1
|
Moran HR, Nyarko OO, O’Rourke R, Ching RCK, Riemslagh FW, Peña B, Burger A, Sucharov CC, Mosimann C. The pericardium forms as a distinct structure during heart formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613484. [PMID: 39345600 PMCID: PMC11429720 DOI: 10.1101/2024.09.18.613484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The heart integrates diverse cell lineages into a functional unit, including the pericardium, a mesothelial sac that supports heart movement, homeostasis, and immune responses. However, despite its critical roles, the developmental origins of the pericardium remain uncertain due to disparate models. Here, using live imaging, lineage tracking, and single-cell transcriptomics in zebrafish, we find the pericardium forms within the lateral plate mesoderm from dedicated anterior mesothelial progenitors and distinct from the classic heart field. Imaging of transgenic reporters in zebrafish documents lateral plate mesoderm cells that emerge lateral of the classic heart field and among a continuous mesothelial progenitor field. Single-cell transcriptomics and trajectories of hand2-expressing lateral plate mesoderm reveal distinct populations of mesothelial and cardiac precursors, including pericardial precursors that are distinct from the cardiomyocyte lineage. The mesothelial gene expression signature is conserved in mammals and carries over to post-natal development. Light sheet-based live-imaging and machine learning-supported cell tracking documents that during heart tube formation, pericardial precursors that reside at the anterior edge of the heart field migrate anteriorly and medially before fusing, enclosing the embryonic heart to form a single pericardial cavity. Pericardium formation proceeds even upon genetic disruption of heart tube formation, uncoupling the two structures. Canonical Wnt/β-catenin signaling modulates pericardial cell number, resulting in a stretched pericardial epithelium with reduced cell number upon canonical Wnt inhibition. We connect the pathological expression of secreted Wnt antagonists of the SFRP family found in pediatric dilated cardiomyopathy to increased pericardial stiffness: sFRP1 in the presence of increased catecholamines causes cardiomyocyte stiffness in neonatal rats as measured by atomic force microscopy. Altogether, our data integrate pericardium formation as an independent process into heart morphogenesis and connect disrupted pericardial tissue properties such as pericardial stiffness to pediatric cardiomyopathies.
Collapse
Affiliation(s)
- Hannah R. Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Obed O. Nyarko
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rebecca O’Rourke
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Ryenne-Christine K. Ching
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Frederike W. Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Brisa Peña
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Cardiovascular Institute, Division of Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Bioengineering Department, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
2
|
Yao S, Zhu Y, He F, Yuan M, Jiang R, Zhang H, Fu Y, Wei K. JAK activity regulates mesoderm cell fate by controlling MESP1 expression. Eur J Cell Biol 2024; 103:151452. [PMID: 39182311 DOI: 10.1016/j.ejcb.2024.151452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cardiac development requires precise gene expression programs at each developmental stage guided by multiple signaling pathways and transcription factors (TFs). MESP1 is transiently expressed in mesoderm, and is essential for subsequent cardiac development, while the precise mechanism regulating its own transcription and mesoderm cell fate is not fully understood. Therefore, we developed a high content screen assay to identify regulators of MESP1 expression in mesodermal cells differentiated from human pluripotent stem cells (hPSCs). The screen identified CYT387, a JAK1/JAK2 kinase inhibitor, as a potent activator of MESP1 expression, which was also found to promote cardiomyocyte differentiation in vitro. Mechanistic studies found that JAK inhibition promotes MESP1 expression by reducing cytoplasmic calcium concentration and subsequently activating canonical WNT signaling. Our study identified a role of JAK signaling in early mesodermal cells, and sheds light on the connection between the JAK-STAT pathway and transcriptional regulation of MESP1, which expands our understanding of mesoderm and cardiac development.
Collapse
Affiliation(s)
- Su Yao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fenglian He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Yuan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Jiang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongjie Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanbin Fu
- Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Abstract
The heart is the first functional organ established during embryogenesis. Investigating heart development and disease is a fascinating and crucial field of research because cardiovascular diseases remain the leading cause of morbidity and mortality worldwide. Therefore, there is great interest in establishing in vitro models for recapitulating both physiological and pathological aspects of human heart development, tissue function and malfunction. Derived from pluripotent stem cells, a large variety of three-dimensional cardiac in vitro models have been introduced in recent years. In this At a Glance article, we discuss the available methods to generate such models, grouped according to the following classification: cardiac organoids, cardiac microtissues and engineered cardiac tissues. For these models, we provide a systematic overview of their applications for disease modeling and therapeutic development, as well as their advantages and limitations to assist scientists in choosing the most suitable model for their research purpose.
Collapse
Affiliation(s)
- Lika Drakhlis
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover 30625, Germany
- Authors for correspondence (; )
| |
Collapse
|
4
|
Wnt signaling in stem cells during development and cell lineage specification. Curr Top Dev Biol 2023; 153:121-143. [PMID: 36967192 DOI: 10.1016/bs.ctdb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
During embryo development, cell proliferation, cell fate specification and tissue patterning are coordinated and tightly regulated by a handful of evolutionarily conserved signaling pathways activated by secreted growth factor families including fibroblast growth factor (FGF), Nodal/bone morphogenetic protein (BMP), Hedgehog and Wnt. The spatial and temporal activation of these signaling pathways elicit context-specific cellular responses that ultimately shape the different tissues of the embryo. Extensive efforts have been dedicated to identifying the molecular mechanisms underlying these signaling pathways during embryo development, adult tissue homeostasis and regeneration. In this review, we first describe the role of the Wnt/β-catenin signaling pathway during early embryo development, axis specification and cell differentiation as a prelude to highlight how this knowledge is being leveraged to manipulate Wnt/β-catenin signaling activity with small molecules and biologics for the directed differentiation of pluripotent stem cells into various cell lineages that are physiologically relevant for stem cell therapy and regenerative medicine.
Collapse
|
5
|
Haridhasapavalan KK, Borthakur A, Thummer RP. Direct Cardiac Reprogramming: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:1-18. [PMID: 36662416 DOI: 10.1007/5584_2022_760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in cellular reprogramming articulated the path for direct cardiac lineage conversion, bypassing the pluripotent state. Direct cardiac reprogramming attracts major attention because of the low or nil regenerative ability of cardiomyocytes, resulting in permanent cell loss in various heart diseases. In the field of cardiology, balancing this loss of cardiomyocytes was highly challenging, even in the modern medical world. Soon after the discovery of cell reprogramming, direct cardiac reprogramming also became a promising alternative for heart regeneration. This review mainly focused on the various direct cardiac reprogramming approaches (integrative and non-integrative) for the derivation of induced autologous cardiomyocytes. It also explains the advancements in cardiac reprogramming over the decade with the pros and cons of each approach. Further, the review highlights the importance of clinically relevant (non-integrative) approaches and their challenges for the prospective applications for personalized medicine. Apart from direct cardiac reprogramming, it also discusses the other strategies for generating cardiomyocytes from different sources. The understanding of these strategies could pave the way for the efficient generation of integration-free functional autologous cardiomyocytes through direct cardiac reprogramming for various biomedical applications.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Atreyee Borthakur
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
6
|
Liang Q, Wang S, Zhou X, Li Y, Xing S, Sha Y, Yang F, Huang W, Liu N, Li Z, Chen Y, Xu Y, Zhu P, Lan F, Sun N. Essential role of MESP1-RING1A complex in cardiac differentiation. Dev Cell 2022; 57:2533-2549.e7. [DOI: 10.1016/j.devcel.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
|
7
|
The negative regulation of gene expression by microRNAs as key driver of inducers and repressors of cardiomyocyte differentiation. Clin Sci (Lond) 2022; 136:1179-1203. [PMID: 35979890 PMCID: PMC9411751 DOI: 10.1042/cs20220391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Cardiac muscle damage-induced loss of cardiomyocytes (CMs) and dysfunction of the remaining ones leads to heart failure, which nowadays is the number one killer worldwide. Therapies fostering effective cardiac regeneration are the holy grail of cardiovascular research to stop the heart failure epidemic. The main goal of most myocardial regeneration protocols is the generation of new functional CMs through the differentiation of endogenous or exogenous cardiomyogenic cells. Understanding the cellular and molecular basis of cardiomyocyte commitment, specification, differentiation and maturation is needed to devise innovative approaches to replace the CMs lost after injury in the adult heart. The transcriptional regulation of CM differentiation is a highly conserved process that require sequential activation and/or repression of different genetic programs. Therefore, CM differentiation and specification have been depicted as a step-wise specific chemical and mechanical stimuli inducing complete myogenic commitment and cell-cycle exit. Yet, the demonstration that some microRNAs are sufficient to direct ESC differentiation into CMs and that four specific miRNAs reprogram fibroblasts into CMs show that CM differentiation must also involve negative regulatory instructions. Here, we review the mechanisms of CM differentiation during development and from regenerative stem cells with a focus on the involvement of microRNAs in the process, putting in perspective their negative gene regulation as a main modifier of effective CM regeneration in the adult heart.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Cardiovascular diseases are the leading cause of death worldwide, largely due to the limited regenerative capacity of the adult human heart. In contrast, teleost zebrafish hearts possess natural regeneration capacity by proliferation of pre-existing cardiomyocytes after injury. Hearts of mice can regenerate if injured in a few days after birth, which coincides with the transient capacity for cardiomyocyte proliferation. This review tends to elaborate the roles and mechanisms of Wnt/β-catenin signaling in heart development and regeneration in mammals and non-mammalian vertebrates. RECENT FINDINGS Studies in zebrafish, mice, and human embryonic stem cells demonstrate the binary effect for Wnt/β-catenin signaling during heart development. Both Wnts and Wnt antagonists are induced in multiple cell types during cardiac development and injury repair. In this review, we summarize composites of the Wnt signaling pathway and their different action routes, followed by the discussion of their involvements in cardiac specification, proliferation, and patterning. We provide overviews about canonical and non-canonical Wnt activity during heart homeostasis, remodeling, and regeneration. Wnt/β-catenin signaling exhibits biphasic and antagonistic effects on cardiac specification and differentiation depending on the stage of embryogenesis. Inhibition of Wnt signaling is beneficial for cardiac wound healing and functional recovery after injury. Understanding of the roles and mechanisms of Wnt signaling pathway in injured animal hearts will contribute to the development of potential therapeutics for human diseased hearts.
Collapse
Affiliation(s)
- Dongliang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510100, Guangdong, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
9
|
Mesp1 controls the chromatin and enhancer landscapes essential for spatiotemporal patterning of early cardiovascular progenitors. Nat Cell Biol 2022; 24:1114-1128. [PMID: 35817961 PMCID: PMC7613098 DOI: 10.1038/s41556-022-00947-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2022] [Indexed: 01/13/2023]
Abstract
The mammalian heart arises from various populations of Mesp1-expressing cardiovascular progenitors (CPs) that are specified during the early stages of gastrulation. Mesp1 is a transcription factor that acts as a master regulator of CP specification and differentiation. However, how Mesp1 regulates the chromatin landscape of nascent mesodermal cells to define the temporal and spatial patterning of the distinct populations of CPs remains unknown. Here, by combining ChIP-seq, RNA-seq and ATAC-seq during mouse pluripotent stem cell differentiation, we defined the dynamic remodelling of the chromatin landscape mediated by Mesp1. We identified different enhancers that are temporally regulated to erase the pluripotent state and specify the pools of CPs that mediate heart development. We identified Zic2 and Zic3 as essential cofactors that act with Mesp1 to regulate its transcription-factor activity at key mesodermal enhancers, thereby regulating the chromatin remodelling and gene expression associated with the specification of the different populations of CPs in vivo. Our study identifies the dynamics of the chromatin landscape and enhancer remodelling associated with temporal patterning of early mesodermal cells into the distinct populations of CPs that mediate heart development.
Collapse
|
10
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
11
|
Abstract
A definite identification of epidermal stem cells is not known and the mechanism of epidermal differentiation is not fully understood. Toward both of these quests, considerable information is available from the research on lineage tracing and clonal growth analysis in the basal layer of the epidermis, on the hair follicle and the interfollicular epidermal stem cells, and on Wnt signaling along with its role in the developmental patterning and cell differentiation. In this paper, literature on the aforementioned research has been collated and analyzed. In addition, models of the basal layer cellular composition and the epidermal differentiation have been presented. Graphical Abstract.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
12
|
Stutt N, Song M, Wilson MD, Scott IC. Cardiac specification during gastrulation - The Yellow Brick Road leading to Tinman. Semin Cell Dev Biol 2021; 127:46-58. [PMID: 34865988 DOI: 10.1016/j.semcdb.2021.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
The question of how the heart develops, and the genetic networks governing this process have become intense areas of research over the past several decades. This research is propelled by classical developmental studies and potential clinical applications to understand and treat congenital conditions in which cardiac development is disrupted. Discovery of the tinman gene in Drosophila, and examination of its vertebrate homolog Nkx2.5, along with other core cardiac transcription factors has revealed how cardiac progenitor differentiation and maturation drives heart development. Careful observation of cardiac morphogenesis along with lineage tracing approaches indicated that cardiac progenitors can be divided into two broad classes of cells, namely the first and second heart fields, that contribute to the heart in two distinct waves of differentiation. Ample evidence suggests that the fate of individual cardiac progenitors is restricted to distinct cardiac structures quite early in development, well before the expression of canonical cardiac progenitor markers like Nkx2.5. Here we review the initial specification of cardiac progenitors, discuss evidence for the early patterning of cardiac progenitors during gastrulation, and consider how early gene expression programs and epigenetic patterns can direct their development. A complete understanding of when and how the developmental potential of cardiac progenitors is determined, and their potential plasticity, is of great interest developmentally and also has important implications for both the study of congenital heart disease and therapeutic approaches based on cardiac stem cell programming.
Collapse
Affiliation(s)
- Nathan Stutt
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Michael D Wilson
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
| | - Ian C Scott
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada.
| |
Collapse
|
13
|
Ajima R, Sakakibara Y, Sakurai-Yamatani N, Muraoka M, Saga Y. Formal proof of the requirement of MESP1 and MESP2 in mesoderm specification and their transcriptional control via specific enhancers in mice. Development 2021; 148:272544. [PMID: 34679163 DOI: 10.1242/dev.194613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/20/2021] [Indexed: 12/26/2022]
Abstract
MESP1 and MESP2 are transcriptional factors involved in mesoderm specification, somite boundary formation and somite polarity regulation. However, Mesp quadruple mutant zebrafish displayed only abnormal somite polarity without mesoderm specification defects. In order to re-evaluate Mesp1/Mesp2 mutants in mice, Mesp1 and Mesp2 single knockouts (KOs), and a Mesp1/Mesp2 double KO were established using genome-editing techniques without introducing selection markers commonly used before. The Mesp1/Mesp2 double KO embryos exhibited markedly severe mesoderm formation defects that were similar to the previously reported Mesp1/Mesp2 double KO embryos, indicating species differences in the function of MESP family proteins. However, the Mesp1 KO did not display any phenotype, including heart formation defects, which have been reported previously. We noted upregulation of Mesp2 in the Mesp1 KO embryos, suggesting that MESP2 rescues the loss of MESP1 in mesoderm specification. We also found that Mesp1 and Mesp2 expression in the early mesoderm is regulated by the cooperation of two independent enhancers containing T-box- and TCF/Lef-binding sites. Deletion of both enhancers caused the downregulation of both genes, resulting in heart formation defects. This study suggests dose-dependent roles of MESP1 and MESP2 in early mesoderm formation.
Collapse
Affiliation(s)
- Rieko Ajima
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yuko Sakakibara
- Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Noriko Sakurai-Yamatani
- Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Division for Development of Genetic-engineered Mouse Resource, Research Organization of Information and Systems (ROIS), Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
14
|
Ivanovitch K, Soro-Barrio P, Chakravarty P, Jones RA, Bell DM, Mousavy Gharavy SN, Stamataki D, Delile J, Smith JC, Briscoe J. Ventricular, atrial, and outflow tract heart progenitors arise from spatially and molecularly distinct regions of the primitive streak. PLoS Biol 2021; 19:e3001200. [PMID: 33999917 PMCID: PMC8158918 DOI: 10.1371/journal.pbio.3001200] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 05/27/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
The heart develops from 2 sources of mesoderm progenitors, the first and second heart field (FHF and SHF). Using a single-cell transcriptomic assay combined with genetic lineage tracing and live imaging, we find the FHF and SHF are subdivided into distinct pools of progenitors in gastrulating mouse embryos at earlier stages than previously thought. Each subpopulation has a distinct origin in the primitive streak. The first progenitors to leave the primitive streak contribute to the left ventricle, shortly after right ventricle progenitor emigrate, followed by the outflow tract and atrial progenitors. Moreover, a subset of atrial progenitors are gradually incorporated in posterior locations of the FHF. Although cells allocated to the outflow tract and atrium leave the primitive streak at a similar stage, they arise from different regions. Outflow tract cells originate from distal locations in the primitive streak while atrial progenitors are positioned more proximally. Moreover, single-cell RNA sequencing demonstrates that the primitive streak cells contributing to the ventricles have a distinct molecular signature from those forming the outflow tract and atrium. We conclude that cardiac progenitors are prepatterned within the primitive streak and this prefigures their allocation to distinct anatomical structures of the heart. Together, our data provide a new molecular and spatial map of mammalian cardiac progenitors that will support future studies of heart development, function, and disease.
Collapse
|
15
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
16
|
Zhu D, Cheng K. Cardiac Cell Therapy for Heart Repair: Should the Cells Be Left Out? Cells 2021; 10:641. [PMID: 33805763 PMCID: PMC7999733 DOI: 10.3390/cells10030641] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is still the leading cause of death worldwide. Coronary artery occlusion, or myocardial infarction (MI) causes massive loss of cardiomyocytes. The ischemia area is eventually replaced by a fibrotic scar. From the mechanical dysfunctions of the scar in electronic transduction, contraction and compliance, pathological cardiac dilation and heart failure develops. Once end-stage heart failure occurs, the only option is to perform heart transplantation. The sequential changes are termed cardiac remodeling, and are due to the lack of endogenous regenerative actions in the adult human heart. Regenerative medicine and biomedical engineering strategies have been pursued to repair the damaged heart and to restore normal cardiac function. Such strategies include both cellular and acellular products, in combination with biomaterials. In addition, substantial progress has been made to elucidate the molecular and cellular mechanisms underlying heart repair and regeneration. In this review, we summarize and discuss current therapeutic approaches for cardiac repair and provide a perspective on novel strategies that holding potential opportunities for future research and clinical translation.
Collapse
Affiliation(s)
- Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA;
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
17
|
Haridhasapavalan KK, Ranjan SH, Bhattacharyya S, Thummer RP. Soluble expression, purification, and secondary structure determination of human MESP1 transcription factor. Appl Microbiol Biotechnol 2021; 105:2363-2376. [PMID: 33651130 DOI: 10.1007/s00253-021-11194-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/04/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
Transcription factor MESP1 is a crucial factor regulating cardiac, hematopoietic, and skeletal myogenic development. Besides, it also contributes to the generation of functional cardiomyocytes. Here, we report the soluble expression and purification of the full-length human MESP1 protein from the heterologous system, which can be delivered into the target mammalian cells. To generate this biological macromolecule, we cloned its codon-optimized gene sequence fused to a nuclear localization sequence, a cell-penetrating peptide, and a His-tag into the protein expression vector and expressed in the bacterial system (E. coli strain BL21(DE3)). Subsequently, we have screened and identified the optimal expression parameters to obtain this recombinant fusion protein in soluble form from E. coli and examined its expression concerning the placement of fusion tags at either terminal. Further, we have purified this recombinant fusion protein to homogeneity under native conditions. Notably, this purified fusion protein has maintained its secondary structure after purification, primarily comprising α-helices and random coils. This molecular tool can potentially replace its genetic and viral forms in the cardiac reprogramming of fibroblasts to induce a cardiac transcriptional profile in an integration-free manner and elucidating its role in various biological processes and diseases. KEY POINTS: • Screening of the suitable gene construct was performed and identified. • Screening of optimal expression conditions was performed and identified. • Native purification of recombinant human MESP1 protein from E. coli was performed. • Recombinant MESP1 protein has retained its secondary structure after purification.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sujal Harsh Ranjan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Srirupa Bhattacharyya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Han L, Chen C, Lu X, Song Y, Zhang Z, Zeng C, Chiu R, Li L, Xu M, He C, Zhang W, Duan S. Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics 2020; 113:79-87. [PMID: 33221518 DOI: 10.1016/j.ygeno.2020.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022]
Abstract
Diabetic retinopathy (DR) is a common microvascular complication that may cause severe visual impairment and blindness in patients with type 2 diabetes mellitus (T2DM). Early detection of DR will expand the range of potential treatment options and enable better control of disease progression. Epigenetic dysregulation has been implicated in the pathogenesis of microvascular complications in patients with T2DM. We sought to explore the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for DR, taking advantage of a highly sensitive technique, the 5hmC-Seal. The genome-wide 5hmC profiles in cfDNA samples from 35 patients diagnosed with DR and 35 age-, gender-, diabetic duration-matched T2DM controls were obtained using the 5hmC-Seal, followed by a case-control analysis and external validation. The genomic distribution of 5hmC in cfDNA from patients with DR reflected potential gene regulatory relevance, showing co-localization with histone modification marks for active expression (e.g., H3K4me1). A three-gene signature (MESP1, LY6G6D, LINC01556) associated with DR was detected using the elastic net regularization on the multivariable logistic regression model, showing high accuracy to distinguish patients with DR from T2DM controls (AUC [area under curve] = 91.4%; 95% CI [confidence interval], 84.3- 98.5%), achieving a sensitivity of 88.6% and a specificity of 91.4%. In an external testing set, the 5hmC model detected 5 out of 6 DR patients and predicted 7 out of 8 non-DR patients with other microvascular complications. Circulating cfDNA from patients with DR contained 5hmC information that could be exploited for DR detection. As a novel non-invasive approach, the 5hmC-Seal holds the promise to be an integrated part of patient care and surveillance tool for T2DM patients.
Collapse
Affiliation(s)
- Liyuan Han
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Chang Chen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xingyu Lu
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Yanqun Song
- Shanghai Epican Genetech Co., Ltd., Shanghai, China
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chang Zeng
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudyard Chiu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Chuan He
- Department of Chemistry; Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; and the Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Insititute of Precision Medicine, Jining Medical University, Jining, Shandong, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
19
|
Pappas MP, Peifer LN, Chan SSK. Dual TGFβ and Wnt inhibition promotes Mesp1-mediated mouse pluripotent stem cell differentiation into functional cardiomyocytes. Dev Growth Differ 2020; 62:487-494. [PMID: 33048365 DOI: 10.1111/dgd.12694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/26/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Efficient derivation of cardiomyocytes from mouse pluripotent stem cells has proven challenging, and existing approaches rely on expensive supplementation or extensive manipulation. Mesp1 is a transcription factor that regulates cardiovascular specification during embryo development, and its overexpression has been shown to promote cardiogenesis. Here, we utilize a doxycycline-inducible Mesp1-expressing mouse embryonic stem cell system to develop an efficient differentiation protocol to generate functional cardiomyocytes. Our cardiac differentiation method involves transient Mesp1 induction following by subsequent dual inhibition of TGFβ and Wnt signaling pathways using small molecules. We discovered that whereas TGFβ inhibition promoted Mesp1-induced cardiac differentiation, Wnt inhibition was ineffective. Nevertheless, a combined inhibition of both pathways was superior to either inhibition alone in generating cardiomyocytes. These observations suggested a potential interaction between TGFβ and Wnt signaling pathways in the context of Mesp1-induced cardiac differentiation. Using a step-by-step approach, we have further optimized the windows of Mesp1 induction, TGFβ inhibition and Wnt inhibition to yield a maximal cardiomyocyte output - Mesp1 was induced first, followed by dual inhibition of TGFβ and Wnt signaling. Our protocol is capable of producing approximately 50% of cardiomyocytes in 12 days, which is comparable to existing methods, and have the advantages of being technically simple and inexpensive. Moreover, cardiomyocytes thus derived are functional, displaying intrinsic contractile capacity and contraction in response to electric stimulus. Derivation of mouse cardiomyocytes without the use of growth factors or other costly supplementation provides an accessible cell source for future applications.
Collapse
Affiliation(s)
- Matthew P Pappas
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Lindsay N Peifer
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sunny S K Chan
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Paul and Shelia Wellstone Muscular Dystrophy Center, Stem Cell Institute, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
21
|
Zhang E, Yang J, Liu Y, Hong N, Xie H, Fu Q, Li F, Chen S, Yu Y, Sun K. MESP2 variants contribute to conotruncal heart defects by inhibiting cardiac neural crest cell proliferation. J Mol Med (Berl) 2020; 98:1035-1048. [PMID: 32572506 DOI: 10.1007/s00109-020-01929-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 11/24/2022]
Abstract
Conotruncal heart defects (CTDs) are closely related to defective outflow tract (OFT) development, in which cardiac neural crest cells (CNCCs) play an indispensable role. However, the genetic etiology of CTDs remains unclear. Mesoderm posterior 2 (MESP2) is an important transcription factor regulating early cardiogenesis. Nevertheless, MESP2 variants have not been reported in congenital heart defect (CHD) patients. We first identified four MESP2 variants in 601 sporadic nonsyndromic CTD patients that were not detected in 400 healthy controls using targeted sequencing. Reverse transcription-quantitative PCR (RT-qPCR), immunohistochemistry, and immunofluorescence assays revealed MESP2 expression in the OFT of Carnegie stage (CS) 11, CS13, and CS15 human embryos and embryonic day (E) 8.5, E10, and E11.5 mouse embryos. Functional analyses in HEK 293T cells, HL-1 cells, JoMa1 cells, and primary mouse CNCCs revealed that MESP2 directly regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factors. Three MESP2 variants, c.346G>C (p.G116R), c.921C>G (p.Y307X), and c.59A>T (p.Q20L), altered the transcriptional activities of MYOCD, GATA4, NKX2.5, and CFC1 and inhibited CNCC proliferation by upregulating p21cip1 or downregulating Cdk4. Based on our findings, MESP2 variants disrupted MESP2 function by interfering with CNCC proliferation during OFT development, which may contribute to CTDs. KEY MESSAGES: This study first analyzed MESP2 variants identified in sporadic nonsyndromic CTD patients. MESP2 is expressed in the OFT of different stages of human and mouse embryos. MESP2 regulates the transcriptional activities of downstream CTD-related genes and promotes CNCC proliferation by regulating cell cycle factor p21cip1 or Cdk4.
Collapse
Affiliation(s)
- Erge Zhang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jianping Yang
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yang Liu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Huilin Xie
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China. .,Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
22
|
Wang L, Zhang F, Duan F, Huang R, Chen X, Ming J, Na J. Homozygous MESP1 knock-in reporter hESCs facilitated cardiovascular cell differentiation and myocardial infarction repair. Theranostics 2020; 10:6898-6914. [PMID: 32550911 PMCID: PMC7295063 DOI: 10.7150/thno.42347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/09/2020] [Indexed: 12/15/2022] Open
Abstract
Different populations of cardiovascular progenitor cells have been shown to possess varying differentiation potentials. They have also been used to facilitate heart repair. However, sensitive reporter cell lines that mark the human cardiovascular progenitors are in short supply. Methods: MESP1 marks the earliest population of cardiovascular progenitor cells during embryo development. Here, we generated a homozygous MESP1 knock-in reporter hESC line where mTomato gene joined to the MESP1 coding region via a 2A peptide, in which both MESP1 alleles were preserved. We performed transcriptome and functional analysis of human MESP1+ cardiovascular progenitor cells and tested their therapeutic potential using a rat model of myocardial infarction. Results: MESP1-mTomato knock-in reporter faithfully recapitulated the endogenous level of MESP1. Transcriptome analysis revealed that MESP1+ cells highly expressed early cardiovascular genes and heart development genes. The activation of MESP1 relied on the strength of canonical Wnt signaling, peak MESP1-mTomato fluorescence correlated with the window of canonical Wnt inhibition during in vitro differentiation. We further showed that MESP1 bound to the promoter of the WNT5A gene and the up-regulation of WNT5A expression suppressed canonical Wnt/β-CATENIN signaling. Moreover, induced MESP1 expression could substitute the canonical Wnt inhibition step and promote robust cardiomyocyte formation. We used a configurable, chemically defined, tri-lineage differentiation system to obtain cardiomyocytes, endothelial cells, and smooth muscle cells from MESP1+ cells at high efficiency. Finally, we showed that the engraftment of MESP1+ cells repaired rat myocardial infarction model. Conclusions: MESP1-mTomato reporter cells offered a useful platform to study cardiovascular differentiation from human pluripotent stem cells and explore their therapeutic potential in regenerative medicine.
Collapse
|
23
|
Abstract
Cardiovascular disease (CVD) is still a factor of mortality in the whole world. Through canonical and noncanonical pathways and with different receptors, the Wnt/β-catenin signaling pathway plays an essential role in response to heart injuries. Wnt regulates the mobilization and proliferation of cells in endothelium and epicardium in an infarcted heart. Therefore, with its profibrotic effects as well as its antagonism with other proteins, Wnt/β-catenin signaling pathway leads to beneficial effects on fibrosis and cardiac remodeling in myocardium. In addition, Wnt increases the proliferation and differentiation of cardiac progenitors in an ischemic heart. Complex interactions and dual activity of Wnt, the changes in its expression, and mutations that can change its activity during heart development have an adverse effect on cardiac myocardium after injury. However, targeting the Wnt in myocardium with cellular and molecular pathways can be suggested to improve and repair ischemic heart. Given these challenges, in this review article, we deal with the role of Wnt/β-catenin signaling pathway as well as its interactions with other cells and molecules in an ischemic myocardium.
Collapse
|
24
|
Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells 2020; 38:822-833. [PMID: 32232889 DOI: 10.1002/stem.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022]
Abstract
Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
25
|
RNA-Based Strategies for Cardiac Reprogramming of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9020504. [PMID: 32098400 PMCID: PMC7072829 DOI: 10.3390/cells9020504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Multipotent adult mesenchymal stromal cells (MSCs) could represent an elegant source for the generation of patient-specific cardiomyocytes needed for regenerative medicine, cardiovascular research, and pharmacological studies. However, the differentiation of adult MSC into a cardiac lineage is challenging compared to embryonic stem cells or induced pluripotent stem cells. Here we used non-integrative methods, including microRNA and mRNA, for cardiac reprogramming of adult MSC derived from bone marrow, dental follicle, and adipose tissue. We found that MSC derived from adipose tissue can partly be reprogrammed into the cardiac lineage by transient overexpression of GATA4, TBX5, MEF2C, and MESP1, while cells isolated from bone marrow, and dental follicle exhibit only weak reprogramming efficiency. qRT-PCR and transcriptomic analysis revealed activation of a cardiac-specific gene program and up-regulation of genes known to promote cardiac development. Although we did not observe the formation of fully mature cardiomyocytes, our data suggests that adult MSC have the capability to acquire a cardiac-like phenotype when treated with mRNA coding for transcription factors that regulate heart development. Yet, further optimization of the reprogramming process is mandatory to increase the reprogramming efficiency.
Collapse
|
26
|
Robert AW, Pereira IT, Dallagiovanna B, Stimamiglio MA. Secretome Analysis Performed During in vitro Cardiac Differentiation: Discovering the Cardiac Microenvironment. Front Cell Dev Biol 2020; 8:49. [PMID: 32117977 PMCID: PMC7025591 DOI: 10.3389/fcell.2020.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells are an important tool for the study of developmental processes, such as cardiomyogenic differentiation. Despite the advances made in this field, the molecular and cellular signals involved in the commitment of embryonic stem cells to the cardiac phenotype are still under investigation. Therefore, this study focuses on identifying the extracellular signals involved in in vitro cardiac differentiation of human embryonic stem cells. Using a three-dimensional cardiomyogenic differentiation protocol, the conditioned medium and the extracellular matrix (ECM) of embryoid body cultures were collected and characterized at four specific time points. Mass spectrometry (MS) and antibody array analysis of the secretome identified a number of secreted proteins related to signaling pathways, such as Wnt and TGFβ, as well as many ECM proteins. When comparing the proteins identified at selected time points, our data pointed out protein interactions and biological process related to cardiac differentiation. Interestingly, the great changes in secretome profile occurred during the cardiac progenitor specification. The secretome results were also compared with our previous RNAseq data, indicating that the secreted proteins undergo some level of gene regulation. During cardiac commitment it was observed an increase in complexity of the ECM, and some proteins as IGFBP7, FN1, HSPG2, as well as other members of the basal lamina could be highlighted. Thus, these findings contribute valuable information about essential microenvironmental signals working on cardiomyogenic differentiation that may be used in future strategies for cardiac differentiation, cardiomyocyte maturation, and in advances for future acellular therapies.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Isabela Tiemy Pereira
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| |
Collapse
|
27
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
28
|
Zhang Q, Wang F, Wang F, Wu N. Long noncoding RNA MAGI1-IT1 regulates cardiac hypertrophy by modulating miR-302e/DKK1/Wnt/beta-catenin signaling pathway. J Cell Physiol 2019; 235:245-253. [PMID: 31222747 DOI: 10.1002/jcp.28964] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy (CH) is an adaptive cardiac response to overload whose decompensation eventually leads to heart failure or sudden death. Recently, accumulating studies have indicated the implication of long noncoding RNAs (lncRNAs) in CH progression. MAGI1-IT1 is a newly-identified lncRNA that is highly associated with CH, while its specific role in CH progression remains masked. In this study, we uncovered that MAGI1-IT1 was distinctly downregulated in angiotensin (Ang) II-induced hypertrophic H9c2 cells. Also, MAGI1-IT1 overexpression in Ang II-treated H9c2 cells strikingly abolished the enlarged surface area and the enhanced levels of hypertrophic markers such as ANP, BNP, and β-MHC. Mechanically, we found MAGI1-IT1 sponged miR-302e which was identified as a hypertrophy-facilitator here, and that miR-302e upregulation countervailed the inhibition of MAGI1-IT1 overexpression on hypertrophic cells. Moreover, it was confirmed that MAGI1-IT1 boosted DKK1 expression by absorbing miR-302e. Subsequently, we also illustrated that MAGI1-IT1 inactivated Wnt/beta-catenin signaling through a DKK1-dependent pathway. Finally, both the DKK1 inhibition and LiCI (Wnt activator) supplement abrogated the hypertrophy-suppressive impact of MAGI1-IT1 on Ang II-simulated hypertrophic H9c2 cells. Jointly, our findings disclosed that MAGI1-IT1 functioned as a negative regulator in CH through inactivating Wnt/beta-catenin pathway via targeting miR-302e/DKK1 axis, revealing a novel road for CH treatment.
Collapse
Affiliation(s)
- Qinghua Zhang
- Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fengshuang Wang
- Pharmacy Intravenous Admixture Services, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fenghua Wang
- Medical Services Section, the 1st Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Naishi Wu
- Department of Cardiovascular Surgery, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
29
|
The Functions of Long Non-Coding RNA during Embryonic Cardiovascular Development and Its Potential for Diagnosis and Treatment of Congenital Heart Disease. J Cardiovasc Dev Dis 2019; 6:jcdd6020021. [PMID: 31159401 PMCID: PMC6616656 DOI: 10.3390/jcdd6020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) arises due to errors during the embryonic development of the heart, a highly regulated process involving an interplay between cell-intrinsic transcription factor expression and intercellular signalling mediated by morphogens. Emerging evidence indicates that expression of these protein-coding genes is controlled by a plethora of previously unappreciated non-coding RNAs operating in complex feedback-control circuits. In this review, we consider the contribution of long non-coding RNA (lncRNA) to embryonic cardiovascular development before discussing applications to CHD diagnostics and therapeutics. We discuss the process of lineage restriction during cardiovascular progenitor cell differentiation, as well as the subsequent patterning of the cardiogenic progenitor fields, taking as an example the regulation of NODAL signalling in left-right patterning of the heart. lncRNA are a highly versatile group. Nuclear lncRNA can target specific genomic sequences and recruit chromatin remodelling complexes. Some nuclear lncRNA are transcribed from enhancers and regulate chromatin looping. Cytoplasmic lncRNA act as endogenous competitors for micro RNA, as well as binding and sequestering signalling proteins. We discuss features of lncRNA that limit their study by conventional methodology and suggest solutions to these problems.
Collapse
|
30
|
Kaplan NA, Wang W, Christiaen L. Initial characterization of Wnt-Tcf functions during Ciona heart development. Dev Biol 2019; 448:199-209. [PMID: 30635127 PMCID: PMC6487219 DOI: 10.1016/j.ydbio.2018.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
In vertebrate embryos, the cardiopharyngeal mesoderm gives rise to both cardiac and branchiomeric head muscles. The canonical Wnt signaling pathway regulates many aspects of cardiomyocyte specification, and modulates a balance between skeletal and cardiac myogenesis during vertebrate head muscle development. However, the role of Wnt signaling during ascidian cardiopharyngeal development remains elusive. Here, we documented the expression of Wnt pathway components during cardiopharyngeal development in Ciona, and generated tools to investigate potential roles for Wnt signaling, and its transcriptional effector Tcf, on heart vs. pharyngeal muscle fate specification. Neither focused functional analyses nor lineage-specific transcriptome profiling uncovered a significant role for Tcf during early cardiac vs. pharyngeal muscle fate choice. By contrast, Wnt gene expression patterns of Frizzled4 and Lrp4/8 and CRISPR/Cas9-mediated Tcf knock-down suggested a later requirement for Wnt signaling during heart morphogenesis and/or cardiomyocyte differentiation. This study provides a provisional set of reagents to study Wnt signaling function in Ciona, and promising insights for future analyses of Wnt functions during heart organogenesis.
Collapse
Affiliation(s)
- Nicole A Kaplan
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Wei Wang
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
31
|
Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Dev Biol 2019; 449:1-13. [PMID: 30797757 PMCID: PMC6496975 DOI: 10.1016/j.ydbio.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/15/2022]
Abstract
Wnt proteins can activate different intracellular signaling pathways. These pathways need to be tightly regulated for proper cardiogenesis. The canonical Wnt/β-catenin inhibitor Dkk1 has been shown to be sufficient to trigger cardiogenesis in gain-of-function experiments performed in multiple model systems. Loss-of-function studies however did not reveal any fundamental function for Dkk1 during cardiogenesis. Using Xenopus laevis as a model we here show for the first time that Dkk1 is required for proper differentiation of cardiomyocytes, whereas specification of cardiomyocytes remains unaffected in absence of Dkk1. This effect is at least in part mediated through regulation of non-canonical Wnt signaling via Wnt11. In line with these observations we also found that Isl1, a critical regulator for specification of the common cardiac progenitor cell (CPC) population, acts upstream of Dkk1. Dkk1 is required for cardiac development in Xenopus laevis. The Wnt inhibitor Dkk1 acts downstream of Isl1 during cardiac development in vivo. Loss of Dkk1 has no impact on cardiac specification in Xenopus. Normal cardiac differentiation is impaired upon Dkk1 inhibition in Xenopus. Dkk1 regulates canonical Wnt/β-catenin signaling during Xenopus cardiogenesis.
Collapse
Affiliation(s)
- Yanchun Guo
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Tatjana Dorn
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Susanne J Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Melanie Rothe
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, Aapistie 5, FIN-90014, University of Oulu, Finland
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany.
| | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
32
|
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019; 10:371. [PMID: 31275242 PMCID: PMC6593054 DOI: 10.3389/fendo.2019.00371] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.
Collapse
Affiliation(s)
- Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Interdepartmental Center of Services (CIS) of Genomics, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- StemCell OpCo, Madrid, Spain
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- *Correspondence: Daniele Torella
| |
Collapse
|
33
|
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:141-178. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.
Collapse
Affiliation(s)
- Mariangela Scalise
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Fabiola Marino
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Surgery, University of Campania "L.Vanvitelli", Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
34
|
Chang Y, Lee E, Kim J, Kwon YW, Kwon Y, Kim J. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials 2018; 192:500-509. [PMID: 30513475 DOI: 10.1016/j.biomaterials.2018.11.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Euiyeon Lee
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Junyeop Kim
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yoo-Wook Kwon
- Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Youngeun Kwon
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea.
| | - Jongpil Kim
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea; Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
35
|
Klose K, Gossen M, Stamm C. Turning fibroblasts into cardiomyocytes: technological review of cardiac transdifferentiation strategies. FASEB J 2018; 33:49-70. [DOI: 10.1096/fj.201800712r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kristin Klose
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
| | - Manfred Gossen
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Helmholtz‐Zentrum Geesthacht (HZG)Institute of Biomaterial Science Teltow Germany
| | - Christof Stamm
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT) Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT) Berlin Germany
- Charité–Universitätsmedizin Berlin Berlin Germany
- German Centre for Cardiovascular Research (DZHK)Partner Site Berlin Berlin Germany
- Department of Cardiothoracic and Vascular SurgeryDeutsches Herzzentrum Berlin (DHZB) Berlin Germany
| |
Collapse
|
36
|
STAT3-Inducible Mouse ESCs: A Model to Study the Role of STAT3 in ESC Maintenance and Lineage Differentiation. Stem Cells Int 2018; 2018:8632950. [PMID: 30254684 PMCID: PMC6142778 DOI: 10.1155/2018/8632950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/22/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Abstract
Studies have demonstrated that STAT3 is essential in maintaining self-renewal of embryonic stem cells (ESCs) and modulates ESC differentiation. However, there is still lack of direct evidence on STAT3 functions in ESCs and embryogenesis because constitutive STAT3 knockout (KO) mouse is embryonic lethal at E6.5-E7.5, prior to potential functional role in early development can be assessed. Therefore, in this study, two inducible STAT3 ESC lines were established, including the STAT3 knockout (InSTAT3 KO) and pSTAT3 overexpressed (InSTAT3 CA) using Tet-on inducible system in which STAT3 expression can be strictly controlled by doxycycline (Dox) stimulation. Through genotyping, deletion of STAT3 alleles was detected in InSTAT3 KO ESCs following 24 hours Dox stimulation. Western blot also showed that pSTAT3 and STAT3 protein levels were significantly reduced in InSTAT3 KO ESCs while dominantly elevated in InSTAT3 CA ECSs upon Dox stimulation. Likewise, it was found that STAT3-null ESCs would affect the differentiation of ESCs into mesoderm and cardiac lineage. Taken together, the findings of this study indicated that InSTAT3 KO and InSTAT3 CA ESCs could provide a new tool to clarify the direct targets of STAT3 and its role in ESC maintenance, which will facilitate the elaboration of the mechanisms whereby STAT3 maintains ESC pluripotency and regulates ESC differentiation during mammalian embryogenesis.
Collapse
|
37
|
Ziegler T, Hinkel R, Kupatt C. Induced pluripotent stem cell derived cardiac models: effects of Thymosin β4. Expert Opin Biol Ther 2018; 18:111-120. [PMID: 30063852 DOI: 10.1080/14712598.2018.1473370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION The establishment of induced pluripotent stem cells (iPSCs) and cardiomyocytes differentiated from them generated a new platform to study pathophysiological processes and to generate drug screening platforms and iPSC-derived tissues as therapeutic agents. Although major advances have been made in iPSC-reprogramming, cardiac differentiation and EHT production, reprogramming efficiency and the maturity of iPSC-CMs need to be further improved. AREAS COVERED In this review, the authors summarize the current state of the field of iPSC research, the methodology of cardiac differentiation of iPSCs, the use of iPSC-CMs as disease models and toxicity screening platforms, and the potential of EHTs as therapeutic agents. The authors furthermore highlight the mechanisms by which Thymosin β4 might enhance the production of iPSC-CMs and EHTs to improve their maturity and performance. EXPERT OPINION iPSCs derived cardiomyocytes and EHTs represent a still young research field with many problems and pitfalls that need to be resolved to realize the full potential of iPSC-CMs and EHTs. Given that Thymosin β4 directly enhances cardiac differentiation while also promoting angiogenic sprouting and vessel maturation, Tβ4 might be of particular interest as a novel agent in tackling the difficulty of iPSC-CMs and engineered heart tissue grafts.
Collapse
Affiliation(s)
- Tilman Ziegler
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German
| | - Rabea Hinkel
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German.,c Institute for Cardiovascular Prevention , Ludwig Maximilians University of Munich , Munich , Germany
| | - Christian Kupatt
- a I. Medizinische Klinik & Poliklinik, Klinikum rechts der Isar , Technical University of Munich , Munich , Germany.,b DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance , Munich , German
| |
Collapse
|
38
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
39
|
Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES. Nat Commun 2018; 9:440. [PMID: 29382828 PMCID: PMC5789885 DOI: 10.1038/s41467-017-02812-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/29/2017] [Indexed: 12/13/2022] Open
Abstract
Master cell fate determinants are thought to induce specific cell lineages in gastrulation by orchestrating entire gene programs. The T-box transcription factor EOMES (eomesodermin) is crucially required for the development of the heart—yet it is equally important for endoderm specification suggesting that it may act in a context-dependent manner. Here, we define an unrecognized interplay between EOMES and the WNT signaling pathway in controlling cardiac induction by using loss and gain-of-function approaches in human embryonic stem cells. Dose-dependent EOMES induction alone can fully replace a cocktail of signaling molecules otherwise essential for the specification of cardiogenic mesoderm. Highly efficient cardiomyocyte programming by EOMES mechanistically involves autocrine activation of canonical WNT signaling via the WNT3 ligand, which necessitates a shutdown of this axis at a subsequent stage. Our findings provide insights into human germ layer induction and bear biotechnological potential for the robust production of cardiomyocytes from engineered stem cells. The T-box transcription factor eomesodermin (EOMES) acts both in endoderm specification as well as heart development, suggesting context-specific function. Here, the authors show that dose-controlled EOMES induction is sufficient for cardiogenic programming of human pluripotent stem cells.
Collapse
|
40
|
Abstract
Wnt signalling regulates cardiogenesis during specification of heart tissue and the morphogenetic movements necessary to form the linear heart. Wnt11-mediated non-canonical signalling promotes early cardiac development whilst Wnt11-R, which is expressed later, also signals through the non-canonical pathway to promote heart development. It is unclear which Frizzled proteins mediate these interactions. Frizzled-7 (fzd7) is expressed during gastrulation in the mesodermal cells fated to become heart, and then in the primary heart field. This expression is complementary to the expression of wnt11 and wnt11-R. We further show co-localisation of fzd7 with other early- and late-heart-specific markers using double in situ hybridisation. We have used loss of function analysis to determine the role of fzd7 during heart development. Morpholino antisense oligonucleotide-mediated knockdown of Fzd7 results in effects on heart development, similar to that caused by Wnt11 loss of function. Surprisingly, overexpression of dominant-negative Fzd7 cysteine rich domain (Fzd7 CRD) results in a cardia bifida phenotype, similar to the loss of wnt11-R phenotype. Overexpression of Fzd7 and activation of non-canonical wnt signalling can rescue the effect of Fzd7 CRD. We propose that Fzd7 has an important role during Xenopus heart development. Summary: Wnt signalling has been shown to be important in heart development. Here, we demonstrate that the wnt receptor fzd7 is required in mediating these Wnt signals.
Collapse
Affiliation(s)
- Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216 Jeddah 21589, Kingdom of Saudi Arabia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Joanna Mulvaney
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
41
|
Afouda BA, Lynch AT, de Paiva Alves E, Hoppler S. Genome-wide transcriptomics analysis identifies sox7 and sox18 as specifically regulated by gata4 in cardiomyogenesis. Dev Biol 2017; 434:108-120. [PMID: 29229250 PMCID: PMC5814753 DOI: 10.1016/j.ydbio.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/12/2023]
Abstract
The transcription factors GATA4, GATA5 and GATA6 are important regulators of heart muscle differentiation (cardiomyogenesis), which function in a partially redundant manner. We identified genes specifically regulated by individual cardiogenic GATA factors in a genome-wide transcriptomics analysis. The genes regulated by gata4 are particularly interesting because GATA4 is able to induce differentiation of beating cardiomyocytes in Xenopus and in mammalian systems. Among the specifically gata4-regulated transcripts we identified two SoxF family members, sox7 and sox18. Experimental reinstatement of gata4 restores sox7 and sox18 expression, and loss of cardiomyocyte differentiation due to gata4 knockdown is partially restored by reinstating sox7 or sox18 expression, while (as previously reported) knockdown of sox7 or sox18 interferes with heart muscle formation. In order to test for conservation in mammalian cardiomyogenesis, we confirmed in mouse embryonic stem cells (ESCs) undergoing cardiomyogenesis that knockdown of Gata4 leads to reduced Sox7 (and Sox18) expression and that Gata4 is also uniquely capable of promptly inducing Sox7 expression. Taken together, we identify an important and conserved gene regulatory axis from gata4 to the SoxF paralogs sox7 and sox18 and further to heart muscle cell differentiation. Gata 4, 5 and 6 have redundant and non-redundant functions in heart development. RNA-seq analysis of Gata4, 5 and 6 knockdown experiments was carried out. Genes specifically regulated by Gata4, 5 and 6 were identified. The SoxF genes sox7 and sox18 were identified as specifically regulated by Gata4. Epistasis demonstrates a regulatory axis from Gata4 to Sox7/18 to cardiomyogenesis.
Collapse
Affiliation(s)
- Boni A Afouda
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Adam T Lynch
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, King's College Campus, University of Aberdeen, Scotland, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Scotland, UK.
| |
Collapse
|
42
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
43
|
De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc Natl Acad Sci U S A 2017; 114:E7341-E7347. [PMID: 28808027 DOI: 10.1073/pnas.1709255114] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10-11). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.
Collapse
|
44
|
Bhuvanalakshmi G, Arfuso F, Kumar AP, Dharmarajan A, Warrier S. Epigenetic reprogramming converts human Wharton's jelly mesenchymal stem cells into functional cardiomyocytes by differential regulation of Wnt mediators. Stem Cell Res Ther 2017; 8:185. [PMID: 28807014 PMCID: PMC5557557 DOI: 10.1186/s13287-017-0638-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/14/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Background Lineage commitment of mesenchymal stem cells (MSCs) to cardiac differentiation is controlled by transcription factors that are regulated by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Here, we studied the differentiation of human Wharton’s jelly MSCs (WJMSCs) into the cardiomyocyte lineage via epigenetic manipulations. Methods We introduced these changes using inhibitors of DNA methyl transferase and histone deacetylase, DC301, DC302, and DC303, in various combinations. We characterized for cardiogenic differentiation by assessing the expression of cardiac-specific markers by immunolocalization, quantitative RT-PCR, and flow cytometry. Cardiac functional studies were performed by FURA2AM staining and Greiss assay. The role of Wnt signaling during cardiac differentiation was analyzed by quantitative RT-PCR. In-vivo studies were performed in a doxorubicin-induced cardiotoxic mouse model by injecting cardiac progenitor cells. Promoter methylation status of the cardiac transcription factor Nkx2.5 and the Wnt antagonist, secreted frizzled-related protein 4 (sFRP4), after cardiac differentiation was studied by bisulfite sequencing. Results By induction with DC301 and DC302, WJMSCs differentiated into cardiomyocyte-like structures with an upregulation of Wnt antagonists, sFRP3 and sFRP4, and Dickkopf (Dkk)1 and Dkk3. The cardiac function enhancer, vinculin, and DDX20, a DEAD-box RNA helicase, were also upregulated in differentiated cardiomyocytes. Additionally, bisulfite sequencing revealed, for the first time in cardiogenesis, that sFRP4 is activated by promoter CpG island demethylation. In vivo, these MSC-derived cardiac progenitors could not only successfully engraft to the site of cardiac injury in mice with doxorubicin-induced cardiac injury, but also form functional cardiomyocytes and restore cardiac function. Conclusion The present study unveils a link between Wnt inhibition and epigenetic modification to initiate cardiac differentiation, which could enhance the efficacy of stem cell therapy for ischemic heart disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0638-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Bhuvanalakshmi
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia.,School of Anatomy, Physiology and Human Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Alan Prem Kumar
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia.,National University Cancer Institute, Singapore, 119074, Singapore.,Department of Biological Sciences, University of North Texas, Denton, TX, 76203-5017, USA
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6845, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal University, Bangalore, 560 065, India. .,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, 6102, Australia. .,Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, 6875, Australia.
| |
Collapse
|
45
|
Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR. Id genes are essential for early heart formation. Genes Dev 2017; 31:1325-1338. [PMID: 28794185 PMCID: PMC5580654 DOI: 10.1101/gad.300400.117] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/17/2017] [Indexed: 01/08/2023]
Abstract
Deciphering the fundamental mechanisms controlling cardiac specification is critical for our understanding of how heart formation is initiated during embryonic development and for applying stem cell biology to regenerative medicine and disease modeling. Using systematic and unbiased functional screening approaches, we discovered that the Id family of helix-loop-helix proteins is both necessary and sufficient to direct cardiac mesoderm formation in frog embryos and human embryonic stem cells. Mechanistically, Id proteins specify cardiac cell fate by repressing two inhibitors of cardiogenic mesoderm formation-Tcf3 and Foxa2-and activating inducers Evx1, Grrp1, and Mesp1. Most importantly, CRISPR/Cas9-mediated ablation of the entire Id (Id1-4) family in mouse embryos leads to failure of anterior cardiac progenitor specification and the development of heartless embryos. Thus, Id proteins play a central and evolutionarily conserved role during heart formation and provide a novel means to efficiently produce cardiovascular progenitors for regenerative medicine and drug discovery applications.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Michael S Yu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Department of Bioengineering, University of California at San Diego, La Jolla, California 92037, USA
| | - Wesley L McKeithan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, USA.,Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California 94305, USA
| | - Sean Spiering
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Florent Carrette
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Chun-Teng Huang
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Paul J Bushway
- Department of Bioengineering, University of California at San Diego, La Jolla, California 92037, USA
| | - Matthew Tierney
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Sonia Albini
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Miguel Mano
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Pier Lorenzo Puri
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Istituti di Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, 00179 Rome, Italy
| | - Alessandra Sacco
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Pilar Ruiz-Lozano
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Regencor, Inc., Los Altos, California 94022, USA
| | - Jean-Francois Riou
- UMR 7622 Developmental Biology, Sorbonne Universités, University Pierre and Marie Curie, F- 75005 Paris, France
| | - Muriel Umbhauer
- UMR 7622 Developmental Biology, Sorbonne Universités, University Pierre and Marie Curie, F- 75005 Paris, France
| | - Gregg Duester
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| | - Mark Mercola
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA.,Department of Medicine and Cardiovascular Institute, Stanford University, Palo Alto, California 94305, USA
| | - Alexandre R Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, 92037, USA
| |
Collapse
|
46
|
Taguchi J, Yamada Y. In vivo reprogramming for tissue regeneration and organismal rejuvenation. Curr Opin Genet Dev 2017; 46:132-140. [PMID: 28779646 DOI: 10.1016/j.gde.2017.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 12/25/2022]
Abstract
Transcription factor-mediated reprogramming has enabled us to induce the fate conversion of somatic cells into other cell types. Although the study of reprogramming mostly occurs at the cellular level in vitro, previous studies have demonstrated that somatic cells are reprogrammable in multicellular organisms too. Recent studies using in vivo reprogramming have provided important insights on regenerative medicine for diseased organs. Moreover, similar studies have revealed unappreciated mechanisms in various biological phenomena, including tissue regeneration, aging, rejuvenation and cancer development in multicellular organisms. Here, we review recent progress and future perspectives of in vivo reprogramming.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Yamada
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
47
|
Zhang M, Li FX, Liu XY, Huang RT, Xue S, Yang XX, Li YJ, Liu H, Shi HY, Pan X, Qiu XB, Yang YQ. MESP1 loss-of-function mutation contributes to double outlet right ventricle. Mol Med Rep 2017; 16:2747-2754. [DOI: 10.3892/mmr.2017.6875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 03/30/2017] [Indexed: 11/06/2022] Open
|
48
|
Tang X, Lin J, Wang G, Lu J. MicroRNA-433-3p promotes osteoblast differentiation through targeting DKK1 expression. PLoS One 2017. [PMID: 28628652 PMCID: PMC5476290 DOI: 10.1371/journal.pone.0179860] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dickkopf-1 (DKK1) is a powerful antagonist of canonical WNT signaling pathway, and is regarded as a biomarker for osteoporosis. Its expression is highly correlated with bone mass and osteoblasts maturation. In this study, mouse primary bone marrow cells and osteoblast cell lines were used. Luciferase reporter assay and western blotting methods were employed to validate if miRNA-433-3p epigenetically regulated DKK1 translation. Rat bone marrow derived osteoblasts were infected with lentivirus vector in which miR-433-3p was constructed. The authors constructed lentivirus mediated miRNA-433-3p stable expression and examined the alkaline phosphatase (ALP) activity and mineral deposition level in vitro. In situ hybridization method was used to observe miR-433-3p in primary osteoblasts. We built up an OVX rat model to mimic postmenopausal osteoporosis, and found aberrant circulating miR-433-3p and miR-106b, which were not reported previously. Results showed that miR-433-3p potentially regulated DKK1 mRNA, Furthermore, the correlation of serum DKK1 with circulating miR-433-3p level was significant (r = 0.7520, p = 0.046). In the luciferase reporter assay, we found that miR-433-3p siRNA decreased luminescence signal, indicating direct regulation of miR-433-3p on DKK1 mRNA. When the miR-433-3p binding site in DKK1 3’UTR was mutant, such reduction was prohibited. Western blotting result validated that miR-433-3p inhibited over 90% of DKK1 protein expression. Similarly, the change of protein expression was not observed in mutant group. The stable expression of lentivirus mediated miR-433-3p increased ALP activity and mineralization both in human and rat derived immortalized cells. We found that primary osteoblasts had higher miR-433-3p level compared with immortal cells through real-time PCR, as well as in situ hybridization experiment. Conclusively, our findings further emphasized the vital role of miR-433-3p in DKK1/WNT/β-catenin pathway through decreasing DKK1 expression and inducing osteoblasts differentiation.
Collapse
Affiliation(s)
- Xiaolin Tang
- Department of Medical Science, Shunde Polytechnic, Foshan, China
- * E-mail:
| | - Jiantao Lin
- Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University, Dongguan, China
| | - Guanhai Wang
- Traditional Chinese Medicine and New Drug Research Institute, Guangdong Medical University, Dongguan, China
| | - Jianlin Lu
- Department of Medical Science, Shunde Polytechnic, Foshan, China
| |
Collapse
|
49
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
50
|
Ebrahimi B. In vivo reprogramming for heart regeneration: A glance at efficiency, environmental impacts, challenges and future directions. J Mol Cell Cardiol 2017; 108:61-72. [PMID: 28502796 DOI: 10.1016/j.yjmcc.2017.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 02/08/2023]
Abstract
Replacing dying or diseased cells of a tissue with new ones that are converted from patient's own cells is an attractive strategy in regenerative medicine. In vivo reprogramming is a novel strategy that can circumvent the hurdles of autologous/allogeneic cell injection therapies. Interestingly, studies have demonstrated that direct injection of cardiac transcription factors or specific miRNAs into the infarct border zone of murine hearts following myocardial infarction converts resident cardiac fibroblasts into functional cardiomyocytes. Moreover, in vivo cardiac reprogramming not only drives cardiac tissue regeneration, but also improves cardiac function and survival rate after myocardial infarction. Thanks to the influence of cardiac microenvironment and the same developmental origin, cardiac fibroblasts seem to be more amenable to reprogramming toward cardiomyocyte fate than other cell sources (e.g. skin fibroblasts). Thus, reprogramming of cardiac fibroblasts to functional induced cardiomyocytes in the cardiac environment holds great promises for induced regeneration and potential clinical purposes. Application of small molecules in future studies may represent a major advancement in this arena and pharmacological reprogramming would convey reprogramming technology to the translational medicine paradigm. This study reviews accomplishments in the field of in vitro and in vivo mouse cardiac reprogramming and then deals with strategies for the enhancement of the efficiency and quality of the process. Furthermore, it discusses challenges ahead and provides suggestions for future research. Human cardiac reprogramming is also addressed as a foundation for possible application of in vivo cardiac reprogramming for human heart regeneration in the future.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|