subgroup showed similar gene structures and conserved motifs, but some genes showed significant differences, which may result in functional differences. Chromosomal location analysis and selective pressure analysis revealed that the ALDH gene family had experienced many fragment duplication events. Cis-acting element analysis revealed that this gene family may be involved in the response to various biotic and abiotic stresses. The RT‒qPCR results showed that the expression levels of some members of this gene family were significantly increased under salt stress conditions. Gohir.A11G040800 and Gohir.D06G046200 were subjected to virus-induced gene silencing (VIGS) experiments, and the sensitivity of the silenced plants to salt stress was significantly greater than that of the negative control plants, suggesting that Gohir.A11G040800 and Gohir.D06G046200 may be involved in the response of cotton to salt stress. CONCLUSIONS In total, 114 ALDH genes were identified in three Gossypium species by a series of bioinformatics analysis. Gene silencing of the ALDH genes of G. hirsutum revealed that ALDH plays an important role in the response of cotton to salt stress.
Collapse
Affiliation(s)
- Haijing Gu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zongjin Pan
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China
| | - Mengxue Jia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Hui Fang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Junyi Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yingxiao Qi
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yixuan Yang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
- Nantong Middle School, Nantong, Jiangsu, 226001, China
| | - Wenxiang Feng
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Xin Gao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Allah Ditta
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Muhammad K R Khan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad, 38000, Pakistan
| | - Wei Wang
- Jiangsu Coastal Area Institute of Agricultural Sciences/Jiangsu Collaborative Innovation Center for Modern Crop Production, Yancheng, Jiangsu, 224002, China.
| | - Yunying Cao
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China.
| |
Collapse
|
31
|
Rehman A, Tian C, Li X, Wang X, Li H, He S, Jiao Z, Qayyum A, Du X, Peng Z. GhiPLATZ17 and GhiPLATZ22, zinc-dependent DNA-binding transcription factors, promote salt tolerance in upland cotton. PLANT CELL REPORTS 2024; 43:140. [PMID: 38740586 DOI: 10.1007/s00299-024-03178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.
Collapse
Affiliation(s)
- Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China
| | - Zhen Jiao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
| | - Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
| |
Collapse
|
32
|
Chen L, Hao J, Qiao K, Wang N, Ma L, Wang Z, Wang J, Pu X, Fan S, Ma Q. GhTKPR1_8 functions to inhibit anther dehiscence and reduce pollen viability in cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14331. [PMID: 38710477 DOI: 10.1111/ppl.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Sporopollenin, as the main component of the pollen exine, is a highly resistant polymer that provides structural integrity under unfavourable environmental conditions. Tetraketone α-pyrone reductase 1 (TKPR1) is essential for sporopollenin formation, catalyzing the reduction of tetraketone carbonyl to hydroxylated α-pyrone. The functional role of TKPR1 in male sterility has been reported in flowering plants such as maize, rice, and Arabidopsis. However, the molecular cloning and functional characterization of TKPR1 in cotton remain unaddressed. In this study, we identified 68 TKPR1s from four cotton species, categorized into three clades. Transcriptomics and RT-qPCR demonstrated that GhTKPR1_8 exhibited typical expression patterns in the tetrad stage of the anther. GhTKPR1_8 was localized to the endoplasmic reticulum. Moreover, ABORTED MICROSPORES (GhAMS) transcriptionally activated GhTKPR1_8 as indicated by luciferase complementation tests. GhTKPR1_8-knockdown inhibited anther dehiscence and reduced pollen viability in cotton. Additionally, overexpression of GhTKPR1_8 in the attkpr1 mutant restored its male sterile phenotype. This study offers novel insights into the investigation of TKPR1 in cotton while providing genetic resources for studying male sterility.
Collapse
Affiliation(s)
- Lingling Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Juxin Hao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Kaikai Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Ningna Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lina Ma
- Hebei Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhe Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Wang
- Hebei Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaoyan Pu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
33
|
Tang L, Liu C, Li X, Wang H, Zhang S, Cai X, Zhang J. An aldehyde dehydrogenase gene, GhALDH7B4_A06, positively regulates fiber strength in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1377682. [PMID: 38736450 PMCID: PMC11082362 DOI: 10.3389/fpls.2024.1377682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, Hebei, China
| |
Collapse
|
34
|
Yang X, Bai Z, He Y, Wang N, Sun L, Li Y, Yin Z, Wang X, Zhang B, Han M, Lu X, Chen X, Wang D, Wang J, Wang S, Guo L, Chen C, Feng K, Ye W. Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton. BMC PLANT BIOLOGY 2024; 24:312. [PMID: 38649800 PMCID: PMC11036760 DOI: 10.1186/s12870-024-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND DNA methylation is an important epigenetic mode of genomic DNA modification and plays a vital role in maintaining epigenetic content and regulating gene expression. Cytosine-5 DNA methyltransferase (C5-MTase) are the key enzymes in the process of DNA methylation. However, there is no systematic analysis of the C5-MTase in cotton so far, and the function of DNMT2 genes has not been studied. METHODS In this study, the whole genome of cotton C5-MTase coding genes was identified and analyzed using a bioinformatics method based on information from the cotton genome, and the function of GhDMT6 was further validated by VIGS experiments and subcellular localization analysis. RESULTS 33 C5-MTases were identified from three cotton genomes, and were divided into four subfamilies by systematic evolutionary analysis. After the protein domain alignment of C5-MTases in cotton, 6 highly conserved motifs were found in the C-terminus of 33 proteins involved in methylation modification, which indicated that C5-MTases had a basic catalytic methylation function. These proteins were divided into four classes based on the N-terminal difference, of which DNMT2 lacks the N-terminal regulatory domain. The expression of C5-MTases in different parts of cotton was different under different stress treatments, which indicated the functional diversity of cotton C5-MTase gene family. Among the C5-MTases, the GhDMT6 had a obvious up-regulated expression. After silencing GhDMT6 with VIGS, the phenotype of cotton seedlings under different stress treatments showed a significant difference. Compared with cotton seedlings that did not silence GhDMT6, cotton seedlings silencing GhDMT6 showed significant stress resistance. CONCLUSION The results show that C5-MTases plays an important role in cotton stress response, which is beneficial to further explore the function of DNMT2 subfamily genes.
Collapse
Affiliation(s)
- Xiaomin Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zhigang Bai
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yunxin He
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Liangqing Sun
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Yongqi Li
- Cash Crop Research Institute of Jiangxi Province, Jiujiang, Jiangxi, 332105, China
| | - Zujun Yin
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiaoge Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Binglei Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Delong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Chao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Anyang, Henan, 455000, China.
| |
Collapse
|
35
|
Huwanixi A, Peng Z, Li S, Zhou Y, Zhao S, Wan C. Comparative proteomic analysis of seed germination between allotetraploid cotton Gossypium hirsutum and Gossypium barbadense. J Proteomics 2024; 297:105130. [PMID: 38401592 DOI: 10.1016/j.jprot.2024.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Seed germination, a key initial event in the plant life cycle, directly affects cotton yield and quality. Gossypium barbadense and Gossypium hirsutum gradually evolved through polyploidization, resulting in different characteristics, and this interspecific variation lacks genetic and molecular explanation. This work aimed to compare the proteomes between G. barbadense and G. hirsutum during seed germination. Here, we identified 2740 proteins for G. barbadense and 3758 for G. hirsutum. In the initial state, proteins in two cotton involved similar bioprocess, such as sugar metabolism, DNA repairing, and ABA signaling pathway. However, in the post-germination stage, G. hirsutum expressed more protein related to redox homeostasis, peroxidase activity, and pathogen interactions. Analyzing the different expression patterns of 915 single-copy orthogroups between the two kinds of cotton indicated that most of the differentially expressed proteins in G. barbadense were related to carbon metabolism. In contrast, most proteins in G. hirsutum were associated with stress response. Besides that, by proteogenomic analysis, we found 349 putative non-canonical peptides, which may be involved in plant development. These results will help to understand the different characteristics of these two kinds of cotton, such as fiber quality, yield, and adaptability. SIGNIFICANCE STATEMENT: Cotton is the predominant natural fiber crop worldwide; Gossypium barbadense and Gossypium hirsutum have evolved through polyploidization to produce differing traits. However, given their specific features, the divergence of mechanisms underlying seed germination between G. hirsutum and G. barbadense has not been discussed. Here, we explore what protein contributes to interspecific differences between G. barbadense and G. hirsutum during the seed germination period. This study helps to elucidate the evolution and domestication history of cotton polyploids and may allow breeders to understand their domestication history better and improve fiber quality and adaptability.
Collapse
Affiliation(s)
- Aishuake Huwanixi
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Shenglan Li
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Yutian Zhou
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Sixian Zhao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China
| | - Cuihong Wan
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China.
| |
Collapse
|
36
|
Salojärvi J, Rambani A, Yu Z, Guyot R, Strickler S, Lepelley M, Wang C, Rajaraman S, Rastas P, Zheng C, Muñoz DS, Meidanis J, Paschoal AR, Bawin Y, Krabbenhoft TJ, Wang ZQ, Fleck SJ, Aussel R, Bellanger L, Charpagne A, Fournier C, Kassam M, Lefebvre G, Métairon S, Moine D, Rigoreau M, Stolte J, Hamon P, Couturon E, Tranchant-Dubreuil C, Mukherjee M, Lan T, Engelhardt J, Stadler P, Correia De Lemos SM, Suzuki SI, Sumirat U, Wai CM, Dauchot N, Orozco-Arias S, Garavito A, Kiwuka C, Musoli P, Nalukenge A, Guichoux E, Reinout H, Smit M, Carretero-Paulet L, Filho OG, Braghini MT, Padilha L, Sera GH, Ruttink T, Henry R, Marraccini P, Van de Peer Y, Andrade A, Domingues D, Giuliano G, Mueller L, Pereira LF, Plaisance S, Poncet V, Rombauts S, Sankoff D, Albert VA, Crouzillat D, de Kochko A, Descombes P. The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nat Genet 2024; 56:721-731. [PMID: 38622339 PMCID: PMC11018527 DOI: 10.1038/s41588-024-01695-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2024] [Indexed: 04/17/2024]
Abstract
Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.
Collapse
Affiliation(s)
- Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Aditi Rambani
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Zhe Yu
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Susan Strickler
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Maud Lepelley
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Cui Wang
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniella Santos Muñoz
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - João Meidanis
- Institute of Computing, University of Campinas, Campinas, Brazil
| | - Alexandre Rossi Paschoal
- Department of Computer Science, The Federal University of Technology - Paraná (UTFPR), Cornélio Procópio, Brazil
| | - Yves Bawin
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
| | | | - Zhen Qin Wang
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Rudy Aussel
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille, France
| | | | - Aline Charpagne
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Coralie Fournier
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Mohamed Kassam
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Gregory Lefebvre
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Métairon
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Déborah Moine
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Michel Rigoreau
- Société des Produits Nestlé SA, Nestlé Research, Tours, France
| | - Jens Stolte
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Perla Hamon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Emmanuel Couturon
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | | | - Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jan Engelhardt
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Peter Stadler
- Department of Computer Science, University of Leipzig, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | | | | | - Ucu Sumirat
- Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, Indonesia
| | - Ching Man Wai
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicolas Dauchot
- Research Unit in Plant Cellular and Molecular Biology, University of Namur, Namur, Belgium
| | - Simon Orozco-Arias
- Department of Electronics and Automation, Universidad Autónoma de Manizales, Manizales, Colombia
| | - Andrea Garavito
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Catherine Kiwuka
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Pascal Musoli
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Anne Nalukenge
- National Agricultural Research Organization (NARO), Entebbe, Uganda
| | - Erwan Guichoux
- Biodiversité Gènes & Communautés, INRA, Bordeaux, France
| | | | - Martin Smit
- Hortus Botanicus Amsterdam, Amsterdam, the Netherlands
| | | | - Oliveiro Guerreiro Filho
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Masako Toma Braghini
- Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | - Lilian Padilha
- Embrapa Café/Instituto Agronômico (IAC) Centro de Café 'Alcides Carvalho', Fazenda Santa Elisa, Campinas, Brazil
| | | | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Queensland, Australia
| | - Pierre Marraccini
- CIRAD - UMR DIADE (IRD-CIRAD-Université de Montpellier) BP 64501, Montpellier, France
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Alan Andrade
- Embrapa Café/Inovacafé Laboratory of Molecular Genetics Campus da UFLA-MG, Lavras, Brazil
| | - Douglas Domingues
- Group of Genomics and Transcriptomes in Plants, São Paulo State University, UNESP, Rio Claro, Brazil
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Lukas Mueller
- Boyce Thompson Institute, Cornell University, Ithaca, NY, USA
| | - Luiz Filipe Pereira
- Embrapa Café/Lab. Biotecnologia, Área de Melhoramento Genético, Londrina, Brazil
| | | | - Valerie Poncet
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
| | - Stephane Rombauts
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | | | - Alexandre de Kochko
- Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France.
| | - Patrick Descombes
- Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland.
| |
Collapse
|
37
|
Nieuwenhuis R, Hesselink T, van den Broeck HC, Cordewener J, Schijlen E, Bakker L, Diaz Trivino S, Struss D, de Hoop SJ, de Jong H, Peters SA. Genome architecture and genetic diversity of allopolyploid okra (Abelmoschus esculentus). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:225-241. [PMID: 38133904 DOI: 10.1111/tpj.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
The allopolyploid okra (Abelmoschus esculentus) unveiled telomeric repeats flanking distal gene-rich regions and short interstitial TTTAGGG telomeric repeats, possibly representing hallmarks of chromosomal speciation. Ribosomal RNA (rRNA) genes organize into 5S clusters, distinct from the 18S-5.8S-28S units, indicating an S-type rRNA gene arrangement. The assembly, in line with cytogenetic and cytometry observations, identifies 65 chromosomes and a 1.45 Gb genome size estimate in a haploid sibling. The lack of aberrant meiotic configurations implies limited to no recombination among sub-genomes. k-mer distribution analysis reveals 75% has a diploid nature and 15% heterozygosity. The configurations of Benchmarking Universal Single-Copy Ortholog (BUSCO), k-mer, and repeat clustering point to the presence of at least two sub-genomes one with 30 and the other with 35 chromosomes, indicating the allopolyploid nature of the okra genome. Over 130 000 putative genes, derived from mapped IsoSeq data and transcriptome data from public okra accessions, exhibit a low genetic diversity of one single nucleotide polymorphisms per 2.1 kbp. The genes are predominantly located at the distal chromosome ends, declining toward central scaffold domains. Long terminal repeat retrotransposons prevail in central domains, consistent with the observed pericentromeric heterochromatin and distal euchromatin. Disparities in paralogous gene counts suggest potential sub-genome differentiation implying possible sub-genome dominance. Amino acid query sequences of putative genes facilitated phenol biosynthesis pathway annotation. Comparison with manually curated reference KEGG pathways from related Malvaceae species reveals the genetic basis for putative enzyme coding genes that likely enable metabolic reactions involved in the biosynthesis of dietary and therapeutic compounds in okra.
Collapse
Affiliation(s)
- Ronald Nieuwenhuis
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Thamara Hesselink
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Hetty C van den Broeck
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Jan Cordewener
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Elio Schijlen
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Linda Bakker
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sara Diaz Trivino
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Darush Struss
- East-West International B.V., Heiligeweg 18, 1601 PN, Enkhuizen, The Netherlands
| | - Simon-Jan de Hoop
- East-West International B.V., Heiligeweg 18, 1601 PN, Enkhuizen, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Sander A Peters
- Business Unit of Bioscience, Cluster Applied Bioinformatics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
38
|
He P, Zhu L, Zhou X, Fu X, Zhang Y, Zhao P, Jiang B, Wang H, Xiao G. Gibberellic acid promotes single-celled fiber elongation through the activation of two signaling cascades in cotton. Dev Cell 2024; 59:723-739.e4. [PMID: 38359829 DOI: 10.1016/j.devcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The agricultural green revolution spectacularly enhanced crop yield through modification of gibberellin (GA) signaling. However, in cotton, the GA signaling cascades remain elusive, limiting our potential to cultivate new cotton varieties and improve yield and quality. Here, we identified that GA prominently stimulated fiber elongation through the degradation of DELLA protein GhSLR1, thereby disabling GhSLR1's physical interaction with two transcription factors, GhZFP8 and GhBLH1. Subsequently, the resultant free GhBLH1 binds to GhKCS12 promoter and activates its expression to enhance VLCFAs biosynthesis. With a similar mechanism, the free GhZFP8 binds to GhSDCP1 promoter and activates its expression. As a result, GhSDCP1 upregulates the expression of GhPIF3 gene associated with plant cell elongation. Ultimately, the two parallel signaling cascades synergistically promote cotton fiber elongation. Our findings outline the mechanistic framework that translates the GA signal into fiber cell elongation, thereby offering a roadmap to improve cotton fiber quality and yield.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xuan Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
39
|
Rabeh K, Oubohssaine M, Hnini M. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154186. [PMID: 38330538 DOI: 10.1016/j.jplph.2024.154186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Target Of Rapamycin (TOR) represents a ubiquitous kinase complex that has emerged as a central regulator of cell growth and metabolism in nearly all eukaryotic organisms. TOR is an evolutionarily conserved protein kinase, functioning as a central signaling hub that integrates diverse internal and external cues to regulate a multitude of biological processes. These processes collectively exert significant influence on plant growth, development, nutrient assimilation, photosynthesis, fruit ripening, and interactions with microorganisms. Within the plant domain, the TOR complex comprises three integral components: TOR, RAPTOR, and LST8. This comprehensive review provides insights into various facets of the TOR protein, encompassing its origin, structure, function, and the regulatory and signaling pathways operative in photosynthetic organisms. Additionally, we explore future perspectives related to this pivotal protein kinase.
Collapse
Affiliation(s)
- Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
| | - Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
40
|
Su H, Meng L, Qu Z, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification of the N 6-methyladenosine regulatory genes reveals NtFIP37B increases drought resistance of tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2024; 24:134. [PMID: 38403644 PMCID: PMC10895791 DOI: 10.1186/s12870-024-04813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the common internal RNA modifications found in eukaryotes. The m6A modification can regulate various biological processes in organisms through the modulation of alternative splicing, alternative polyadenylation, folding, translation, localization, transport, and decay of multiple types of RNA, without altering the nucleotide sequence. The three components involved in m6A modification, namely writer, eraser, and reader, mediate the abundance of RNA m6A modification through complex collaborative actions. Currently, research on m6A regulatory genes in plants is still in its infancy. RESULTS In this study, we identified 52 candidate m6A regulatory genes in common tobacco (Nicotiana tabacum L.). Gene structure, conserved domains, and motif analysis showed structural and functional diversity among different subgroups of tobacco m6A regulatory genes. The amplification of m6A regulatory genes were mainly driven by polyploidization and dispersed duplication, and duplicated genes evolved through purified selection. Based on the potential regulatory network and expression pattern analysis of m6A regulatory genes, a significant number of m6A regulatory genes might play important roles in growth, development, and stress response processes. Furthermore, we have confirmed the critical role of NtFIP37B, an m6A writer gene in tobacco, in enhancing drought resistance. CONCLUSIONS This study provides useful information for better understanding the evolution of m6A regulatory genes and the role of m6A modification in tobacco stress response, and lays the foundation for further elucidating the function of m6A regulatory genes in tobacco.
Collapse
Affiliation(s)
- Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
41
|
Li S, Yu M, Qanmber G, Feng M, Hussain G, Wang Y, Yang Z, Zhang J. GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, play a regulatory role in cotton fiber secondary cell wall biosynthesis. PLANT CELL REPORTS 2024; 43:76. [PMID: 38381221 DOI: 10.1007/s00299-024-03147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
KEY MESSAGE GhHB14_D10 and GhREV_D5 regulated secondary cell wall formation and played an important role in fiber development. Cotton serves as an important source of natural fiber, and the biosynthesis of the secondary cell wall plays a pivotal role in determining cotton fiber quality. Nevertheless, the intricacies of this mechanism in cotton fiber remain insufficiently elucidated. This study investigates the functional roles of GhHB14_D10 and GhREV_D5, two HD-ZIP III transcription factors, in secondary cell wall biosynthesis in cotton fibers. Both GhHB14_D10 and GhREV_D5 were found to be localized in the nucleus with transcriptional activation activity. Ectopic overexpression of GhHB14_D10 and GhREV_D5 in Arabidopsis resulted in changed xylem differentiation, secondary cell wall deposition, and expression of genes related to the secondary cell wall. Silencing of GhHB14_D10 and GhREV_D5 in cotton led to enhanced fiber length, reduced cell wall thickness, cellulose contents and expression of secondary cell wall-related genes. Moreover, GhHB14_D10's direct interaction with GhREV_D5, and transcriptional regulation of cellulose biosynthesis genes GhCesA4-4 and GhCesA7-2 revealed their collaborative roles in secondary cell wall during cotton fiber development. Overall, these results shed light on the roles of GhHB14_D10 and GhREV_D5 in secondary cell wall biosynthesis, offering a strategy for the genetic improvement of cotton fiber quality.
Collapse
Affiliation(s)
- Shuaijie Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Mengli Yu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ghulam Qanmber
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Mengru Feng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China
| | - Ghulam Hussain
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yichen Wang
- Aulin College, Northeast Forestry University, Harbin, 150040, China
| | - Zuoren Yang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Jie Zhang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, No.157 Kexue Avenue, High-tech Zone, Zhengzhou, 450001, China.
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
42
|
Wu Y, Sun R, Huan T, Zhao Y, Yu D, Sun Y. An insight into the gene expression evolution in Gossypium species based on the leaf transcriptomes. BMC Genomics 2024; 25:179. [PMID: 38355396 PMCID: PMC10868065 DOI: 10.1186/s12864-024-10091-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Gene expression pattern is associated with biological phenotype and is widely used in exploring gene functions. Its evolution is also crucial in understanding species speciation and divergence. The genus Gossypium is a bona fide model for studying plant evolution and polyploidization. However, the evolution of gene expression during cotton species divergence has yet to be extensively discussed. RESULTS Based on the seedling leaf transcriptomes, this work analyzed the transcriptomic content and expression patterns across eight cotton species, including six diploids and two natural tetraploids. Our findings indicate that, while the biological function of these cotton transcriptomes remains largely conserved, there has been significant variation in transcriptomic content during species divergence. Furthermore, we conducted a comprehensive analysis of expression distances across cotton species. This analysis lends further support to the use of G. arboreum as a substitute for the A-genome donor of natural cotton polyploids. Moreover, our research highlights the evolution of stress-responsive pathways, including hormone signaling, fatty acid degradation, and flavonoid biosynthesis. These processes appear to have evolved under lower selection pressures, presumably reflecting their critical role in the adaptations of the studied cotton species to diverse environments. CONCLUSIONS In summary, this study provided insights into the gene expression variation within the genus Gossypium and identified essential genes/pathways whose expression evolution was closely associated with the evolution of cotton species. Furthermore, the method of characterizing genes and pathways under unexpected high or slow selection pressure can also serve as a new strategy for gene function exploration.
Collapse
Affiliation(s)
- Yuqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rongnan Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tong Huan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanyan Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Yuqiang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
43
|
Chang X, He X, Li J, Liu Z, Pi R, Luo X, Wang R, Hu X, Lu S, Zhang X, Wang M. High-quality Gossypium hirsutum and Gossypium barbadense genome assemblies reveal the landscape and evolution of centromeres. PLANT COMMUNICATIONS 2024; 5:100722. [PMID: 37742072 PMCID: PMC10873883 DOI: 10.1016/j.xplc.2023.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Centromere positioning and organization are crucial for genome evolution; however, research on centromere biology is largely influenced by the quality of available genome assemblies. Here, we combined Oxford Nanopore and Pacific Biosciences technologies to de novo assemble two high-quality reference genomes for Gossypium hirsutum (TM-1) and Gossypium barbadense (3-79). Compared with previously published reference genomes, our assemblies show substantial improvements, with the contig N50 improved by 4.6-fold and 5.6-fold, respectively, and thus represent the most complete cotton genomes to date. These high-quality reference genomes enable us to characterize 14 and 5 complete centromeric regions for G. hirsutum and G. barbadense, respectively. Our data revealed that the centromeres of allotetraploid cotton are occupied by members of the centromeric repeat for maize (CRM) and Tekay long terminal repeat families, and the CRM family reshapes the centromere structure of the At subgenome after polyploidization. These two intertwined families have driven the convergent evolution of centromeres between the two subgenomes, ensuring centromere function and genome stability. In addition, the repositioning and high sequence divergence of centromeres between G. hirsutum and G. barbadense have contributed to speciation and centromere diversity. This study sheds light on centromere evolution in a significant crop and provides an alternative approach for exploring the evolution of polyploid plants.
Collapse
Affiliation(s)
- Xing Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruizhen Pi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
44
|
Meng L, Su H, Qu Z, Lu P, Tao J, Li H, Zhang J, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification and analysis of WD40 proteins reveal that NtTTG1 enhances drought tolerance in tobacco (Nicotiana tabacum). BMC Genomics 2024; 25:133. [PMID: 38302866 PMCID: PMC10835901 DOI: 10.1186/s12864-024-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND WD40 proteins, which are highly prevalent in eukaryotes, play important roles in plant development and stress responses. However, systematic identification and exploration of WD40 proteins in tobacco have not yet been conducted. RESULTS In this study, a total of 399 WD40 regulatory genes were identified in common tobacco (Nicotiana tabacum). Gene structure and motif analysis revealed structural and functional diversity among different clades of tobacco WD40 regulatory genes. The expansion of tobacco WD40 regulatory genes was mainly driven by segmental duplication and purifying selection. A potential regulatory network of NtWD40s suggested that NtWD40s might be regulated by miRNAs and transcription factors in various biological processes. Expression pattern analysis via transcriptome analysis and qRT-PCR revealed that many NtWD40s exhibited tissue-specific expression patterns and might be involved in various biotic and abiotic stresses. Furthermore, we have validated the critical role of NtTTG1, which was located in the nuclei of trichome cells, in enhancing the drought tolerance of tobacco plants. CONCLUSIONS Our study provides comprehensive information to better understand the evolution of WD40 regulatory genes and their roles in different stress responses in tobacco.
Collapse
Grants
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- CNTC: 110202101008(JY-08), 110202201001(JY-01), 110202202038 the Zhengzhou Tobacco Research Institute
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
- 232300420220 Natural Science Foundation of HeNan
Collapse
Affiliation(s)
- Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Huan Su
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jiemeng Tao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - He Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| |
Collapse
|
45
|
Kangben F, Kumar S, Li Z, Sreedasyam A, Dardick C, Jones D, Saski CA. Phylogenetic and functional analysis of tiller angle control homeologs in allotetraploid cotton. FRONTIERS IN PLANT SCIENCE 2024; 14:1320638. [PMID: 38356867 PMCID: PMC10864623 DOI: 10.3389/fpls.2023.1320638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Introduction Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.
Collapse
Affiliation(s)
- Foster Kangben
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Chris Dardick
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| | - Don Jones
- Department of Agricultural Research, Cotton Incorporated, Cary, NC, United States
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
46
|
Ling P, Ju J, Zhang X, Wei W, Luo J, Li Y, Hai H, Shang B, Cheng H, Wang C, Zhang X, Su J. The Silencing of GhPIP5K2 and GhPIP5K22 Weakens Abiotic Stress Tolerance in Upland Cotton ( Gossypium hirsutum). Int J Mol Sci 2024; 25:1511. [PMID: 38338791 PMCID: PMC10855785 DOI: 10.3390/ijms25031511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks), essential enzymes in the phosphatidylinositol signaling pathway, are crucial for the abiotic stress responses and the overall growth and development of plants. However, the GhPIP5Ks had not been systematically studied, and their function in upland cotton was unknown. This study identified a total of 28 GhPIP5Ks, and determined their chromosomal locations, gene structures, protein motifs and cis-acting elements via bioinformatics analysis. A quantitative real-time PCR (qRT‒PCR) analysis showed that most GhPIP5Ks were upregulated under different stresses. A virus-induced gene silencing (VIGS) assay indicated that the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities were significantly decreased, while malondialdehyde (MDA) content were significantly increased in GhPIP5K2- and GhPIP5K22-silenced upland cotton plants under abiotic stress. Furthermore, the expression of the stress marker genes GhHSFB2A, GhHSFB2B, GhDREB2A, GhDREB2C, GhRD20-1, GhRD29A, GhBIN2, GhCBL3, GhNHX1, GhPP2C, GhCBF1, GhSnRK2.6 and GhCIPK6 was significantly decreased in the silenced plants after exposure to stress. These results revealed that the silencing of GhPIP5K2 and GhPIP5K22 weakened the tolerance to abiotic stresses. These discoveries provide a foundation for further inquiry into the actions of the GhPIP5K gene family in regulating the response and resistance mechanisms of cotton to abiotic stresses.
Collapse
Affiliation(s)
- Pingjie Ling
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jisheng Ju
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xueli Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Wei Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Jin Luo
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Ying Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Han Hai
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Bowen Shang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Hongbo Cheng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Caixiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junji Su
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (P.L.); (J.J.); (X.Z.); (W.W.); (J.L.); (Y.L.); (H.H.); (B.S.); (H.C.); (C.W.)
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| |
Collapse
|
47
|
Miao H, Wang L, Qu L, Liu H, Sun Y, Le M, Wang Q, Wei S, Zheng Y, Lin W, Duan Y, Cao H, Xiong S, Wang X, Wei L, Li C, Ma Q, Ju M, Zhao R, Li G, Mu C, Tian Q, Mei H, Zhang T, Gao T, Zhang H. Genomic evolution and insights into agronomic trait innovations of Sesamum species. PLANT COMMUNICATIONS 2024; 5:100729. [PMID: 37798879 PMCID: PMC10811377 DOI: 10.1016/j.xplc.2023.100729] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/17/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Sesame is an ancient oilseed crop with high oil content and quality. However, the evolutionary history and genetic mechanisms of its valuable agronomic traits remain unclear. Here, we report chromosome-scale genomes of cultivated sesame (Sesamum indicum L.) and six wild Sesamum species, representing all three karyotypes within this genus. Karyotyping and genome-based phylogenic analysis revealed the evolutionary route of Sesamum species from n = 13 to n = 16 and revealed that allotetraploidization occurred in the wild species Sesamum radiatum. Early divergence of the Sesamum genus (48.5-19.7 million years ago) during the Tertiary period and its ancient phylogenic position within eudicots were observed. Pan-genome analysis revealed 9164 core gene families in the 7 Sesamum species. These families are significantly enriched in various metabolic pathways, including fatty acid (FA) metabolism and FA biosynthesis. Structural variations in SiPT1 and SiDT1 within the phosphatidyl ethanolamine-binding protein gene family lead to the genomic evolution of plant-architecture and inflorescence-development phenotypes in Sesamum. A genome-wide association study (GWAS) of an interspecific population and genome comparisons revealed a long terminal repeat insertion and a sequence deletion in DIR genes of wild Sesamum angustifolium and cultivated sesame, respectively; both variations independently cause high susceptibility to Fusarium wilt disease. A GWAS of 560 sesame accessions combined with an overexpression study confirmed that the NAC1 and PPO genes play an important role in upregulating oil content of sesame. Our study provides high-quality genomic resources for cultivated and wild Sesamum species and insights that can improve molecular breeding strategies for sesame and other oilseed crops.
Collapse
Affiliation(s)
- Hongmei Miao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Lingbo Qu
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Hongyan Liu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yamin Sun
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Meiwang Le
- Crops Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Qiang Wang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shuangling Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yongzhan Zheng
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Wenchao Lin
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hengchun Cao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Songjin Xiong
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Xuede Wang
- College of Food Science and Technology, Henan Technology University, Zhengzhou 450001, China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qin Ma
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ming Ju
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruihong Zhao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Guiting Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Cong Mu
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qiuzhen Tian
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Hongxian Mei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tide Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tongmei Gao
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China.
| |
Collapse
|
48
|
Wang J, Liang Y, Gong Z, Zheng J, Li Z, Zhou G, Xu Y, Li X. Genomic and epigenomic insights into the mechanism of cold response in upland cotton (Gossypium hirsutum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108206. [PMID: 38029617 DOI: 10.1016/j.plaphy.2023.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Functional genome research, including gene transcriptional and posttranslational modifications of histones, can benefit greatly from a high-quality genome assembly. Histone modification plays a significant role in modulating the responses to abiotic stress in plants. However, there are limited reports on the involvement of dynamic changes in histone modification in cold stress response in upland cotton. In this study, the genome of an elite accession, YM11, with considerable cold stress tolerance was de novo assembled, which yielded a genome of 2343.06 Mb with a contig N50 of 88.96 Mb, and a total of 73,821 protein-coding gene models were annotated. Comparisons among YM11 and five Gossypium allopolyploid cotton assemblies highlighted a large amount of structural variations and presence/absence variations. We analyzed transcriptome and metabolome changes in YM11 seedlings subjected to cold stress. Using the CUT&Tag method, genome-wide H3K4me3 and H3K9ac modification patterns and effect of histone changes on gene expression were profiled during cold stress. Significant and consistently changing histone modifications and the gene expressions were screened, of which transcription factors (TFs) were highlighted. Our results suggest a positive correlation between the changes in H3K4me3, H3K9ac modifications and cold stress-responsive gene activation. This genome assembly and comprehensive analysis of genome-wide histone modifications and gene expression provide insights into the genomic variation and epigenetic responses to cold stress in upland cotton.
Collapse
Affiliation(s)
- Junduo Wang
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Yajun Liang
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Juyun Zheng
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China
| | - Guohui Zhou
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China.
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China.
| |
Collapse
|
49
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
50
|
Tourdot E, Grob S. Three-dimensional chromatin architecture in plants - General features and novelties. Eur J Cell Biol 2023; 102:151344. [PMID: 37562220 DOI: 10.1016/j.ejcb.2023.151344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Research on the three-dimensional (3D) structure of the genome and its distribution within the nuclear space has made a big leap in the last two decades. Work in the animal field has led to significant advances in our general understanding on eukaryotic genome organization. This did not only bring along insights into how the 3D genome interacts with the epigenetic landscape and the transcriptional machinery but also how 3D genome architecture is relevant for fundamental developmental processes, such as cell differentiation. In parallel, the 3D organization of plant genomes have been extensively studied, which resulted in both congruent and novel findings, contributing to a more complete view on how eukaryotic genomes are organized in multiple dimensions. Plant genomes are remarkably diverse in size, composition, and ploidy. Furthermore, as intrinsically sessile organisms without the possibility to relocate to more favorable environments, plants have evolved an elaborate epigenetic repertoire to rapidly respond to environmental challenges. The diversity in genome organization and the complex epigenetic programs make plants ideal study subjects to acquire a better understanding on universal features and inherent constraints of genome organization. Furthermore, considering a wide range of species allows us to study the evolutionary crosstalk between the various levels of genome architecture. In this article, we aim at summarizing important findings on 3D genome architecture obtained in various plant species. These findings cover many aspects of 3D genome organization on a wide range of levels, from gene loops to topologically associated domains and to global 3D chromosome configurations. We present an overview on plant 3D genome organizational features that resemble those in animals and highlight facets that have only been observed in plants to date.
Collapse
Affiliation(s)
- Edouard Tourdot
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich, Switzerland.
| |
Collapse
|