1
|
Efficient transdermal delivery of functional protein cargoes by a hydrophobic peptide MTD 1067. Sci Rep 2022; 12:10853. [PMID: 35760980 PMCID: PMC9237094 DOI: 10.1038/s41598-022-14463-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
The skin has a protective barrier against the external environment, making the transdermal delivery of active macromolecules very difficult. Cell-penetrating peptides (CPPs) have been accepted as useful delivery tools owing to their high transduction efficiency and low cytotoxicity. In this study, we evaluated the hydrophobic peptide, macromolecule transduction domain 1067 (MTD 1067) as a CPP for the transdermal delivery of protein cargoes of various sizes, including growth hormone-releasing hexapeptide-6 (GHRP-6), a truncated form of insulin-like growth factor-I (des(1-3)IGF-I), and platelet-derived growth factor BB (PDGF-BB). The MTD 1067-conjugated GHRP-6 (MTD-GHRP-6) was chemically synthesized, whereas the MTD 1067-conjugated des(1-3)IGF-I and PDGF-BB proteins (MTD-des(1-3)IGF-I and MTD-PDGF-BB) were generated as recombinant proteins. All the MTD 1067-conjugated cargoes exhibited biological activities identical or improved when compared to those of the original cargoes. The analysis of confocal microscopy images showed that MTD-GHRP-6, MTD-des(1-3)IGF-I, and MTD-PDGF-BB were detected at 4.4-, 18.8-, and 32.9-times higher levels in the dermis, respectively, compared to the control group without MTD. Furthermore, the MTD 1067-conjugated cargoes did not show cytotoxicity. Altogether, our data demonstrate the potential of MTD 1067 conjugation in developing functional macromolecules for cosmetics and drugs with enhanced transdermal permeability.
Collapse
|
2
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Huang X, Zou X, Xu Z, Tang F, Shi J, Zheng E, Liu D, Moisyadi S, Urschitz J, Wu Z, Li Z. Efficient deletion of LoxP-flanked selectable marker genes from the genome of transgenic pigs by an engineered Cre recombinase. Transgenic Res 2020; 29:307-319. [PMID: 32410183 DOI: 10.1007/s11248-020-00200-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
Genetically modified (GM) pigs hold great promises for pig genetic improvement, human health and life science. When GM pigs are produced, selectable marker genes (SMGs) are usually introduced into their genomes for host cell or animal recognition. However, the SMGs that remain in GM pigs might have multiple side effects. To avoid the possible side effects caused by the SMGs, they should be removed from the genome of GM pigs before their commercialization. The Cre recombinase is commonly used to delete the LoxP sites-flanked SMGs from the genome of GM animals. Although SMG-free GM pigs have been generated by Cre-mediated recombination, more efficient and cost-effective approaches are essential for the commercialization of SMG-free GM pigs. In this article we describe the production of a recombinant Cre protein containing a cell-penetrating and a nuclear localization signal peptide in one construct. This engineered Cre enzyme can efficiently excise the LoxP-flanked SMGs in cultured fibroblasts isolated from a transgenic pig, which then can be used as nuclear donor cells to generate live SMG-free GM pigs harboring a desired transgene by somatic cell nuclear transfer. This study describes an efficient and far-less costly method for production of SMG-free GM pigs.
Collapse
Affiliation(s)
- Xiaoling Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Guangken Animal Husbandry Engineering Research Institute Co., Ltd., Guangzhou, 510610, Guangdong, China
| | - Xian Zou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fei Tang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Junsong Shi
- Guangdong Wens Pig Breeding Technology Co., Ltd., Wens Foodstuff Group Co., Ltd., Yunfu, 527400, Guangdong, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Stefan Moisyadi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
- Manoa BioSciences, 1717 Mott-Smith Dr. #3213, Honolulu, HI, 96822, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
4
|
Chung E, Choi Y, Park J, Nah W, Park J, Jung Y, Lee J, Lee H, Park S, Hwang S, Kim S, Lee J, Min D, Jo J, Kang S, Jung M, Lee PH, Ruley HE, Jo D. Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. SCIENCE ADVANCES 2020; 6:eaba1193. [PMID: 32494688 PMCID: PMC7190327 DOI: 10.1126/sciadv.aba1193] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by mitochondrial dysfunction, Lewy body formation, and loss of dopaminergic neurons. Parkin, an E3 ubiquitin ligase, is thought to inhibit PD progression by removing damaged mitochondria and suppressing the accumulation of α-synuclein and other protein aggregates. The present study describes a protein-based therapy for PD enabled by the development of a cell-permeable Parkin protein (iCP-Parkin) with enhanced solubility and optimized intracellular delivery. iCP-Parkin recovered damaged mitochondria by promoting mitophagy and mitochondrial biogenesis and suppressed toxic accumulations of α-synuclein in cells and animals. Last, iCP-Parkin prevented and reversed declines in tyrosine hydroxylase and dopamine expression concomitant with improved motor function induced by mitochondrial poisons or enforced α-synuclein expression. These results point to common, therapeutically tractable features in PD pathophysiology, and suggest that motor deficits in PD may be reversed, thus providing opportunities for therapeutic intervention after the onset of motor symptoms.
Collapse
Affiliation(s)
- Eunna Chung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Youngsil Choi
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jiae Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Wonheum Nah
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jaehyung Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Yukdong Jung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Joonno Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Hyunji Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Soyoung Park
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Sunyoung Hwang
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Seongcheol Kim
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Jongseok Lee
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Dongjae Min
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Junghwan Jo
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Shinyoung Kang
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Minyong Jung
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - H. Earl Ruley
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics Inc., Seoul 03929, Korea
| |
Collapse
|
5
|
Kim AH, Lee S, Jeon S, Kim GT, Lee EJ, Kim D, Kim Y, Park TS. Addition of an N-Terminal Poly-Glutamate Fusion Tag Improves Solubility and Production of Recombinant TAT-Cre Recombinase in Escherichia coli. J Microbiol Biotechnol 2020; 30:109-117. [PMID: 31693834 PMCID: PMC9728232 DOI: 10.4014/jmb.1909.09028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cre recombinase is widely used to manipulate DNA sequences for both in vitro and in vivo research. Attachment of a trans-activator of transcription (TAT) sequence to Cre allows TATCre to penetrate the cell membrane, and the addition of a nuclear localization signal (NLS) helps the enzyme to translocate into the nucleus. Since the yield of recombinant TAT-Cre is limited by formation of inclusion bodies, we hypothesized that the positively charged arginine-rich TAT sequence causes the inclusion body formation, whereas its neutralization by the addition of a negatively charged sequence improves solubility of the protein. To prove this, we neutralized the positively charged TAT sequence by proximally attaching a negatively charged poly-glutamate (E12) sequence. We found that the E12 tag improved the solubility and yield of E12-TAT-NLS-Cre (E12-TAT-Cre) compared with those of TAT-NLS-Cre (TATCre) when expressed in E. coli. Furthermore, the growth of cells expressing E12-TAT-Cre was increased compared with that of the cells expressing TAT-Cre. Efficacy of the purified TATCre was confirmed by a recombination test on a floxed plasmid in a cell-free system and 293 FT cells. Taken together, our results suggest that attachment of the E12 sequence to TAT-Cre improves its solubility during expression in E. coli (possibly by neutralizing the ionic-charge effects of the TAT sequence) and consequently increases the yield. This method can be applied to the production of transducible proteins for research and therapeutic purposes.
Collapse
Affiliation(s)
- A-Hyeon Kim
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Soohyun Lee
- Department of Research and Development, LumiMac, Inc., Seoul 05844, Republic of Korea
| | - Suwon Jeon
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Goon-Tae Kim
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea
| | - Eun Jig Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 0722, Republic of Korea
| | - Daham Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 0722, Republic of Korea
| | - Younggyu Kim
- Department of Research and Development, LumiMac, Inc., Seoul 05844, Republic of Korea
| | - Tae-Sik Park
- Department of Life Sciences, Gachon University, Sungnam 320, Republic of Korea,Corresponding author Phone: +82-31-750-8824 Fax: +82-31-750-8573 E-mail:
| |
Collapse
|
6
|
Sandlesh P, Juang T, Safina A, Higgins MJ, Gurova KV. Uncovering the fine print of the CreERT2-LoxP system while generating a conditional knockout mouse model of Ssrp1 gene. PLoS One 2018; 13:e0199785. [PMID: 29953487 PMCID: PMC6023160 DOI: 10.1371/journal.pone.0199785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/13/2018] [Indexed: 01/26/2023] Open
Abstract
FAcilitates Chromatin Transcription (FACT) is a complex of SSRP1 and SPT16 that is involved in chromatin remodeling during transcription, replication, and DNA repair. FACT has been mostly studied in cell-free or single cell model systems because general FACT knockout (KO) is embryonically lethal (E3.5). FACT levels are limited to the early stages of development and stem cell niches of adult tissues. FACT is upregulated in poorly differentiated aggressive tumors. Importantly, FACT inhibition (RNAi) is lethal for tumors but not normal cells, making FACT a lucrative target for anticancer therapy. To develop a better understanding of FACT function in the context of the mammalian organism under normal physiological conditions and in disease, we aimed to generate a conditional FACT KO mouse model. Because SPT16 stability is dependent on the SSRP1-SPT16 association and the presence of SSRP1 mRNA, we targeted the Ssrp1 gene using a CreERT2- LoxP approach to generate the FACT KO model. Here, we highlight the limitations of the CreERT2-LoxP (Rosa26) system that we encountered during the generation of this model. In vitro studies showed an inefficient excision rate of ectopically expressed CreERT2 (retroviral CreERT2) in fibroblasts with homozygous floxed Ssrp1. In vitro and in vivo studies showed that the excision efficiency could only be increased with germline expression of two alleles of Rosa26CreERT2. The expression of one germline Rosa26CreERT2 allele led to the incomplete excision of Ssrp1. The limited efficiency of the CreERT2-LoxP system may be sufficient for studies involving the deletion of genes that interfere with cell growth or viability due to the positive selection of the phenotype. However, it may not be sufficient for studies that involve the deletion of genes supporting growth, or those crucial for development. Although CreERT2-LoxP is broadly used, it has limitations that have not been widely discussed. This paper aims to encourage such discussions.
Collapse
Affiliation(s)
- Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Thierry Juang
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Alfiya Safina
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Katerina V. Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Abstract
The technique of Cre-mediated DNA recombination at loxP sites has been used widely in manipulation of the genome in cultured cells and in living organisms. Local delivery of Cre recombinase protein tagged with a cell-penetrating (or permeable) peptide (Cre-CPP) has the advantage of additional spatial and temporal control when compared to genetic delivery methods. In this chapter, we describe protocols for injection-based intramuscular delivery of Cre-CPP dissolved in hydrogel to skeletal muscle and by ultrasound-guided injection to cardiac muscle in mice.
Collapse
|
8
|
Kang Q, Sun Z, Zou Z, Wang M, Li Q, Hu X, Li N. Cell-penetrating peptide-driven Cre recombination in porcine primary cells and generation of marker-free pigs. PLoS One 2018; 13:e0190690. [PMID: 29315333 PMCID: PMC5760039 DOI: 10.1371/journal.pone.0190690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Cell-penetrating peptides (CPPs) have been increasingly used to deliver various molecules, both in vitro and in vivo. However, there are no reports of CPPs being used in porcine fetal fibroblasts (PFFs). The increased use of transgenic pigs for basic research and biomedical applications depends on the availability of technologies for efficient genetic-modification of PFFs. Here, we report that three CPPs (CPP5, TAT, and R9) can efficiently deliver active Cre recombinase protein into PFFs via an energy-dependent endocytosis pathway. The three CPP–Cre proteins can enter PFFs and subsequently perform recombination with different efficiencies. The recombination efficacy of CPP5–Cre was found to be nearly 90%. The rate-limiting step for CPP–Cre-mediated recombination was the step of endosome escape. HA2 and chloroquine were found to improve the recombination efficiency of TAT–Cre. Furthermore, we successfully obtained marker-free transgenic pigs using TAT–Cre and CPP5–Cre. We provide a framework for the development of CPP-based farm animal transgenic technologies that would be beneficial to agriculture and biomedicine.
Collapse
Affiliation(s)
- Qianqian Kang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaolin Sun
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiyuan Zou
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Wang
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiuyan Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Gagat M, Zielińska W, Grzanka A. Cell-penetrating peptides and their utility in genome function modifications (Review). Int J Mol Med 2017; 40:1615-1623. [PMID: 29039455 PMCID: PMC5716439 DOI: 10.3892/ijmm.2017.3172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/26/2017] [Indexed: 01/02/2023] Open
Abstract
For almost 30 years, studies have confirmed the effectiveness of cell-penetrating peptides (CPPs) in the facilitation of the intracellular delivery of various cargo molecules, including RNA, DNA, plasmids, proteins or nanoparticles, under in vitro and in vivo conditions. The cellular uptake of CPPs occurs via energy-dependent, as well as -independent mechanisms. In this relatively new direction of research, studies have attempted to introduce genome modification systems into cells by CPPs. Cellular uptake of CPPs carrying either covalently bound or electrostatically conjugated cargo, has several advantages over viral delivery systems, as it does not lead to any significant cytotoxicity or immunogenicity, and simultaneously it is more efficient than other non-viral systems. So far, CPPs have been successfully used to introduce Cre recombinase, zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats systems into cells. The present article systematically reviewed the information obtained from studies on CPPs and assessed their utility with regard to their effectiveness and safety of use.
Collapse
Affiliation(s)
- Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Pl-85-092 Bydgoszcz, Poland
| |
Collapse
|
10
|
Rádis-Baptista G, Campelo IS, Morlighem JÉRL, Melo LM, Freitas VJF. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis. J Biotechnol 2017; 252:15-26. [PMID: 28479163 DOI: 10.1016/j.jbiotec.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023]
Abstract
Cell-penetrating peptides (CPPs) have been studied for their capacity to translocate across the lipid membrane of several cell types. In membrane translocation, these peptides can remarkably transport biologically active hydrophilic molecules, such as pharmaceuticals, nucleic acids (DNA and RNA) and even high-molecular-weight proteins, Fig. 3 into the cell cytoplasm and organelles. The development of CPPs as transduction agents includes the modification of gene and protein expression, the reprogramming and differentiation of induced pluripotent stem cells and the preparation of cellular vaccines. A relatively recent field of CPP application is the transduction of plasmid DNA vectors and CPP-fusion proteins to modify genomes and introduce new traits in cells and organisms. CPP-mediated transduction of components for genome editing is an advantageous alternative to viral DNA vectors. Engineered site-specific nucleases, such as Cre recombinase, ZFN, TALENs and CRISPR associated protein (Cas), have been coupled to CPPs, and the fused proteins have been used to permeate targeted cells and tissues. The functionally active fusion CPP-nucleases subsequently home to the nucleus, incise genomic DNA at specific sites and induce repair and recombination. This review has the objective of discussing CPPs and elucidating the prospective use of CPP-mediated transduction technology, particularly in genome modification and transgenesis.
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Science, Federal University of Ceará, Fortaleza-CE, 60.165-081, Brazil.
| | - Iana S Campelo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará, Fortaleza-CE, 60.714-903, Brazil
| | - Jean-Étienne R L Morlighem
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Science, Federal University of Ceará, Fortaleza-CE, 60.165-081, Brazil; Northeast Biotechnology Network (RENORBIO), Post-graduation program in Biotechnology, Federal University of Ceará, Fortaleza, CE, 60.455-900, Brazil
| | - Luciana M Melo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará, Fortaleza-CE, 60.714-903, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, State University of Ceará, Fortaleza-CE, 60.714-903, Brazil.
| |
Collapse
|
11
|
Abstract
We describe a non-DNA-based system for delivering Cre recombinase protein into maize tissue using gold-plated mesoporous silica nanoparticle (Au-MSN). Cre protein is first loaded into the pores of Au-MSNs and then delivered using the biolistic method to immature embryos of a maize line (Lox-corn), which harbors loxP sites flanking a selection and a reporter gene. The release of the Cre recombinase protein inside the plant cell leads to recombination at the loxP sites, eliminating both genes. Visual screening is used to identify recombination events, which can be regenerated to mature and fertile plants. Using the experimental procedures and conditions described here, as high as 20% of bombarded embryos can produce regenerable recombinant callus events. This nanomaterial-mediated, DNA-free methodology has potential to become an effective tool for plant genome editing.
Collapse
Affiliation(s)
- Susana Martin-Ortigosa
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA
- KWS SAAT SE, Einbeck, 37555, Germany
| | - Brian G Trewyn
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
- U.S. Department of Energy, Ames Laboratory, Iowa State University, Ames, IA, 50011-3111, USA
- Department of Chemistry, Colorado School of Mines, Golden, CO, 80401, USA
| | - Kan Wang
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA.
- Center for Plant Transformation, Plant Sciences Institute, Iowa State University, Ames, IA, 50011-1010, USA.
| |
Collapse
|
12
|
Zou Z, Sun Z, Li P, Feng T, Wu S. Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo. Int J Mol Sci 2016; 17:ijms17122104. [PMID: 27983648 PMCID: PMC5187904 DOI: 10.3390/ijms17122104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/02/2016] [Accepted: 12/08/2016] [Indexed: 11/26/2022] Open
Abstract
Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26lacZ, we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases.
Collapse
Affiliation(s)
- Zhiyuan Zou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
- College of Life Science, Liaoning University, Shenyang 110036, China.
| | - Zhaolin Sun
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Pan Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Tao Feng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Sen Wu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Robert MA, Lytvyn V, Deforet F, Gilbert R, Gaillet B. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol 2016; 59:9-23. [PMID: 27830536 DOI: 10.1007/s12033-016-9987-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.
Collapse
Affiliation(s)
- Marc-André Robert
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Viktoria Lytvyn
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Francis Deforet
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Rénald Gilbert
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Bruno Gaillet
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada. .,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada.
| |
Collapse
|
14
|
Abstract
The use of Cre recombinase to carry out conditional mutagenesis of transgenes and insert DNA cassettes into eukaryotic chromosomes is widespread. In addition to the numerous in vivo and in vitro applications that have been reported since Cre was first shown to function in yeast and mammalian cells nearly 30 years ago, the Cre-loxP system has also played an important role in understanding the mechanism of recombination by the tyrosine recombinase family of site-specific recombinases. The simplicity of this system, requiring only a single recombinase enzyme and short recombination sequences for robust activity in a variety of contexts, has been an important factor in both cases. This review discusses advances in the Cre recombinase field that have occurred over the past 12 years since the publication of Mobile DNA II. The focus is on those recent contributions that have provided new mechanistic insights into the reaction. Also discussed are modifications of Cre and/or the loxP sequence that have led to improvements in genome engineering applications.
Collapse
|
15
|
Lin BY, Kao MC. Therapeutic applications of the TAT-mediated protein transduction system for complex I deficiency and other mitochondrial diseases. Ann N Y Acad Sci 2015; 1350:17-28. [PMID: 26273800 DOI: 10.1111/nyas.12858] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Among the five enzyme complexes in the oxidative phosphorylation system, NADH-coenzyme Q oxidoreductase (also called complex I) is the largest, most intricate, and least understood. This enzyme complex spans the inner mitochondrial membrane and catalyzes the first step of electron transfer by the oxidation of NADH, and thereby provides two electrons for the reduction of quinone to quinol. Complex I deficiency is associated with many severe mitochondrial diseases, including Leber hereditary optic neuropathy and Leigh syndrome. However, to date, conventional treatments for the majority of genetic mitochondrial diseases are only palliative. Developing a reliable and convenient therapeutic approach is therefore considered to be an urgent need. Targeted proteins fused with the protein transduction domain of human immunodeficiency virus 1 transactivator of transcription (TAT) have been shown to enter cells by crossing plasma membranes while retaining their biological activities. Recent developments show that, in fusion with mitochondrial targeting sequences (MTSs), TAT-MTS-bound cargo can be correctly transported into mitochondria and restore the missing function of the cargo protein in patients' cells. The available evidence suggests that the TAT-mediated protein transduction system holds great promise as a potential therapeutic approach to treat complex I deficiency, as well as other mitochondrial diseases.
Collapse
Affiliation(s)
- Bo-Yu Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Mou-Chieh Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
16
|
Lyu SK, Kwon H. Preparation of cell-permeable Cre recombinase by expressed protein ligation. BMC Biotechnol 2015; 15:7. [PMID: 25888446 PMCID: PMC4339299 DOI: 10.1186/s12896-015-0126-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Background Protein transduction is safer than viral vector-mediated transduction for the delivery of a therapeutic protein into a cell. Fusion proteins with an arginine-rich cell-penetrating peptide have been produced in E. coli, but the low solubility of the fusion protein expressed in E. coli impedes the large-scale production of fusion proteins from E. coli. Results Expressed protein ligation is a semisynthetic method to ligate a bacterially expressed protein with a chemically synthesized peptide. In this study, we developed expressed protein ligation-based techniques to conjugate synthetic polyarginine peptides to Cre recombinase. The conjugation efficiency of this technique was higher than 80%. Using this method, we prepared semisynthetic Cre with poly-L-arginine (ssCre-R9), poly-D-arginine (ssCre-dR9) and biotin (ssCre-dR9-biotin). We found that ssCre-R9 was delivered to the cell to a comparable level or more efficiently compared with Cre-R11 and TAT-Cre expressed as recombinant fusion proteins in E. coli. We also found that the poly-D-arginine cell-penetrating peptide was more effective than the poly-L-arginine cell-penetrating peptide for the delivery of Cre into cell. We visualized the cell transduced with ssCre-dR9-biotin using avidin-FITC. Conclusions Collectively, the results demonstrate that expressed protein ligation is an excellent technique for the production of cell-permeable Cre recombinase with polyarginine cell-penetrating peptides. In addition, this approach will extend the use of cell-permeable proteins to more sophisticated applications, such as cell imaging. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0126-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soo Kyung Lyu
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin, 449-791, Republic of Korea.
| | - Hyockman Kwon
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin, 449-791, Republic of Korea.
| |
Collapse
|
17
|
Chien WM, Liu Y, Chin MT. Genomic DNA recombination with cell-penetrating peptide-tagged cre protein in mouse skeletal and cardiac muscle. Genesis 2014; 52:695-701. [PMID: 24753043 DOI: 10.1002/dvg.22782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 12/27/2022]
Abstract
The Cre-loxP recombination system has been used to promote DNA recombination both in vitro and in vivo. For in vivo delivery, Cre expression is commonly achieved through the use of tissue/cell type-specific promoters, viral infection, or drug inducible transcription and protein translocation to promote targeted DNA excision. The development of cell permeable (or penetrating) peptide tagged proteins has facilitated the delivery of Cre recombinase protein into cells in culture, organotypic slide culture, or in living animals. In this report, we generated bacterially expressed, his-tagged Cre protein with either a cardiac targeting peptide or an antennapedia peptide at the C-terminus and demonstrated efficient uptake and recombination in both cell culture and mice. To facilitate delivery to cardiac and skeletal muscle, we mixed proteins with pluronic F-127 hydrogel and delivered Cre protein into reporter Rosa26mTmG mouse skeletal muscle or Rosa26LacZ cardiac muscle via ultrasound guided injection. Activation of reporter gene expression indicated that these Cre proteins were enzymatically active. Recombination events were detected only in the vicinity of injection areas. In conclusion, we have developed a method to deliver enzymatically active Cre protein locally to skeletal muscle and cardiac muscle that may be adapted for use with other proteins.
Collapse
Affiliation(s)
- Wei-Ming Chien
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | | | | |
Collapse
|
18
|
Suh JS, Lee JY, Choi YJ, You HK, Hong SD, Chung CP, Park YJ. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis. Int J Nanomedicine 2014; 9:1153-66. [PMID: 24648725 PMCID: PMC3956484 DOI: 10.2147/ijn.s55433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP), and a transcriptional coactivator with a PDZ-binding motif (TAZ) protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC) differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in alginate gel for the purpose of localization and controlled release. The LMWP-TAZ fusion protein-loaded alginate gel matrix significantly increased bone formation in rabbit calvarial defects compared with alginate gel matrix mixed with free TAZ protein. The protein transduction of TAZ fused with cell-penetrating LMWP peptide was able selectively to stimulate osteogenesis in vitro and in vivo. Taken together, this fusion protein-transduction technology for osteogenic protein can thus be applied in combination with biomaterials for tissue regeneration and controlled release for tissue-engineering purposes.
Collapse
Affiliation(s)
- Jin Sook Suh
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jue Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Yoon Jung Choi
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hyung Keun You
- Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, Republic of Korea
| | - Seong-Doo Hong
- Department of Oral Pathology, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Chong Pyoung Chung
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| | - Yoon Jeong Park
- Dental Regenerative Biotechnology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea ; Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul, Republic of Korea
| |
Collapse
|
19
|
Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 2013; 111:1-15. [PMID: 23982993 DOI: 10.1002/bit.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, 92037
| | | | | |
Collapse
|
20
|
Fang B, Guo HY, Zhang M, Jiang L, Ren FZ. The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA. FEBS J 2013; 280:1007-17. [PMID: 23241223 DOI: 10.1111/febs.12093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 10/18/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
Abstract
Cell-penetrating peptides (CPPs) are a new class of vectors with high pharmaceutical potential to deliver bioactive cargos into cells. Here, we characterized bLFcin(6) , a six amino acid peptide derived from bovine lactoferricin, as a CPP. Uptake of bLFcin(6) was measured by flow cytometry. The ability to delivery siRNA was analyzed in HeLa cells. bLFcin(6) exhibited concentration-dependent uptake and intracellular distribution. Below 7.5 μm, uptake of bLFcin(6) was significantly lower than uptake of TAT (P < 0.05) because bLFcin(6) has fewer cationic amino acids. Compared to CPP(5) (RLRWR) and CPP(6) (PFVYLI), bLFcin(6) had a significantly higher internalization ratio above 2.5 μm because it has two tryptophan residues. Uptake of bLFcin(6) starts with an ionic cell-surface interaction. It is then rapidly internalized by lipid raft-dependent macropinocytosis, followed by release from macropinosomes into the cytosol and nucleus. Moreover, bLFcin(6) formed stable electrostatic complexes with siRNA and delivered siRNA into cells, resulting in significant knockout activity at both the mRNA and protein levels. The knockout activity of siRNA delivered by bLFcin(6) was similar to that mediated by TAT, although knockout by bLFcin(6) required a higher molar ratio. In this study, bLFcin(6) was tested for its ability to act as an siRNA-delivering CPP.
Collapse
Affiliation(s)
- Bing Fang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
21
|
Thompson DB, Cronican JJ, Liu DR. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol 2012; 503:293-319. [PMID: 22230574 DOI: 10.1016/b978-0-12-396962-0.00012-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Supercharged proteins are a class of engineered or naturally occurring proteins with unusually high positive or negative net theoretical charge. Both supernegatively and superpositively charged proteins exhibit a remarkable ability to withstand thermally or chemically induced aggregation. Superpositively charged proteins are also able to penetrate mammalian cells. Associating cargo with these proteins, such as plasmid DNA, siRNA, or other proteins, can enable the functional delivery of these macromolecules into mammalian cells both in vitro and in vivo. The potency of functional delivery in some cases can exceed that of other current methods for macromolecule delivery, including the use of cell-penetrating peptides such as Tat and adenoviral delivery vectors. This chapter summarizes methods for engineering supercharged proteins, optimizing cell penetration, identifying naturally occurring supercharged proteins, and using these proteins for macromolecule delivery into mammalian cells.
Collapse
Affiliation(s)
- David B Thompson
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
22
|
Lim J, Jang G, Kang S, Lee G, Nga DTT, Phuong DTL, Kim H, El-Rifai W, Ruley HE, Jo D. Cell-permeable NM23 blocks the maintenance and progression of established pulmonary metastasis. Cancer Res 2011; 71:7216-25. [PMID: 21987726 DOI: 10.1158/0008-5472.can-11-2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Occult metastases are a major cause of cancer mortality, even among patients undergoing curative resection. Therefore, practical strategies to target the growth and persistence of already established metastases would provide an important advance in cancer treatment. Here, we assessed the potential of protein therapy using a cell permeable NM23-H1 metastasis suppressor protein. Hydrophobic transduction domains developed from a screen of 1,500 signaling peptide sequences enhanced the uptake of the NM23 protein by cultured cells and systemic delivery to animal tissues. The cell-permeable (CP)-NM23 inhibited metastasis-associated phenotypes in tumor cell lines, blocked the establishment of lung metastases, and cleared already established pulmonary metastases, significantly prolonging the survival of tumor-bearing animals. Therefore, these results establish the potential use of cell-permeable metastasis suppressors as adjuvant therapy against disseminated cancers.
Collapse
Affiliation(s)
- Junghee Lim
- ProCell R&D Institute, ProCell Therapeutics, Inc., Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Genetically engineered mouse models have significantly contributed to our understanding of cancer biology. They have proven to be useful in validating gene functions, identifying novel cancer genes and tumor biomarkers, gaining insight into the molecular and cellular mechanisms underlying tumor initiation and multistage processes of tumorigenesis, and providing better clinical models in which to test novel therapeutic strategies. However, mice still have significant limitations in modeling human cancer, including species-specific differences and inaccurate recapitulation of de novo human tumor development. Future challenges in mouse modeling include the generation of clinically relevant mouse models that recapitulate the molecular, cellular, and genomic events of human cancers and clinical response as well as the development of technologies that allow for efficient in vivo imaging and high-throughput screening in mice.
Collapse
Affiliation(s)
- Dong-Joo Cheon
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | |
Collapse
|
24
|
Stock K, Nolden L, Edenhofer F, Quandel T, Brüstle O. Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cell Mol Life Sci 2010; 67:2439-49. [PMID: 20352468 PMCID: PMC2889284 DOI: 10.1007/s00018-010-0347-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/16/2010] [Accepted: 03/08/2010] [Indexed: 01/12/2023]
Abstract
In contrast to conventional gene transfer strategies, the direct introduction of recombinant proteins into cells bypasses the risk of insertional mutagenesis and offers an alternative to genetic intervention. Here, we explore whether protein transduction of the gliogenic transcription factor Nkx2.2 can be used to promote oligodendroglial differentiation of mouse embryonic stem cell (ESC)-derived neural stem cells (NSC). To that end, a recombinant cell-permeant form of Nkx2.2 protein was generated. Exposure of ESC-derived NSC to the recombinant protein and initiation of differentiation resulted in a two-fold increase in the number of oligodendrocytes. Furthermore, Nkx2.2-transduced cells exhibited a more mature oligodendroglial phenotype. Comparative viral gene transfer studies showed that the biological effect of Nkx2.2 protein transduction is comparable to that obtained by lentiviral transduction. The results of this proof-of-concept study depict direct intracellular delivery of transcription factors as alternative modality to control lineage differentiation in NSC cultures without genetic modification.
Collapse
Affiliation(s)
- Kristin Stock
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Lars Nolden
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Frank Edenhofer
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Bonn, Germany
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Tamara Quandel
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE and BRAIN Center, University of Bonn and Hertie Foundation, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| |
Collapse
|
25
|
Wu F, Fan S, Martiniuk F, Pincus S, Müller S, Kohler H, Tchou-Wong KM. Protective effects of anti-ricin A-chain antibodies delivered intracellularly against ricin-induced cytotoxicity. World J Biol Chem 2010; 1:188-95. [PMID: 21541003 PMCID: PMC3083952 DOI: 10.4331/wjbc.v1.i5.188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 05/15/2010] [Accepted: 05/22/2010] [Indexed: 02/05/2023] Open
Abstract
AIM: To evaluate the ability of anti-ricin A-chain antibodies, delivered intracellularly, to protect against ricin-induced cytotoxicity in RAW264.7 cells.
METHODS: Anti-deglycosylated ricin A-chain antibody and RAC18 anti-ricin A-chain monoclonal antibody were delivered intracellularly by encapsulating in liposomes or via conjugation with the cell-penetrating MTS-transport peptide. RAW264.7 cells were incubated with these antibodies either before or after ricin exposure. The changes in cytotoxicity were estimated by MTT assay. Co-localization of internalized antibody and ricin was evaluated by fluorescence microscopy.
RESULTS: Internalized antibodies significantly increased cell viability either before or after ricin exposure compared to the unconjugated antibodies. Fluorescence microscopy confirmed the co-localization of internalized antibodies and ricin inside the cells.
CONCLUSION: Intracellular delivery of antibodies to neutralize the ricin toxin after cellular uptake supports the potential use of cell-permeable antibodies for post-exposure treatment of ricin intoxication.
Collapse
Affiliation(s)
- Feng Wu
- Feng Wu, Shaoan Fan, Kam-Meng Tchou-Wong, Department of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY 10987, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Juliano RL, Alam R, Dixit V, Kang HM. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:324-35. [PMID: 20049800 DOI: 10.1002/wnan.4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review will discuss the basic concepts concerning the use of cell-targeting peptides (CTPs) and cell-penetrating peptides (CPPs) in the context of nanocarrier technology. It deals with the discovery and subsequent evolution of CTPs and CPPs, issues concerning their interactions with cells and their biodistribution in vivo, and their potential advantages and disadvantages as delivery agents. The article also briefly discusses several specific examples of the use of CTPs or CPPs to assist in the delivery of nanoparticles, liposomes, and other nanocarriers.
Collapse
Affiliation(s)
- Rudolph L Juliano
- Department of Pharmacology, University of North Carolina, Chapel Hill, USA.
| | | | | | | |
Collapse
|
27
|
Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat Neurosci 2010; 13:482-8. [PMID: 20190743 DOI: 10.1038/nn.2504] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 01/15/2010] [Indexed: 01/20/2023]
Abstract
Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.
Collapse
|
28
|
Kim K, Kim H, Lee D. Site-specific modification of genome with cell-permeable Cre fusion protein in preimplantation mouse embryo. Biochem Biophys Res Commun 2009; 388:122-6. [PMID: 19646962 DOI: 10.1016/j.bbrc.2009.07.132] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/25/2009] [Indexed: 02/06/2023]
Abstract
Site-specific recombination (SSR) by Cre recombinase and its target sequence, loxP, is a valuable tool in genetic analysis of gene function. Recently, several studies reported successful application of Cre fusion protein containing protein transduction peptide for inducing gene modification in various mammalian cells including ES cell as well as in the whole animal. In this study, we show that a short incubation of preimplantation mouse embryos with purified cell-permeable Cre fusion protein results in efficient SSR. X-Gal staining of preimplantation embryos, heterozygous for Gtrosa26(tm1Sor), revealed that treatment of 1-cell or 2-cell embryos with 3microM of Cre fusion protein for 2h leads to Cre-mediated excision in 70-85% of embryos. We have examined the effect of the concentration of the Cre fusion protein and the duration of the treatment on embryonic development, established a condition for full term development and survival to adulthood, and demonstrated the germ line transmission of excised Gtrosa26 allele. Potential applications and advantages of the highly efficient technique described here are discussed.
Collapse
Affiliation(s)
- Kyoungmi Kim
- Department of Life & Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | | | | |
Collapse
|
29
|
Efficient CPP-mediated Cre protein delivery to developing and adult CNS tissues. BMC Biotechnol 2009; 9:40. [PMID: 19393090 PMCID: PMC2680837 DOI: 10.1186/1472-6750-9-40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/24/2009] [Indexed: 12/01/2022] Open
Abstract
Background Understanding and manipulating gene function in physiological conditions is a major objective for both fundamental and applied research. In contrast to other experimental settings, which use either purely genetic or gene delivery (viral or non-viral) strategies, we report here a strategy based on direct protein delivery to central nervous system (CNS) tissues. We fused Cre recombinase with cell-penetrating peptides and analyzed the intracellular biological activity of the resulting chimerical proteins when delivered into cells endowed with Cre-mediated reporter gene expression. Results We show that active Cre enzymatic conjugates are readily internalized and exert their enzymatic activity in the nucleus of adherent cultured cells. We then evaluated this strategy in organotypic cultures of neural tissue explants derived from reporter mice carrying reporter "floxed" alleles. The efficacy of two protocols was compared on explants, either by direct addition of an overlying drop of protein conjugate or by implantation of conjugate-coated beads. In both cases, delivery of Cre recombinase resulted in genomic recombination that, with the bead protocol, was restricted to discrete areas of embryonic and adult neural tissues. Furthermore, delivery to adult brain tissue resulted in the transduction of mature postmitotic populations of neurons. Conclusion We provide tools for the spatially restricted genetic modification of cells in explant culture. This strategy allows to study lineage, migration, differentiation and death of neural cells. As a proof-of-concept applied to CNS tissue, direct delivery of Cre recombinase enabled the selective elimination of an interneuron subpopulation of the spinal cord, thereby providing a model to study early events of neurodegenerative processes. Thus our work opens new perspectives for both fundamental and applied cell targeting protocols using proteic cargoes which need to retain full bioactivity upon internalisation, as illustrated here with the oligomeric Cre recombinase.
Collapse
|
30
|
Abstract
The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Although this gene 'knockout' approach is often informative, in many cases, the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to 'knock in' subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully based on structural and biophysical data.
Collapse
Affiliation(s)
- Alexander Saveliev
- Medical Research Council National Institute for Medical Research, London, UK
| | | |
Collapse
|
31
|
Meade AJ, Meloni BP, Mastaglia FL, Knuckey NW. The application of cell penetrating peptides for the delivery of neuroprotective peptides/proteins in experimental cerebral ischaemia studies. ACTA ACUST UNITED AC 2009. [DOI: 10.6030/1939-067x-2.1.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Szabo E, Soboloff J, Dziak E, Opas M. Tamoxifen-Inducible Cre-Mediated Calreticulin Excision to Study Mouse Embryonic Stem Cell Differentiation. Stem Cells Dev 2009; 18:187-93. [DOI: 10.1089/scd.2008.0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Eva Szabo
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Soboloff
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Current affiliation: Department of Biochemistry, Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Ewa Dziak
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michal Opas
- Laboratory Medicine and Pathobiology/Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Ito M, Nagata H, Miyakawa S, Fox IJ. Review of hepatocyte transplantation. ACTA ACUST UNITED AC 2008; 16:97-100. [PMID: 19110647 DOI: 10.1007/s00534-008-0023-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 11/25/2022]
Abstract
BACKGROUND Hepatocyte transplantation is a promising treatment for several liver diseases and can also be used as a "bridge" to liver transplantation in cases of liver failure. Although the first animal experiments with this technique began in 1967, it was first applied in humans only in 1992. Unfortunately, unequivocal evidence of transplanted human hepatocyte function has been obtained in only one patient with Crigler-Najjar syndrome type I and, even then, the amount of bilirubin-UDP-glucuronosyltransferase enzyme activity derived from the transplanted cells was not sufficient to eliminate the patient's eventual need for organ transplantation. METHODS A literature review was carried out using MEDLINE and library searches. RESULTS This review considers the following: (1) alternatives or bridges to orthotopic liver transplantation (OLT); (2) solutions to the shortage of organs-the shortage of organ donors has impeded the development of human hepatocyte transplantation, and immortalized hepatocytes in particular could provide an unlimited supply of transplantable cells in a nearly future; (3) future directions. We review these efforts along with hepatocyte transplantation over the last 13 years.
Collapse
Affiliation(s)
- Masahiro Ito
- Department of Surgery, Fujita-Health University, Toyoake, Aichi, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
The nuclear factor kappa B (NF-kappaB) transcription factors are activated by a range of stimuli including pro-inflammatory cytokines. Active NF-kappaB regulates the expression of genes involved in inflammation and cell survival and aberrant NF-kappaB activity plays pathological roles in certain types of cancer and diseases characterized by chronic inflammation. NF-kappaB signaling is an attractive target for the development of novel anti-inflammatory or anti-cancer drugs and we discuss here how the method of peptide transduction has been used to specifically target NF-kappaB. Peptide transduction relies on the ability of certain small cell-penetrating peptides (CPPs) to enter cells, and a panel of CPP-linked inhibitors (CPP-Is) has been developed to directly inhibit NF-kappaB signaling. Remarkably, several of these NF-kappaB-targeting CPP-Is are effective in vivo and therefore offer exciting potential in the clinical setting.
Collapse
Affiliation(s)
- J. S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, The Children’s Hospital of Philadelphia 3615 Civic Center Blvd., ARC 1016H, Philadelphia, PA 19104 USA
| | - M. J. May
- Department of Animal Biology and The Mari Lowe Center for Comparative Oncology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street (OVH 200E), Philadelphia, PA 19104 USA
| |
Collapse
|
35
|
Biswas G, Jeon OY, Lee W, Kim DC, Kim KT, Lee S, Chang S, Chung SK. Novel Guanidine-Containing Molecular Transporters Based on Lactose Scaffolds: Lipophilicity Effect on the Intracellular Organellar Selectivity. Chemistry 2008; 14:9161-8. [DOI: 10.1002/chem.200801160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Abstract
Stromal-epithelial interactions mediated by paracrine signaling mechanisms dictate prostate development and progression of prostate cancer. The regulatory role of androgens in both the prostate stromal and epithelial compartments set the prostate apart from many other organs and tissues with regard to gene targeting. The identification of androgen-dependent prostate epithelial promoters has allowed successful gene targeting to the prostate epithelial compartment. Currently, there are no transgenic mouse models available to specifically alter gene expression within the prostate stromal compartment. As a primary metastatic site for prostate cancer is bone, the functional dissection of the bone stromal compartment is important for understanding stromal-epithelial interactions associated with metastatic tumor growth. Use of currently available methodologies for the expression or deletion of gene expression in recent research studies has advanced our understanding of the stroma. However, the complexity of stromal heterogeneity within the prostate remains a challenge to obtaining compartment or cell-lineage-specific in vivo models necessary for furthering our understanding of prostatic developmental, benign, tumorigenic, and metastatic growth.
Collapse
Affiliation(s)
- Roger S Jackson
- Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | |
Collapse
|
37
|
Xu Y, Liu S, Yu G, Chen J, Chen J, Xu X, Wu Y, Zhang A, Dowdy SF, Cheng G. Excision of selectable genes from transgenic goat cells by a protein transducible TAT-Cre recombinase. Gene 2008; 419:70-4. [PMID: 18547746 DOI: 10.1016/j.gene.2008.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/30/2008] [Accepted: 04/30/2008] [Indexed: 01/15/2023]
Abstract
The Cre/loxP site-specific recombination system is a widely used tool for genetic engineering of mammalian genomes. Recombination of loxP-modified alleles is often induced by introduction of foreign DNA vector expressing Cre into the cells. But the introduced DNA vector has the potential to integrate into the genome of the cells and continuous expression of Cre recombinase from the foreign vector has the potential to yield cytotoxicity and genotoxicity in various cells. In this study, we investigate the possibility of overcoming this limitation by using a cell-permeable TAT-Cre recombinase. We found that TAT-Cre treatment of transgenic goat fibroblast cells did not compromise the development competency of reconstructed embryos by using these TAT-Cre-treated cells as nuclear donor in nuclear transfer. Finally, we obtained two live cloned goats where a selectable gene cassette was removed. Our work not only provided an efficient protein transduction-based system for removing selectable genes from transgenic goats, but also presented strong evidence that no severe damage was made to the host cells during the process of protein transduction.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Life Science and Technology, Tongji University, 1239 Si-Ping Road, Shanghai, 200092, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fischer PM. Cellular uptake mechanisms and potential therapeutic utility of peptidic cell delivery vectors: progress 2001-2006. Med Res Rev 2008; 27:755-95. [PMID: 17019680 DOI: 10.1002/med.20093] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell delivery vectors (CDVs) are short amphipathic and cationic peptides and peptide derivatives, usually containing multiple lysine and arginine residues. They possess inherent membrane activity and can be conjugated or complexed with large impermeable macromolecules and even microscopic particles to facilitate cell entry. Various mechanisms have been proposed but it is now becoming clear that the main port of entry into cells of such CDV constructs involves adsorptive-mediated endocytosis rather than direct penetration of the plasma membrane. It is still unclear, however, how and to what extent CDV constructs are capable of exiting endosomal compartments and reaching their intended cellular site of action, usually the cytosol or the nucleus. Furthermore, although many CDVs can mediate cellular uptake of their cargo and appear comparatively non-toxic to cells in tissue culture, the utility of CDVs for in vivo applications remains poorly understood. Whatever the mechanisms of cell entry and disposition, the overriding question as far as potential pharmacological application of CDV conjugates is concerned is whether or not a therapeutic margin can be achieved by their administration. Such a margin will only result if the intracellular concentration in the target tissues necessary to elicit the biological effect of the CDV cargo can be achieved at systemic CDV exposure levels that are non-toxic to both target and bystander cells. It is proposed that the focus of CDV research now be shifted from mechanistic in vitro studies with labeled but otherwise unconjugated CDVs to in vivo pharmacological and toxicological studies using CDV-derivatized and other cationized forms of inherently non-permeable macromolecules of true therapeutic interest.
Collapse
Affiliation(s)
- Peter M Fischer
- Centre for Biomolecular Sciences and School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
39
|
Abstract
Most of the current experimental cancer models do not reflect the pathophysiology of real-life cancer. Cancer usually occurs sporadically and is clonal in origin. Between tumor initiation and progression, clinically unapparent pre-malignant cells may persist for years or decades in humans. Recently, mouse models of sporadic cancer have been developed. The mouse germ-line can be engineered with high precision so that defined genes can be switched on and off in the adult organism in a targeted manner. Analysis of the immune response against sporadic tumors requires the knowledge of a tumor antigen. Ideally, a silent oncogene, for which the mice are not tolerant, is stochastically activated in individual cells. This approach offers the opportunity to analyze the adaptive immune response throughout the long process of malignant transformation and most closely resembles cancer in humans. In such a model with the highly immunogenic SV40 large T antigen as a dormant oncogene, we discovered that sporadic cancer is recognized by the adaptive immune system at the pre-malignant stage, concomitant with the induction of tumor antigen-specific tolerance. These results demonstrated that even highly immunogenic sporadic tumors are unable to induce functional cytotoxic T lymphocytes. Based on this model, we conclude that immunosurveillance plays little or no role against sporadic cancer and that tumors must not escape immune recognition or destruction.
Collapse
Affiliation(s)
- Gerald Willimsky
- Institute of Immunology, Charité Campus Benjamin Franklin, Berlin, Germany
| | | |
Collapse
|
40
|
Zha Y, Shah R, Locke F, Wong A, Gajewski TF. Use of Cre-adenovirus and CAR transgenic mice for efficient deletion of genes in post-thymic T cells. J Immunol Methods 2007; 331:94-102. [PMID: 18177887 DOI: 10.1016/j.jim.2007.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/22/2007] [Accepted: 11/25/2007] [Indexed: 11/15/2022]
Abstract
Conditional gene deletion using lineage-specific transgenic expression of Cre has been useful for defining the role of specific gene products in mice in vivo. However, this technology has had limitations for studies of peripheral T cell biology, since the T-lineage promoters commonly used are active early in thymic development. As such, T cell development can be altered by the resulting genetic alterations, thus limiting the interpretation of the data in post-thymic T cell studies. Thus, new strategies are needed to delete targeted genes directly in peripheral T lymphocytes. The availability of transgenic mice expressing the CAR in the T cell compartment enabled testing of Cre-mediated recombination using an adenoviral vector in naïve peripheral T cells in vitro, even without cellular activation. Using Rosa26R reporterxCAR transgenic mice, we describe conditions by which Cre-mediated deletion of targeted genes can be achieved with primary T cells in vitro. These cells can also be adoptively transferred into defined recipient mice for study in vivo. We use conditional PTEN-deficient mice as proof of concept to confirm the value of this technique for deleting a negative regulator of T cell activation. This technology should be broadly applicable for studies of T cell-specific gene deletion to gain understanding of function in the post-thymic T cell compartment.
Collapse
Affiliation(s)
- Yuanyuan Zha
- Department of Pathology and Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
41
|
Peitz M, Jäger R, Patsch C, Jäger A, Egert A, Schorle H, Edenhofer F. Enhanced purification of cell-permeant Cre and germline transmission after transduction into mouse embryonic stem cells. Genesis 2007; 45:508-17. [PMID: 17661398 DOI: 10.1002/dvg.20321] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Continuous expression of Cre recombinase has the potential to yield toxic side effects in various cell types, thereby limiting applications of the Cre/loxP system for conditional mutagenesis. In this study, we investigate the potential of Cre protein transduction to overcome this limitation. COS-7, CV1-5B, and mouse embryonic stem (ES) cells treated with cell-permeant Cre (HTNCre) maintain a normal growth behavior employing Cre concentrations sufficient to induce recombination in more than 90% of the cells, whereas continuous application of high doses resulted in markedly reduced proliferation. HTNCre-treated ES cells maintain a normal karyotype and are still able to contribute to the germline. Moreover, we present an enhanced HTNCre purification protocol that allows the preparation of a concentrated glycerol stock solution, thereby enabling a considerable simplification of the Cre protein transduction procedure. The protocol described here allows rapid and highly efficient conditional mutagenesis of cultured cells.
Collapse
Affiliation(s)
- Michael Peitz
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, Life & Brain Center and Hertie Foundation, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Chamberlain JR, Deyle DR, Schwarze U, Wang P, Hirata RK, Li Y, Byers PH, Russell DW. Gene targeting of mutant COL1A2 alleles in mesenchymal stem cells from individuals with osteogenesis imperfecta. Mol Ther 2007; 16:187-93. [PMID: 17955022 DOI: 10.1038/sj.mt.6300339] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are adult cells with the capacity to differentiate into multiple cell types, including bone, fat, cartilage, and muscle cells. In order to effectively utilize autologous MSCs in cell-based therapies, precise genetic manipulations are required to eliminate the effects of disease-causing mutations. We previously used adeno-associated virus (AAV) vectors to target and inactivate mutant COL1A1 genes in MSCs from individuals with the brittle bone disorder, osteogenesis imperfecta (OI). Here we have used AAV vectors to inactivate mutant COL1A2 genes in OI MSCs, thereby demonstrating that both type I collagen genes responsible for OI can be successfully targeted. We incorporated improved vector designs so as to minimize the consequences of random integration, facilitate the removal of potential antigens, and avoid unwanted exon skipping. MSCs targeted at mutant COL1A2 alleles produced normal type I procollagen and formed bone, thereby demonstrating their therapeutic potential.
Collapse
Affiliation(s)
- Joel R Chamberlain
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Molecular basis of the internalization of bovine immunodeficiency virus Tat protein. Virus Genes 2007; 36:85-94. [DOI: 10.1007/s11262-007-0137-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/02/2007] [Indexed: 10/22/2022]
|
44
|
Fan Y, Hida A, Anderson DA, Izumo M, Johnson CH. Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts. Curr Biol 2007; 17:1091-100. [PMID: 17583506 PMCID: PMC3434691 DOI: 10.1016/j.cub.2007.05.048] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND An interlocked transcriptional-translational feedback loop (TTFL) is thought to generate the mammalian circadian clockwork in both the central pacemaker residing in the hypothalamic suprachiasmatic nuclei and in peripheral tissues. The core circadian genes, including Period1 and Period2 (Per1 and Per2), Cryptochrome1 and Cryptochrome2 (Cry1 and Cry2), Bmal1, and Clock are indispensable components of this biological clockwork. The cycling of the PER and CRY clock proteins has been thought to be necessary to keep the mammalian clock ticking. RESULTS We provide a novel cell-permeant protein approach for manipulating cryptochrome protein levels to evaluate the current transcription and translation feedback model of the circadian clockwork. Cell-permeant cryptochrome proteins appear to be functional on the basis of several criteria, including the abilities to (1) rescue circadian properties in Cry1(-/-)Cry2(-/-) mouse fibroblasts, (2) act as transcriptional repressors, and (3) phase shift the circadian oscillator in Rat-1 fibroblasts. By using cell-permeant cryptochrome proteins, we demonstrate that cycling of CRY1, CRY2, and BMAL1 is not necessary for circadian-clock function in fibroblasts. CONCLUSIONS These results are not supportive of the current version of the transcription and translation feedback-loop model of the mammalian clock mechanism, in which cycling of the essential clock proteins CRY1 and CRY2 is thought to be necessary.
Collapse
Affiliation(s)
- Yunzhen Fan
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Akiko Hida
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Daniel A. Anderson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Mariko Izumo
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634
| |
Collapse
|
45
|
Abstract
The ability to generate genetically manipulated mice has revolutionized the study of development, cell biology, immunobiology and transplantation. Conventional gene targeting approaches lead to inactivation of the target gene in all tissues. This approach often has unintended consequences, such as embryonic lethality, which preclude studying the originally intended tissue. Newer approaches allowing conditional gene expression in a tissue-specific or temporally controlled fashion have the advantage of normal development with gene deletion only in the desired tissues. While nuances to these techniques continue to be developed, the underlying concepts remain consistent. This minireview focuses on the use of conditional gene targeting in mice using the Cre-loxP system and drug inducible gene expression using the tetracycline system.
Collapse
Affiliation(s)
- J S Maltzman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
46
|
Abstract
In the last decade, site-specific recombinases (SSRs), such as Cre and Flp, have emerged as indispensable tools for the precise in vivo manipulation of the mouse genome. It is now feasible to control, in space and time, the onset of gene knockouts in almost any tissue of the mouse, thus greatly facilitating the creation of sophisticated animal models for human disease and drug development. This review describes the basic principles and current status of the SSR technology, with a focus on strategies for conditional somatic mutagenesis using the Cre/lox system and ligand-activated Cre recombinases. Practical hints for generating and analysing conditional mouse mutants will be given and exciting novel applications of the SSR technology will be discussed, such as cell fate mapping and the combined use of Cre, Flp and other biotechnological tools. It will be shown how genetic manipulation of the mouse by site-specific recombination can provide new solutions to old problems in the analysis of human physiology and pathophysiology and how it can be employed for drug discovery and development.
Collapse
Affiliation(s)
- R Feil
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| |
Collapse
|
47
|
Maiti KK, Jeon OY, Lee WS, Chung SK. Design, Synthesis, and Delivery Properties of Novel Guanidine-Containing Molecular Transporters Built on Dimeric Inositol Scaffolds. Chemistry 2007; 13:762-75. [PMID: 17086570 DOI: 10.1002/chem.200600898] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed a novel class of synthetic molecular transporters that contain eight residues of guanidine with an inositol dimer as the scaffold. The dimers were prepared by connecting two units of myo- or scyllo-inositol via a carbonate or amide linkage, and the multiple units of the guanidine functionality were constructed on the inositol scaffold by means of peracylation with omega-aminocarboxylate derivatives of varying length. Bioassays based on confocal laser scanning microscopy and fluorescence-activated cell sorter analyses indicated that these transporters display a varying degree of membrane translocating ability, and the intracellular localization and mouse-tissue distribution studies strongly suggested that these transporters undergo substantially different mechanistic processes from those of peptide transporters reported to date. It was also shown that doxorubicin, an anticancer antibiotic, can be efficiently delivered into mouse brain by aid of this type of transporter.
Collapse
Affiliation(s)
- Kaustabh K Maiti
- Department of Chemistry, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
48
|
Patsch C, Edenhofer F. Conditional mutagenesis by cell-permeable proteins: potential, limitations and prospects. Handb Exp Pharmacol 2007:203-32. [PMID: 17203657 DOI: 10.1007/978-3-540-35109-2_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The combination of two powerful technologies, the Cre/loxP recombination system and the protein transduction technique, holds great promise for the advancement of biomedical and genome research by enabling precise and rapid control over mutation events. Protein transduction is a recently developed technology to deliver biologically active proteins directly into mammalian cells. It involves the generation of fusion proteins consisting of the cargo molecule to be delivered and a so-called protein transduction domain. Recently, the derivation of cell permeable variants of the DNA recombinase Cre has been reported. Cre is a site-specific recombinase that recognizes 34 base pair loxP sites and has been widely used to genetically engineer mammalian cells in vitro and in vivo. Recombinant cell-permeable Cre recombinase was found to efficiently induce recombination of loxP-modified alleles in various mammalian cell lines. Here we review recent advances in conditional expression and mutagenesis employing cell-permeable Cre proteins. Moreover, this review summarizes recent findings of studies aimed at deciphering the molecular mechanism of the cellular uptake of cell-permeable fusion proteins.
Collapse
Affiliation(s)
- C Patsch
- Stem Cell Engineering Group, Institute of Reconstructive Neurobiology, University of Bonn, Life and Brain Center and Hertie Foundation, Sigmund-Freud Strasse 25, 53105 Bonn, Germany
| | | |
Collapse
|
49
|
Nolden L, Edenhofer F, Peitz M, Brüstle O. Stem cell engineering using transducible Cre recombinase. METHODS IN MOLECULAR MEDICINE 2007; 140:17-32. [PMID: 18085201 DOI: 10.1007/978-1-59745-443-8_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Embryonic stem (ES) cells have become a major focus of scientific interest both as a potential donor source for regenerative medicine and as a model system for tissue development and pathobiology. Tight and efficient methods for genetic engineering are required to exploit ES cells as disease models and to generate specific somatic phenotypes by lineage selection or instruction. In 1990s, the application of site-specific recombinases (SSRs) such as Cre has revolutionized mammalian genetics by providing a reliable and efficient means to delete, insert, invert, or exchange chromosomal DNA in a conditional manner. Despite these significant advances, the available technology still suffers from limitations, including unwanted side effects elicited by the random integration of Cre expression vectors and leak activity of inducible or presumptive cell type-specific Cre expression systems. These challenges can be met by combining the Cre/loxP recombination system with direct intracellular delivery of Cre by protein transduction, thus enabling rapid and highly efficient conditional mutagenesis in ES cells and ES cell-derived somatic progeny. Modified recombinant variants of Cre protein induce recombination in virtually 100% of human ES (hES) and mouse ES (mES) cells. Here, we present methods for generating purified transducible Cre protein from Escherichia coli and its transduction into ES cells and their neural progeny.
Collapse
Affiliation(s)
- Lars Nolden
- Institute of Reconstructive Neurobiology, University of Bonn-Life & Brain Center and Hertie Foundation, Germany
| | | | | | | |
Collapse
|
50
|
Niarchos DK, Perez SA, Papamichail M. Characterization of a novel cell penetrating peptide derived from Bag-1 protein. Peptides 2006; 27:2661-9. [PMID: 16808988 DOI: 10.1016/j.peptides.2006.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 01/21/2023]
Abstract
A highly cationic peptide (BagP), located within the normally expressed human protein Bag-1, was tested for its capacity to act as a cell penetrating peptide. BagP was found to translocate and transport high molecular weight cargos in several cell types, in varying degrees with a preference for adherent cells. The penetration phenomenon was not found to be subject to saturation for the highest amount of peptide tested (100 microM), whereas the time needed for maximum translocation to be achieved, was cell type-dependent. Finally, BagP internalization depends on its charge, cellular metabolism and cell-surface heparan sulfate proteoglycans.
Collapse
Affiliation(s)
- Dimitrios K Niarchos
- Cancer Immunology and Immunotherapy Center, Saint Savas Hospital, Athens 11522, Greece
| | | | | |
Collapse
|