1
|
Wang X, Wen J, Tian H, Li X, Xie W, Zou K. SDF-1/CXCR4 axis maintains porcine prospermatogonia undifferentiated state through regulation of transcription suppressor PLZF. Theriogenology 2025; 234:198-207. [PMID: 39721337 DOI: 10.1016/j.theriogenology.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 11/06/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Prospermatogonia (ProSGs), the progenitors of spermatogonial stem cells in neonatal testes, undergo critical migration to the testicular microenvironment-a fundamental process for testicular development and subsequent spermatogenic capacity. The SDF-1/CXCR4 chemokine axis serves as an essential molecular guidance mechanism, directing ProSGs toward the basal membrane of seminiferous tubules. Nevertheless, the precise molecular mechanisms governing this axis remain incompletely understood. Utilizing a porcine in vitro model system, this investigation elucidated the molecular mechanisms underlying the SDF-1/CXCR4 axis in ProSGs fate determination. Through integrated molecular and transcriptomic analyses, we investigated the consequences of CXCR4 inhibition on ProSG cellular dynamics. Our findings demonstrated that the SDF-1/CXCR4 axis exerts regulatory control over ProSGs differentiation via the PI3K-AKT-AP-1 signaling cascade. This regulation significantly influences the transcriptional landscape of ProSGs, particularly modulating the expression of PLZF, a crucial suppressor of spermatogonial differentiation, and DMRT1, an essential mediator of germ cell differentiation. These findings elucidate the molecular mechanisms orchestrating ProSGs homing and emphasize the significance of maintaining male reproductive competence. Furthermore, this research could enhance our understanding of ProSGs biology and its relationship to boar fertility, while potentially facilitating the development of innovative reproductive technologies and sustainable livestock management strategies.
Collapse
Affiliation(s)
- Xingju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Hairui Tian
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Chen Y, Su C, Cai Y, Ke L, Huang Y. miR-21 promotes cervical cancer by regulating NTF3. Sci Rep 2025; 15:2442. [PMID: 39828780 PMCID: PMC11743774 DOI: 10.1038/s41598-025-85888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
This study explores the influence of miR-21 and its interaction with the target gene Neurotrophin-3 (NTF3) in cervical cancer (CC). We employed bioinformatics tools, including DIANA, Targetscan, miRDB, and miRDIP, to predict the target genes of miR-21. Immunohistochemistry, RT-qPCR, and Western blotting were performed to quantify the expression levels of miR-21-5p and NTF3 in cervical cancer cells. Additionally, a dual luciferase reporter assay was conducted to examine the specific relationship between miR-21-5P and NTF3. We assessed cell behavior through various tests, including cell viability, scratch wound assays, colony formation, cell invasion experiments, and flow cytometry assays. The dual luciferase reporter assay confirmed that NTF3 is a direct target of miR-21. Overexpression of NTF3 inhibited cell proliferation and migration, while promoting apoptosis, as demonstrated by flow cytometry. Transcriptome sequencing and enrichment analyses (KEGG and GO) revealed NTF3's involvement in key oncogenic pathways, including PI3K-AKT, MAPK, and calcium signaling. This study underscores the critical role of miR-21 in regulating the proliferation, migration, and apoptosis of cervical cancer cells by targeting NTF3.
Collapse
Affiliation(s)
- Yishan Chen
- Department of Postgraduate Education, Jinzhou Medical University, Jinzhou, 121000, China
| | - Caiwu Su
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yuke Cai
- Hubei University of Medicine, Shiyan, 442000, China
| | - Lina Ke
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| | - Yaxiong Huang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
Zhang S, Wu W, Gu M, Zhao Y, Wang L, Liu K, Yu Z. House dust mite induced mucosal barrier dysfunction and type 2 inflammatory responses via the MAPK/AP-1/IL-24 Signaling pathway in allergic rhinitis. Int Immunopharmacol 2025; 148:113972. [PMID: 39826453 DOI: 10.1016/j.intimp.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The epithelial barrier, previously regarded only as a physical defense, is now understood to play a vital role in immune responses and the regulation of inflammation. Allergic rhinitis (AR) is a prevalent chronic inflammatory condition of the nasal mucosa, with House Dust Mite (HDM) identified as a significant inhalant allergen that can impair this barrier. IL-24 has emerged as a key cytokine in allergic diseases, involved in maintaining epithelial cell homeostasis. Nevertheless, the underlying mechanisms of these effects remain inadequately understood. This study explores HDM-induced IL-24 secretion and mucosal barrier impairment using patient and animal tissue samples. Our results confirm that HDM sensitization triggers inflammatory changes in the nasal cavity, with IL-24 acting as a key mediator of type 2 inflammation and AR severity. HDM enhances IL-24 secretion via the P38 MAPK pathway and transcription factor AP-1, while IL-24 downregulates occludin and ZO-1 expression through the STAT1/STAT3 signaling pathway, compromising barrier function and increasing permeability. Furthermore, IL-24 promotes IL-33 secretion, further exacerbating the inflammatory response in AR. These findings clarify the mechanisms of epithelial barrier disruption in HDM-sensitized allergic rhinitis and suggest that modulating the IL-24 signaling pathway may serve as a promising therapeutic strategy to restore barrier integrity in AR.
Collapse
Affiliation(s)
- Siyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Wanjuan Wu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Min Gu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lixin Wang
- Department of Microbiology and Immunology, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Kai Liu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
| | - Zhenkun Yu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
| |
Collapse
|
5
|
Fu X, Xu C, Yang T, Chen J, Niu T. Novel therapeutic targets for atherosclerosis: Targeting the FOSB-MECP2-Commd1 pathway. Int Immunopharmacol 2025; 144:113575. [PMID: 39566383 DOI: 10.1016/j.intimp.2024.113575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024]
Abstract
Atherosclerosis (AS) is a systemic disease and represents the primary underlying pathology of cardiovascular diseases. In this study, we aim to elucidate the roles of FBJ osteosarcoma oncogene B (FOSB) in AS development. ApoE-/- mice were used and fed a high-fat diet to establish an AS model. We observed elevated expression of FOSB in aortic tissues, which was associated with increased lipid deposition, macrophage recruitment. Knockdown of FOSB mitigated these AS-related pathological changes, and decreased the levels of TNF-α, IL-6 and IL-1β in aortic tissues and ox-LDL-induced RAW264.7 cells. Further investigations revealed that FOSB enhances the transcriptional activity of MECP2 by binding to its promoter region. MECP2 was found to be upregulated in aortic tissues and ox-LDL-induced RAW264.7 cells, exacerbating ox-LDL-induced cellular damage. Additionally, our study identifies Commd1 as a downstream target of MECP2. Overexpression of Commd1 reduced levels of TNF-α and IL-6, alleviating ox-LDL-induced inflammation and lipid deposition. In summary, our findings unveil a complex molecular interplay involving FOSB, MECP2, and Commd1 in AS pathogenesis. This study not only enhances our understanding of AS molecular mechanisms but also proposes potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Xi Fu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Changlu Xu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jie Chen
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tiesheng Niu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
6
|
Chakraborty A, Chopde S, Madhusudhan M. Motif distribution in genomes gives insights into gene clustering and co-regulation. Nucleic Acids Res 2025; 53:gkae1178. [PMID: 39657779 PMCID: PMC11724300 DOI: 10.1093/nar/gkae1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/17/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
We read the genome as proteins in the cell would - by studying the distributions of 5-6 base motifs of DNA in the whole genome or smaller stretches such as parts of, or whole chromosomes. This led us to some interesting findings about motif clustering and chromosome organization. It is quite clear that the motif distribution in genomes is not random at the length scales we examined: 1 kb to entire chromosomes. The observed-to-expected (OE) ratios of motif distributions show strong correlations in pairs of chromosomes that are susceptible to translocations. With the aid of examples, we suggest that similarity in motif distributions in promoter regions of genes could imply co-regulation. A simple extension of this idea empowers us with the ability to construct gene regulatory networks. Further, we could make inferences about the spatial proximity of genomic fragments using these motif distributions. Spatially proximal regions, as deduced by Hi-C or pcHi-C, were ∼3.5 times more likely to have their motif distributions correlated than non-proximal regions. These correlations had strong contributions from the CTCF protein recognizing motifs which are known markers of topologically associated domains. In general, correlating genomic regions by motif distribution comparisons alone is rife with functional information.
Collapse
Affiliation(s)
- Atreyi Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, Pashan, Pune, Maharashtra 411008, India
| | - Sumant Chopde
- Department of Data Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, Pashan, Pune, Maharashtra 411008, India
| | - Mallur Srivatsan Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, Pashan, Pune, Maharashtra 411008, India
- Department of Data Science, Indian Institute of Science Education and Research, Dr Homi Bhabha Rd, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
7
|
Rodríguez M, Moltó E, Serrano R, Diaz-Rullo J, Parralejo I, Muñoz D, Andreu RM, Seco J, Gallardo N, Andrés A, Arribas C, Pintado C. Central Downregulation of S-Resistin Alleviates Inflammation in EWAT and Liver and Prevents Adipocyte Hypertrophy. J Endocr Soc 2025; 9:bvae224. [PMID: 39807401 PMCID: PMC11725382 DOI: 10.1210/jendso/bvae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 01/16/2025] Open
Abstract
The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver. Additionally, we studied the imbalance of eWAT hypertrophy/hyperplasia remodeling. Our results indicate that central downregulation of s-resistin regulates insulin signaling cascade in a tissue-specific manner, reduces the inflammatory status both in the liver and eWAT, and prevents eWAT hypertrophy. Taken together, our results highlight the pivotal role of central s-resistin in maintaining metabolic homeostasis in AT and the liver. This suggests a direct association between its function and the modulation of the inflammatory response in these tissues.
Collapse
Affiliation(s)
- María Rodríguez
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Eduardo Moltó
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Rosario Serrano
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Jorge Diaz-Rullo
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Iván Parralejo
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Diego Muñoz
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Rosa María Andreu
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Jennifer Seco
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Science and Chemical Technologies and UCLM Institute of Biomedicine (IB-UCLM), 13071 Ciudad Real, Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Science and Chemical Technologies and UCLM Institute of Biomedicine (IB-UCLM), 13071 Ciudad Real, Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and UCLM Institute of Biomedicine (IB-UCLM), 45071 Toledo, Castilla-La Mancha, Spain
| |
Collapse
|
8
|
Zhang Y, Hill CM, Leach KA, Grillini L, Deliard S, Offley SR, Gatto M, Picone F, Zucco A, Gardini A. The enhancer module of Integrator controls cell identity and early neural fate commitment. Nat Cell Biol 2025; 27:103-117. [PMID: 39592860 PMCID: PMC11752693 DOI: 10.1038/s41556-024-01556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/09/2024] [Indexed: 11/28/2024]
Abstract
Lineage-specific transcription factors operate as master orchestrators of developmental processes by activating select cis-regulatory enhancers and proximal promoters. Direct DNA binding of transcription factors ultimately drives context-specific recruitment of the basal transcriptional machinery that comprises RNA polymerase II (RNAPII) and a host of polymerase-associated multiprotein complexes, including the metazoan-specific Integrator complex. Integrator is primarily known to modulate RNAPII processivity and to surveil RNA integrity across coding genes. Here we describe an enhancer module of Integrator that directs cell fate specification by promoting epigenetic changes and transcription factor binding at neural enhancers. Depletion of Integrator's INTS10 subunit upends neural traits and derails cells towards mesenchymal identity. Commissioning of neural enhancers relies on Integrator's enhancer module, which stabilizes SOX2 binding at chromatin upon exit from pluripotency. We propose that Integrator is a functional bridge between enhancers and promoters and a main driver of early development, providing new insight into a growing family of neurodevelopmental syndromes.
Collapse
Affiliation(s)
| | - Connor M Hill
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelsey A Leach
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Grillini
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | - Sarah R Offley
- The Wistar Institute, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Gatto
- The Wistar Institute, Philadelphia, PA, USA
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
9
|
Gottmann P, Speckmann T, Stadion M, Chawla P, Saurenbach J, Ninov N, Lickert H, Schürmann A. Transcriptomic heterogeneity of non-beta islet cells is associated with type 2 diabetes development in mouse models. Diabetologia 2025; 68:166-185. [PMID: 39508880 DOI: 10.1007/s00125-024-06301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/04/2024] [Indexed: 11/15/2024]
Abstract
AIMS/HYPOTHESIS The aim of this work was to understand the role of non-beta cells in pancreatic islets at early stages of type 2 diabetes pathogenesis. METHODS Specific clustering was employed to single-cell transcriptome data from islet cells of obese mouse strains differing in their diabetes susceptibility (diabetes-resistant B6.V.Lepob/ob [OB] and diabetes-susceptible New Zealand Obese [NZO] mice) on a diabetogenic diet. RESULTS Refined clustering analysis revealed several heterogeneous subpopulations for alpha cells, delta cells and macrophages, of which 133 mapped to human diabetes genes identified by genome-wide association studies. Importantly, a similar non-beta cell heterogeneity was found in a dataset of human islets from donors at different stages of type 2 diabetes. The predominant alpha cell cluster in NZO mice displayed signs of cellular stress and lower mitochondrial capacity (97 differentially expressed genes [DEGs]), whereas delta cells from these mice exhibited higher expression levels of maturation marker genes (Hhex and Sst) but lower somatostatin secretion than OB mice (184 DEGs). Furthermore, a cluster of macrophages was almost twice as abundant in islets of OB mice, and displayed extensive cell-cell communication with beta cells of OB mice. Treatment of beta cells with IL-15, predicted to be released by macrophages, activated signal transducer and activator of transcription (STAT3), which may mediate anti-apoptotic effects. Similar to mice, humans without diabetes possess a greater number of macrophages than those with prediabetes (39 mmol/mol [5.7%] < HbA1c < 46 mmol/mol [6.4%]) and diabetes. CONCLUSIONS/INTERPRETATION Our study indicates that the transcriptional heterogeneity of non-beta cells has an impact on intra-islet crosstalk and participates in beta cell (dys)function. DATA AVAILABILITY scRNA-seq data from the previous study are available in gene expression omnibus under gene accession number GSE159211 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159211 ).
Collapse
Affiliation(s)
- Pascal Gottmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Thilo Speckmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Mandy Stadion
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Prateek Chawla
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Judith Saurenbach
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
| | - Nikolay Ninov
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Center for Regenerative Therapies TU Dresden, Dresden, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), München Neuherberg, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Annette Schürmann
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- German Center for Diabetes Research (DZD), München Neuherberg, Germany.
- University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany.
| |
Collapse
|
10
|
Vervaeke A, Lamkanfi M. MAP Kinase Signaling at the Crossroads of Inflammasome Activation. Immunol Rev 2025; 329:e13436. [PMID: 39754394 DOI: 10.1111/imr.13436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 12/14/2024] [Indexed: 01/06/2025]
Abstract
Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation. Furthermore, we discuss novel insights into MAPK signaling in human NLRP1 inflammasome activation, focusing on the MAP3K member ZAKα as a key kinase linking ribosomal stress to inflammasome activation. Lastly, we review recent work elucidating how Bacillus anthracis lethal toxin (LeTx) manipulates host MAPK signaling to induce macrophage apoptosis as an immune evasion strategy, and the counteraction of this effect through genotype-specific Nlrp1b inflammasome activation in certain rodent strains.
Collapse
Affiliation(s)
- Alex Vervaeke
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| | - Mohamed Lamkanfi
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Jafri Z, Zhang J, O'Meara CH, Joshua AM, Parish CR, Khachigian LM. Interplay between CD28 and PD-1 in T cell immunotherapy. Vascul Pharmacol 2024; 158:107461. [PMID: 39734005 DOI: 10.1016/j.vph.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Immune checkpoint therapy targeting the PD-1/PD-L1 axis has revolutionised the treatment of solid tumors. However, T cell exhaustion underpins resistance to current anti-PD-1 therapies, resulting in lower response rates in cancer patients. CD28 is a T cell costimulatory receptor that can influence the PD-1 signalling pathway (and vice versa). CD28 signalling has the potential to counter T cell exhaustion by serving as a potential complementary response to traditional anti-PD-1 therapies. Here we discuss the interplay between PD-1 and CD28 in T cell immunotherapy and additionally how CD28 transcriptionally modulates T cell exhaustion. We also consider clinical attempts at targeting CD28; the challenges faced by past attempts and recent promising developments.
Collapse
Affiliation(s)
- Zuhayr Jafri
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingwen Zhang
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Connor H O'Meara
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Division of Head & Neck Oncology and Microvascular Reconstruction, Department of Otolaryngology, Head & Neck Surgery, University of Virginia Health Services, Charlottesville, VA 22903, USA; Department of Otolaryngology, Head & Neck Surgery, Australian National University, Acton, ACT 0200, Australia
| | - Anthony M Joshua
- Kinghorn Cancer Centre, St Vincents Hospital, Sydney and Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher R Parish
- Cancer and Vascular Biology Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Levon M Khachigian
- Vascular Biology and Translational Research, Department of Pathology, School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
12
|
Shin HK, Park SM, Choi MS, Oh JH, Kim SK, Yoon S, Park HR, Han HY. Enhancing toxicity prediction for natural products in herbal medicine and dietary supplements: Integrating (Q)STR models and in vitro assays. Toxicol Appl Pharmacol 2024:117220. [PMID: 39732204 DOI: 10.1016/j.taap.2024.117220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
New approach methods (NAMs) are required to predict human toxicity effectively, particularly due to limitations in conducting in vivo studies. While NAMs have been established for various industries, such as cosmetics, pesticides, and drugs, their applications in natural products (NPs) are lacking. NPs' complexity (multiple ingredients and structural differences from synthetic compounds) complicates NAM development. In this study, we devised NAMs for NPs using (quantitative) structure-toxicity relationship (Q)STR models and in vitro assays. Validation involved testing each method with single compounds isolated from NPs. A linear regression model was developed for (Q)STR prediction (R2 on test set: 0.52), with an applicability domain analysis demonstrating its reliability across NPs. This model was applied to predict the LD50 range of species, aiding in the development of herbal medicine and dietary supplements. In vitro screening employed three reporter cell lines (AP-1, P53, and Nrf2), with Tox scores derived by integrating in silico and in vitro data. Nimbolide exhibited the highest Tox score, with experimental studies corroborating the accuracy and reliability of the predictions made via Tox score analysis. The findings of the study align well with the purpose, as the suggested NAMs, utilizing (Q)STR models and in vitro assays, provide a Tox score to efficiently prioritize NPs for herbal medicine and dietary supplements.
Collapse
Affiliation(s)
- Hyun Kil Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34131, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34131, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34131, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
13
|
Liu Y, Yixilamu, Jin G, Feng M, Chunhua, Dawa. Tibetan golden acupuncture inhibits JNK/caspase-3 signaling pathway to alleviate neuronal apoptosis in cerebral ischemia-reperfusion injury. Heliyon 2024; 10:e40443. [PMID: 39698073 PMCID: PMC11652837 DOI: 10.1016/j.heliyon.2024.e40443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/17/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Background Apoptosis induced by cerebral ischemia-reperfusion is one of the key pathological processes of nerve injury. Tibetan golden acupuncture (GA) is a common treatment for ischemic brain injury in Tibetan. The aim of this study was to explore whether GA prevents cerebral ischemia-reperfusion-induced apoptosis in mice by blocking the JNK/caspase-3 pathway. Methods In experiment I, 36 mice were randomly divided into a Sham group, CI/RI group, CI/RI + GA group. Morris water maze tests, TdT-mediated dUTP-biotin nick end labeling (TUNEL) staining and flow cytometry (FCM) were used to evaluate the effect of the GA intervention on CI/RI. In experiment II, 30 mice were randomly divided into a Sham group, CI/RI group, CI/RI + GA group, CI/RI + SP group and CI/RI + SP + EA group. Western blotting was used to detect protein expression of key factors in the JNK signaling pathway in the hippocampus. Results After 7 and 14 interventions, behavioral evaluations in CI/RI + GA group was significantly different from those in CI/RI groups (p < 0.01), pathological injury and apoptosis were significantly reduced (p < 0.01). Compared with CI/RI group, the expression of P-JNK/JNK, Cleaved caspase-3/caspase-3, Bax, and Bad proteins in CI/RI + GA group, CI/RI + SP and CI/RI + SP + GA groups were significantly decreased (p < 0.01). The expression of B-cell lymphoma 2 (Bcl-2) was significantly increased (p < 0.01, p < 0.05). Conclusions GA can restore neurological dysfunction and inhibit hippocampal neuronal apoptosis in CI/RI mice, at least partially through inhibition of the JNK/Caspase-3 signaling pathway and regulation of apoptosis signals.
Collapse
Affiliation(s)
- Yaru Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
- University of Tibetan Medicine, Lhasa, China
| | - Yixilamu
- University of Tibetan Medicine, Lhasa, China
| | - Guilin Jin
- University of Tibetan Medicine, Lhasa, China
| | - Mingke Feng
- University of Tibetan Medicine, Lhasa, China
| | - Chunhua
- University of Tibetan Medicine, Lhasa, China
| | - Dawa
- University of Tibetan Medicine, Lhasa, China
| |
Collapse
|
14
|
Ke X, van Soldt B, Vlahos L, Zhou Y, Qian J, George J, Capdevila C, Glass I, Yan K, Califano A, Cardoso WV. Morphogenesis and regeneration share a conserved core transition cell state program that controls lung epithelial cell fate. Dev Cell 2024:S1534-5807(24)00699-3. [PMID: 39667932 DOI: 10.1016/j.devcel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/07/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024]
Abstract
Transitional cell states are at the crossroads of crucial developmental and regenerative events, yet little is known about how these states emerge and influence outcomes. The alveolar and airway epithelia arise from distal lung multipotent progenitors, which undergo cell fate transitions to form these distinct compartments. The identification and impact of cell states in the developing lung are poorly understood. Here, we identified a population of Icam1/Nkx2-1 epithelial progenitors harboring a transitional state program remarkably conserved in humans and mice during lung morphogenesis and regeneration. Lineage-tracing and functional analyses reveal their role as progenitors to both airways and alveolar cells and the requirement of this transitional program to make distal lung progenitors competent to undergo airway cell fate specification. The identification of a common progenitor cell state in vastly distinct processes suggests a unified program reiteratively regulating outcomes in development and regeneration.
Collapse
Affiliation(s)
- Xiangyi Ke
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Benjamin van Soldt
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lukas Vlahos
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yizhuo Zhou
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Qian
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joel George
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Claudia Capdevila
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ian Glass
- Birth Defects Research Laboratory (BDRL), University of Washington, Seattle, WA 98105, USA
| | - Kelley Yan
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Digestive and Liver Disease, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrea Califano
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wellington V Cardoso
- Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pulmonary & Allergy Critical Care, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
15
|
Padhan P, Simran, Kumar N, Verma S. Glutathione S-transferase: A keystone in Parkinson's disease pathogenesis and therapy. Mol Cell Neurosci 2024; 132:103981. [PMID: 39644945 DOI: 10.1016/j.mcn.2024.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder that predominantly affects motor function due to the loss of dopaminergic neurons in the substantia nigra. It presents significant challenges, impacting millions worldwide with symptoms such as tremors, rigidity, bradykinesia, and postural instability, leading to decreased quality of life and increased morbidity. The pathogenesis of Parkinson's disease is multifaceted, involving complex interactions between genetic susceptibility, environmental factors, and aging, with oxidative stress playing a central role in neuronal degeneration. Glutathione S-Transferase enzymes are critical in the cellular defense mechanism against oxidative stress, catalysing the conjugation of the antioxidant glutathione to various toxic compounds, thereby facilitating their detoxification. Recent research underscores the importance of Glutathione S-Transferase in the pathophysiology of Parkinson's disease, revealing that genetic polymorphisms in Glutathione S-Transferase genes influence the risk and progression of the disease. These genetic variations can affect the enzymatic activity of Glutathione S-Transferase, thereby modulating an individual's capacity to detoxify reactive oxygen species and xenobiotics, which are implicated in Parkinson's disease neuropathological processes. Moreover, biochemical studies have elucidated the role of Glutathione S-Transferase in not only maintaining cellular redox balance but also in modulating various cellular signalling pathways, highlighting its neuroprotective potential. From a therapeutic perspective, targeting Glutathione S-Transferase pathways offers promising avenues for the development of novel treatments aimed at enhancing neuroprotection and mitigating disease progression. This review explores the evident and hypothesized roles of Glutathione S-Transferase in Parkinson's disease, providing a comprehensive overview of its importance and potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Pratyush Padhan
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Simran
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar
- Department of Reproductive Biology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sonia Verma
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
16
|
Zhao J, Zhang H, Pan C, He Q, Zheng K, Tang Y. Advances in research on the relationship between the LMNA gene and human diseases (Review). Mol Med Rep 2024; 30:236. [PMID: 39422026 PMCID: PMC11529173 DOI: 10.3892/mmr.2024.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The LMNA gene, which is responsible for encoding lamin A/C proteins, is recognized as a primary constituent of the nuclear lamina. This protein serves crucial roles in various cellular physiological activities, including the maintenance of cellular structural stability, regulation of gene expression, mechanosensing and cellular motility. A significant association has been established between the LMNA gene and several major human diseases. Mutations, dysregulated expression of the LMNA gene, and improper processing of its encoded protein can result in a spectrum of pathological conditions. These diseases, collectively termed laminopathies, are directly attributed to LMNA gene dysfunction. The present review examines the recent advancements in research concerning the LMNA gene and its association with human diseases, while exploring its pathological roles. Particular emphasis is placed on the current status of LMNA gene research in the context of tumors. This includes an analysis of the abundance of LMNA alterations in cancer and its interplay with various signaling pathways. The aim of the present review was to provide novel perspectives for studying the development of LMNA‑related diseases and additional theoretical insights for basic and clinical translational research in this field.
Collapse
Affiliation(s)
- Jiumei Zhao
- Department of Laboratory, Chongqing Nanchuan District People's Hospital, Chongqing Medical University, Chongqing 408400, P.R. China
| | - Huijuan Zhang
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chenglong Pan
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Qian He
- School of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kepu Zheng
- Forensic Science Centre, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yu Tang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
17
|
Andromidas F, Mackinnon BE, Myers AJ, Shaffer MM, Brahimi A, Atashpanjeh S, Vazquez TL, Le T, Jellison ER, Staurovsky S, Koob AO. Astrocytes initiate autophagic flux and maintain cell viability after internalizing non-active native extracellular α-synuclein. Mol Cell Neurosci 2024; 131:103975. [PMID: 39368763 DOI: 10.1016/j.mcn.2024.103975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
Astrocytes are tasked with regulating the synaptic environment. Early stages of various neurodegenerative diseases are characterized by synapse loss, and astrocytic atrophy and dysfunction has been proposed as a possible cause. α-Synuclein (αS) is a highly expressed neuronal protein located in the synapse that can be released in the extracellular space. Evidence points to astrocytes as being responsible for uptake and degradation of extracellular αS. Therefore, misfolded active fibrillized αS resulting in protein inclusions and aggregates could be due to astrocytic dysfunction. Despite these pathological hallmarks and lines of evidence, the autophagic function of astrocytes in response to monomeric non-active αS to model healthy conditions has not been investigated. Human primary cortical astrocytes were treated with 100 nM of extracellular monomeric non-active αS alone, and in combination with N-terminal binding monomeric γ-synuclein (γS) as a control. Western blot analysis and super resolution imaging of HiLyte-488 labeled αS confirmed successful internalization of αS at 12, 24 and 48 h after treatment, while αS dimers were only observed at 48 h. Western blot analysis also confirmed αS's ability to induce autophagic flux by 48 h. Annexin V/PI flow cytometry results revealed increased early apoptosis at 24 h, but which resolved itself by 48 h, indicating no cell death in cortical astrocytes at all time points, suggesting astrocytes can manage the protein degradation demand of monomeric αS in healthy physiological conditions. Likewise, astrocytes reduced secretion of apolipoprotein (ApoE), a protein involved in pro-inflammatory pathways, synapse regulation, and autophagy by 12 h. Similarly, total c-JUN protein levels, a transcription factor involved in pro-inflammatory pathways increased by 12 h in the nuclear fraction. Therefore, astrocytes are able to respond and degrade αS in healthy physiological conditions, and astrocyte dysfunction could precede detrimental αS accumulation.
Collapse
Affiliation(s)
- Fotis Andromidas
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Brooke E Mackinnon
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Abigail J Myers
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Melanie M Shaffer
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Saeid Atashpanjeh
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Tiana L Vazquez
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America
| | - Timmy Le
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America; Department of Neurobiology, UMASS Chan Medical School, Brudnick Neuropsychiatric Research Institute, Worcester, MA 01604, United States of America
| | - Evan R Jellison
- Department of Immunology, UCONN Health, Farmington, CT 06030, United States of America
| | - Susan Staurovsky
- Richard D. Berlin Center for Cell Analysis and Modeling, UCONN Health, Farmington, CT 06030, United States of America
| | - Andrew O Koob
- Biology Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States of America.
| |
Collapse
|
18
|
Lemos JVM, Martins JODL, Machado LC, Aragão LR, Verde MEQL, Pessoa CDÓ, Bezerra MJB, Alves APNN, de Barros Silva PG. Digoxin attenuates bisphosphonate related osteonecrosis of the jaws by RORγt-dependent Th17 response in male rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:781-793. [PMID: 39304414 DOI: 10.1016/j.oooo.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE The study aimed to evaluate digoxin, an RORγt inhibitor, in Medication-Related Osteonecrosis of the Jaws (MRONJ) in male rats treated with zoledronic acid (ZA). STUDY DESIGN Forty male Wistar rats were divided into a negative control group (0.1 mL/kg saline), a positive control group (ZA, 0.20 mg/kg), and three test groups treated with ZA and digoxin at 1 (DG1), 2 (DG2), or 4 (DG4) mg/kg. These groups received treatment three times weekly. ZA was administered intravenously on days 0, 7, and 14, followed by extraction of the left lower first molar on day 42, a final ZA dose on day 49, and euthanasia on day 70. Analyses included radiographic, histomorphometric, and immunohistochemical evaluation of the mandibles, western blotting of gingiva, and mechanical tests on femurs. Statistical analysis was performed using ANOVA/Bonferroni tests (P < .05). RESULTS Digoxin reduced radiolucency of MRONJ (P < .001), inflammatory cells, empty osteocyte lacunae (P < .001), apoptotic osteoclasts (P < .001), and Caspase-3-positive osteocytes (P = .021). ZA increased immunoreactivity for most markers except c-Fos, while digoxin reduced interleukin 17, TNF-α, IL-6, IL-2, FOXP3, c-Jun, NFκB (P < .001), TGF-β (P = .009), RANKL (P = .035), and OPG (P = .034). Digoxin also reversed RORγt expression (P < .001), increased diarrhea scores (P = .028), renal and cardiac indexes (P < .001), and enhanced femur mechanical properties (P < .013). CONCLUSIONS Digoxin attenuated MRONJ by inhibiting RORγt and reducing the Th17 response.
Collapse
Affiliation(s)
- José Vitor Mota Lemos
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Joyce Ohana de Lima Martins
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Lara Rabelo Aragão
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil
| | | | - Cláudia do Ó Pessoa
- Department of Physiology and Pharmacology at the Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Júlia Barbosa Bezerra
- Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
19
|
Lee SB, Gupta H, Min BH, Ganesan R, Sharma SP, Won SM, Jeong JJ, Cha MG, Kwon GH, Jeong MK, Hyun JY, Eom JA, Park HJ, Yoon SJ, Lee SY, Choi MR, Kim DJ, Oh KK, Suk KT. A consortium of Hordeum vulgare and gut microbiota against non-alcoholic fatty liver disease via data-driven analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:250-260. [PMID: 38687561 DOI: 10.1080/21691401.2024.2347380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Despite many recent studies on non-alcoholic fatty liver disease (NAFLD) therapeutics, the optimal treatment has yet to be determined. In this unfinished project, we combined secondary metabolites (SMs) from the gut microbiota (GM) and Hordeum vulgare (HV) to investigate their combinatorial effects via network pharmacology (NP). Additionally, we analyzed GM or barley - signalling pathways - targets - metabolites (GBSTMs) in combinatorial perspectives (HV, and GM). A total of 31 key targets were analysed via a protein-protein interaction (PPI) network, and JUN was identified as the uppermost target in NAFLD. On a bubble plot, we revealed that apelin signalling pathway, which had the lowest enrichment factor antagonize NAFLD. Holistically, we scrutinized GBSTM to identify key components (GM, signalling pathways, targets, and metabolites) associated with the Apelin signalling pathway. Consequently, we found that the primary GMs (Eubacterium limosum, Eggerthella sp. SDG-2, Alistipes indistinctus YIT 12060, Odoribacter laneus YIT 12061, Paraprevotella clara YIT 11840, Paraprevotella xylaniphila YIT 11841) to ameliorate NAFLD. The molecular docking test (MDT) suggested that tryptanthrin-JUN is an agonist, conversely, dihydroglycitein-HDAC5, 1,3-diphenylpropan-2-ol-NOS1, and (10[(Acetyloxy)methyl]-9-anthryl)methyl acetate-NOS2, which are antagonistic conformers in the apelin signalling pathway. Overall, these results suggest that combination therapy could be an effective strategy for treating NAFLD.
Collapse
Affiliation(s)
- Su-Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Byeong-Hyun Min
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Gi Cha
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Goo-Hyun Kwon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Min-Kyo Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Ji-Ye Hyun
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Jung-A Eom
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Hee-Jin Park
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Mi-Ran Choi
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, Korea
| |
Collapse
|
20
|
He X, Zhang H, Zhong J, Wang J, Wu K, Wen X. Regulatory mechanism of Elovl6 in lipid metabolism, antioxidant capacity, and immune function in Scylla paramamosain revealed by Ap-1. Int J Biol Macromol 2024; 283:137700. [PMID: 39551296 DOI: 10.1016/j.ijbiomac.2024.137700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
In mammals, elongation of very long-chain fatty acids protein 6 (ELOVL6) play a role in both the elongation of fatty acids and the development of associated inflammation. However, the function and transcriptional regulatory mechanisms of Elovl6 in invertebrates are poorly understood. This study aimed to examine the function of Elovl6 and its transcriptional regulatory mechanism in Scylla paramamosain. RNA interference experiments showed that elovl6 knockdown significantly affected the synthesis and catabolism of hepatopancreatic lipids, leading to an increase in triglyceride levels and saturated fatty acid content, and a decrease in polyunsaturated fatty acid content. Notably, antioxidant capacity and immune function were also impaired, with decreased activity of antioxidant enzymes and immune-related genes. To investigate the transcription regulation of elovl6, a 2212-bp promoter fragment upstream of elovl6 was cloned and characterized. Analysis of the luciferase reporter showed that Ap-1 regulates elovl6 transcription via the -353 to -343 binding site. In vivo injection of the Ap-1 inhibitor T-5224 verified its inhibitory effect on elovl6 expression, with results similar to those of elovl6 knockdown, indicating that Ap-1 regulates lipid metabolism, antioxidant capacity, and immune function via Elovl6.
Collapse
Affiliation(s)
- Xianda He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China
| | - Juncheng Zhong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Kun Wu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 510642, China.
| | - Xiaobo Wen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Huang W, Li PH, He RN, Lei YR, Huang CF, Lin YX, Lan YM, Chen ZA, Zhang ZP, Qin QW, Sun YH. The regulatory role of Epinephelus Coioides miR-21 in the infection and replication of iridovirus SGIV. Virology 2024; 603:110325. [PMID: 39681060 DOI: 10.1016/j.virol.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Iridovirus SGIV is a highly pathogenic virus of fish that can cause more than 90% mortality in Epinephelus coioides, a marine farmed fish in South China. miRNAs can be involved in regulating the development of virus-induced diseases. In this study, SGIV infection could significantly inhibit the expression of E. coioides miR-21. And, overexpressing miR-21 could inhibit the expressions of viral key genes (ICP18, VP19, LITAF and MCP), SGIV-induced CPE, and viral titers. Overexpression of miR-21 promoted the promoter activity of AP-1/NF-κB, SGIV-induced apoptosis, and activities of caspase 3/9. Inhibiting miR-21 could produce the opposite results. E. Coioides PDCD4 is a targeting gene of miR-21, and we speculate that PDCD4 downregulation may, at least in part, explain the observed antiviral effects. These studies indicate that miR-21 could inhibit the infection and replication of SGIV, which might provide a molecular basis for further exploring the mechanism of SGIV invasion.
Collapse
Affiliation(s)
- Wei Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Pin-Hong Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ru-Nan He
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yu-Rong Lei
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Cui-Fen Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yun-Xiang Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Yin-Mei Lan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Zi-An Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Ze-Peng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China
| | - Qi-Wei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China; Nansha-South China Agricultural University Fishery Research Institute, 511450, Guangzhou, Guangdong, PR China.
| | - Yan-Hong Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, 510642, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
22
|
Wen X, Dong P, Liu J, Wang SJ, Li J. Role of Immune Inflammation in Recurrent Spontaneous Abortions. J Inflamm Res 2024; 17:9407-9422. [PMID: 39600677 PMCID: PMC11590633 DOI: 10.2147/jir.s488638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Objective This study aimed to investigate the role of immune inflammation in recurrent spontaneous abortions (RSA). Methods In this study, decidua tissues from 12 patients were collected. These included six individuals with RSA in the RSA group and six in the control group. The differences in gene and metabolite expression in the decidua of the placenta between normal pregnancies and patients with RSA were compared using transcriptomic and metabolomic analyses. The differentially expressed genes and metabolites were further analyzed through functional enrichment analysis using high-throughput sequencing technology. Results There was a significant upregulation of genes associated with immunity and inflammation in the RSA group compared to the control group. The TNF signaling pathway was upregulated in the RSA group. Inflammatory mediators were expressed at higher levels in the RSA group, and arachidonic acid metabolism was the most significant differential metabolite set. The regulation of inflammatory mediators of transient receptor potential (TRP) channels were enriched in RSA cases. The integrated analysis of the data further suggests that the immune-inflammatory response might be an important factor in RSA. The expression levels of genes related to inflammation and hypoxia in tissues from patients with RSA were verified using quantitative reverse transcription polymerase chain reaction (qRT-PCR), and this revealed that the expression of MARK10 and TNFAIP3 genes was significantly upregulated in samples from RSA patients compared to normal tissues. Conclusion The findings suggest a strong association between immune-related inflammation and RSA. Addressing metabolic and inflammatory aspects in patients with RSA may potentially help enhance pregnancy outcomes.
Collapse
Affiliation(s)
- Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Peng Dong
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jia Liu
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Shi-Jun Wang
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
| | - Jian Li
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People’s Republic of China
- Department of Family Planning, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
23
|
Saintilnord WN, Hegazy YA, Chesnutt K, Eckstein M, Cassidy RN, Dhahri H, Bennett RL, Melters DP, Lopes E, Fu Z, Lau K, Chandler DP, Poirier MG, Dalal Y, Licht JD, Fondufe-Mittendorf Y. Aberrant expression of histone H2B variants reshape chromatin and alter oncogenic gene expression programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624207. [PMID: 39605447 PMCID: PMC11601509 DOI: 10.1101/2024.11.18.624207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Chromatin architecture governs DNA accessibility and gene expression. Thus, any perturbations to chromatin can significantly alter gene expression programs and promote disease. Prior studies demonstrate that every amino acid in a histone is functionally significant, and that even a single amino acid substitution can drive specific cancers. We previously observed that naturally occurring H2B variants are dysregulated during the epithelial to mesenchymal transition (EMT) in bronchial epithelial cells. Naturally occurring H2B variants differ from canonical H2B by only a few amino acids, yet single amino acid changes in other histone variants (e.g., H3.3) can drive cancer. We therefore hypothesized that H2B variants might function like oncohistones, and investigated how they modify chromatin architecture, dynamics, and function. We find that H2B variants are frequently dysregulated in many cancers, and correlate with patient prognosis. Despite high sequence similarity, mutations in each H2B variant tend to occur at specific "hotspots" in cancer. Some H2B variants cause tighter DNA wrapping around nucleosomes, leading to more compact chromatin structures and reduced transcription factor accessibility to nucleosomal DNA. They also altered genome-wide accessibility to oncogenic regulatory elements and genes, with concomitant changes in oncogenic gene expression programs. Although we did not observe changes in cell proliferation or migration in vitro , our Gene Ontology (GO) analyses of ATAC-seq peaks and RNA-seq data indicated significant changes in oncogenic pathways. These findings suggest that H2B variants may influence early-stage, cancer-associated regulatory mechanisms, potentially setting the stage for oncogenesis later on. Thus, H2B variant expression could serve as an early cancer biomarker, and H2B variants might be novel therapeutic targets.
Collapse
|
24
|
Datta D, Sulthana S, Strauss J, Puri A, Priyanka Bandi S, Singh S. Reconnoitring signaling pathways and exploiting innovative approaches tailoring multifaceted therapies for skin cancer. Int J Pharm 2024; 665:124719. [PMID: 39293575 DOI: 10.1016/j.ijpharm.2024.124719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Nowadays, skin cancer is widespread just like a varied malignant cancer which can cause serious health issues. Skin cancer, which encompasses malignant melanoma, basal cell carcinoma, and squamous cell carcinoma, is a prevalent form of cancer among humans. Due to its broad prevalence, financial burden, mortality rates, and cosmetic effects, it is a major public health issue. Skin cancer treatment involves surgery, chemotherapy, and radiation. Recently, personalized treatment in the fields of targeted therapies and precision medicine has been shown to diagnose early detection of every individual tumor by knowing their genetic and molecular characteristics. To target the molecular pathways responsible for tumor growth and reduce the damage to healthy tissue, new targeted therapies have emerged for melanoma, basal cell carcinoma, and squamous cell carcinoma. B-raf serine/threonine kinase (BRAF) and mitogen-activated protein kinase (MEK) inhibitors, immune checkpoint inhibitors, and precision medications have strong response rates to improve patient survival. Targeted therapeutics like nanocarriers have shown promising results by reducing skin irritation and protecting encapsulated therapeutics. These formulations have been shown to improve the transdermal permeability of anticancer drugs. The consideration of employing physical techniques to enhance the permeation of nanocarriers warrants attention to augment the dermal permeation of anticancer agents and facilitate targeted drug delivery within neoplastic cells. Targeted therapies face obstacles like resistance mechanisms and treatment strategy monitoring. Taken together, this review delves into the basic mechanisms of skin cancer, current treatment methods, drug resistance processes, and nano-based targeted techniques for cancer treatment. It will also delineate the challenges and perspectives in pre-clinical and clinical contexts.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Safiya Sulthana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jordan Strauss
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Ashana Puri
- Department of Pharmaceutical Sciences, Bill Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Liila-Fogarty SM, Boyum GE, Schwabe CL, Hess GT. A High-Throughput Screen for Antiproliferative Peptides in Mammalian Cells Identifies Key Transcription Factor Families. ACS Synth Biol 2024; 13:3548-3562. [PMID: 39425622 DOI: 10.1021/acssynbio.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transcription factors (TFs) are a promising therapeutic target for a multitude of diseases. TFs perform their cellular roles by participating in multiple specific protein-protein interactions. For example, homo- or heterodimerization of some TFs controls DNA binding, while interactions between TFs and components of basal transcriptional machinery or chromatin modifiers can also be critical. While, in theory, small molecules could be used to disrupt specific protein-protein interfaces required for TF function, in practice, it is difficult to identify small molecules with the necessary specificity and efficacy, likely due to the extensive protein-protein interfaces that often underlie TF function. However, in contrast to small molecules, peptides have the potential to provide both the specificity and efficacy required to disrupt such interfaces. Here, we identified ∼15 peptides that inhibit the proliferation of leukemia cells using a high-throughput pooled screen of a library of 80-mer protein regions (peptides) derived from human nuclear-localized proteins. The antiproliferative peptides were enriched for regions known to be involved in specific TF dimerization, including the basic leucine zipper (bZIP) domain family. One of these bZIP domains, JDP2;bZIP_1, from the TF JDP2, was the top antiproliferative peptide, reducing the proliferation of K562 cells by 2-fold. JDP2;bZIP_1 inhibited AP-1 transcriptional activity and phenocopied JDP2 overexpression, suggesting that the peptide affected proliferation through a native JDP2 mechanism. Unexpectedly, given the strong conservation of the bZIP domain, residues outside of the annotated dimerization domain were critical for the peptide's antiproliferative potency. The peptide-mediated antiproliferative effect initiated erythrocyte differentiation in K562 cells and increased G0/G1 cells across multiple cell line models. We also found that many of the antiproliferative peptides identified in this study, including JDP2;bZIP_1, did not require a nuclear localization signal to function, a potential benefit for delivering these peptides in therapeutic applications.
Collapse
Affiliation(s)
- Shane M Liila-Fogarty
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Grace E Boyum
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Claire L Schwabe
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Gaelen T Hess
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
26
|
Sun R, Wang Z, Li M, Du T, Jia S, Yang W, Yang L. Regulatory Effects of Copper on Ghrelin Secretion in Rat Fundic Glands. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39545633 DOI: 10.1111/jpn.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
Copper (Cu) is an effective additive in feed for promoting growth. Growth dan axis comprising growth hormone (GH), somatostatin (SS) and GH-releasing hormone (GHRH), with ghrelin regulating their release. The growth-promoting effects of Cu are closely related to ghrelin, but the specific mechanism behind the relationship remains unknown. We investigated the adjustment of ghrelin synthesis and secretion by Cu. Sprague-Dawley rats were fed basal diets with an addition of 0, 120 or 240 mg/kg Cu sulfate for 28 day to establish a growth-promoting model. Signalling molecules relevant to ghrelin synthesis and secretion were detected and mechanistically explored using enzyme-linked immunosorbent assay, quantitative reverse-transcription polymerase chain reaction and Western blot analysis. The 120 mg/kg supplement improved growth performance; significantly increased the serum levels of ghrelin, ghrelin O-acyltransferase (GOAT), acylated ghrelin (AG), GH, and reactive oxygen species (ROS) and decreased those of SS; significantly increased the mRNA and protein expression of ghrelin, GOAT, ghrelin receptor (GHS-R1α), and activator protein 1 (AP-1); increased the phosphorylation ratio of JNK and p38 MAPK; and inhibited the mRNA and protein expression of SS and SS receptor subtype 2 (SSTR2) in gastric fundic gland tissues. Thus, Cu may affect gastric ghrelin synthesis at the transcriptional level by activating the JNK/p38 MAPK pathway through increased ROS levels and regulating the activation of the downstream redox-sensitive transcription factor AP-1. SS plays a crucial determinant role in ghrelin regulation via intragastric Cu. Cu promotes GOAT activity and ghrelin secretion by inhibiting SS secretion, affecting AG levels, and promoting ghrelin acylation through ghrelin/GOAT/GHS-R1α system, modulating ghrelin secretion.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Zhongshen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Meng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Tianyang Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Shuang Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, Jilin Province, China
- Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Changchun, Jilin Province, China
| |
Collapse
|
27
|
He Q, Hu J, Huang H, Wu T, Li W, Ramakrishnan S, Pan Y, Chan KM, Zhang L, Yang M, Wang X, Chin YR. FOSL1 is a key regulator of a super-enhancer driving TCOF1 expression in triple-negative breast cancer. Epigenetics Chromatin 2024; 17:34. [PMID: 39523372 PMCID: PMC11552368 DOI: 10.1186/s13072-024-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with an unmet clinical need, but its epigenetic regulation remains largely undefined. By performing multiomic profiling, we recently revealed distinct super-enhancer (SE) patterns in different subtypes of breast cancer and identified a number of TNBC-specific SEs that drive oncogene expression. One of these SEs, TCOF1 SE, was discovered to play an important oncogenic role in TNBC. However, the molecular mechanisms by which TCOF1 SE promotes the expression of the TCOF1 gene remain to be elucidated. Here, by using combinatorial approaches of DNA pull-down assay, bioinformatics analysis and functional studies, we identified FOSL1 as a key transcription factor that binds to TCOF1 SE and drives its overexpression. shRNA-mediated depletion of FOSL1 results in significant downregulation of TCOF1 mRNA and protein levels. Using a dual-luciferase reporter assay and ChIP-qPCR, we showed that binding of FOSL1 to TCOF1 SE promotes the transcription of TCOF1 in TNBC cells. Importantly, our data demonstrated that overexpression of FOSL1 drives the activation of TCOF1 SE. Lastly, depletion of FOSL1 inhibits tumor spheroid growth and stemness properties of TNBC cells. Taken together, these findings uncover the key epigenetic role of FOSL1 and highlight the potential of targeting the FOSL1-TCOF1 axis for TNBC treatment.
Collapse
Affiliation(s)
- Qingling He
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jianyang Hu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Hao Huang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Tan Wu
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wenxiu Li
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Saravanan Ramakrishnan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yilin Pan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Kui Ming Chan
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Liang Zhang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Mengsu Yang
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Xin Wang
- Department of Surgery, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Y Rebecca Chin
- Tung Biomedical Sciences Centre, Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
28
|
Basu A, Xuan Z. p21 Waf1/Cip1 Is a Novel Downstream Target of 40S Ribosomal S6 Kinase 2. Cancers (Basel) 2024; 16:3783. [PMID: 39594738 PMCID: PMC11592183 DOI: 10.3390/cancers16223783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: The ribosomal S6 kinase 2 (S6K2) acts downstream of the mechanistic target of rapamycin complex 1 and is a homolog of S6K1 but little is known about its downstream effectors. The objective of this study was to use an unbiased transcriptome profiling to uncover how S6K2 promotes breast cancer cell survival. Methods: RNA-Seq analysis was performed to identify novel S6K2 targets. Cells were transfected with siRNAs or plasmids containing genes of interest. Western blot analyses were performed to quantify total and phosphorylated proteins. Apoptosis was monitored by treating cells with different concentrations of doxorubicin. Results: Silencing of S6K2, but not S6K1, decreased p21 in MCF-7 and T47D breast cancer cells. Knockdown of Akt1 but not Akt2 decreased p21 in MCF-7 cells whereas both Akt1 and Akt2 knockdown attenuated p21 in T47D cells. While Akt1 overexpression enhanced p21 and partially reversed the effect of S6K2 deficiency on p21 downregulation in MCF-7 cells, it had little effect in T47D cells. S6K2 knockdown increased JUN mRNA and knockdown of cJun enhanced p21. Low concentrations of doxorubicin increased, and high concentrations decreased p21 levels in T47D cells. Silencing of S6K2 or p21 sensitized T47D cells to doxorubicin via c-Jun N-terminal kinase (JNK)-mediated downregulation of Mcl-1. Conclusions: S6K2 knockdown enhanced doxorubicin-induced apoptosis by downregulating the cell cycle inhibitor p21 and the anti-apoptotic protein Mcl-1 via Akt and/or JNK.
Collapse
Affiliation(s)
- Alakananda Basu
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA;
| |
Collapse
|
29
|
Seyrek K, Espe J, Reiss E, Lavrik IN. The Crosstalk of Apoptotic and Non-Apoptotic Signaling in CD95 System. Cells 2024; 13:1814. [PMID: 39513921 PMCID: PMC11545656 DOI: 10.3390/cells13211814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The mechanisms of CD95 (Fas/APO-1)-mediated extrinsic apoptotic pathway in cancer cells have been extensively studied. The majority of human cells express CD95, but not all these cells can induce extrinsic apoptosis. Accumulating evidence has shown that CD95 is a multifunctional protein, and its stimulation can also elicit non-apoptotic or even survival signals. It has become clear that under certain cellular contexts, due to the various checkpoints, CD95 activation can trigger both apoptotic and non-apoptotic signals. The crosstalk of death and survival signals may occur at different levels of signal transduction. The strength of the CD95 stimulation, initial levels of anti-apoptotic proteins, and posttranslational modifications of the core DISC components have been proposed to be the most important factors in the life/death decisions at CD95. Successful therapeutic targeting of CD95 signaling pathways will require a better understanding of the crosstalk between CD95-induced apoptotic and cell survival pathways. In this review, in order to gain a systematic understanding of the crosstalk between CD95-mediated apoptosis and non-apoptotic signaling, we will discuss these issues in a step-by-step way.
Collapse
Affiliation(s)
| | | | | | - Inna N. Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany; (K.S.); (J.E.); (E.R.)
| |
Collapse
|
30
|
Duong A, Wong A, Ramendra R, Sebben D, Moshkelgosha S, MacParland S, Liu M, Juvet S, Martinu T. A Rapid Human Lung Tissue Dissociation Protocol Maximizing Cell Yield and Minimizing Cellular Stress. Am J Respir Cell Mol Biol 2024; 71:509-518. [PMID: 38959415 DOI: 10.1165/rcmb.2023-0343ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024] Open
Abstract
The human lung is a complex organ that comprises diverse populations of epithelial, mesenchymal, vascular, and immune cells, which gains even greater complexity during disease states. To effectively study the lung at a single-cell level, a dissociation protocol that achieves the highest yield of viable cells of interest with minimal dissociation-associated protein or transcription changes is key. Here, we detail a rapid collagenase-based dissociation protocol (Col-Short) that provides a high-yield single-cell suspension that is suitable for a variety of downstream applications. Diseased human lung explants were obtained and dissociated through the Col-Short protocol and compared with four other dissociation protocols. Resulting single-cell suspensions were then assessed with flow cytometry, differential staining, and quantitative real-time PCR to identify major hematopoietic and nonhematopoietic cell populations, as well as their activation states. We observed that the Col-Short protocol provides the greatest number of cells per gram of lung tissue, with no reduction in viability when compared with previously described dissociation protocols. Col-Short had no observable surface protein marker cleavage as well as lower expression of protein activation markers and stress-related transcripts compared with four other protocols. The Col-Short dissociation protocol can be used as a rapid strategy to generate single cells for respiratory cell biology research.
Collapse
Affiliation(s)
- Allen Duong
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
- Institute of Medical Science
| | - Aaron Wong
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
- Institute of Medical Science
| | - Rayoun Ramendra
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
| | - David Sebben
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
| | - Sajad Moshkelgosha
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
| | - Sonya MacParland
- Toronto General Hospital Research Institute, and
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; and
- Institute of Medical Science
- Department of Laboratory Medicine and Pathobiology, and
| | - Mingyao Liu
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; and
- Institute of Medical Science
| | - Stephen Juvet
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; and
- Institute of Medical Science
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Tereza Martinu
- Toronto Lung Transplant Program
- Toronto General Hospital Research Institute, and
- Ajmera Transplant Centre, University Health Network, Toronto, Ontario, Canada; and
- Institute of Medical Science
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Cao Y, Xing R, Li Q, Bai Y, Liu X, Tian B, Li X. Inhibition of the AP-1/TFPI2 axis contributes to alleviating cerebral ischemia/reperfusion injury by improving blood-brain barrier integrity. Hum Cell 2024; 37:1679-1695. [PMID: 39227518 DOI: 10.1007/s13577-024-01125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Reperfusion after cerebral ischemia leads to secondary damage to the nervous system, called cerebral ischemia/reperfusion injury (CIRI). The blood-brain barrier (BBB) consists of endothelial cells and tight junction (TJ) proteins, and its disruption aggravates CIRI. Two GSE datasets identified Tissue Factor Pathway Inhibitor 2 (TFPI2) as a differentially upregulated gene (Log2FC > 1, p < 0.01) in the cerebral cortex of ischemic rats, and TFPI2 affects angiogenesis of endothelial cells. Moreover, genes (c-Jun, c-Fos, FosL1) encoding subunits of Activator Protein-1 (AP-1), a transcription factor involved in IRI, were highly expressed in ischemic samples. Thus, the effects of the AP-1/TFPI2 axis on CIRI were explored. We determined increased TFPI2 expression in the cerebral cortex of rats receiving middle cerebral artery occlusion (MCAO) for 90 min and reperfusion (R) for 48 h. Then AAV2-shTFPI2 particles (5 × 1010 vg) were injected into the right lateral ventricle of rats 3 weeks before MCAO/R. TFPI2 knockdown decreased infarct size and neuronal injury in ischemic rats. It improved BBB integrity, demonstrated by reduced FITC-dextran leakage in brain tissues of MCAO/R-operated rats. Furthermore, it increased the expression of TJ proteins (Occludin, Claudin-5, TJP-1) in the cerebral cortex of rats with CIRI. Consistently, we found that TFPI2 knockdown mitigated cell damage in mouse endothelial bEND.3 cells with oxygen and glucose deprivation (ODG) for 6 h and reoxygenation (R) for 18 h (OGD/R) treatment. High co-expression of c-Jun and c-Fos significantly elevated TFPI2 promoter activity. c-Jun knockdown inhibited TFPI2 expression in OGD/R-treated bEND.3 cell. Collectively, our findings demonstrate that inhibition of the AP-1/TFPI2 axis alleviates CIRI.
Collapse
Affiliation(s)
- Yue Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Ruixian Xing
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Qiushi Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yang Bai
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xuewen Liu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Buxian Tian
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
32
|
Alghamdi B, Hassanein EHM, Alharthy SA, Farsi RM, Harakeh S. Vinpocetine attenuates methotrexate-induced hippocampal intoxication via Keap-1/Nrf2, NF-κB/AP-1, and apoptotic pathways in rats. Drug Chem Toxicol 2024; 47:1038-1049. [PMID: 38508707 DOI: 10.1080/01480545.2024.2329155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
Methotrexate (MTX) is an anti-folate chemotherapeutic commonly used to treat cancer and autoimmune diseases. Despite its widespread clinical use, MTX has been linked to serious neurotoxicity side effects. Vinpocetine (VNP) has been widely used clinically to treat many neurological conditions. This study was conducted to study the potential neuroprotective effects of VNP against MTX hippocampal intoxication in rats. Thirty-two rats were randomly allocated into 4 groups: (I) control (Vehicle); (II) VNP-treated group (20 mg/kg/day, p.o); (III) MTX-control (20 mg/kg/once, i.p.) group; and (IV) the VNP + MTX group. VNP was administered orally for 10 days, during which MTX was given intraperitoneally once at the end of day 5. Our data indicated that VNP administration significantly improved MTX-induced neuronal cell death, odema, vacuolation and degeneration. VNP attenuated oxidative injury mediated by significant upregulation of the Nrf2, HO-1, and GCLC genes, while the Keap-1 mRNA expression downregulated. Moreover, VNP suppressed cytokines release mediated by increasing IκB expression level while it caused a marked downregulation in NF-κB and AP-1 (C-FOS and C-JUN) levels. Additionally, VNP attenuated apoptosis by reducing hippocampal Bax levels while increasing Bcl2 levels in MTX-intoxicated rats. In conclusion, our results suggested that VNP significantly attenuated MTX hippocampal intoxication by regulating Keap-1/Nrf2, NF-κB/AP-1, and apoptosis signaling in these effects.
Collapse
Affiliation(s)
- Badrah Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Saif A Alharthy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Toxicology and Forensic Sciences Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem M Farsi
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
33
|
Li C, Liu X, Liu J, Zhang X, Wu J, Ji X, Niu H, Xu Q. Chromatin accessibility and transcriptional landscape in PK-15 cells during early exposure to Aflatoxin B 1. Biochem Biophys Res Commun 2024; 731:150394. [PMID: 39024978 DOI: 10.1016/j.bbrc.2024.150394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Aflatoxin B1 (AFB1) not only causes significant losses in livestock production but also poses a serious threat to human health. It is the most carcinogenic among known chemicals. Pigs are more susceptible to AFB1 and experience a higher incidence. However, the molecular mechanism of the toxic effect of AFB1 remains unclear. In this study, we used assay for transposase-accessible chromatin using sequencing (ATAC-seq) and RNA-seq to uncover chromatin accessibility and gene expression dynamics in PK-15 cells during early exposure to AFB1. We observed that the toxic effects of AFB1 involve signaling pathways such as p53, PI3K-AKT, Hippo, MAPK, TLRs, apoptosis, autophagy, and cancer pathways. Basic leucine zipper (bZIP) transcription factors (TFs), including AP-1, Fos, JunB, and Fra2, play a crucial role in regulating the biological processes involved in AFB1 challenge. Several new TFs, such as BORIS, HNF1b, Atf1, and KNRNPH2, represent potential targets for the toxic mechanism of AFB1. In addition, it is crucial to focus on the concentration of intracellular zinc ions. These findings will contribute to a better understanding of the mechanisms underlying AFB1-induced nephrotoxicity and offer new molecular targets.
Collapse
Affiliation(s)
- Congcong Li
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.
| | - Jiaxin Liu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xuanxuan Zhang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Jiao Wu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Xiangbo Ji
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Key Laboratory of Unconventional Feed Resources Innovative Utilization, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Hui Niu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China.
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China; Henan Pig Bio-breeding Research Institute, Zhengzhou, Henan, China; Henan Livestock and Poultry Genetic Resources Protection Engineering Technology Research Center, Zhengzhou, China.
| |
Collapse
|
34
|
Lo EKW, Idrizi A, Tryggvadottir R, Zhou W, Hou W, Ji H, Cahan P, Feinberg AP. DNA methylation memory of pancreatic acinar-ductal metaplasia transition state altering Kras-downstream PI3K and Rho GTPase signaling in the absence of Kras mutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620414. [PMID: 39553977 PMCID: PMC11565792 DOI: 10.1101/2024.10.26.620414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A critical area of recent cancer research is the emergence of transition states between normal and cancer that exhibit increased cell plasticity which underlies tumor cell heterogeneity. Pancreatic ductal adenocarcinoma (PDAC) can arise from the combination of a transition state termed acinar-to-ductal metaplasia (ADM) and a gain-of-function mutation in the proto-oncogene KRAS . During ADM, digestive enzyme-producing acinar cells acquire a transient ductal epithelium-like phenotype while maintaining their geographical acinar organization. One route of ADM initiation is the overexpression of the Krüppel-like factor 4 gene ( KLF4 ) in the absence of oncogenic driver mutations. Here, we asked to what extent cells acquire and retain an epigenetic memory of the ADM transition state in the absence of oncogene mutation. We identified differential DNA methylation at Kras-downstream PI3K and Rho / Rac / Cdc42 GTPase pathway genes during ADM, as well as a corresponding gene expression increase in these pathways. Importantly, differential methylation persisted after gene expression returned to normal. Caerulein exposure, which induces widespread digestive system changes in addition to ADM, showed similar changes in DNA methylation in ADM cells. Regions of differential methylation were enriched for motifs of KLF and AP-1 family transcription factors, as were those of human pancreatic intraepithelial neoplasia (PanIN) samples, demonstrating the relevance of this epigenetic transition state memory in human carcinogenesis. Finally, single-cell spatial transcriptomics revealed that these ADM transition cells were enriched for PI3K pathway and AP1 family members, linking epigenetic memory to cancer cell plasticity even in the absence of oncogene mutation.
Collapse
|
35
|
Nho KJ, Shin JH, Baek JE, Choi SW. Transcriptome and RNA sequencing analysis of H9C2 cells exposed to diesel particulate matter. Heliyon 2024; 10:e38082. [PMID: 39386855 PMCID: PMC11462235 DOI: 10.1016/j.heliyon.2024.e38082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/19/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Although air pollution has been classified as a risk factor for heart disease, the underlying mechanisms remain nebulous. Therefore, this study investigated the effect of diesel particulate matter (DPM) exposure on cardiomyocytes and identified differentially expressed genes (DEGs) induced by DPM. DPM treatment decreased H9C2 cell viability and increased cytotoxicity. Ten genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 3 h. A total of 273 genes showed statistically significant differential expression following treatment with DPM at 25 and 100 μg/ml for 24 h. Signaling pathway analysis revealed that the DEGs were related to the 'reactive oxygens species,' 'IL-17,' and 'fluid shear stress and atherosclerosis' signaling pathways. Hmox1, Fos, and Fosb genes were significantly upregulated among the selected DEGs. This study identified DPM-induced DEGs and verified the selected genes using qRT-PCR and western blotting. The findings provide insights into the molecular events in cardiomyocytes following exposure to DPM.
Collapse
Affiliation(s)
- Kyoung Jin Nho
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jae Hoon Shin
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Jin Ee Baek
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| | - Sung Won Choi
- Department of Pathogenic Laboratory Research, Institute of Occupation and Environment, Korea Workers' Compensation & Welfare Service, 478, Munemi-ro, Bupyeong-gu, Incheon, 21417, Republic of Korea
| |
Collapse
|
36
|
Bian L, Di Z, Xu M, Tao Y, Yu F, Jiang Q, Yin Y, Zhang L. Transcriptome Analysis Reveals the Early Development in Subcutaneous Adipose Tissue of Laiwu Piglets. Animals (Basel) 2024; 14:2955. [PMID: 39457885 PMCID: PMC11506143 DOI: 10.3390/ani14202955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Adipose tissue plays an important role in pig production efficiency. Studies have shown that postnatal development has a vital impact on adipose tissue; however, the mechanisms behind pig adipose tissue early-life programming remain unknown. In this study, we analyzed the transcriptomes of the subcutaneous adipose tissue (SAT) of 1-day and 21-day old Laiwu piglets. The results showed that the SAT of Laiwu piglets significantly increased from 1-day to 21-day, and transcriptome analysis showed that there were 2352 and 2596 differentially expressed genes (DEGs) between 1-day and 21-day SAT in male and female piglets, respectively. Expression of genes in glycolysis, gluconeogenesis, and glycogen metabolism such as pyruvate kinase M1/2 (PKM), phosphoenolpyruvate carboxy kinase 1 (PCK1) and amylo-alpha-1, 6-glucosidase, 4-alpha-glucanotransferase (AGL) were significantly different between 1-day and 21-day SAT. Genes in lipid uptake, synthesis and lipolysis such as lipase E (LIPE), acetyl-CoA carboxylase alpha (ACACA), Stearoyl-CoA desaturase (SCD), and 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) were also differentially expressed. Functional analysis showed enrichment of DEGs in transcriptional regulation, protein metabolism and cellular signal transduction. The protein-protein interaction (PPI) networks of these DEGs were analyzed and potential hub genes in these pathways were identified, such as transcriptional factors forkhead box O4 (FOXO4), CCAAT enhancer binding protein beta (CEBPB) and CCAAT enhancer binding protein delta (CEBPD), signal kinases BUB1 mitotic checkpoint serine/threonine kinase (BUB1) and cyclin-dependent kinase 1 (CDK1), and proteostasis-related factors ubiquitin conjugating enzyme E2 C (UBE2C) and cathepsin D (CTSD). Moreover, we further analyzed the transcriptomes of SAT between genders and the results showed that there were 54 and 72 DEGs in 1-day and 21-day old SAT, respectively. Genes such as KDM5D and KDM6C showed gender-specific expression in 1-day and 21-day SAT. These results showed the significant changes in SAT between 1-day and 21-day in male and female Laiwu pigs, which would provide information to comprehensively understand the programming of adipose tissue early development and to regulate adipose tissue function.
Collapse
Affiliation(s)
- Liwen Bian
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Zhaoyang Di
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Mengya Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Yuhan Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Fangyuan Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Qingyan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.B.); (Z.D.); (M.X.); (Y.T.); (F.Y.); (Q.J.)
| |
Collapse
|
37
|
Zaman SU, Pagare PP, Huang B, Rilee G, Ma Z, Zhang Y, Li J. Novel PROTAC probes targeting FOSL1 degradation to eliminate head and neck squamous cell carcinoma cancer stem cells. Bioorg Chem 2024; 151:107613. [PMID: 39002513 PMCID: PMC11365795 DOI: 10.1016/j.bioorg.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Previously, we identified that AP-1 transcription factor FOSL1 is required to maintain cancer stem cells (CSCs) in HNSCC, and an AP-1 inhibitor, T-5224, can eliminate HNSCC CSCs. However, its potency is relatively low, and furthermore, whether T-5224 eradicates CSCs through targeting FOSL1 and whether FOSL1 serves as an effective target for eliminating CSCs in HNSCC, require further validation. We first found that T-5224 can bind to FOSL1 directly. As a proof-of-principle, several cereblon (CRBN)-recruiting PROTACs were designed and synthesized using T-5224 as a warhead for more effective of targeting FOSL1. The top compound can potently degrade FOSL1 in HNSCC, thereby effectively eliminating CSCs to suppress HNSCC tumorigenesis, with around 30 to 100-fold improved potency over T-5224. In summary, our study further validates FOSL1 as an effective target for eliminating CSCs in HNSCC and suggests that PROTACs may provide a unique molecular tool for the development of novel molecules for targeting FOSL1.
Collapse
Affiliation(s)
- Shadid U Zaman
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Grace Rilee
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Zhikun Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| | - Jiong Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298-0540, United States; Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.
| |
Collapse
|
38
|
Yang N, Wang T. c-CBL/LCK/c-JUN/ETS1/CD28 axis restrains childhood asthma by suppressing Th2 differentiation. Mol Med 2024; 30:164. [PMID: 39342146 PMCID: PMC11439220 DOI: 10.1186/s10020-024-00872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Asthma is a common immune disease with high morbidity in children. Type 2 inflammation is the center of asthma development, and mainly mediated by a subset of CD4 + T cells, T helper 2 (Th2) cells. Excess Th2 differentiation was generally associated with asthmatic attack. Casitas B-lineage lymphoma (c-CBL) was reported to involved in T cell development and databank showed its decreased expression in CD4 + T cells from peripheral blood of asthmatic children. This study aims to investigate the role of c-CBL in childhood asthma and Th2 differentiation, and explore the underlying mechanism. METHODS We collected peripheral blood samples from clinical childhood asthma cases and healthy controls, and determined c-CBL expression in CD4 + T cells. Asthma was induced in neonatal mice by ovalbumin (OVA) intraperitoneal injection and aerosol inhalation, and c-CBL expression in CD4 + T cells from peripheral blood and spleen was measured. Gain-of-function experiments was performed to confirm the effects of c-CBL on Th2 differentiation in vitro. Finally, c-CBL was delivered into asthmatic mice via lentivirus infection to verify its effects on experimental asthma. RESULTS c-CBL was lowly expressed in CD4 + T cells from asthmatic children than those of healthy controls. Similarly, it was downregulated in CD4 + T cells from peripheral blood and spleen of asthma mice. Overexpression of c-CBL restrained lung pathological injury and type 2 inflammation in experimental asthmatic mice. Gain-of-function experiments demonstrated that c-CBL inhibited Th2 differentiation of CD4 + T cells from healthy children, and mediated the ubiquitination of lymphocyte cell-specific protein-tyrosine kinase (LCK). LCK acted as a kinase to phosphorylate and activate c-JUN, which was predicted to bind promoter sequence of CD28 by bioinformatic analysis. Dual-luciferase reporter assay verified that c-JUN and ETS1 synergically enhanced transcription of CD28, and this transcription activation was aggravated by LCK overexpression. CONCLUSION c-CBL alleviated asthma and suppressed Th2 differentiation by facilitating LCK ubiquitination, interrupting c-JUN activation and CD28 expression in vivo and in vitro. c-CBL/LCK/c-JUN/ETS1/CD28 axis was partially involved in childhood asthma, and may provide novel insights for clinical treatment for asthma.
Collapse
Affiliation(s)
- Nan Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China
| | - Tianyue Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
39
|
Maytum A, Obier N, Cauchy P, Bonifer C. Regulation of developmentally controlled enhancer activity by extrinsic signals in normal and malignant cells: AP-1 at the centre. FRONTIERS IN EPIGENETICS AND EPIGENOMICS 2024; 2:freae.2024.1465958. [PMID: 39506987 PMCID: PMC7616781 DOI: 10.3389/freae.2024.1465958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The ability of cells to respond to external stimuli is one of the characteristics of life as we know it. Multicellular organisms have developed a huge machinery that interprets the cellular environment and instigates an appropriate cellular response by changing gene expression, metabolism, proliferation state and motility. Decades of research have studied the pathways transmitting the various signals within the cell. However, whilst we know most of the players, we know surprisingly little about the mechanistic details of how extrinsic signals are interpreted and integrated within the genome. In this article we revisit the long-standing debate of whether factors regulating cellular growth (cytokines) act in an instructive or permissive fashion on cell fate decisions. We touch upon this topic by highlighting the paradigm of AP-1 as one of the most important signaling-responsive transcription factor family and summarize our work and that of others to explain what is known about cytokine responsive cis-regulatory elements driving differential gene expression. We propose that cytokines and, by extension, multiple types of external signals are the main drivers of cell differentiation and act via inducible transcription factors that transmit signaling processes to the genome and are essential for changing gene expression to drive transitions between gene regulatory networks. Importantly, inducible transcription factors cooperate with cell type specific factors within a pre-existing chromatin landscape and integrate multiple signaling pathways at specific enhancer elements, to both maintain and alter cellular identities. We also propose that signaling processes and signaling responsive transcription factors are at the heart of tumor development.
Collapse
Affiliation(s)
- Alexander Maytum
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
| | - Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre Cauchy
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Blood Cell Development Group, Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052 Australia, Country
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Tiano SML, Landi N, Marano V, Ragucci S, Bianco G, Cacchiarelli D, Swuec P, Silva M, De Cegli R, Sacco F, Di Maro A, Cortese M. Quinoin, type 1 ribosome inactivating protein alters SARS-CoV-2 viral replication organelle restricting viral replication and spread. Int J Biol Macromol 2024:135700. [PMID: 39288862 DOI: 10.1016/j.ijbiomac.2024.135700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
SARS-CoV-2 pandemic clearly demonstrated the lack of preparation against novel and emerging viral diseases. This prompted an enormous effort to identify antiviral to curb viral spread and counteract future pandemics. Ribosome Inactivating Proteins (RIPs) and Ribotoxin-Like Proteins (RL-Ps) are toxin enzymes isolated from edible plants and mushrooms, both able to inactivate protein biosynthesis. In the present study, we combined imaging analyses, transcriptomic and proteomic profiling to deeper investigate the spectrum of antiviral activity of quinoin, type 1 RIP from quinoa seeds. Here, we show that RIPs, but not RL-Ps, acts on a post-entry step and impair SARS-CoV-2 replication, potentially by direct degradation of viral RNA. Interestingly, the inhibitory activity of quinoin was conserved also against other members of the Coronaviridae family suggesting a broader antiviral effect. The integration of mass spectrometry (MS)-based proteomics with transcriptomics, provided a comprehensive picture of the quinoin dependent remodeling of crucial biological processes, highlighting an unexpected impact on lipid metabolism. Thus, direct and indirect mechanisms can contribute to the inhibitory mechanism of quinoin, making RIPs family a promising candidate not only for their antiviral activity, but also as an effective tool to better understand the cellular functions and factors required during SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Sofia Maria Luigia Tiano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy
| | - Nicola Landi
- Institute of Crystallography, National Research Council, Caserta, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valentina Marano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Ragucci
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gennaro Bianco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Paolo Swuec
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Malan Silva
- Cryo-Electron Microscopy Unit, National Facility for Structural Biology, Human Technopole, Milan, Italy
| | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Francesca Sacco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Antimo Di Maro
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, Naples, Italy; Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
41
|
Yang Y, Qin S, Yang M, Wang T, Feng R, Zhang C, Zheng E, Li Q, Xiang P, Ning S, Xu X, Zuo X, Zhang S, Yun X, Zhou X, Wang Y, He L, Shang Y, Sun L, Liu H. Reconstitution of the Multiple Myeloma Microenvironment Following Lymphodepletion with BCMA CAR-T Therapy. Clin Cancer Res 2024; 30:4201-4214. [PMID: 39024031 PMCID: PMC11393544 DOI: 10.1158/1078-0432.ccr-24-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The purpose of this study was to investigate the remodeling of the multiple myeloma microenvironment after B-cell maturation antigen (BCMA)-targeted chimeric antigen receptor T (CAR-T) cell therapy. EXPERIMENTAL DESIGN We performed single-cell RNA sequencing on paired bone marrow specimens (n = 14) from seven patients with multiple myeloma before (i.e., baseline, "day -4") and after (i.e., "day 28") lymphodepleted BCMA CAR-T cell therapy. RESULTS Our analysis revealed heterogeneity in gene expression profiles among multiple myeloma cells, even those harboring the same cytogenetic abnormalities. The best overall responses of patients over the 15-month follow-up are positively correlated with the abundance and targeted cytotoxic activity of CD8+ effector CAR-T cells on day 28 after CAR-T cell infusion. Additionally, favorable responses are associated with attenuated immunosuppression mediated by regulatory T cells, enhanced CD8+ effector T-cell cytotoxic activity, and elevated type 1 conventional dendritic cell (DC) antigen presentation ability. DC re-clustering inferred intramedullary-originated type 3 conventional DCs with extramedullary migration. Cell-cell communication network analysis indicated that BCMA CAR-T therapy mitigates BAFF/GALECTIN/MK pathway-mediated immunosuppression and activates MIF pathway-mediated anti-multiple myeloma immunity. CONCLUSIONS Our study sheds light on multiple myeloma microenvironment dynamics after BCMA CAR-T therapy, offering clues for predicting treatment responsivity.
Collapse
Affiliation(s)
- Yazi Yang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Sen Qin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mengyu Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Ting Wang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Enrun Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Qinghua Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Pengyu Xiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Shangyong Ning
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodong Xu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Zuo
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuai Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoya Yun
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuehong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University International Cancer Institute, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Wu B, Lan X, Gao M, Wei W, Wang Y, Yang Y, Yu Z, Huang M, Wu Q. Elucidation of the molecular mechanism of type 2 diabetes mellitus affecting the progression of nonalcoholic steatohepatitis using bioinformatics and network pharmacology: A review. Medicine (Baltimore) 2024; 103:e39731. [PMID: 39287256 PMCID: PMC11404948 DOI: 10.1097/md.0000000000039731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Increasing evidence suggests that patients with diabetes are at increased risk of developing nonalcoholic steatohepatitis (NASH), but the underlying mechanisms that affect the progression of NASH remain unclear. In this study, we used bioinformatics and network pharmacology methods to explore the differentially expressed genes of NASH and the related genes of type 2 diabetes mellitus, and a total of 46 common targets were obtained. Gene ontology showed that the common targets were mainly involved in biological processes such as glucocorticoid, hormone, and bacterium responses. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis signal pathways were mainly in colorectal cancer, amphetamine addition, the peroxisome proliferator-activated receptor signaling pathway, and the toll-like receptor signaling pathway. The protein-protein interaction network identified 8 hub genes, and the co-expression network was analyzed to obtain 7 related functions and mutual proportions of hub genes. A total of 120 transcription factors were predicted for hub genes. Hub genes were closely related to immune cells, including neutropils and eosinophils. In addition, we identified 15 potential candidate drugs based on hub genes that are promising for the treatment of NASH. Type 2 diabetes mellitus can affect the progression of NASH by changing hormone levels and inflammatory responses through multiple targets and signaling pathways. Eight hub genes are expected to be potential targets for subsequent treatment.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaohong Lan
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Gao
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Wei
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuekun Wang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Yang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhiyang Yu
- The fourth was assigned to the outpatient department, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Min Huang
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qinyan Wu
- Department of Pharmacy, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Cantarella S, Vezzoli M, Carnevali D, Morselli M, Zemke N, Montanini B, Daussy CF, Wodrich H, Teichmann M, Pellegrini M, Berk A, Dieci G, Ferrari R. Adenovirus small E1A directs activation of Alu transcription at YAP/TEAD- and AP-1-bound enhancers through interactions with the EP400 chromatin remodeler. Nucleic Acids Res 2024; 52:9481-9500. [PMID: 39011896 PMCID: PMC11381368 DOI: 10.1093/nar/gkae615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Alu retrotransposons, which form the largest family of mobile DNA elements in the human genome, have recently come to attention as a potential source of regulatory novelties, most notably by participating in enhancer function. Even though Alu transcription by RNA polymerase III is subjected to tight epigenetic silencing, their expression has long been known to increase in response to various types of stress, including viral infection. Here we show that, in primary human fibroblasts, adenovirus small e1a triggered derepression of hundreds of individual Alus by promoting TFIIIB recruitment by Alu-bound TFIIIC. Epigenome profiling revealed an e1a-induced decrease of H3K27 acetylation and increase of H3K4 monomethylation at derepressed Alus, making them resemble poised enhancers. The enhancer nature of e1a-targeted Alus was confirmed by the enrichment, in their upstream regions, of the EP300/CBP acetyltransferase, EP400 chromatin remodeler and YAP1 and FOS transcription factors. The physical interaction of e1a with EP400 was critical for Alu derepression, which was abrogated upon EP400 ablation. Our data suggest that e1a targets a subset of enhancer Alus whose transcriptional activation, which requires EP400 and is mediated by the e1a-EP400 interaction, may participate in the manipulation of enhancer activity by adenoviruses.
Collapse
Affiliation(s)
- Simona Cantarella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Vezzoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Davide Carnevali
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Marco Morselli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Nathan R Zemke
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Barbara Montanini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Coralie F Daussy
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Harald Wodrich
- Bordeaux University, CNRS UMR 5234, Fundamental Microbiology and Pathogenicity, Bordeaux, France
| | - Martin Teichmann
- Bordeaux University, Inserm U 1312, Bordeaux Institute of Oncology, 33076 Bordeaux, France
| | - Matteo Pellegrini
- Department of Molecular Cellular and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Arnold J Berk
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
44
|
Xiong Q, Wang H, Feng J, Song L, Wu G, Xu Y. Lack of Nr2e1 expression in hepatocytes impaired cell survival and aggravated palmitate-induced oxidative stress. Adv Med Sci 2024; 69:320-330. [PMID: 38901547 DOI: 10.1016/j.advms.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Nuclear receptor subfamily 2 group E member 1 (Nr2e1) has been regarded as an essential regulator in neural stem cells. However, its function is still not clear in hepatocytes. This study aimed to clarify the effects of Nr2e1-deficiency in hepatocytes in lipotoxic conditions. MATERIALS/METHODS Nr2e1-knockdown AML12 cells were generated by lentiviral vector transfection. The influences of Nr2e1-deficiency on hepatocyte survival were determined by cell cycle progression and cell apoptosis rate using flow cytometry. Real-time quantitative PCR and Western blot were used to examine the genes and protein expression related to apoptosis, lipid metabolism, and oxidative stress. Meanwhile, RNA sequencing was adopted in liver samples from Nr2e1-knockout (Nr2e1-KO) mice. RESULTS Nr2e1 expression was observed with a significant decrease in AML12 cells after palmitic acid-stimulation. Knockdown of Nr2e1 in AML12 cells resulted in increased sensitivity to lipotoxicity, evidenced by a partial G0/G1 cell-cycle arrest and higher rates of cell apoptosis. Moreover, Nr2e1-knockdown AML12 cells presented increased gene expressions relative to lipid synthesis but decreased levels of β-oxidation related genes. Lack of Nr2e1 augmented palmitate-induced oxidative stress in hepatocytes. In vivo, differential genes in Nr2e1-KO mice liver were enriched in pathways associated with liver regeneration and cell proliferation. CONCLUSIONS This study indicated that hepatocytes lacking Nr2e1 were more susceptible to lipotoxic-mediated damage. Nr2e1 may serve as a potential target for the development of novel therapies for lipotoxicity-induced liver injury.
Collapse
Affiliation(s)
- Qing Xiong
- Department of Endocrinology, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huawei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jieyuan Feng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Linyang Song
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guijun Wu
- Clinical Teaching and Research Sections, School of Nursing, Dalian University, Dalian, Liaoning, China; Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
45
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03392-1. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
46
|
Huang M, Wang X, Zhang M, Liu Y, Chen YG. METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:14. [PMID: 39093347 PMCID: PMC11297012 DOI: 10.1186/s13619-024-00197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m6A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m6A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.
Collapse
Affiliation(s)
- Meimei Huang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Guangzhou National Laboratory, Guangzhou, 510700, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mengxian Zhang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Liu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
- Guangzhou National Laboratory, Guangzhou, 510700, China.
| |
Collapse
|
47
|
Altieri B, Secener AK, Sai S, Fischer C, Sbiera S, Arampatzi P, Kircher S, Herterich S, Landwehr L, Vitcetz SN, Braeuning C, Fassnacht M, Ronchi CL, Sauer S. Single-nucleus and spatial transcriptome reveal adrenal homeostasis in normal and tumoural adrenal glands. Clin Transl Med 2024; 14:e1798. [PMID: 39167619 PMCID: PMC11338279 DOI: 10.1002/ctm2.1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
The human adrenal gland is a complex endocrine tissue. Studies on adrenal renewal have been limited to animal models or human foetuses. Enhancing our understanding of adult human adrenal homeostasis is crucial for gaining insights into the pathogenesis of adrenal diseases, such as adrenocortical tumours. Here, we present a comprehensive cellular genomics analysis of the adult human normal adrenal gland, combining single-nuclei RNA sequencing and spatial transcriptome data to reconstruct adrenal gland homeostasis. As expected, we identified primary cells of the various zones of the adrenal cortex and medulla, but we also uncovered additional cell types. They constitute the adrenal microenvironment, including immune cells, mostly composed of a large population of M2 macrophages, and new cell populations, including different subpopulations of vascular-endothelial cells and cortical-neuroendocrine cells. Utilizing spatial transcriptome and pseudotime trajectory analysis, we support evidence of the centripetal dynamics of adrenocortical cell maintenance and the essential role played by Wnt/β-catenin, sonic hedgehog, and fibroblast growth factor pathways in the adult adrenocortical homeostasis. Furthermore, we compared single-nuclei transcriptional profiles obtained from six healthy adrenal glands and twelve adrenocortical adenomas. This analysis unveiled a notable heterogeneity in cell populations within the adenoma samples. In addition, we identified six distinct adenoma-specific clusters, each with varying distributions based on steroid profiles and tumour mutational status. Overall, our results provide novel insights into adrenal homeostasis and molecular mechanisms potentially underlying early adrenocortical tumorigenesis and/or autonomous steroid secretion. Our cell atlas represents a powerful resource to investigate other adrenal-related pathologies.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and DiabetesDepartment of Internal Medicine IUniversity HospitalUniversity of WürzburgWürzburgGermany
| | - A. Kerim Secener
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of BiologyChemistry and PharmacyInstitute of BiochemistryFree University BerlinBerlinGermany
| | - Somesh Sai
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Department of BiologyChemistry and PharmacyInstitute of BiochemistryFree University BerlinBerlinGermany
| | - Cornelius Fischer
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | - Silviu Sbiera
- Division of Endocrinology and DiabetesDepartment of Internal Medicine IUniversity HospitalUniversity of WürzburgWürzburgGermany
| | | | - Stefan Kircher
- Institute of PathologyUniversity of WürzburgWürzburgGermany
| | | | - Laura‐Sophie Landwehr
- Division of Endocrinology and DiabetesDepartment of Internal Medicine IUniversity HospitalUniversity of WürzburgWürzburgGermany
| | - Sarah N. Vitcetz
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
| | | | - Martin Fassnacht
- Division of Endocrinology and DiabetesDepartment of Internal Medicine IUniversity HospitalUniversity of WürzburgWürzburgGermany
- Central Laboratory University Hospital WürzburgWürzburgGermany
| | - Cristina L. Ronchi
- Division of Endocrinology and DiabetesDepartment of Internal Medicine IUniversity HospitalUniversity of WürzburgWürzburgGermany
- Institute of Metabolism and System ResearchUniversity of BirminghamEdgabston, BirminghamUK
| | - Sascha Sauer
- Max Delbrück Center for Molecular MedicineBerlinGermany
- Berlin Institute of HealthBerlinGermany
- Core Unit SysMedUniversity of WürzburgWürzburgGermany
| |
Collapse
|
48
|
Duan S, Yang Q, Wu F, Li Z, Hong W, Cao M, Chen X, Zhong X, Zhou Q, Zhao H. Maternal methylosome protein 50 is essential for embryonic development in medaka Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:798-810. [PMID: 38654580 DOI: 10.1002/jez.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Methylosome protein 50 (Mep50) is a protein that is rich in WD40 domains, which mediate and regulate a variety of physiological processes in organisms. Previous studies indicated the necessity of Mep50 in embryogenesis in mice Mus musculus and fish. This study aimed to further understand the roles of maternal Mep50 in early embryogenesis using medaka Oryzias latipes as a model. Without maternal Mep50, medaka zygotes developed to the pre-early gastrula stage but died later. The transcriptome of the embryos at the pre-early gastrula stage was analyzed by RNA sequencing. The results indicated that 1572 genes were significantly upregulated and 741 genes were significantly downregulated in the embryos without maternal Mep50. In the differentially expressed genes (DEGs), the DNA-binding proteins, such as histones and members of the small chromosome maintenance complex, were enriched. The major interfered regulatory networks in the embryos losing maternal Mep50 included DNA replication and cell cycle regulation, AP-1 transcription factors such as Jun and Fos, the Wnt pathway, RNA processing, and the extracellular matrix. Quantitative RT-PCR verified 16 DEGs, including prmt5, H2A, cpsf, jun, mcm4, myc, p21, ccne2, cdk6, and col1, among others. It was speculated that the absence of maternal Mep50 could potentially lead to errors in DNA replication and cell cycle arrest, ultimately resulting in cell apoptosis. This eventually resulted in the failure of gastrulation and embryonic death. The results indicate the importance of maternal Mep50 in early embryonic development, particularly in medaka fish.
Collapse
Affiliation(s)
- Shi Duan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Fan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenyu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wentao Hong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueping Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Qingchun Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Haobin Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
49
|
Tubita A, Menconi A, Lombardi Z, Tusa I, Esparís-Ogando A, Pandiella A, Gamberi T, Stecca B, Rovida E. Latent-Transforming Growth Factor β-Binding Protein 1/Transforming Growth Factor β1 Complex Drives Antitumoral Effects upon ERK5 Targeting in Melanoma. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1581-1591. [PMID: 38705382 DOI: 10.1016/j.ajpath.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. While available treatments have improved survival, long-term benefits are still unsatisfactory. The mitogen-activated protein kinase extracellular signal-regulated kinase 5 (ERK5) promotes melanoma growth, and ERK5 inhibition determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be up-regulated in A375 and SK-Mel-5 BRAF V600E melanoma cells after ERK5 inhibition. In keeping with a key role of LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased in lysates and conditioned media of ERK5-knockdown (KD) cells, and were reduced upon LTBP1 KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD melanoma cells reduced cell proliferation and invasiveness, and TGF-β1-neutralizing antibodies impaired these effects. In silico data sets revealed that higher expression levels of both LTBP1 and TGF-β1 mRNA were associated with better overall survival of melanoma patients. Increased LTBP1 or TGF-β1 expression played a beneficial role in patients treated with anti-PD1 immunotherapy, making a possible immunosuppressive role of LTBP1/TGF-β1 unlikely upon ERK5 inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing evidence of an ERK5-dependent tumor-suppressive role of TGF-β in melanoma.
Collapse
Affiliation(s)
- Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Zoe Lombardi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC)-Consejo Superior de Investigaciones Científicas (CSIC), Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Salamanca, Spain
| | - Tania Gamberi
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Barbara Stecca
- Core Research Laboratory, Institute for Cancer Research and Prevention, Florence, Italy
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
50
|
Fu X, Guo X, Xu H, Li Y, Jin B, Zhang X, Shu C, Fan Y, Yu Y, Tian Y, Tian J, Shu J. Varied cellular abnormalities in thin vs. normal endometrium in recurrent implantation failure by single-cell transcriptomics. Reprod Biol Endocrinol 2024; 22:90. [PMID: 39085925 PMCID: PMC11293141 DOI: 10.1186/s12958-024-01263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Reduced endometrium thickness and receptivity are two important reasons for recurrent implantation failure (RIF). In order to elucidate differences between these two types of endometrial defects in terms of molecular signatures, cellular interactions, and structural changes, we systematically investigated the single-cell transcriptomic atlas across three distinct groups: RIF patients with thin endometrium (≤ 6 mm, TE-RIF), RIF patients with normal endometrium thickness (≥ 8 mm, NE-RIF), and fertile individuals (Control). METHODS The late proliferative and mid-secretory phases of the endometrium were collected from three individuals in the TE-RIF group, two in the NE-RIF group, and three in the control group. The study employed a combination of advanced techniques. Single-cell RNA sequencing (scRNA-seq) was utilized to capture comprehensive transcriptomic profiles at the single-cell level, providing insights into gene expression patterns within specific cell types. Scanning and transmission electron microscopy were employed to visualize ultrastructural details of the endometrial tissue, while hematoxylin and eosin staining facilitated the examination of tissue morphology and cellular composition. Immunohistochemistry techniques were also applied to detect and localize specific protein markers relevant to endometrial receptivity and function. RESULTS Through comparative analysis of differentially expressed genes among these groups and KEGG pathway analysis, the TE-RIF group exhibited notable dysregulations in the TNF and MAPK signaling pathways, which are pivotal in stromal cell growth and endometrial receptivity. Conversely, in the NE-RIF group, disturbances in energy metabolism emerged as a primary contributor to reduced endometrial receptivity. Additionally, using CellPhoneDB for intercellular communication analysis revealed aberrant interactions between epithelial and stromal cells, impacting endometrial receptivity specifically in the TE-RIF group. CONCLUSION Overall, our findings provide valuable insights into the heterogeneous molecular pathways and cellular interactions associated with RIF in different endometrial conditions. These insights may pave the way for targeted therapeutic interventions aimed at improving endometrial receptivity and enhancing reproductive outcomes in patients undergoing ART. Further research is warranted to validate these findings and translate them into clinical applications for personalized fertility treatments. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Xiaoying Fu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoyan Guo
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Xu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yini Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bihui Jin
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xirong Zhang
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chongyi Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhang Fan
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yiqi Yu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuqing Tian
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiao Tian
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
| |
Collapse
|