1
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
2
|
Schmok JC, Yeo GW. Strategies for programmable manipulation of alternative splicing. Curr Opin Genet Dev 2024; 89:102272. [PMID: 39471777 DOI: 10.1016/j.gde.2024.102272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
Alternative splicing (AS) plays a pivotal role in protein diversity and mRNA maturation. Programmable control of targeted AS events is of longstanding interest in RNA biology, promising correction of dysregulated splicing in disease and discovery of AS events. This review explores four main strategies for programmable splicing manipulation: (1) inhibiting splicing signals with antisense oligonucleotides (ASOs), exemplified by therapies approved by the U.S. Food and Drug Administration, (2) applying DNA-targeting clustered regularly interspaced short palindromic repeats systems to edit splicing signals, (3) using synthetic splicing factors, including synthetic proteins and ribonucleoproteins, inspired by natural RNA-binding proteins, and (4) guiding endogenous splicing machinery with bifunctional ASOs and engineered small nuclear RNAs. While ASOs remain clinically prominent, emerging technologies aim for broad, scalable, durable, and precise splicing modulation, holding promise for transformative advancements in RNA biology and therapeutic interventions.
Collapse
Affiliation(s)
- Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; UCSD Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping. Nat Commun 2024; 15:10354. [PMID: 39609418 PMCID: PMC11604662 DOI: 10.1038/s41467-024-54529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which have broad applications in medicine and biotechnology. Existing techniques including antisense oligonucleotides, targetable nucleases, and base editors, while effective for specific applications, remain hindered by transient effects, genotoxicity, and inconsistent exon skipping. To overcome these limitations, here we develop SPLICER, a toolbox of next-generation base editors containing near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing improves exon skipping, reduces aberrant splicing, and enables skipping of exons refractory to single splice site editing. To demonstrate the therapeutic potential of SPLICER, we target APP exon 17, which encodes amino acids that are cleaved to form Aβ plaques in Alzheimer's disease. SPLICER reduces the formation of Aβ42 peptides in vitro and enables efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient exon skipping toolbox.
Collapse
Affiliation(s)
- Angelo Miskalis
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shraddha Shirguppe
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gianna Elias
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Devyani Swami
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ananthan Nambiar
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michelle Stilger
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Gosstola
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Gapinske
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandra Zeballos
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hayden Moore
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sergei Maslov
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
4
|
Tse V, Guiterrez M, Townley J, Romano J, Pearl J, Chacaltana G, Players E, Das R, Sanford JR, Stone MD. OpenASO: RNA Rescue - designing splice-modulating antisense oligonucleotides through community science. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618608. [PMID: 39463988 PMCID: PMC11507933 DOI: 10.1101/2024.10.15.618608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Splice-modulating antisense oligonucleotides (ASOs) are precision RNA-based drugs that are becoming an established modality to treat human disease. Previously, we reported the discovery of ASOs that target a novel, putative intronic RNA structure to rescue splicing of multiple pathogenic variants of F8 exon 16 that cause hemophilia A. However, the conventional approach to discovering splice-modulating ASOs is both laborious and expensive. Here, we describe an alternative paradigm that integrates data-driven RNA structure prediction and community science to discover splice-modulating ASOs. Using a splicing-deficient pathogenic variant of F8 exon 16 as a model, we show that 25% of the top-scoring molecules designed in the Eterna OpenASO challenge have a statistically significant impact on enhancing exon 16 splicing. Additionally, we show that a distinct combination of ASOs designed by Eterna players can additively enhance the inclusion of the splicing-deficient exon 16 variant. Together, our data suggests that crowdsourcing designs from a community of citizen scientists may accelerate the discovery of splice-modulating ASOs with potential to treat human disease.
Collapse
Affiliation(s)
- Victor Tse
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Martin Guiterrez
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jill Townley
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Jonathan Romano
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Jennifer Pearl
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Guillermo Chacaltana
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Eterna Players
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
- Eterna Massive Open Laboratory. Consortium authors listed in Supplemental Table 1
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Jeremy R. Sanford
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- Center for Molecular Biology of RNA, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
5
|
Kiianitsa K, Lukes ME, Hayes BJ, Brutman JN, Valdmanis PN, Bird TD, Raskind WH, Korvatska O. TREM2 variants that cause early dementia and increase Alzheimer's disease risk affect gene splicing. Brain 2024; 147:2368-2383. [PMID: 38226698 PMCID: PMC11224616 DOI: 10.1093/brain/awae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Loss-of-function variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are responsible for a spectrum of neurodegenerative disorders. In the homozygous state, they cause severe pathologies with early onset dementia, such as Nasu-Hakola disease and behavioural variants of frontotemporal dementia (FTD), whereas heterozygous variants increase the risk of late-onset Alzheimer's disease (AD) and FTD. For over half of TREM2 variants found in families with recessive early onset dementia, the defect occurs at the transcript level via premature termination codons or aberrant splicing. The remaining variants are missense alterations thought to affect the protein; however, the underlying pathogenic mechanism is less clear. In this work, we tested whether these disease-associated TREM2 variants contribute to the pathology via altered splicing. Variants scored by SpliceAI algorithm were tested by a full-size TREM2 splicing reporter assay in different cell lines. The effect of variants was quantified by qRT-/RT-PCR and western blots. Nanostring nCounter was used to measure TREM2 RNA in the brains of NHD patients who carried spliceogenic variants. Exon skipping events were analysed from brain RNA-Seq datasets available through the Accelerating Medicines Partnership for Alzheimer's Disease Consortium. We found that for some Nasu-Hakola disease and early onset FTD-causing variants, splicing defects were the primary cause (D134G) or likely contributor to pathogenicity (V126G and K186N). Similar but milder effects on splicing of exons 2 and 3 were demonstrated for A130V, L133L and R136W enriched in patients with dementia. Moreover, the two most frequent missense variants associated with AD/FTD risk in European and African ancestries (R62H, 1% in Caucasians and T96K, 12% in Africans) had splicing defects via excessive skipping of exon 2 and overproduction of a potentially antagonistic TREM2 protein isoform. The effect of R62H on exon 2 skipping was confirmed in three independent brain RNA-Seq datasets. Our findings revealed an unanticipated complexity of pathogenic variation in TREM2, in which effects on post-transcriptional gene regulation and protein function often coexist. This necessitates the inclusion of computational and experimental analyses of splicing and mRNA processing for a better understanding of genetic variation in disease.
Collapse
Affiliation(s)
- Kostantin Kiianitsa
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Maria E Lukes
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Brian J Hayes
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julianna N Brutman
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Paul N Valdmanis
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
- Geriatric Research, Education and Clinical Center (GRECC), VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Wendy H Raskind
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Medical Center, Seattle, WA 98108, USA
| | - Olena Korvatska
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: A Highly Efficient Base Editing Toolbox That Enables In Vivo Therapeutic Exon Skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587650. [PMID: 38883727 PMCID: PMC11178003 DOI: 10.1101/2024.04.01.587650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which has broad applications in molecular biology, medicine, and biotechnology. Existing exon skipping techniques include antisense oligonucleotides, targetable nucleases, and base editors, which, while effective for specific applications at some target exons, remain hindered by shortcomings, including transient effects for oligonucleotides, genotoxicity for nucleases and inconsistent exon skipping for base editors. To overcome these limitations, we created SPLICER, a toolbox of next-generation base editors consisting of near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing with SPLICER improves exon skipping, reduces aberrant outcomes, including cryptic splicing and intron retention, and enables skipping of exons refractory to single splice-site editing. To demonstrate the therapeutic potential of SPLICER, we targeted APP exon 17, which encodes the amino acid residues that are cleaved to form the Aβ plaques in Alzheimer's disease. SPLICER reduced the formation of Aβ42 peptides in vitro and enabled efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient toolbox for exon skipping with broad therapeutic applications.
Collapse
|
7
|
Sanoguera-Miralles L, Llinares-Burguet I, Bueno-Martínez E, Ramadane-Morchadi L, Stuani C, Valenzuela-Palomo A, García-Álvarez A, Pérez-Segura P, Buratti E, de la Hoya M, Velasco-Sampedro EA. Comprehensive splicing analysis of the alternatively spliced CHEK2 exons 8 and 10 reveals three enhancer/silencer-rich regions and 38 spliceogenic variants. J Pathol 2024; 262:395-409. [PMID: 38332730 DOI: 10.1002/path.6243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Inés Llinares-Burguet
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Lobna Ramadane-Morchadi
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Cristiana Stuani
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Alicia García-Álvarez
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Emanuele Buratti
- Molecular Pathology Lab. International Centre of Genetic Engineering and Biotechnology, Trieste, Italy
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, Hospital Clínico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Eladio A Velasco-Sampedro
- Splicing and Genetic Susceptibility to Cancer, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Consejo Superior de Investigaciones Científicas - Universidad de Valladolid (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
8
|
Yang Y, Xie Y, Li Z, Diala C, Ali M, Li R, Xu Y, Wu A, Kim P, Hosseini SR, Bi E, Zhao H, Zheng WJ. Systematic characterization of protein structural features of alternative splicing isoforms using AlphaFold 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.578053. [PMID: 38464054 PMCID: PMC10925173 DOI: 10.1101/2024.01.30.578053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Alternative splicing is an important cellular process in eukaryotes, altering pre-mRNA to yield multiple protein isoforms from a single gene. However, our understanding of the impact of alternative splicing events on protein structures is currently constrained by a lack of sufficient protein structural data. To address this limitation, we employed AlphaFold 2, a cutting-edge protein structure prediction tool, to conduct a comprehensive analysis of alternative splicing for approximately 3,000 human genes, providing valuable insights into its impact on the protein structural. Our investigation employed state of the art high-performance computing infrastructure to systematically characterize structural features in alternatively spliced regions and identified changes in protein structure following alternative splicing events. Notably, we found that alternative splicing tends to alter the structure of residues primarily located in coils and beta-sheets. Our research highlighted a significant enrichment of loops and highly exposed residues within human alternatively spliced regions. Specifically, our examination of the Septin-9 protein revealed potential associations between loops and alternative splicing, providing insights into its evolutionary role. Furthermore, our analysis uncovered two missense mutations in the Tau protein that could influence alternative splicing, potentially contributing to the pathogenesis of Alzheimer's disease. In summary, our work, through a thorough statistical analysis of extensive protein structural data, sheds new light on the intricate relationship between alternative splicing, evolution, and human disease.
Collapse
|
9
|
Mahady L, Perez SE, Malek-Ahmadi M, Mufson EJ. Oligomeric, phosphorylated, and truncated tau and spliceosome pathology within the entorhinal-hippocampal connectome across stages of Alzheimer's disease. J Comp Neurol 2023; 531:2080-2108. [PMID: 36989381 PMCID: PMC10539478 DOI: 10.1002/cne.25466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 03/31/2023]
Abstract
Neurofibrillary tangles (NFTs) contain abnormally phosphorylated tau proteins, which spread within components of the medial temporal lobe (MTL) memory circuit in Alzheimer's disease (AD). Here, we used quantitative immunohistochemistry to determine the density of posttranslational oligomeric (TOC1 and TNT1), phosphorylated (AT8), and late truncated (TauC3) tau epitopes within the MTL subfields including entorhinal cortex (EC) layer II, subiculum, Cornu Ammonis (CA) subfields, and dentate gyrus (DG) in subjects who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI), and AD. We also examined whether alterations of the nuclear alternative splicing protein, SRSF2, are associated with tau pathology. Although a significant increase in TOC1, TNT1, and AT8 neuron density occurred in the EC in MCI and AD, subicular, DG granule cell, and CA1 and CA3 densities were only significantly higher in AD. TauC3 counts were not different between connectome regions and clinical groups. SRSF2 intensity in AT8-positive cells decreased significantly in all regions independent of the clinical groups examined. CA1 and subicular AT8, TauC3, and oligomeric densities correlated across clinical groups. EC AT8 counts correlated with CA subfields and subicular and DG values across clinical groups. Oligomeric and AT8 CA1, EC, and subicular density correlated with Braak stage. Decreased nuclear SRSF2 in the presence of cytoplasmic phosphorylated tau suggests a dual-hit process in NFT formation within the entorhinal hippocampal connectome during the onset of AD. Although oligomeric and phosphorylated tau follow a stereotypical pattern, clinical disease stage determined density of tau deposition and not anatomic location within the entorhinal-hippocampal connectome.
Collapse
Affiliation(s)
- Laura Mahady
- Dept. of Translational Neuroscience, Phoenix, AZ
| | | | | | - Elliott J. Mufson
- Dept. of Translational Neuroscience, Phoenix, AZ
- Dept. of Neurology, Barrow Neurological Institute, Phoenix, AZ 85013
| |
Collapse
|
10
|
Pino MG, Rich KA, Hall NJ, Jones ML, Fox A, Musier-Forsyth K, Kolb SJ. Heterogeneous splicing patterns resulting from KIF5A variants associated with amyotrophic lateral sclerosis. Hum Mol Genet 2023; 32:3166-3180. [PMID: 37593923 DOI: 10.1093/hmg/ddad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
Single-nucleotide variants (SNVs) in the gene encoding Kinesin Family Member 5A (KIF5A), a neuronal motor protein involved in anterograde transport along microtubules, have been associated with amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive and fatal neurodegenerative disease that primarily affects the motor neurons. Numerous ALS-associated KIF5A SNVs are clustered near the splice-site junctions of the penultimate exon 27 and are predicted to alter the carboxy-terminal (C-term) cargo-binding domain of KIF5A. Mis-splicing of exon 27, resulting in exon exclusion, is proposed to be the mechanism by which these SNVs cause ALS. Whether all SNVs proximal to exon 27 result in exon exclusion is unclear. To address this question, we designed an in vitro minigene splicing assay in human embryonic kidney 293 cells, which revealed heterogeneous site-specific effects on splicing: only 5' splice-site (5'ss) SNVs resulted in exon skipping. We also quantified splicing in select clustered, regularly interspaced, short palindromic repeats-edited human stem cells, differentiated to motor neurons, and in neuronal tissues from a 5'ss SNV knock-in mouse, which showed the same result. Moreover, the survival of representative 3' splice site, 5'ss, and truncated C-term variant KIF5A (v-KIF5A) motor neurons was severely reduced compared with wild-type motor neurons, and overt morphological changes were apparent. While the total KIF5A mRNA levels were comparable across the cell lines, the total KIF5A protein levels were decreased for v-KIF5A lines, suggesting an impairment of protein synthesis or stability. Thus, despite the heterogeneous effect on ribonucleic acid splicing, KIF5A SNVs similarly reduce the availability of the KIF5A protein, leading to axonal transport defects and motor neuron pathology.
Collapse
Affiliation(s)
- Megan G Pino
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Kelly A Rich
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Nicholas J Hall
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
| | - Meredith L Jones
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Ashley Fox
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Stephen J Kolb
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, United States
- Department of Biological Chemistry & Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|
11
|
Luo Q, Zhou X, Lv X, Zheng W, Geng S, Xu T, Sun Y. Identification and functional regulation of three alternative splicing isoforms of the fthl27 gene in miiuy croaker, Miichthys miiuy. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109147. [PMID: 37805112 DOI: 10.1016/j.fsi.2023.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Alternative splicing is an important basic mechanism for eukaryotes to control gene expression. Different forms of alternative splicing may lead to the production of protein subtypes with different functions, leading to the expansion of protein diversity in organisms, affecting cell production and metabolism, and is even related to the occurrence of many diseases. Many studies have shown that ferritin is usually associated with inflammation, vascular proliferation, and tumors, which is the focus of immunological research. It not only plays a role in iron metabolism and storage in the body, but also plays an important regulatory role in pathways related to immune and inflammatory regulation. However, there are few studies on alternative splicing events of the ferritin gene nowadays. Therefore, this study identified three different splicing isoforms in its ferritin gene fthl27 of Miichthys miiuy through Sanger sequencing, qRT-PCR, and other experimental techniques, and we found that three different splicing isoforms of the ferritin gene fthl27 in M. Miiuy cells showed an upregulation trend after being stimulated by Lipopolysaccharide (LPS) and poly (I: C). The experiment also found that the three isoforms may have different regulatory effects on the expression of inflammatory factors and antiviral immune factors, playing an important role in the innate immune response of fish.
Collapse
Affiliation(s)
- Qiang Luo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xuefeng Zhou
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lv
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Weiwei Zheng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shang Geng
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
12
|
Aquino-Jarquin G. Genome and transcriptome engineering by compact and versatile CRISPR-Cas systems. Drug Discov Today 2023; 28:103793. [PMID: 37797813 DOI: 10.1016/j.drudis.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Comparative genomics has enabled the discovery of tiny clustered regularly interspaced short palindromic repeat (CRISPR) bacterial immune system effectors with enormous potential for manipulating eukaryotic genomes. Recently, smaller Cas proteins, including miniature Cas9, Cas12, and Cas13 proteins, have been identified and validated as efficient genome editing and base editing tools in human cells. The compact size of these novel CRISPR effectors is highly desirable for generating CRISPR-based therapeutic approaches, mainly to overcome in vivo delivery constraints, providing a promising opportunity for editing pathogenic mutations of clinical relevance and knocking down RNAs in human cells without inducing chromosomal insertions or genome alterations. Thus, these tiny CRISPR-Cas systems represent new and highly programmable, specific, and efficient platforms, which expand the CRISPR toolkit for potential therapeutic opportunities.
Collapse
Affiliation(s)
- Guillermo Aquino-Jarquin
- RNA Biology and Genome Editing Section. Research on Genomics, Genetics, and Bioinformatics Laboratory. Hemato-Oncology Building, 4th Floor, Section 2. Children's Hospital of Mexico, Federico Gómez, Mexico City, Mexico.
| |
Collapse
|
13
|
Beer LA, Yin X, Ding J, Senapati S, Sammel MD, Barnhart KT, Liu Q, Speicher DW, Goldman AR. Identification and verification of plasma protein biomarkers that accurately identify an ectopic pregnancy. Clin Proteomics 2023; 20:37. [PMID: 37715129 PMCID: PMC10503165 DOI: 10.1186/s12014-023-09425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/21/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Differentiating between a normal intrauterine pregnancy (IUP) and abnormal conditions including early pregnancy loss (EPL) or ectopic pregnancy (EP) is a major clinical challenge in early pregnancy. Currently, serial β-human chorionic gonadotropin (β-hCG) and progesterone are the most commonly used plasma biomarkers for evaluating pregnancy prognosis when ultrasound is inconclusive. However, neither biomarker can predict an EP with sufficient and reproducible accuracy. Hence, identification of new plasma biomarkers that can accurately diagnose EP would have great clinical value. METHODS Plasma was collected from a discovery cohort of 48 consenting women having an IUP, EPL, or EP. Samples were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) followed by a label-free proteomics analysis to identify significant changes between pregnancy outcomes. A panel of 14 candidate biomarkers were then verified in an independent cohort of 74 women using absolute quantitation by targeted parallel reaction monitoring mass spectrometry (PRM-MS) which provided the capacity to distinguish between closely related protein isoforms. Logistic regression and Lasso feature selection were used to evaluate the performance of individual biomarkers and panels of multiple biomarkers to predict EP. RESULTS A total of 1391 proteins were identified in an unbiased plasma proteome discovery. A number of significant changes (FDR ≤ 5%) were identified when comparing EP vs. non-EP (IUP + EPL). Next, 14 candidate biomarkers (ADAM12, CGA, CGB, ISM2, NOTUM, PAEP, PAPPA, PSG1, PSG2, PSG3, PSG9, PSG11, PSG6/9, and PSG8/1) were verified as being significantly different between EP and non-EP in an independent cohort (FDR ≤ 5%). Using logistic regression models, a risk score for EP was calculated for each subject, and four multiple biomarker logistic models were identified that performed similarly and had higher AUCs than models with single predictors. CONCLUSIONS Overall, four multivariable logistic models were identified that had significantly better prediction of having EP than those logistic models with single biomarkers. Model 4 (NOTUM, PAEP, PAPPA, ADAM12) had the highest AUC (0.987) and accuracy (96%). However, because the models are statistically similar, all markers in the four models and other highly correlated markers should be considered in further validation studies.
Collapse
Affiliation(s)
- Lynn A Beer
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiangfan Yin
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Jianyi Ding
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Suneeta Senapati
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Mary D Sammel
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Kurt T Barnhart
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Liu
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Das S, Mallick D, Sarkar S, Billington N, Sellers JR, Jana SS. A brain specific alternatively spliced isoform of nonmuscle myosin IIA lacks its mechanoenzymatic activities. J Biol Chem 2023; 299:105143. [PMID: 37562567 PMCID: PMC10480317 DOI: 10.1016/j.jbc.2023.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023] Open
Abstract
Recent genomic studies reported that 90 to 95% of human genes can undergo alternative splicing, by which multiple isoforms of proteins are synthesized. However, the functional consequences of most of the isoforms are largely unknown. Here, we report a novel alternatively spliced isoform of nonmuscle myosin IIA (NM IIA), called NM IIA2, which is generated by the inclusion of 21 amino acids near the actin-binding region (loop 2) of the head domain of heavy chains. Expression of NM IIA2 is found exclusively in the brain tissue, where it reaches a maximum level at 24 h during the circadian rhythm. The actin-dependent Mg2+-ATPase activity and in vitro motility assays reveal that NM IIA2 lacks its motor activities but localizes with actin filaments in cells. Interestingly, NM IIA2 can also make heterofilaments with NM IIA0 (noninserted isoform of NM IIA) and can retard the in vitro motility of NM IIA, when the two are mixed. Altogether, our findings provide the functional importance of a previously unknown alternatively spliced isoform, NM IIA2, and its potential physiological role in regulating NM IIA activity in the brain.
Collapse
Affiliation(s)
- Samprita Das
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Ditipriya Mallick
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Sourav Sarkar
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Siddhartha S Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, Kolkata, West Bengal, India.
| |
Collapse
|
15
|
Nikom D, Zheng S. Alternative splicing in neurodegenerative disease and the promise of RNA therapies. Nat Rev Neurosci 2023; 24:457-473. [PMID: 37336982 DOI: 10.1038/s41583-023-00717-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Alternative splicing generates a myriad of RNA products and protein isoforms of different functions from a single gene. Dysregulated alternative splicing has emerged as a new mechanism broadly implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson disease and repeat expansion diseases. Understanding the mechanisms and functional outcomes of abnormal splicing in neurological disorders is vital in developing effective therapies to treat mis-splicing pathology. In this Review, we discuss emerging research and evidence of the roles of alternative splicing defects in major neurodegenerative diseases and summarize the latest advances in RNA-based therapeutic strategies to target these disorders.
Collapse
Affiliation(s)
- David Nikom
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA
| | - Sika Zheng
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, USA.
- Center for RNA Biology and Medicine, University of California, Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
16
|
Varabyou A, Erdogdu B, Salzberg SL, Pertea M. Investigating Open Reading Frames in Known and Novel Transcripts using ORFanage. NATURE COMPUTATIONAL SCIENCE 2023; 3:700-708. [PMID: 38098813 PMCID: PMC10718564 DOI: 10.1038/s43588-023-00496-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/05/2023] [Indexed: 12/17/2023]
Abstract
ORFanage is a system designed to assign open reading frames (ORFs) to known and novel gene transcripts while maximizing similarity to annotated proteins. The primary intended use of ORFanage is the identification of ORFs in the assembled results of RNA sequencing experiments, a capability that most transcriptome assembly methods do not have. Our experiments demonstrate how ORFanage can be used to find novel protein variants in RNA-seq datasets, and to improve the annotations of ORFs in tens of thousands of transcript models in the human annotation databases. Through its implementation of a highly accurate and efficient pseudo-alignment algorithm, ORFanage is substantially faster than other ORF annotation methods, enabling its application to very large datasets. When used to analyze transcriptome assemblies, ORFanage can aid in the separation of signal from transcriptional noise and the identification of likely functional transcript variants, ultimately advancing our understanding of biology and medicine.
Collapse
Affiliation(s)
- Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Beril Erdogdu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steven L. Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
17
|
Zhang F, Velez-Irizarry D, Ernst CW, Huang W. Mapping splice QTLs reveals distinct transcriptional and post-transcriptional regulatory variation of gene expression and identifies putative alternative splicing variation mediating complex trait variation in pigs. BMC Genomics 2023; 24:240. [PMID: 37142954 PMCID: PMC10161646 DOI: 10.1186/s12864-023-09314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/14/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Alternative splicing is an important step in gene expression, generating multiple isoforms for the same genes and greatly expanding the diversity of proteomes. Genetic variation in alternative splicing contributes to phenotypic diversity in natural populations. However, the genetic basis of variation in alternative splicing in livestock including pigs remains poorly understood. RESULTS In this study, using a Duroc x Pietrain F2 pig population, we performed genome-wide analysis of alternative splicing estimated from stranded RNA-Seq data in skeletal muscle. We characterized the genetic architecture of alternative splicing and compared its basic features with those of overall gene expression. We detected a large number of novel alternative splicing events that were not previously annotated. We found heritability of quantitative alternative splicing scores (percent spliced in or PSI) to be lower than that of overall gene expression. In addition, heritabilities showed little correlation between alternative splicing and overall gene expression. We mapped expression QTLs (eQTLs) and splice QTLs (sQTLs) and found them to be largely non-overlapping. Finally, we integrated sQTL mapping with phenotype QTL (pQTL mapping to identify potential mediator of pQTL effect by alternative splicing. CONCLUSIONS Our results suggest that regulatory variation exists at multiple levels and that their genetic controls are distinct, offering opportunities for genetic improvement.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| | | | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
19
|
Varabyou A, Erdogdu B, Salzberg SL, Pertea M. Investigating Open Reading Frames in Known and Novel Transcripts using ORFanage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533704. [PMID: 36993373 PMCID: PMC10055401 DOI: 10.1101/2023.03.23.533704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
ORFanage is a system designed to assign open reading frames (ORFs) to both known and novel gene transcripts while maximizing similarity to annotated proteins. The primary intended use of ORFanage is the identification of ORFs in the assembled results of RNA sequencing (RNA-seq) experiments, a capability that most transcriptome assembly methods do not have. Our experiments demonstrate how ORFanage can be used to find novel protein variants in RNA-seq datasets, and to improve the annotations of ORFs in tens of thousands of transcript models in the RefSeq and GENCODE human annotation databases. Through its implementation of a highly accurate and efficient pseudo-alignment algorithm, ORFanage is substantially faster than other ORF annotation methods, enabling its application to very large datasets. When used to analyze transcriptome assemblies, ORFanage can aid in the separation of signal from transcriptional noise and the identification of likely functional transcript variants, ultimately advancing our understanding of biology and medicine.
Collapse
Affiliation(s)
- Ales Varabyou
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
| | - Beril Erdogdu
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Steven L Salzberg
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mihaela Pertea
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21211, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Djihinto O, Saizonou HD, Djogbenou LS. Single nucleotide polymorphism (SNP) in the doublesex ( dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Res 2023; 7:31. [PMID: 37546169 PMCID: PMC10397894 DOI: 10.12688/wellcomeopenres.17572.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 08/08/2023] Open
Abstract
Background: Malaria burden continues to be significant in tropical regions, and conventional vector control methods are faced with challenges such as insecticide resistance. To overcome these challenges, additional vector control interventions are vital and include modern genetic approaches as well as classical methods like the sterile insect technique (SIT). In the major human malaria vector Anopheles gambiae, a candidate gene favourable for sterility induction is the doublesex ( dsx) gene, involved in mosquitos' somatic sexually dimorphic traits determination. However, the pathways that trigger the signal of dsx gene exon skipping alternative splicing mechanism in anopheline mosquitoes are not well characterized. This study aims to screen the An. gambiae dsx gene splice site sequences for single-nucleotide polymorphisms (SNPs) that could be critical to its alternative splicing. Methods: Variant annotation data from Ag1000G project phase 2 was analysed, in order to identify splice-relevant SNPs within acceptor and donor splice sites of the An. gambiae dsx gene ( Agdsx). Results: SNPs were found in both donor and acceptor sites of the Agdsx. No splice-relevant SNPs were identified in the female-specific intron 4 acceptor site and the corresponding region in males. Two SNPs (rs48712947, rs48712962) were found in the female-specific donor site of exon 5. They were not specific to either males or females as the rs48712947 was found in female mosquitoes from Cameroon, and in both males and females from Burkina Faso. In the other splice sites, the intron 3 acceptor site carried the greatest abundance of SNPs. Conclusions: There were no gender association between the identified SNPs and the random distribution of these SNPs in mosquito populations. The SNPs in Agdsx splice sites are not critical for the alternative splicing. Other molecular mechanisms should be considered and investigated.
Collapse
Affiliation(s)
- Oswald Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, 01BP526 Cotonou, Benin
| | - Helga D.M. Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, 01BP526 Cotonou, Benin
| | - Luc S. Djogbenou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Abomey-Calavi, 01BP526 Cotonou, Benin
- Institut Régional de Santé Publique, University of Abomey-Calavi, Ouidah, BP 384 Ouidah, Benin
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
21
|
Djihinto O, Saizonou HD, Djogbenou LS. Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17572.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Malaria burden continues to be significant in tropical regions, and conventional vector control methods are faced with challenges such as insecticide resistance. To overcome these challenges, additional vector control interventions are vital and include modern genetic approaches as well as classical methods like the sterile insect technique (SIT). In the major human malaria vector Anopheles gambiae, a candidate gene favourable for sterility induction is the doublesex (dsx) gene, involved in mosquitos’ somatic sexually dimorphic traits determination. However, the pathways that trigger the signal of dsx gene exon skipping alternative splicing mechanism in anopheline mosquitoes are not well characterized. This study aims to screen the An. gambiae dsx gene splice site sequences for single-nucleotide polymorphisms (SNPs) that could be critical to its alternative splicing. Methods: Variant annotation data from Ag1000G project phase 2 was analysed, in order to identify splice-relevant SNPs within acceptor and donor splice sites of the An. gambiae dsx gene (Agdsx). Results: SNPs were found in both donor and acceptor sites of the Agdsx. No splice-relevant SNPs were identified in the female-specific intron 4 acceptor site and the corresponding region in males. Two SNPs (rs48712947, rs48712962) were found in the female-specific donor site of exon 5. They were not specific to either males or females as the rs48712947 was found in female mosquitoes from Cameroon, and in both males and females from Burkina Faso. In the other splice sites, the intron 3 acceptor site carried the greatest abundance of SNPs. Conclusions: There were no gender association between the identified SNPs and the random distribution of these SNPs in mosquito populations. The SNPs in Agdsx splice sites are not critical for the alternative splicing. Other molecular mechanisms should be considered and investigated.
Collapse
|
22
|
Zhang L, Abendroth F, Vázquez O. A Chemical Biology Perspective to Therapeutic Regulation of RNA Splicing in Spinal Muscular Atrophy (SMA). ACS Chem Biol 2022; 17:1293-1307. [PMID: 35639849 DOI: 10.1021/acschembio.2c00161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Manipulation of RNA splicing machinery has emerged as a drug modality. Here, we illustrate the potential of this novel paradigm to correct aberrant splicing events focused on the recent therapeutic advances in spinal muscular atrophy (SMA). SMA is an incurable neuromuscular disorder and at present the primary genetic cause of early infant death. This Review summarizes the exciting journey from the first reported SMA cases to the currently approved splicing-switching treatments, i.e., antisense oligonucleotides and small-molecule modifiers. We emphasize both chemical structures and molecular bases for recognition. We briefly discuss the advantages and disadvantages of these treatments and include the remaining challenges and future directions. Finally, we also predict that these success stories will contribute to further therapies for human diseases by RNA-splicing control.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Frank Abendroth
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), University of Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| |
Collapse
|
23
|
Gene expression adjustment of inflammatory mechanisms in dairy cow mammary gland parenchyma during host defense against staphylococci. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of the study was to identify differences in the expression of splice variants of the PRMT2, LTF and C4A genes in the mammary glands of healthy dairy cows and those infected with staphylococci. An expression study was conducted on 38 Polish Holstein-Friesian dairy cows who were removed from the herd owing to subclinical and chronic mastitic or reproductive issues. Two days before slaughter, milk samples were taken for microbiological analysis and examined for the presence of bacteria. The mammary gland parenchyma samples with a predominance of secretory tissue were taken; these were divided into three groups according to the health status of the mammary gland: H (without pathogenic bacteria in milk), CoNS (with coagulase-negative staphylococci in milk), and CoPS (with coagulase-positive staphylococci in milk). Two of the investigated genes, LTF and C4A, demonstrated variants unequivocally expressed in infected tissue. Two LTF gene variants were found to be associated with cow health status, and with the type of bacteria causing mastitis (CoPS or CoNS). In addition, the expression of C4A isoforms differed with regard to mastitis etiology groups. The comprehensive evaluation of PRMT2 transcript suggested that the gene may also be involved in course of mastitis: two of four PRMT2 transcripts showed increased expression in the mammary gland of the CoPS group compared to controls. The obtained results are important for the knowledge on the etiology of bovine mastitis. The effects of the identified mastitis-relevant splice variants need to be further explored on the protein level to verify the suitability of splice variants and recognize their contribution towards the disease phenotypes and course.
Collapse
|
24
|
Chen C, Zhou P, Zhang Z, Liu Y.
U2AF1
mutation Connects
DNA
Damage to the Alternative Splicing of
RAD51
in Lung Adenocarcinomas. Clin Exp Pharmacol Physiol 2022; 49:740-747. [PMID: 35434831 DOI: 10.1111/1440-1681.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Chuanhui Chen
- Department of Respiratory and Critical Care Medicine the First Affiliated Hospital of Nanchang University Nanchang Jiangxi P.R. China
| | - Pinglang Zhou
- Department of Respiratory and Critical Care Medicine the First Affiliated Hospital of Nanchang University Nanchang Jiangxi P.R. China
| | - Zhizhe Zhang
- Department of Respiratory and Critical Care Medicine the First Affiliated Hospital of Nanchang University Nanchang Jiangxi P.R. China
| | - Yu Liu
- Department of Respiratory and Critical Care Medicine the First Affiliated Hospital of Nanchang University Nanchang Jiangxi P.R. China
| |
Collapse
|
25
|
Qi W, Fu H, Luo X, Ren Y, Liu X, Dai H, Zheng Q, Liang F. Electroacupuncture at PC6 (Neiguan) Attenuates Angina Pectoris in Rats with Myocardial Ischemia-Reperfusion Injury Through Regulating the Alternative Splicing of the Major Inhibitory Neurotransmitter Receptor GABRG2. J Cardiovasc Transl Res 2022; 15:1176-1191. [PMID: 35377129 DOI: 10.1007/s12265-022-10245-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 11/27/2022]
Abstract
Angina pectoris is the most common manifestation of coronary heart disease, causing suffering in patients. Electroacupuncture at PC6 can effectively alleviate angina by regulating the expression of genes, whether the alternative splicing (AS) of genes is affected by acupuncture is still unknown. We established a rat model of myocardial ischemia-reperfusion by coronary artery ligation and confirmed electroacupuncture alleviated the abnormal discharge caused by angina pectoris measured in EMG electromyograms. Analysis of the GSE61840 dataset established that AS events were altered after I/R and regulated by electroacupuncture. I/R decreased the expression of splicing factor Nova1 while electroacupuncture rescued it. Further experiments in dorsal root ganglion cells showed Nova1 regulated the AS of the GABRG2, specifically on its exon 9 where an important phosphorylation site is present. In vivo, results also showed that electroacupuncture can restore AS of GABRG2. Our results proved that electroacupuncture alleviates angina results by regulating alternative splicing.
Collapse
Affiliation(s)
- Wenchuan Qi
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Hongjuan Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Xinye Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Yanrong Ren
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.,Shanxi University of Traditional Chinese Medicine, Jinzhong, 030002, Shanxi, China
| | - Xueying Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.,Shanxi University of Traditional Chinese Medicine, Jinzhong, 030002, Shanxi, China
| | - Hongyuan Dai
- College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qianhua Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Fanrong Liang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
26
|
Kauffmann AD, Kennedy SD, Moss WN, Kierzek E, Kierzek R, Turner DH. Nuclear magnetic resonance reveals a two hairpin equilibrium near the 3'-splice site of influenza A segment 7 mRNA that can be shifted by oligonucleotides. RNA (NEW YORK, N.Y.) 2022; 28:508-522. [PMID: 34983822 PMCID: PMC8925974 DOI: 10.1261/rna.078951.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.
Collapse
Affiliation(s)
- Andrew D Kauffmann
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott D Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Walter N Moss
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Douglas H Turner
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
27
|
Lusk R, Hoffman PL, Mahaffey S, Rosean S, Smith H, Silhavy J, Pravenec M, Tabakoff B, Saba LM. Beyond Genes: Inclusion of Alternative Splicing and Alternative Polyadenylation to Assess the Genetic Architecture of Predisposition to Voluntary Alcohol Consumption in Brain of the HXB/BXH Recombinant Inbred Rat Panel. Front Genet 2022; 13:821026. [PMID: 35368676 PMCID: PMC8965255 DOI: 10.3389/fgene.2022.821026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Post transcriptional modifications of RNA are powerful mechanisms by which eukaryotes expand their genetic diversity. For instance, researchers estimate that most transcripts in humans undergo alternative splicing and alternative polyadenylation. These splicing events produce distinct RNA molecules, which in turn yield distinct protein isoforms and/or influence RNA stability, translation, nuclear export, and RNA/protein cellular localization. Due to their pervasiveness and impact, we hypothesized that alternative splicing and alternative polyadenylation in brain can contribute to a predisposition for voluntary alcohol consumption. Using the HXB/BXH recombinant inbred rat panel (a subset of the Hybrid Rat Diversity Panel), we generated over one terabyte of brain RNA sequencing data (total RNA) and identified novel splice variants (via StringTie) and alternative polyadenylation sites (via aptardi) to determine the transcriptional landscape in the brains of these animals. After establishing an analysis pipeline to ascertain high quality transcripts, we quantitated transcripts and integrated genotype data to identify candidate transcript coexpression networks and individual candidate transcripts associated with predisposition to voluntary alcohol consumption in the two-bottle choice paradigm. For genes that were previously associated with this trait (e.g., Lrap, Ift81, and P2rx4) (Saba et al., Febs. J., 282, 3556–3578, Saba et al., Genes. Brain. Behav., 20, e12698), we were able to distinguish between transcript variants to provide further information about the specific isoforms related to the trait. We also identified additional candidate transcripts associated with the trait of voluntary alcohol consumption (i.e., isoforms of Mapkapk5, Aldh1a7, and Map3k7). Consistent with our previous work, our results indicate that transcripts and networks related to inflammation and the immune system in brain can be linked to voluntary alcohol consumption. Overall, we have established a pipeline for including the quantitation of alternative splicing and alternative polyadenylation variants in the transcriptome in the analysis of the relationship between the transcriptome and complex traits.
Collapse
Affiliation(s)
- Ryan Lusk
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel Rosean
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Harry Smith
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jan Silhavy
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Laura M. Saba,
| |
Collapse
|
28
|
Lei Y, Xiao J, Zhao W, Liu F, Sui Y, Wang K, Liu Y. Myc pathway-guided alternative splicing events predict the overall survival of lung squamous cell carcinoma. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2043449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Youming Lei
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Wei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Fanghao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Yi Sui
- Department of IVD Medical Marketing, 3D Medicine Inc., Shanghai, People’s Republic of China
| | - Kun Wang
- Department of Thoracic Surgery, Anning First People’s Hospital (Kunming Fourth People’s Hospital), Seventh Affiliated Hospital of Dali University, Kunming, People’s Republic of China
| | - Yinqiang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
29
|
The Splicing of the Mitochondrial Calcium Uniporter Genuine Activator MICU1 Is Driven by RBFOX2 Splicing Factor during Myogenic Differentiation. Int J Mol Sci 2022; 23:ijms23052517. [PMID: 35269658 PMCID: PMC8909990 DOI: 10.3390/ijms23052517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Alternative splicing, the process by which exons within a pre-mRNA transcript are differentially joined or skipped, is crucial in skeletal muscle since it is required both during myogenesis and in post-natal life to reprogram the transcripts of contractile proteins, metabolic enzymes, and transcription factors in functionally distinct muscle fiber types. The importance of such events is underlined by the numerosity of pathological conditions caused by alternative splicing aberrations. Importantly, many skeletal muscle Ca2+ homeostasis genes are also regulated by alternative splicing mechanisms, among which is the Mitochondrial Ca2+ Uniporter (MCU) genuine activator MICU1 which regulates MCU opening upon cell stimulation. We have previously shown that murine skeletal muscle MICU1 is subjected to alternative splicing, thereby generating a splice variant-which was named MICU1.1-that confers unique properties to the mitochondrial Ca2+ uptake and ensuring sufficient ATP production for muscle contraction. Here we extended the analysis of MICU1 alternative splicing to human tissues, finding two additional splicing variants that were characterized by their ability to regulate mitochondrial Ca2+ uptake. Furthermore, we found that MICU1 alternative splicing is induced during myogenesis by the splicing factor RBFOX2. These results highlight the complexity of the alternative splicing mechanisms in skeletal muscle and the regulation of mitochondrial Ca2+ among tissues.
Collapse
|
30
|
Djihinto O, Saizonou HD, Djogbenou LS. Single nucleotide polymorphism (SNP) in the doublesex (dsx) gene splice sites and relevance for its alternative splicing in the malaria vector Anopheles gambiae. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17572.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The malaria burden continues to be significant in tropical regions, and conventional vector control methods are faced with challenges such as insecticide resistance. To overcome these challenges, additional vector control interventions are vital and include modern genetic approaches as well as classical methods like the sterile insect technique (SIT). In the major human malaria vector Anopheles gambiae, a candidate gene favourable for sterility induction is the doublesex (dsx) gene, encoding somatic sexually dimorphic traits in mosquitoes. However, the mechanism that regulates the expression of this gene in anopheline mosquitoes is poorly understood. This study aimed to screen the An. gambiae dsx gene splice site sequences for single nucleotide polymorphisms (SNPs) that could be critical to its alternative splicing. Methods: Variant annotation data from Ag1000G project phase 2 was analysed, in order to identify splice-relevant SNPs within acceptor and donor splice sites of the An. gambiae dsx gene (Agdsx). Results: SNPs were found in both donor and acceptor sites of the Agdsx. No splice-relevant SNPs were identified in the female-specific intron 4 acceptor site and the corresponding region in males. Two SNPs (rs48712947, rs48712962) were found in the female-specific donor site of exon 5. They were not specific to either males or females as the rs48712947 was found in female mosquitoes from Cameroon, and in both males and females from Burkina Faso. In the other splice sites, the intron 3 acceptor site carried the greatest abundance of SNPs. Conclusions: There were no gender association between the identified SNPs and the random distribution of these SNPs in mosquito populations. The SNPs in Agdsx splice sites are not critical for the alternative splicing. Other molecular mechanisms should be considered and investigated.
Collapse
|
31
|
Evaluation of FRET X for single-molecule protein fingerprinting. iScience 2021; 24:103239. [PMID: 34729466 PMCID: PMC8546410 DOI: 10.1016/j.isci.2021.103239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Single-molecule protein identification is an unrealized concept with potentially ground-breaking applications in biological research. We propose a method called FRET X (Förster Resonance Energy Transfer via DNA eXchange) fingerprinting, in which the FRET efficiency is read out between exchangeable dyes on protein-bound DNA docking strands and accumulated FRET efficiencies constitute the fingerprint for a protein. To evaluate the feasibility of this approach, we simulated fingerprints for hundreds of proteins using a coarse-grained lattice model and experimentally demonstrated FRET X fingerprinting on model peptides. Measured fingerprints are in agreement with our simulations, corroborating the validity of our modeling approach. In a simulated complex mixture of >300 human proteins of which only cysteines, lysines, and arginines were labeled, a support vector machine was able to identify constituents with 95% accuracy. We anticipate that our FRET X fingerprinting approach will form the basis of an analysis tool for targeted proteomics. We propose a FRET-based single-molecule protein identification method Peptides are experimentally distinguishable by their fingerprints Our approach can classify the constituents of complex samples with 95% accuracy
Collapse
|
32
|
Abbasi S, Mohsen-Pour N, Naderi N, Rahimi S, Maleki M, Kalayinia S. In silico analysis of GATA4 variants demonstrates main contribution to congenital heart disease. J Cardiovasc Thorac Res 2021; 13:336-354. [PMID: 35047139 PMCID: PMC8749364 DOI: 10.34172/jcvtr.2021.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/05/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction: Congenital heart disease (CHD) is the most common congenital abnormality and the main cause of infant mortality worldwide. Some of the mutations that occur in the GATA4 gene region may result in different types of CHD. Here, we report our in silico analysis of gene variants to determine the effects of the GATA4 gene on the development of CHD.
Methods: Online 1000 Genomes Project, ExAC, gnomAD, GO-ESP, TOPMed, Iranome, GME, ClinVar, and HGMD databases were drawn upon to collect information on all the reported GATA4 variations.The functional importance of the genetic variants was assessed by using SIFT, MutationTaster, CADD,PolyPhen-2, PROVEAN, and GERP prediction tools. Thereafter, network analysis of the GATA4protein via STRING, normal/mutant protein structure prediction via HOPE and I-TASSER, and phylogenetic assessment of the GATA4 sequence alignment via ClustalW were performed.
Results: The most frequent variant was c.874T>C (45.58%), which was reported in Germany.Ventricular septal defect was the most frequent type of CHD. Out of all the reported variants of GATA4,38 variants were pathogenic. A high level of pathogenicity was shown for p.Gly221Arg (CADD score=31), which was further analyzed.
Conclusion: The GATA4 gene plays a significant role in CHD; we, therefore, suggest that it be accorded priority in CHD genetic screening.
Collapse
Affiliation(s)
- Shiva Abbasi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Mohsen-Pour
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahin Rahimi
- Department of Cardiology, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Caudai C, Galizia A, Geraci F, Le Pera L, Morea V, Salerno E, Via A, Colombo T. AI applications in functional genomics. Comput Struct Biotechnol J 2021; 19:5762-5790. [PMID: 34765093 PMCID: PMC8566780 DOI: 10.1016/j.csbj.2021.10.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by "deep learning", along with a burst of "big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.
Collapse
Affiliation(s)
- Claudia Caudai
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Antonella Galizia
- CNR, Institute of Applied Mathematics and Information Technologies (IMATI), Genoa, Italy
| | - Filippo Geraci
- CNR, Institute for Informatics and Telematics (IIT), Pisa, Italy
| | - Loredana Le Pera
- CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Veronica Morea
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Emanuele Salerno
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Allegra Via
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Teresa Colombo
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| |
Collapse
|
34
|
Zhang XS, Yin YS, Wang J, Battaglia T, Krautkramer K, Li WV, Li J, Brown M, Zhang M, Badri MH, Armstrong AJS, Strauch CM, Wang Z, Nemet I, Altomare N, Devlin JC, He L, Morton JT, Chalk JA, Needles K, Liao V, Mount J, Li H, Ruggles KV, Bonneau RA, Dominguez-Bello MG, Bäckhed F, Hazen SL, Blaser MJ. Maternal cecal microbiota transfer rescues early-life antibiotic-induced enhancement of type 1 diabetes in mice. Cell Host Microbe 2021; 29:1249-1265.e9. [PMID: 34289377 PMCID: PMC8370265 DOI: 10.1016/j.chom.2021.06.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023]
Abstract
Early-life antibiotic exposure perturbs the intestinal microbiota and accelerates type 1 diabetes (T1D) development in the NOD mouse model. Here, we found that maternal cecal microbiota transfer (CMT) to NOD mice after early-life antibiotic perturbation largely rescued the induced T1D enhancement. Restoration of the intestinal microbiome was significant and persistent, remediating the antibiotic-depleted diversity, relative abundance of particular taxa, and metabolic pathways. CMT also protected against perturbed metabolites and normalized innate and adaptive immune effectors. CMT restored major patterns of ileal microRNA and histone regulation of gene expression. Further experiments suggest a gut-microbiota-regulated T1D protection mechanism centered on Reg3γ, in an innate intestinal immune network involving CD44, TLR2, and Reg3γ. This regulation affects downstream immunological tone, which may lead to protection against tissue-specific T1D injury.
Collapse
Affiliation(s)
- Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| | - Yue Sandra Yin
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Jincheng Wang
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Thomas Battaglia
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Kimberly Krautkramer
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden
| | - Wei Vivian Li
- Department of Biostatistics and Epidemiology, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Jackie Li
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Mark Brown
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Michelle H Badri
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA
| | - Abigail J S Armstrong
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Christopher M Strauch
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Zeneng Wang
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Ina Nemet
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Altomare
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Joseph C Devlin
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Linchen He
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Jamie T Morton
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - John Alex Chalk
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Kelly Needles
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Viviane Liao
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Julia Mount
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Huilin Li
- Department of Population Health, New York University Langone Medical Center, New York, NY, USA
| | - Kelly V Ruggles
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA
| | - Richard A Bonneau
- Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA; New York University, Center for Data Science, New York, NY, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University - New Brunswick, New Brunswick, NJ, USA; Institute for Food, Nutrition and Health, Rutgers University - New Brunswick, New Brunswick, NJ, USA
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Göteborg 41345, Sweden; Region västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stanley L Hazen
- Cardiovascular & Metabolic Sciences, Lerner Research Institute Cleveland Clinic, Cleveland, OH, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA; Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA; Human Microbiome Program, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Tang T, Han Y, Wang Y, Huang H, Qian P. Programmable System of Cas13-Mediated RNA Modification and Its Biological and Biomedical Applications. Front Cell Dev Biol 2021; 9:677587. [PMID: 34386490 PMCID: PMC8353156 DOI: 10.3389/fcell.2021.677587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13 has drawn broad interest to control gene expression and cell fate at the RNA level in general. Apart from RNA interference mediated by its endonuclease activity, the nuclease-deactivated form of Cas13 further provides a versatile RNA-guided RNA-targeting platform for manipulating kinds of RNA modifications post-transcriptionally. Chemical modifications modulate various aspects of RNA fate, including translation efficiency, alternative splicing, RNA–protein affinity, RNA–RNA interaction, RNA stability and RNA translocation, which ultimately orchestrate cellular biologic activities. This review summarizes the history of the CRISPR-Cas13 system, fundamental components of RNA modifications and the related physiological and pathological functions. We focus on the development of epi-transcriptional editing toolkits based on catalytically inactive Cas13, including RNA Editing for Programmable A to I Replacement (REPAIR) and xABE (adenosine base editor) for adenosine deamination, RNA Editing for Specific C-to-U Exchange (RESCUE) and xCBE (cytidine base editor) for cytidine deamination and dm6ACRISPR, as well as the targeted RNA methylation (TRM) and photoactivatable RNA m6A editing system using CRISPR-dCas13 (PAMEC) for m6A editing. We further highlight the emerging applications of these useful toolkits in cell biology, disease and imaging. Finally, we discuss the potential limitations, such as off-target editing, low editing efficiency and limitation for AAV delivery, and provide possible optimization strategies.
Collapse
Affiliation(s)
- Tian Tang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| | - Yingli Han
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| | - Yuran Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Pengxu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Aravilli RK, Vikram SL, Kohila V. The Functional Impact of Alternative Splicing and Single Nucleotide Polymorphisms in Rheumatoid Arthritis. Curr Pharm Biotechnol 2021; 22:1014-1029. [PMID: 33001009 DOI: 10.2174/1389201021666201001142416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Advances in genomics and proteomics aid the identification of genes associated with various diseases. Genome-Wide Association Studies (GWAS) have identified multiple loci as risk alleles for susceptibility to Rheumatoid Arthritis (RA). A bisection of RA risk can be attributed to genetic factors. Over 100 associated genetic loci that encompass immune regulatory factors have been found to be linked with RA. Aberrant Single Nucleotide Polymorphisms (SNPs) and alternative splicing mechanisms in such loci induce RA. These aberrations are viewed as potential therapeutic targets due to their association with a multitude of diseases. This review presents a few imperious genes whose alterations can cause severe bone deformities culminating in RA.
Collapse
Affiliation(s)
- R Kowshik Aravilli
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| | - S Laveen Vikram
- Department of Computer Science and Engineering, Alagappa University, Karaikudi, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
37
|
Antisense oligonucleotide-based drug development for Cystic Fibrosis patients carrying the 3849+10 kb C-to-T splicing mutation. J Cyst Fibros 2021; 20:865-875. [PMID: 34226157 PMCID: PMC8464507 DOI: 10.1016/j.jcf.2021.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023]
Abstract
Background: Antisense oligonucleotide (ASO)-based drugs for splicing modulation were recently approved for various genetic diseases with unmet need. Here we aimed to develop an ASO-based splicing modulation therapy for Cystic Fibrosis (CF) patients carrying the 3849 + 10 kb C-to-T splicing mutation in the CFTR gene. Methods: We have screened, in FRT cells expressing the 3849 + 10 kb C-to-T splicing mutation, ~30 2ʹ-O-Methyl-modified phosphorothioate ASOs, targeted to prevent the recognition and inclusion of a cryptic exon generated due to the mutation. The effect of highly potent ASO candidates on the splicing pattern, protein maturation and CFTR function was further analyzed in well differentiated primary human nasal and bronchial epithelial cells, derived from patients carrying at least one 3849 + 10 kb C-to-T allele. Results: A highly potent lead ASO, efficiently delivered by free uptake, was able to significantly increase the level of correctly spliced mRNA and completely restore the CFTR function to wild type levels in cells from a homozygote patient. This ASO led to CFTR function with an average of 43% of wild type levels in cells from various heterozygote patients. Optimized efficiency of the lead ASO was further obtained with 2ʹ-Methoxy Ethyl modification (2ʹMOE). Conclusion: The highly efficient splicing modulation and functional correction, achieved by free uptake of the selected lead ASO in various patients, demonstrate the ASO therapeutic potential benefit for CF patients carrying splicing mutations and is aimed to serve as the basis for our current clinical development.
Collapse
|
38
|
Efentakis P, Molitor M, Kossmann S, Bochenek ML, Wild J, Lagrange J, Finger S, Jung R, Karbach S, Schäfer K, Schulz A, Wild P, Münzel T, Wenzel P. Tubulin-folding cofactor E deficiency promotes vascular dysfunction by increased endoplasmic reticulum stress. Eur Heart J 2021; 43:488-500. [PMID: 34132336 PMCID: PMC8830526 DOI: 10.1093/eurheartj/ehab222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/29/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Assessment of endothelial function in humans by measuring flow-mediated dilation (FMD) risk-stratifies individuals with established cardiovascular disease, whereas its predictive value is limited in primary prevention. We therefore aimed to establish and evaluate novel markers of FMD at the population level. METHODS AND RESULTS In order to identify novel targets that were negatively correlated with FMD and investigate their contribution to vascular function, we performed a genome-wide association study (GWAS) of 4175 participants of the population based Gutenberg Health Study. Subsequently, conditional knockout mouse models deleting the gene of interest were generated and characterized. GWAS analysis revealed that single-nucleotide polymorphisms (SNPs) in the tubulin-folding cofactor E (TBCE) gene were negatively correlated with endothelial function and TBCE expression. Vascular smooth muscle cell (VSMC)-targeted TBCE deficiency was associated with endothelial dysfunction, aortic wall hypertrophy, and endoplasmic reticulum (ER) stress-mediated VSMC hyperproliferation in mice, paralleled by calnexin up-regulation and exacerbated by the blood pressure hormone angiotensin II. Treating SMMHC-ERT2-Cre+/-TBCEfl/fl mice with the ER stress modulator tauroursodeoxycholic acid amplified Raptor/Beclin-1-dependent autophagy and reversed vascular dysfunction. CONCLUSION TBCE and tubulin homeostasis seem to be novel predictors of vascular function and offer a new drug target to ameliorate ER stress-dependent vascular dysfunction.
Collapse
Affiliation(s)
- Panagiotis Efentakis
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Michael Molitor
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sabine Kossmann
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Magdalena L Bochenek
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Johannes Wild
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jeremy Lagrange
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Karbach
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Katrin Schäfer
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Andreas Schulz
- Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philipp Wild
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Department of Cardiology-Preventive Cardiology and Medical Prevention, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
39
|
Role of promoters in regulating alternative splicing. Gene 2021; 782:145523. [PMID: 33667606 DOI: 10.1016/j.gene.2021.145523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
Alternative splicing (AS) plays a critical role in enhancing proteome complexity in higher eukaryotes. Almost all the multi intron-containing genes undergo AS in humans. Splicing mainly occurs co-transcriptionally, where RNA polymerase II (RNA pol II) plays a crucial role in coordinating transcription and pre-mRNA splicing. Aberrant AS leads to non-functional proteins causative in various pathophysiological conditions such as cancers, neurodegenerative diseases, and muscular dystrophies. Transcription and pre-mRNA splicing are deeply interconnected and can influence each other's functions. Several studies evinced that specific promoters employed by RNA pol II dictate the RNA processing decisions. Promoter-specific recruitment of certain transcriptional factors or transcriptional coactivators influences splicing, and the extent to which these factors affect splicing has not been discussed in detail. Here, in this review, various DNA-binding proteins and their influence on promoter-specific AS are extensively discussed. Besides, this review highlights how the promoter-specific epigenetic changes might regulate AS.
Collapse
|
40
|
Salovska B, Zhu H, Gandhi T, Frank M, Li W, Rosenberger G, Wu C, Germain PL, Zhou H, Hodny Z, Reiter L, Liu Y. Isoform-resolved correlation analysis between mRNA abundance regulation and protein level degradation. Mol Syst Biol 2021; 16:e9170. [PMID: 32175694 PMCID: PMC7073818 DOI: 10.15252/msb.20199170] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 12/15/2022] Open
Abstract
Profiling of biological relationships between different molecular layers dissects regulatory mechanisms that ultimately determine cellular function. To thoroughly assess the role of protein post‐translational turnover, we devised a strategy combining pulse stable isotope‐labeled amino acids in cells (pSILAC), data‐independent acquisition mass spectrometry (DIA‐MS), and a novel data analysis framework that resolves protein degradation rate on the level of mRNA alternative splicing isoforms and isoform groups. We demonstrated our approach by the genome‐wide correlation analysis between mRNA amounts and protein degradation across different strains of HeLa cells that harbor a high grade of gene dosage variation. The dataset revealed that specific biological processes, cellular organelles, spatial compartments of organelles, and individual protein isoforms of the same genes could have distinctive degradation rate. The protein degradation diversity thus dissects the corresponding buffering or concerting protein turnover control across cancer cell lines. The data further indicate that specific mRNA splicing events such as intron retention significantly impact the protein abundance levels. Our findings support the tight association between transcriptome variability and proteostasis and provide a methodological foundation for studying functional protein degradation.
Collapse
Affiliation(s)
- Barbora Salovska
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.,Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Max Frank
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | | | - Chongde Wu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Pierre-Luc Germain
- Institute for Neuroscience, D-HEST, ETH Zurich, Zurich, Switzerland.,Statistical Bioinformatics Lab, DMLS, University of Zürich, Zurich, Switzerland
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zdenek Hodny
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.,Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
41
|
Emerging Methods and Resources for Biological Interrogation of Neuropsychiatric Polygenic Signal. Biol Psychiatry 2021; 89:41-53. [PMID: 32736792 DOI: 10.1016/j.biopsych.2020.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
Abstract
Most neuropsychiatric disorders are highly polygenic, implicating hundreds to thousands of causal genetic variants that span much of the genome. This widespread polygenicity complicates biological understanding because no single variant can explain disease etiology. A strategy to advance biological insight is to seek convergent functions among the large set of variants and map them to a smaller set of disease-relevant genes and pathways. Accordingly, functional genomic resources that provide data on intermediate molecular phenotypes, such as gene-expression and methylation status, can be leveraged to functionally annotate variants and map them to genes. Such molecular quantitative trait locus mappings can be integrated with genome-wide association studies to make sense of the polygenic signal that underlies complex disease. Other resources that provide data on the 3-dimensional structure of chromatin and functional importance of specific genomic regions can be integrated similarly. In addition, mapped genes can then be tested for convergence in biological function, tissue, cell type, or developmental stage. In this review, we provide an overview of functional genomic resources and methods that can be used to interpret results from genome-wide association studies, and we discuss current challenges for biological understanding and future requirements to overcome them.
Collapse
|
42
|
Jiang W, Chen L. Alternative splicing: Human disease and quantitative analysis from high-throughput sequencing. Comput Struct Biotechnol J 2020; 19:183-195. [PMID: 33425250 PMCID: PMC7772363 DOI: 10.1016/j.csbj.2020.12.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing contributes to the majority of protein diversity in higher eukaryotes by allowing one gene to generate multiple distinct protein isoforms. It adds another regulation layer of gene expression. Up to 95% of human multi-exon genes undergo alternative splicing to encode proteins with different functions. Moreover, around 15% of human hereditary diseases and cancers are associated with alternative splicing. Regulation of alternative splicing is attributed to a set of delicate machineries interacting with each other in aid of important biological processes such as cell development and differentiation. Given the importance of alternative splicing events, their accurate mapping and quantification are paramount for downstream analysis, especially for associating disease with alternative splicing. However, deriving accurate isoform expression from high-throughput RNA-seq data remains a challenging task. In this mini-review, we aim to illustrate I) mechanisms and regulation of alternative splicing, II) alternative splicing associated human disease, III) computational tools for the quantification of isoforms and alternative splicing from RNA-seq.
Collapse
Affiliation(s)
- Wei Jiang
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| | - Liang Chen
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, United States
| |
Collapse
|
43
|
Fergany AAM, Tatarskiy VV. RNA Splicing: Basic Aspects Underlie Antitumor Targeting. Recent Pat Anticancer Drug Discov 2020; 15:293-305. [PMID: 32900350 DOI: 10.2174/1574892815666200908122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND RNA splicing, a fundamental step in gene expression, is aimed at intron removal and ordering of exons to form the protein's reading frame. OBJECTIVE This review is focused on the role of RNA splicing in cancer biology; the splicing abnormalities that lead to tumor progression emerge as targets for therapeutic intervention. METHODS We discuss the role of aberrant mRNA splicing in carcinogenesis and drug response. RESULTS AND CONCLUSION Pharmacological modulation of RNA splicing sets the stage for treatment approaches in situations where mRNA splicing is a clinically meaningful mechanism of the disease.
Collapse
Affiliation(s)
- Alzahraa A M Fergany
- Department of Occupational and Environmental Health, Graduate School of Pharmaceutical Science, Tokyo University of Science, Chiba, Japan
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
44
|
Bano S, Fatima S, Ahamad S, Ansari S, Gupta D, Tabish M, Rehman SU, Jairajpuri MA. Identification and characterization of a novel isoform of heparin cofactor II in human liver. IUBMB Life 2020; 72:2180-2193. [PMID: 32827448 DOI: 10.1002/iub.2361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
Heparin cofactor II (HCII) is predominantly expressed in the liver and inhibits thrombin in blood plasma to influence the blood coagulation cascade. Its deficiency is associated with arterial thrombosis. Its cleavage by neutrophil elastase produces fragment that helps in neutrophil chemotaxis in the acute inflammatory response in human. In the present study, we have identified a novel alternatively spliced transcript of the HCII gene in human liver. This novel transcript includes an additional novel region in continuation with exon 3 called exon 3b. Exon 3b acts like an alternate last exon, and hence its inclusion in the transcript due to alternative splicing removes exon 4 and encodes for a different C-terminal region to give a novel protein, HCII-N. MD simulations of HCII-N and three-dimensional structure showed a unique 51 amino acid sequence at the C-terminal having unique RCL-like structure. The HCII-N protein purified from bacterial culture showed a protein migrating at lower molecular weight (MW 55 kDa) as compared to native HCII (MW 66 kDa). A fluorescence-based analysis revealed a more compact structure of HCII-N that was in a more hydrophilic environment. The HCII-N protein, however, showed no inhibitory activity against thrombin. Due to large conformational variation observed in comparison with native HCII, HCII-N may have alternate protease specificity or a non-inhibitory role. Western blot of HCII purified from large plasma volume showed the presence of a low MW 59 kDa band with no thrombin activity. This study provides the first evidence of alternatively spliced novel isoform of the HCII gene.
Collapse
Affiliation(s)
- Shadabi Bano
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sana Fatima
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Shahzaib Ahamad
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shoyab Ansari
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Sciences, Aligarh M. University, Aligarh, India
| | - Sayeed Ur Rehman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
45
|
More DA, Kumar A. SRSF3: Newly discovered functions and roles in human health and diseases. Eur J Cell Biol 2020; 99:151099. [PMID: 32800280 DOI: 10.1016/j.ejcb.2020.151099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
The serine/arginine rich proteins (SR proteins) are members of a family of RNA binding proteins involved in regulating various features of RNA metabolism, including pre-mRNA constitutive and alternative splicing. In humans, a total of 12 SR splicing factors (SRSFs) namely SRSF1-SRSF12 have been reported. SRSF3, the smallest member of the SR family and the focus of this review, regulates critical steps in mRNA metabolism and has been shown to have mRNA-independent functions as well. Recent studies on SRSF3 have uncovered its role in a wide array of complex biological processes. We have also reviewed the involvement of SRSF3 in disease conditions like cancer, ageing, neurological and cardiac disorders. Finally, we have discussed in detail the autoregulation of SRSF3 and its implications in cancer and commented on the potential of SRSF3 as a therapeutic target, especially in the context of cancer.
Collapse
Affiliation(s)
- Dhanashree Anil More
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
46
|
Li SQ, Liu J, Zhang J, Wang XL, Chen D, Wang Y, Xu YM, Huang B, Lin J, Li J, Wang XZ. Transcriptome profiling reveals the high incidence of hnRNPA1 exon 8 inclusion in chronic myeloid leukemia. J Adv Res 2020; 24:301-310. [PMID: 32405436 PMCID: PMC7210475 DOI: 10.1016/j.jare.2020.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/08/2020] [Accepted: 04/25/2020] [Indexed: 01/30/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a malignancy that evolves through a multi-step process. Alternative splicing of several genes has been linked to the progression of the disease, but involvement of alternations in splicing profiles has not been reported. RNA-seq of peripheral blood mononuclear cell (PBMC) samples characterized the differentially expressed and spliced transcripts in five CML chronic phase (CP) and five blast phase (BP) patients, and five healthy controls. Global splicing alteration analysis detected 6474 altered splicing events altered between CML and healthy samples, including many of the previously reported splicing variants and showing a more profound altered splicing deregulation in BP samples. Functional clustering of differentially spliced genes in CP revealed a preferred enrichment relating to cell signaling, while the spliceosome pathway was most overrepresented in BP samples. One differentially spliced spliceosome gene hnRNPA1 showed two splice isoforms; the longer isoform contained exon 8 was preferentially expressed in the BP patients, and the short one excluding exon 8 was specific to healthy controls. Our findings suggested that alternative splicing deregulation played a central role during the progression of CML from CP to BP, and the longer isoform of hnRNPA1 might represent a diagnostic marker and therapeutic target for CML.
Collapse
Affiliation(s)
- Shu-Qi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Xue-Lian Wang
- Center for Genome Analysis, ABLife Inc., Wuhan 430075, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Wuhan 430075, China
| | - Yan Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Yan-Mei Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
| | - Jing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, No.17 Yong Wai Road, Nanchang 330006, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No.1 Min De Road, Nanchang 330006, China
- Corresponding author.
| |
Collapse
|
47
|
Huang AZ, Delaidelli A, Sorensen PH. RNA modifications in brain tumorigenesis. Acta Neuropathol Commun 2020; 8:64. [PMID: 32375856 PMCID: PMC7204278 DOI: 10.1186/s40478-020-00941-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.
Collapse
Affiliation(s)
- Albert Z Huang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
48
|
Carazo F, Romero JP, Rubio A. Upstream analysis of alternative splicing: a review of computational approaches to predict context-dependent splicing factors. Brief Bioinform 2020; 20:1358-1375. [PMID: 29390045 DOI: 10.1093/bib/bby005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) has shown to play a pivotal role in the development of diseases, including cancer. Specifically, all the hallmarks of cancer (angiogenesis, cell immortality, avoiding immune system response, etc.) are found to have a counterpart in aberrant splicing of key genes. Identifying the context-specific regulators of splicing provides valuable information to find new biomarkers, as well as to define alternative therapeutic strategies. The computational models to identify these regulators are not trivial and require three conceptual steps: the detection of AS events, the identification of splicing factors that potentially regulate these events and the contextualization of these pieces of information for a specific experiment. In this work, we review the different algorithmic methodologies developed for each of these tasks. Main weaknesses and strengths of the different steps of the pipeline are discussed. Finally, a case study is detailed to help the reader be aware of the potential and limitations of this computational approach.
Collapse
|
49
|
Yin H, Galfalvy H, Zhang B, Tang W, Xin Q, Li E, Xue X, Li Q, Ye J, Yan N, Mann JJ. Interactions of the GABRG2 polymorphisms and childhood trauma on suicide attempt and related traits in depressed patients. J Affect Disord 2020; 266:447-455. [PMID: 32056912 DOI: 10.1016/j.jad.2020.01.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previously, we reported that the longest variant of the GABA A receptor γ2 subunit (GABRG2) was associated with suicidal behavior. The present study therefore aimed to determine whether polymorphisms near the alternatively spliced exon of GABRG2 are associated with suicide attempt (SA) and its related traits, and how these variants might interact with reported childhood trauma (CT) in their association with suicidal behavior. METHODS We examined 5 single nucleotide polymorphisms (SNPs) of GABRG2. Subjects were suicide Attempters (N = 94), non-suicide attempters (N = 168) with MDD or Bipolar depression, and healthy volunteers (N = 100). Data on demographics, depression severity and suicide attempts were collected. Participants also completed a set of instruments assessing CT, and lifetime aggression and impulsivity.. GABRG2 polymorphisms were genotyped using Sanger sequencing. RESULTS Allele A of rs211034 was a protective factor for SA (OR = 0.50 (0.32, 0.80), p = 0.003), and had an interaction effect with emotional neglect (OR = 0.89 (0.82, 0.97), p = 0.006) on depression. One haploblock (consisting of rs211035 and rs211034) was identified within these SNPs, and subjects with haplotype GA (frequency = 7.3%), had lower rate of SA (OR=0.26(0.10, 0.67), p = 0.006). Cognitive impulsivity (OR=1.38)1.24,1.55), p < 0.001), non-planning impulsivity (OR = 1.18 (1.10,1.25), p < 0.001), anger (OR = 1.13 (1.07,1.19), p < 0.001), impulsivity total score (OR = 1.10(1.06,1.15), p < 0.001), hostility (OR = 1.10 (1.04, 1.15), p < 0.001), aggression total score (OR = 1.05 (1.03,1.07), p < 0.001) were associated with depression, meanwhile, hopelessness (OR = 2.18 (1.56, 3.04), p < 0.001) and impulsivity total score (OR = 1.05 (1.02,1.08), p < 0.001) were associated with the risk of SA, adjusted by age and gender. There was no mediation effect in the relationship among CT, gene polymorphisms and SA or depression through increased impulsivity or aggression. LIMITATIONS The main limitation of this study is its modest sample size. More genetic variants as well as epigenetic markers should be examined in future studies. CONCLUSIONS These findings add to evidence for the involvement of GABRG2 and impulsivity and hopelessness in SA independent from their association with depression. More research is needed on possible mediators of the relationship between GABA-related gene and SA.
Collapse
Affiliation(s)
- Honglei Yin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China.
| | - Hanga Galfalvy
- Department of Psychiatry, Columbia University, New York, NY
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Weiwei Tang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Qianqian Xin
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Enze Li
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Xiang Xue
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Qiyang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Junping Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - Na Yan
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, China
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY; Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, New York.
| |
Collapse
|
50
|
Cheng S, Ray D, Lee RTH, Naripogu KB, Yusoff PABM, Goh PBL, Liu Y, Suzuki Y, Das K, Chan HS, Wong WK, Chan WH, Chow PKH, Ong HS, Raj P, Soo KC, Tan P, Epstein DM, Rozen SG. A functional network of gastric-cancer-associated splicing events controlled by dysregulated splicing factors. NAR Genom Bioinform 2020; 2:lqaa013. [PMID: 33575575 PMCID: PMC7671336 DOI: 10.1093/nargab/lqaa013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Comprehensive understanding of aberrant splicing in gastric cancer is lacking. We RNA-sequenced 19 gastric tumor–normal pairs and identified 118 high-confidence tumor-associated (TA) alternative splicing events (ASEs) based on high-coverage sequencing and stringent filtering, and also identified 8 differentially expressed splicing factors (SFs). The TA ASEs occurred in genes primarily involved in cytoskeletal organization. We constructed a correlative network between TA ASE splicing ratios and SF expression, replicated it in independent gastric cancer data from The Cancer Genome Atlas and experimentally validated it by knockdown of the nodal SFs (PTBP1, ESRP2 and MBNL1). Each SF knockdown drove splicing alterations in several corresponding TA ASEs and led to alterations in cellular migration consistent with the role of TA ASEs in cytoskeletal organization. We have therefore established a robust network of dysregulated splicing associated with tumor invasion in gastric cancer. Our work is a resource for identifying oncogenic splice forms, SFs and splicing-generated tumor antigens as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Cheng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030, China.,Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Debleena Ray
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Raymond Teck Ho Lee
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Kishore Babu Naripogu
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | | | - Pamela Bee Leng Goh
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Yujing Liu
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Singapore MIT Alliance, 4 Engineering Dr 3, Singapore 117576, Singapore
| | - Yuka Suzuki
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Kakoli Das
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Hsiang Sui Chan
- Department of General Surgery, Gleneagles Medical Centre, 6A Napier Rd, Singapore 258500, Singapore
| | - Wai Keong Wong
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, 1 Hospital Dr, Singapore 169608, Singapore
| | - Weng Hoong Chan
- Department of Upper Gastrointestinal & Bariatric Surgery, Singapore General Hospital, 1 Hospital Dr, Singapore 169608, Singapore
| | - Pierce Kah-Hoe Chow
- Division of Surgical Oncology, National Cancer Center Singapore, 11 Hospital Dr, Singapore 169610, Singapore.,Department of HPB and Transplant, Singapore General Hospital, 1 Hospital Dr, Singapore 169608, Singapore.,Clinical, Academic & Faculty Affairs, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Hock Soo Ong
- Department of General Surgery, Singapore General Hospital, 1 Hospital Dr, Singapore 169608, Singapore
| | - Prema Raj
- General Surgery, Mount Elizabeth Medical Center, 3 Mount Elizabeth, Singapore 228510, Singapore
| | - Khee Chee Soo
- Division of Surgical Oncology, National Cancer Center Singapore, 11 Hospital Dr, Singapore 169610, Singapore.,Clinical, Academic & Faculty Affairs, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
| | - Patrick Tan
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - David M Epstein
- Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Steven G Rozen
- Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore.,Cancer & Stem Cell Biology Programme, Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| |
Collapse
|