1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Wang P, Li J, Li CG, Zhou X, Chen X, Zhu M, Wang H. Restoring Autophagy by Exercise Ameliorates Insulin Resistance Partly via Calcineurin-Driven TFEB Nuclear Translocation. Clin Exp Pharmacol Physiol 2025; 52:e70010. [PMID: 39787618 DOI: 10.1111/1440-1681.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025]
Abstract
Exercise activates autophagy and lysosome system in skeletal muscle, which are known to play an important role in metabolic adaptation. However, the mechanism of exercise-activated autophagy and lysosome system in obese insulin resistance remains covert. In this study, we investigated the role of exercise-induced activation of autophagy and lysosome system in improving glucose metabolism of skeletal muscle. Male C57BL/6 mice were randomly divided into five groups: the chow diet (CD) group, the high-fat diet (HFD) group, the high-fat diet plus exercise (HFD-E) group and the HFD-E treated with calcineurin inhibitor FK506 (HFD-E-F) or saline (HFD-E-S) groups. The mice in exercise groups (HFD-E, HFD-E-F and HFD-E-S) were subjected to aerobic treadmill exercise (speed at 12 m/min for 1 h per session, 0° slope, 5 days per week for 12 weeks). Mice of HFD-E-F group were intraperitoneally administered FK506 (1 mg/kg), once each day for 2 weeks before the end of exercise. Expressions pTFEB, T-TFEB and autophagy-lysosome markers, including Beclin1, LC3, ULK1, SQSTM1, LAMP1, CTSD and CTSL proteins in gastrocnemius muscle were analysed. We demonstrated that HFD induced insulin resistance and decreased autophagy-lysosomal proteins and the exercise significantly increased transcription factor EB (TFEB) translocation from the cytoplasm to the nucleus, restored the impaired autophagy-lysosomal-related protein expressions, and improved glucose metabolism. The increase in TFEB nuclear translocation was partly blocked by the calcineurin inhibitor FK506. Our results suggest that exercise promotes autophagy and lysosome restoration by regulating calcineurin-mediated TFEB nuclear translocation, ultimately alleviating HFD-induced insulin resistance in mice skeletal muscle.
Collapse
Affiliation(s)
- Ping Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Jiaxin Li
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, New South Wales, Australia
| | - Xiaolong Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| | - Minghua Zhu
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hongjiang Wang
- School of Physical Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Miyano T, Sera T, Sakamoto N. Pharmacological activation of TRPML1 enhances autophagy regulating hypertonicity and TGF-β-induced EMT in proximal tubular epithelial cells. Biochem Biophys Res Commun 2025; 750:151432. [PMID: 39893888 DOI: 10.1016/j.bbrc.2025.151432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Proximal tubular epithelial cells (PTECs) are central to maintaining kidney homeostasis. Under pathological conditions, such as ischemia or inflammation, PTECs promote profibrotic signals, including transforming growth factor (TGF)-β, and undergo epithelial-mesenchymal transition (EMT). EMT is characterized by decreased epithelial markers (e.g., E-cadherin) and increased mesenchymal markers (e.g., α-smooth muscle actin [α-SMA]), which promote myofibroblast activation and fibrosis progression. We previously demonstrated that hyperosmotic stress, characterized by elevated extracellular solute concentrations, induces EMT in PTECs. However, we observed that hyperosmotic stress simultaneously activates autophagy, a cellular process that has antagonistic effects on EMT, primarily mediated by transient receptor potential mucolipin 1 (TRPML1). However, the interplay between hyperosmotic stress-induced EMT and autophagy remains unclear. This study examined whether enhancing autophagy via TRPML1 activation could modulate EMT under hyperosmotic stress. Using the TRPML1 agonist ML-SA1, we observed a significantly increased autophagic flux, indicated by elevated LC3-II levels, without cytotoxic effects. Under hyperosmotic conditions, ML-SA1 further amplified autophagic flux in PTECs compared to hyperosmotic stress alone. Notably, this enhanced autophagy suppressed EMT by maintaining E-cadherin expression and reducing α-SMA levels. Furthermore, the ML-SA1-mediated autophagy enhancement attenuated EMT and profibrotic factor production in TGF-β-treated cells, suggesting a broader protective role beyond hyperosmotic stress. These findings reveal a novel interaction between hyperosmotic stress-induced autophagy and EMT, emphasizing TRPML1 activation's therapeutic potential to mitigate PTEC injury and fibrosis progression.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan; Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan.
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Xia Q, Liu X, Zhong L, Qu J, Dong L. SMURF1 mediates damaged lysosomal homeostasis by ubiquitinating PPP3CB to promote the activation of TFEB. Autophagy 2025; 21:530-547. [PMID: 39324484 DOI: 10.1080/15548627.2024.2407709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
The calcium-activated phosphatase PPP3/calcineurin dephosphorylates TFEB (transcription factor EB) to trigger its nuclear translocation and the activation of macroautophagic/autophagic targets. However, the detailed molecular mechanism regulating TFEB activation remains poorly understood. Here, we highlighted the importance of SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) in the activation of TFEB for lysosomal homeostasis. SMURF1 deficiency prevents the calcium-triggered ubiquitination of the catalytic subunit of PPP3/calcineurin in a manner consistent with defective autophagic degradation of damaged lysosomes. Mechanically, PPP3CB/CNA2 plays a bridging role in the recruitment of SMURF1 by LGALS3 (galectin 3) upon lysosome damage. Importantly, PPP3CB increases the dissociation of the N-terminal tail (NT) and C-terminal carbohydrate-recognition domain (CRD) of LGALS3, which may promote the formation of open conformers in a PPP3CB dephosphorylation activity-dependent manner. In addition, PPP3CB is ubiquitinated at lysine 146 by the recruited SMURF1 in response to intracellular calcium stimulation. The K63-linked ubiquitination of PPP3CB enhances the recruitment of TFEB. Moreover, TFEB directly interacts with both PPP3CB and the regulatory subunit PPP3R1 which facilitate the conformational correction of TFEB for its activation for the transcription of TFEB-targeted genes. Altogether, our results highlighted a critical mechanism for the regulation of PPP3/calcineurin activity via its ubiquitin ligase SMURF1 in response to lysosomal membrane damage, which may account for a potential target for the treatment of stress-related diseases.Abbreviation AID: autoinhibitory domain; ATG: autophagy related; CD: catalytic domain; CRD: carbohydrate-recognition domain; CsA: cyclosporin A; DMSO: dimethyl sulfoxide; ESCRT: endosomal sorting complexes required for transport; GSK3B: glycogen synthase kinase 3 beta; LAMP1: lysosomal associated membrane protein 1; LGALS3: galectin 3; LLOMe: L-leucyl-L-leucine methyl ester; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; ML-SA1: mucolipin synthetic agonist 1; MTORC1: mechanistic target of rapamycin kinase complex 1; NT: N-terminal tail; PPP3CB: protein phosphatase 3 catalytic subunit beta; PPP3R1: protein phosphatase 3 regulatory subunit B, alpha; SMURF1: SMAD specific E3 ubiquitin protein ligase 1; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; VCP/p97: valosin containing protein; YWHA/14-3-3: tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein.
Collapse
Affiliation(s)
- Qin Xia
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lu Zhong
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Lei Dong
- Department of General Surgery, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Hearing and Balance Science and Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Carisi MC, Shamber C, Bishop M, Sangster M, Chandrachud U, Meyerink B, Pilaz LJ, Grishchuk Y. AAV-Mediated Gene Transfer of WDR45 Corrects Neurological Deficits in the Mouse Model of Beta-Propeller Protein-Associated Neurodegeneration. Hum Gene Ther 2025. [PMID: 39978419 DOI: 10.1089/hum.2024.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
Beta-propeller protein-associated neurodegeneration (BPAN) is an ultra-rare, X-linked dominant, neurodevelopmental, and neurodegenerative disease caused by loss-of-function mutations in the WDR45 gene. It manifests in neurodevelopmental delay and seizures followed by secondary neurological decline with dystonia/parkinsonism and dementia in adolescence and early adulthood and is characterized by progressive accumulation of iron in the basal ganglia. WDR45 encodes β-propeller-shaped scaffold protein, or WD repeat domain phosphoinositide-interacting protein 4 (WIPI4), which plays an important role in autophagosome formation. While the mechanisms of how WIPI4 loss of function results in neurological decline and brain pathology have not yet been established, findings of lower autophagic activity provide a direct link between impaired autophagy and neurological disease in BPAN. Here we performed phenotypical characterization of a novel mouse model of BPAN, Wdr45_ex9+1g>a mouse. We identified hyperactive behavior and reduction of autophagy markers in brain tissue in Wdr45_ex9+1g>a hemizygous males as early as at 2 months of age. Given the early onset and spectrum of neurological symptoms such as hyper-arousal and attention deficits in human patients, this model presents a disease-relevant phenotype and can be used in preclinical studies. We used this mouse model for a proof-of-concept study to evaluate whether adeno-associated virus (AAV)-mediated central nervous system (CNS)-targeted gene transfer of WDR45 can provide therapeutic benefit and be considered a therapeutic paradigm for BPAN. We observed successful expression of human WDR45 transcripts and WIPI4 protein in the brain tissue, rescue of hyperactive behavior, and correction of autophagy markers. These data demonstrate that WDR45 gene transfer can be a promising therapeutic strategy for BPAN.
Collapse
Affiliation(s)
- Maria Carla Carisi
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Claire Shamber
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Martha Bishop
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Madison Sangster
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Uma Chandrachud
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Brandon Meyerink
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Louis Jean Pilaz
- Pediatrics and Rare Diseases Group, Sanford Research Institute, University of South Dakota, Sioux Falls, South Dakota, USA
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Henn D, Yang X, Li M. Lysosomal Quality Control. Autophagy 2025. [PMID: 39968899 DOI: 10.1080/15548627.2025.2469206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Healthy cells need functional lysosomes to degrade cargo delivered by autophagy and endocytosis. Defective lysosomes can lead to severe conditions such as lysosomal storage diseases (LSDs) and neurodegeneration. To maintain lysosome integrity and functionality, cells have evolved multiple quality control pathways corresponding to different types of stress and damage. These can be divided into five levels: regulation, reformation, repair, removal, and replacement. The different levels of lysosome quality control often work together to maintain the integrity of the lysosomal network. This review summarizes the different quality control pathways and discusses the less-studied area of lysosome membrane protein regulation and degradation, highlighting key unanswered questions in the field.
Collapse
Affiliation(s)
- Danielle Henn
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xi Yang
- Department of Biological Sciences, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Ming Li
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Chen M, Liu G, Fang Z, Gao W, Song Y, Lei L, Du X, Li X. Buddleoside alleviates nonalcoholic steatohepatitis by targeting the AMPK-TFEB signaling pathway. Autophagy 2025. [PMID: 39936600 DOI: 10.1080/15548627.2025.2466145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/13/2025] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a combination of hepatic steatosis, inflammation, and fibrosis, and it often follows simple hepatic steatosis in nonalcoholic fatty liver disease (NAFLD). However, no pharmacological treatment is currently available for NASH. Given the important role of TFEB (transcription factor EB) in regulating the macroautophagy/autophagy-lysosomal pathway, TFEB is potentially a novel therapeutic target for treatment of NASH, which function can be regulated by AMP-activated protein kinase (AMPK) and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1). Buddleoside (Bud), a natural flavonoid compound, has recently emerged as a promising drug candidate for liver diseases. Here, we shown that Bud treatment alleviated hepatic steatosis, insulin resistance, inflammation, and fibrosis in mice fed a high-fat and high-cholesterol (HFHC) diet. Notably, Bud activated AMPK, inhibited MTORC1, and enhanced TFEB transcriptional activity as well as autophagic flux in vivo and in vitro. Inhibition of AMPK or knockout of hepatic Tfeb abrogated the alleviation effects of Bud on hepatic steatosis, insulin resistance, inflammation, and fibrosis. Mechanistic investigation revealed that Bud bound to the PRKAB1 subunit via Val81, Arg83, and Ser108 residues and activated AMPK, thereby eliciting phosphorylation of RPTOR (regulatory associated protein of MTOR complex 1) and inhibiting the kinase MTORC1, which activated the TFEB-mediated autophagy-lysosomal pathway and further ameliorated HFHC-induced NASH in mice. Altogether, our results indicate that Bud ameliorates NASH by activating hepatic the AMPK-TFEB axis, suggesting that Bud is a potential therapeutic strategy for NASH.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
8
|
Xu Y, Wang Q, Wang J, Qian C, Wang Y, Lu S, Song L, He Z, Liu W, Wan W. The cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance. Immunity 2025; 58:309-325.e6. [PMID: 39689715 DOI: 10.1016/j.immuni.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/27/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024]
Abstract
Induction of autophagy is an ancient function of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway through which autophagic cargoes are delivered to lysosomes for degradation. However, whether lysosome function is also modulated by the cGAS-STING pathway remains unknown. Here, we discovered that the cGAS-STING pathway upregulated lysosomal activity by stimulating lysosome biogenesis independently of the downstream protein kinase TANK-binding kinase 1 (TBK1). STING activation enhanced lysosome biogenesis through inducing the nuclear translocation of transcription factor EB (TFEB) as well as its paralogs transcription factor E3 (TFE3) and microphthalmia-associated transcription factor (MITF). STING-induced lipidation of GABA type A receptor-associated protein (GABARAP), an autophagy-related protein, on STING vesicles was responsible for TFEB activation. Membrane-bound GABARAP sequestered the GTPase-activating protein folliculin (FLCN) and FLCN-interacting protein (FNIP) complex to block its function toward the Rag GTPases Ras-related GTP-binding C and D (RagC and RagD), abolishing mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)-dependent phosphorylation and inactivation of TFEB. Functionally, STING-induced lysosome biogenesis within cells facilitated the clearance of cytoplasmic DNA and invading pathogens. Thus, our findings reveal that induction of lysosome biogenesis is another important function of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Yinfeng Xu
- Laboratory of Basic Biology, Hunan First Normal University, Changsha 410205, Hunan, China.
| | - Qian Wang
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jun Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chuying Qian
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yusha Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Sheng Lu
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Lijiang Song
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zhengfu He
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Wei Liu
- Department of Metabolic Medicine, International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang, China.
| | - Wei Wan
- Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Kim YH, Kim JB, Bae JE, Park NY, Kim SH, Park D, So JH, Lee JM, Jeong K, Choi DK, Jo DS, Cho DH. ZLDI-8 facilitates pexophagy by ROS-mediated activation of TFEB and ATM in HeLa cells. Bioorg Med Chem Lett 2025; 120:130130. [PMID: 39923905 DOI: 10.1016/j.bmcl.2025.130130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Autophagy-mediated organelle quality control is vital for cellular homeostasis. However, the mechanisms underlying selective autophagy of peroxisomes, known as pexophagy, are less well understood than those of other organelles, such as mitochondria. In this study, we screened a phosphatase inhibitor library using a cell-based system and identified several potent pexophagy inducers, including ZLDI-8, a known inhibitor of lymphoid-specific tyrosine phosphatase. Notably, treatment with ZLDI-8 selectively induces the loss of peroxisomes without affecting other organelles, such as mitochondria, the endoplasmic reticulum, or the Golgi apparatus. The peroxisome loss induced by ZLDI-8 was significantly blocked in ATG5-knockout HeLa cells, confirming its dependence on autophagy. We further found that ZLDI-8 treatment increases both cellular and peroxisomal reactive oxygen species (ROS), which were effectively scavenged by N-acetylcysteine (NAC). The increase in peroxisomal ROS leads to the activation of ATM kinase and the dephosphorylation of TFEB. Moreover, ROS scavenging prevents all of these processes. Taken together, these findings demonstrate that ZLDI-8 induces pexophagy through a mechanism involving peroxisomal ROS-mediated activation of TFEB and ATM. This study provides valuable insights into the molecular mechanisms regulating selective peroxisome degradation and potential therapeutic strategies for targeting pexophagy.
Collapse
Affiliation(s)
- Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea; Organelle Institute, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Na Yeon Park
- Organelle Institute, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Daeun Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Jun Hee So
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Jae Man Lee
- Organelle Institute, Kyungpook National University, Daegu 41566 Republic of Korea; Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 41944 Republic of Korea
| | - Kwiwan Jeong
- Bio Industry Department, Gyeonggido Business & Science Accelerator, Suwon 16229 Republic of Korea
| | - Dong Kyu Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea
| | - Doo Sin Jo
- ORGASIS Corp. 260, Changyong-daero, Yongtong-gu, Suwon 08826 Republic of Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu 41566 Republic of Korea; Organelle Institute, Kyungpook National University, Daegu 41566 Republic of Korea; ORGASIS Corp. 260, Changyong-daero, Yongtong-gu, Suwon 08826 Republic of Korea.
| |
Collapse
|
10
|
Borbolis F, Ploumi C, Palikaras K. Calcium-mediated regulation of mitophagy: implications in neurodegenerative diseases. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:4. [PMID: 39911695 PMCID: PMC11790495 DOI: 10.1038/s44324-025-00049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Calcium signaling plays a pivotal role in diverse cellular processes through precise spatiotemporal regulation and interaction with effector proteins across distinct subcellular compartments. Mitochondria, in particular, act as central hubs for calcium buffering, orchestrating energy production, redox balance and apoptotic signaling, among others. While controlled mitochondrial calcium uptake supports ATP synthesis and metabolic regulation, excessive accumulation can trigger oxidative stress, mitochondrial membrane permeabilization, and cell death. Emerging findings underscore the intricate interplay between calcium homeostasis and mitophagy, a selective type of autophagy for mitochondria elimination. Although the literature is still emerging, this review delves into the bidirectional relationship between calcium signaling and mitophagy pathways, providing compelling mechanistic insights. Furthermore, we discuss how disruptions in calcium homeostasis impair mitophagy, contributing to mitochondrial dysfunction and the pathogenesis of common neurodegenerative diseases.
Collapse
Affiliation(s)
- Fivos Borbolis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Ploumi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Shan L, Guo P, Wen M, Sun Y, Gao F, Zhang K, Zhang N, Yang B. Knockdown of regulator of Calcineurin 2 promotes transcription factor EB-mediated lipophagy to prevent non-alcoholic fatty liver disease. Toxicol Appl Pharmacol 2025; 495:117210. [PMID: 39710154 DOI: 10.1016/j.taap.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease. The present work aimed to explore the function of regulator of Calcineurin 2 (RCAN2) in NAFLD and its related mechanisms. Mice were fed with high-fat diet (HFD) to construct NAFLD model. Adeno-associated virus injection was performed to interference with RCAN2 in mice. RCAN2 knockdown meliorated HFD-induced NAFLD and impaired glucose metabolism. Abnormal lipid metabolism and inflammation in HFD-fed mice were relieved when RCAN2 was downregulated. Besides, hepatocyte Huh-7 cells, treated with free fatty acids (oleic acid and palmitic acid), were used as NAFLD models in vitro. We found that knockdown of RCAN2 inhibited the accumulation of lipid droplets and inflammation induced by free fatty acids. RCAN2 interference increased the activity of calcineurin (CaN), which enhanced the nuclear translocation of Transcription factor EB (TFEB). Autophagosome and lysosome biogenesis was augmented, and autophagy-dependent lipid degradation (lipophagy) was promoted. Collectively, we demonstrate that RCAN2 insufficiency protects against NAFLD by promoting TFEB-mediated lipophagy.
Collapse
Affiliation(s)
- Lei Shan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Pengzhan Guo
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Mumeike Wen
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Yue Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Fei Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Kai Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Ning Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China
| | - Baoshan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
12
|
Miyano T, Suzuki A, Konta H, Sakamoto N. Hyperosmotic Stress Promotes the Nuclear Translocation of TFEB in Tubular Epithelial Cells Depending on Intracellular Ca 2+ Signals via TRPML Channels. Cell Mol Bioeng 2025; 18:39-52. [PMID: 39949488 PMCID: PMC11814421 DOI: 10.1007/s12195-024-00839-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/13/2024] [Indexed: 02/16/2025] Open
Abstract
Purpose We previously demonstrated that hyperosmotic stress, which acts as mechanical stress, induces autophagy of tubular epithelial cells. This study aims to elucidate the molecular mechanisms of hyperosmolarity-induced autophagy. The research question addresses how hyperosmotic stress activates autophagy through transcription factor EB (TFEB) and Ca2+ signaling pathways, contributing to understanding cellular responses to mechanical stress. Methods NRK-52E normal rat kidney cells were subjected to hyperosmotic stress using mannitol-containing medium. Fluorescence microscopy was utilized to observe TFEB nuclear translocation, a crucial event in autophagy regulation. An intracellular Ca2+ chelator, BAPTA-AM, and a calcineurin inhibitor were used to dissect the Ca2+ signaling pathway involved in TFEB translocation. The phosphorylation of p70S6K, a substrate of the mammalian target of rapamycin complex 1 kinase, was analyzed to explore its role in TFEB localization. Additionally, the function of transient receptor potential mucolipin 1 (TRPML1), an intracellular Ca2+ channel, was assessed using pharmacological inhibition to determine its impact on TFEB translocation and autophagy marker LC3-II levels. Results Mannitol-induced hyperosmotic stress promoted the nuclear translocation of TFEB, which was completely abolished by treatment with BAPTA-AM. Inhibition of calcineurin suppressed TFEB nuclear translocation under hyperosmolarity, indicating that a signaling pathway governed by intracellular Ca2+ is involved in TFEB's nuclear translocation. In contrast, hyperosmotic stress did not significantly alter p70S6K phosphorylation. Pharmacological inhibition of TRPML1 attenuated both TFEB nuclear translocation and LC3-II upregulation in response to hyperosmotic stress. Conclusions Hyperosmotic stress promotes TFEB nuclear localization, and TRPML1-induced activation of calcineurin is involved in the mechanism of hyperosmolarity-induced autophagy. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00839-6.
Collapse
Affiliation(s)
- Takashi Miyano
- Department of Medical and Robotic Engineering Design, Tokyo University of Science, Tokyo, Japan
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Hisaaki Konta
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
13
|
Qin XD, Liang JF, Gan LY, Peng KS, Huang XH, Li XT, Chen JL, Li W, Zhang L, Jian J, Lu J. Blockage of polycystin-2 alleviates myocardial ischemia/reperfusion injury by inhibiting autophagy through the Ca 2+/Akt/Beclin 1 pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119892. [PMID: 39689827 DOI: 10.1016/j.bbamcr.2024.119892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Autophagy is a well-conserved self-protection process that plays an important role in cardiovascular diseases. Excessive autophagy during myocardial ischemia/reperfusion injury (MIRI) induces calcium overload and the overactivation of an autophagic response, thereby aggravating cardiomyocyte damage. Polycystin-2 (PC2) is a Ca2+-permeable nonselective cation channel implicated in the regulation of autophagy. In the present study, autophagy was upregulated in myocardial ischemia/reperfusion in vivo and in vitro. PC2 knockdown using adeno-associated virus 9 particles containing Pkd2 short hairpin RNA infection markedly ameliorated MIRI, evidenced by reduced infarct size, diminished morphological changes, decreased cTnI levels, and improved cardiac function. Silencing PC2 reduced the autophagic flux in H9c2 cells. PC2 overexpression-mediated autophagic flux was inhibited by intracellular Ca2+ chelation with BAPTA-AM. Furthermore, PC2 ablation upregulated p-Akt (Ser473) and downregulated Beclin 1 in H/R. BAPTA-AM downregulated p-Akt(Ser473) and upregulated Beclin 1in PC2-overexpressing H9c2 cells. Moreover, the Akt inhibitor MK2206 abolished the BAPTA-AM-blunted PC2-dependent control of autophagy. Collectively, these results indicated that blockade of PC2 may be associated with the Ca2+/Akt/Beclin 1 signaling, thereby inhibiting excessive autophagy and serving as a potential strategy for mitigating MIRI.
Collapse
Affiliation(s)
- Xiao-Dan Qin
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian-Feng Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Chinese People's Liberation Army Joint Logistic Support Force Lushan Rehabilitation and Recuperation Center, Jiujiang 332000, China
| | - Lin-Yu Gan
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Faculty of Pharmacy, Guiping People's Hospital, Guiping 537200, China
| | - Ke-Shan Peng
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Xue-Hong Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Xiao-Ting Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Jin-Li Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Wan Li
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Lei Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Guilin Medical University, Guilin 541004, China
| | - Jie Jian
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China
| | - Jun Lu
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin 541004, China.
| |
Collapse
|
14
|
Lakkaraju A, Boya P, Csete M, Ferrington DA, Hurley JB, Sadun AA, Shang P, Sharma R, Sinha D, Ueffing M, Brockerhoff SE. How crosstalk between mitochondria, lysosomes, and other organelles can prevent or promote dry age-related macular degeneration. Exp Eye Res 2025; 251:110219. [PMID: 39716681 DOI: 10.1016/j.exer.2024.110219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024]
Abstract
Organelles such as mitochondria, lysosomes, peroxisomes, and the endoplasmic reticulum form highly dynamic cellular networks and exchange information through sites of physical contact. While each organelle performs unique functions, this inter-organelle crosstalk helps maintain cell homeostasis. Age-related macular degeneration (AMD) is a devastating blinding disease strongly associated with mitochondrial dysfunction, oxidative stress, and decreased clearance of cellular debris in the retinal pigment epithelium (RPE). However, how these occur, and how they relate to organelle function both with the RPE and potentially the photoreceptors are fundamental, unresolved questions in AMD biology. Here, we report the discussions of the "Mitochondria, Lysosomes, and other Organelle Interactions" task group of the 2024 Ryan Initiative for Macular Research (RIMR). Our group focused on understanding the interplay between cellular organelles in maintaining homeostasis in the RPE and photoreceptors, how this could be derailed to promote AMD, and identifying where these pathways could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Departments of Ophthalmology and Anatomy, School of Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Patricia Boya
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, 1700, Switzerland
| | | | - Deborah A Ferrington
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA
| | - Alfredo A Sadun
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, CA, USA; Department of Ophthalmology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marius Ueffing
- Department for Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Susan E Brockerhoff
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Dai M, Lin B, Li H, Wang Y, Wu M, Wei Y, Zeng W, Qu L, Cang C, Wang X. Lysosomal cation channel TRPML1 suppression sensitizes acute myeloid leukemia cells to chemotherapeutics by inhibiting autophagy. Mol Cell Biochem 2025; 480:1209-1224. [PMID: 38951379 DOI: 10.1007/s11010-024-05054-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024]
Abstract
Despite the implementation of novel therapeutic regimens and extensive research efforts, chemoresistance remains a formidable challenge in the treatment of acute myeloid leukemia (AML). Notably, the involvement of lysosomes in chemoresistance has sparked interest in developing lysosome-targeted therapies to sensitize tumor cells to currently approved chemotherapy or as innovative pharmacological approaches. Moreover, as ion channels on the lysosomal membrane are critical regulators of lysosomal function, they present potential as novel targets for enhancing chemosensitivity. Here, we discovered that the expression of a lysosomal cation channel, namely transient receptor potential mucolipin 1 (TRPML1), was elevated in AML cells. Inhibiting TRPML1 individually does not impact the proliferation and apoptosis of AML cells. Importantly, inhibition of TRPML1 demonstrated the potential to modulate the sensitivity of AML cells to chemotherapeutic agents. Exploration of the underlying mechanisms revealed that suppression of TRPML1 impaired autophagy while concurrently increasing the production of reactive oxygen species (ROS) and ROS-mediated lipid peroxidation (Lipid-ROS) in AML cells. Finally, the knockdown of TRPML1 significantly reduced OCI-AML3 tumor growth following chemotherapy in a mouse model of human leukemia. In summary, targeting TRPML1 represents a promising approach for combination therapy aimed at enhancing chemosensitivity in treating AML.
Collapse
Affiliation(s)
- Meifang Dai
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Bingqian Lin
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hao Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Youming Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Miaomiao Wu
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanan Wei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenping Zeng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Lili Qu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| | - Chunlei Cang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
| | - Xingbing Wang
- Department of Hematology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
16
|
Acheson J, Joanisse S, Sale C, Hodson N. Recycle, repair, recover: the role of autophagy in modulating skeletal muscle repair and post-exercise recovery. Biosci Rep 2025; 45:1-30. [PMID: 39670455 DOI: 10.1042/bsr20240137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024] Open
Abstract
Skeletal muscle is a highly plastic tissue that can adapt relatively rapidly to a range of stimuli. In response to novel mechanical loading, e.g. unaccustomed resistance exercise, myofibers are disrupted and undergo a period of ultrastructural remodeling to regain full physiological function, normally within 7 days. The mechanisms that underpin this remodeling are believed to be a combination of cellular processes including ubiquitin-proteasome/calpain-mediated degradation, immune cell infiltration, and satellite cell proliferation/differentiation. A relatively understudied system that has the potential to be a significant contributing mechanism to repair and recovery is the autophagolysosomal system, an intracellular process that degrades damaged and redundant cellular components to provide constituent metabolites for the resynthesis of new organelles and cellular structures. This review summarizes our current understanding of the autophagolysosomal system in the context of skeletal muscle repair and recovery. In addition, we also provide hypothetical models of how this system may interact with other processes involved in skeletal muscle remodeling and provide avenues for future research to improve our understanding of autophagy in human skeletal muscle.
Collapse
Affiliation(s)
- Jordan Acheson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Sophie Joanisse
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, U.K
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
| | - Nathan Hodson
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Institute of Sport, Manchester, U.K
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Park NY, Jo DS, Yang JY, Bae JE, Kim JB, Kim YH, Kim SH, Kim P, Lee DS, Yoshimori T, Jo EK, Yeom E, Cho DH. Activation of lysophagy by a TBK1-SCF FBXO3-TMEM192-TAX1BP1 axis in response to lysosomal damage. Nat Commun 2025; 16:1109. [PMID: 39875384 PMCID: PMC11775327 DOI: 10.1038/s41467-025-56294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
Lysophagy eliminates damaged lysosomes and is crucial to cellular homeostasis; however, its underlying mechanisms are not entirely understood. We screen a ubiquitination-related compound library and determine that the substrate recognition component of the SCF-type E3 ubiquitin ligase complex, SCFFBXO3(FBXO3), which is a critical lysophagy regulator. Inhibition of FBXO3 reduces lysophagy and lysophagic flux in response to L-leucyl-L-leucine methyl ester (LLOMe). Furthermore, FBXO3 interacts with TMEM192, leading to its ubiquitination in LLOMe-treated cells. We also identify TAX1BP1 as a critical autophagic adaptor that recognizes ubiquitinated TMEM192 during lysophagy and find that TBK1 activation is crucial for lysophagy, as it phosphorylates FBXO3 in response to lysosomal damage. Knockout of FBXO3 significantly impairs lysophagy, and its reconstitution with a loss-of-function mutant (V221I) further confirms its essential role in lysophagy regulation. Collectively, our findings highlight the significance of the TBK1-FBXO3-TMEM192-TAX1BP1 axis in lysophagy and emphasize the critical role of FBXO3 in lysosomal integrity.
Collapse
Affiliation(s)
- Na Yeon Park
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
- Organelle Institute, Kyungpook National University, Daegu, South Korea
| | | | - Jae-Yoon Yang
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Ji-Eun Bae
- Organelle Institute, Kyungpook National University, Daegu, South Korea
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Joon Bum Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Yong Hwan Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Seong Hyun Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | | | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Eunbyul Yeom
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- KNU G-LAMP Project Group, KNU Institute of Basic Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea.
| | - Dong-Hyung Cho
- School of Life Sciences, BK21 FOUR KNU Creative BioRearch Group, Kyungpook National University, Daegu, South Korea.
- Organelle Institute, Kyungpook National University, Daegu, South Korea.
- ORGASIS Corp. 260, Suwon, South Korea.
| |
Collapse
|
18
|
Wang Z, Zhang H. Phase-separated Condensates in Autophagosome Formation and Autophagy Regulation. J Mol Biol 2025:168964. [PMID: 39880155 DOI: 10.1016/j.jmb.2025.168964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Biomacromolecules partition into numerous types of biological condensates or membrane-less organelles via liquid-liquid phase separation (LLPS). Newly formed liquid-like condensates may further undergo phase transition to convert into other material states, such as gel or solid states. Different biological condensates possess distinct material properties to fulfil their physiological functions in diverse cellular pathways and processes. Phase separation and condensates are extensively involved in the autophagy pathway. The autophagosome formation sites in both yeast and multicellular organisms are assembled as phase-separated condensates. TORC1, one of the core regulators of the autophagy-lysosome pathway, is subject to nonconventional regulation by multiple biological condensates. TFEB, the master transcription factor of the autophagy-lysosome pathway, phase separates to assemble liquid-like condensates involved in transcription of autophagic and lysosomal genes. The behaviors and transcriptional activity of TFEB condensates are governed by their material properties, thus suggesting novel autophagy intervention strategies. The phase separation process and the resulting condensates are emerging therapeutic targets for autophagy-related diseases.
Collapse
Affiliation(s)
- Zheng Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031 PR China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 PR China.
| |
Collapse
|
19
|
Xing Y, Wang MM, Zhang F, Xin T, Wang X, Chen R, Sui Z, Dong Y, Xu D, Qian X, Lu Q, Li Q, Cai W, Hu M, Wang Y, Cao JL, Cui D, Qi J, Wang W. Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe 2+ through TRPML1 channel. Nat Commun 2025; 16:985. [PMID: 39856099 PMCID: PMC11760952 DOI: 10.1038/s41467-025-56403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe2+-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages. Mechanistically, the suppression of IL1B transcription caused by TRPML1 activation results from its modulation on the release of lysosomal Fe2+, which subsequently activates PHDs. The activated PHDs then represses transcriptional activity of NF-κB, ultimately resulting in suppressed IL1B transcription. More importantly, in vivo stimulation of TRPML1 ameliorates multiple clinical signs of Dextran sulfate sodium-induced colitis in mice, suggesting TRPML1 has potential in treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Chen
- The First People's Hospital of Yancheng, Yancheng, China
| | - Zhongheng Sui
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Yawei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxue Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyu Qian
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijie Cai
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyushu, Japan
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Derong Cui
- Department of Anesthesiology, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
20
|
Wang Z, Li X, Moura AK, Hu JZ, Wang YT, Zhang Y. Lysosome Functions in Atherosclerosis: A Potential Therapeutic Target. Cells 2025; 14:183. [PMID: 39936975 PMCID: PMC11816498 DOI: 10.3390/cells14030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Lysosomes in mammalian cells are recognized as key digestive organelles, containing a variety of hydrolytic enzymes that enable the processing of both endogenous and exogenous substrates. These organelles digest various macromolecules and recycle them through the autophagy-lysosomal system. Recent research has expanded our understanding of lysosomes, identifying them not only as centers of degradation but also as crucial regulators of nutrient sensing, immunity, secretion, and other vital cellular functions. The lysosomal pathway plays a significant role in vascular regulation and is implicated in diseases such as atherosclerosis. During atherosclerotic plaque formation, macrophages initially engulf large quantities of lipoproteins, triggering pathogenic responses that include lysosomal dysfunction, foam cell formation, and subsequent atherosclerosis development. Lysosomal dysfunction, along with the inefficient degradation of apoptotic cells and the accumulation of modified low-density lipoproteins, negatively impacts atherosclerotic lesion progression. Recent studies have highlighted that lysosomal dysfunction contributes critically to atherosclerosis in a cell- and stage-specific manner. In this review, we discuss the mechanisms of lysosomal biogenesis and its regulatory role in atherosclerotic lesions. Based on these lysosomal functions, we propose that targeting lysosomes could offer a novel therapeutic approach for atherosclerosis, shedding light on the connection between lysosomal dysfunction and disease progression while offering new insights into potential anti-atherosclerotic strategies.
Collapse
Affiliation(s)
- Zhengchao Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Alexandra K. Moura
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Jenny Z. Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA; (Z.W.); (A.K.M.); (J.Z.H.); (Y.-T.W.)
| |
Collapse
|
21
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
22
|
Shapiro IM, Risbud MV, Tang T, Landis WJ. Skeletal and dental tissue mineralization: The potential role of the endoplasmic reticulum/Golgi complex and the endolysosomal and autophagic transport systems. Bone 2025; 193:117390. [PMID: 39814250 DOI: 10.1016/j.bone.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes. The cellular level of phosphate ions in these organelles is also high (millimolar). While the source of these ions for mineral formation has not been identified, there are sound reasons for considering that they may be liberated from mitochondria during the utilization of ATP for anabolic purposes, perhaps linked to matrix synthesis. Published studies indicate that calcium and phosphate ions or their clusters contained as cargo within the intracellular organelles noted above lead to formation of extracellular mineral. The mineral sequestered in mitochondria has been documented as an amorphous calcium phosphate. The ion-, ion cluster- or mineral-containing vesicles exit the cell in plasma membrane blebs, secretory lysosomes or possibly intraluminal vesicles. Such a cell-regulated process provides a means for the rapid transport of ions or mineral particles to the mineralization front of skeletal and dental tissues. Within the extracellular matrix, the ions or mineral may associate to form larger aggregates and potential mineral nuclei, and they may bind to collagen and other proteins. How cells of hard tissues perform their housekeeping and other biosynthetic functions while transporting the very large volumes of ions required for mineralization of the extracellular matrix is far from clear. Addressing this and related questions raised in this review suggests guidelines for further investigations of the intracellular processes promoting the mineralization of the skeletal and dental tissues.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tengteng Tang
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
23
|
Kim Y, Ha TY, Lee MS, Chang KA. Regulatory Mechanisms and Therapeutic Implications of Lysosomal Dysfunction in Alzheimer's Disease. Int J Biol Sci 2025; 21:1014-1031. [PMID: 39897039 PMCID: PMC11781173 DOI: 10.7150/ijbs.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs) formed from hyperphosphorylated Tau, and widespread neuronal loss. The autophagy-lysosomal pathway plays a crucial role in maintaining cellular homeostasis by degrading and recycling of damaged organelles and aggregate amyloid proteins implicated in AD. Lysosomes are key effectors of autophagic process, responsible for the breakdown of a variety of damaged organelles and aggregate or dysfunctional proteins. This review examines the role of lysosomal dysfunction in AD pathophysiology, focusing on genetic factors, acidification abnormalities, and other contributing factors. We also explore the involvement of lysosomal dysfunction of microglia in AD pathology, and cover the role of lysosomal stress response (LSR) in cellular response to neuronal injury associated with AD. Furthermore, we discuss potential therapeutic strategies targeting lysosomal proteolysis pathway and addressing lysosomal dysfunction for AD treatment, including the pharmacologically activating lysosomal activity, regulating TFEB, and considering other emerging approaches.
Collapse
Affiliation(s)
- Yeji Kim
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
| | - Tae-Young Ha
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science & Division of Endocrinology, Department of Internal Medicine & Immunology, Soonchunhyang University College of Medicine, Cheonan 31151, Korea
- Chief Scientific Officer, LysoTech, Inc., Seoul 03766, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences & Technology, Gachon University, Incheon 21999, Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea
| |
Collapse
|
24
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
25
|
He M, Wu H, Xu T, Zhao Y, Wang Z, Liu Y. Fangchinoline eliminates intracellular Salmonella by enhancing lysosomal function via the AMPK-mTORC1-TFEB axis. J Adv Res 2025:S2090-1232(25)00034-7. [PMID: 39788287 DOI: 10.1016/j.jare.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/19/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Salmonella, a foodborne zoonotic pathogen, is a significant cause of morbidity and mortality in animals and humans globally. With the prevalence of multidrug-resistant strains, Salmonellosis has become a formidable challenge. Host-directed therapy (HDT) has recently emerged as a promising anti-infective approach for treating intracellular bacterial infections. OBJECTIVES Plant-derived natural products, owing to their structural and functional diversity, are increasingly being explored and utilized as encouraging candidates for HDT compounds. This study aims to identify and screen natural compounds with potential as HDT for the treatment of intracellular Salmonella infections. METHODS A cell-based screening approach was deployed to identify natural compounds capable of mitigating the intracellular replication of S. enterica. Safety and efficacy of the candidate compounds were evaluated using multiple animal models. RNA sequencing, ELISA, and immunoblotting analyses were conducted to elucidate the underlying mechanisms of action. RESULTS Our results reveal that fangchinoline (FAN) effectively reduces S. enterica survival both in vitro and in vivo. Meanwhile, FAN also displays anti-infective activity against other intracellular pathogens, including multidrug-resistant isolates. A 14-day safety evaluation in mice showed no significant toxic or adverse effects from FAN administration. RNA sequencing analysis reveals an upregulation of lysosome pathways in S. enterica-infected cells treated with FAN. Mechanistic studies indicate that FAN increases acid lysosomal quantities and fosters autophagic response in Salmonella-infected cells via the AMPK-mTORC1-TFEB axis. In addition, FAN alleviates the inflammatory response in Salmonella-infected cells by inactivating the NF-κB pathway. CONCLUSION Our findings suggest that FAN represents a lead HDT compound for tackling recalcitrant infections caused by intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Mengping He
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huihui Wu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yurong Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.
| |
Collapse
|
26
|
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol 2025; 224:e202403104. [PMID: 39500490 PMCID: PMC11540856 DOI: 10.1083/jcb.202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.
Collapse
Affiliation(s)
- Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Liding Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Chen CC, Hung TM, Huang YJ, Hung HS, Hu CM, Lee PH. Tacrolimus regulates extracellular vesicle secretion from T cells via autophagy-lysosomal pathway. Biomed Pharmacother 2025; 182:117765. [PMID: 39689513 DOI: 10.1016/j.biopha.2024.117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024] Open
Abstract
Extracellular vesicles (EVs) derived from T cells have been proposed to mediate intercellular communication and orchestrate immune responses. The immunosuppressive drug, tacrolimus (TAC), suppresses T cell activity; however, the impact of TAC on T cell-derived EVs remains primarily unexplored. In this study, human primary T cells purified from healthy donors were used to investigate TAC-mediated regulation of EV secretion by T cells. Using size exclusion chromatography (SEC) to isolate EVs released by T cells, we found that the number of released EVs was increased upon anti-CD3/CD28 bead-mediated activation. Furthermore, pre-treatment with TAC before activation had a potentiating effect on EV release, as evidenced by western blot analysis of EV markers and small particle flow cytometry. In addition, we showed that EVs isolated from the plasma of TAC-treated kidney transplant patients were increased compared to those observed with pre-transplant plasma. Upon examining the mechanism underlying the action of TAC, we found that TAC impaired autophagy-lysosome-mediated degradation by inhibiting the nuclear translocation of transcription factor EB, a master regulator of lysosomal biogenesis. Notably, the addition of trehalose, an autophagy inducer, abrogated the TAC-induced EV release, indicating that TAC regulated EV secretion via the autophagy-lysosomal pathway. At the functional level, we demonstrated that EVs from TAC-treated T cells carried a decreased amount of CD40L, a protein critical for the activation of the adaptive immune response. Collectively, these findings demonstrate that an overall increase in EV production and decreased CD40L levels in EVs are characteristic responses of T cells to TAC.
Collapse
Affiliation(s)
- Chien-Chia Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Tzu-Min Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| | - Yi-Jen Huang
- Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| | - Hsu-Shan Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Clementino LC, Thomas AP, Rocha EM, Hilfiker S. A role for lysosomal calcium channels in mitigating mitochondrial damage and oxidative stress. Cell Calcium 2025; 125:102986. [PMID: 39693913 DOI: 10.1016/j.ceca.2024.102986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024]
Abstract
Elevated free fatty acids and oxidative stress may function as pathogenic factors in endothelial dysfunction that is associated with various cardiovascular complications. In recent work, Feng and colleagues report that activation of a lysosomal Ca2+ channel may be a viable option to alleviate oxidative damage by boosting lysosome biogenesis and mitophagy.
Collapse
Affiliation(s)
- Leandro C Clementino
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA
| | - Andrew P Thomas
- Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, USA.
| |
Collapse
|
29
|
de Calbiac H, Imbard A, de Lonlay P. Cellular mechanisms of acute rhabdomyolysis in inherited metabolic diseases. J Inherit Metab Dis 2025; 48:e12781. [PMID: 39135340 DOI: 10.1002/jimd.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 12/28/2024]
Abstract
Acute rhabdomyolysis (RM) constitutes a life-threatening emergency resulting from the (acute) breakdown of skeletal myofibers, characterized by a plasma creatine kinase (CK) level exceeding 1000 IU/L in response to a precipitating factor. Genetic predisposition, particularly inherited metabolic diseases, often underlie RM, contributing to recurrent episodes. Both sporadic and congenital forms of RM share common triggers. Considering the skeletal muscle's urgent need to rapidly adjust to environmental cues, sustaining sufficient energy levels and functional autophagy and mitophagy processes are vital for its preservation and response to stressors. Crucially, the composition of membrane lipids, along with lipid and calcium transport, and the availability of adenosine triphosphate (ATP), influence membrane biophysical properties, membrane curvature in skeletal muscle, calcium channel signaling regulation, and determine the characteristics of autophagic organelles. Consequently, a genetic defect involving ATP depletion, aberrant calcium release, abnormal lipid metabolism and/or lipid or calcium transport, and/or impaired anterograde trafficking may disrupt autophagy resulting in RM. The complex composition of lipid membranes also alters Toll-like receptor signaling and viral replication. In response, infections, recognized triggers of RM, stimulate increased levels of inflammatory cytokines, affecting skeletal muscle integrity, energy metabolism, and cellular trafficking, while elevated temperatures can reduce the activity of thermolabile enzymes. Overall, several mechanisms can account for RMs and may be associated in the same disease-causing RM.
Collapse
Affiliation(s)
- Hortense de Calbiac
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
| | - Apolline Imbard
- Service de Biochimie, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Faculté de pharmacie, LYPSIS, Université Paris Saclay, Orsay, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| | - Pascale de Lonlay
- INSERM U1151, Institut Necker Enfants-Malades (INEM), Université Paris Cité, Paris, France
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants-Malades University Hospital, APHP, Imagine Institute, Filière G2M, MetabERN, Paris, France
| |
Collapse
|
30
|
Yan Z, Wang B, Shen Y, Ren J, Chen M, Jiang Y, Wu H, Dai W, Zhang H, Wang X, Zhang Q, Yang W, He B. Bisphosphonate-mineralized nano-IFNγ suppresses residual tumor growth caused by incomplete radiofrequency ablation through metabolically remodeling tumor-associated macrophages. Theranostics 2025; 15:1057-1076. [PMID: 39776793 PMCID: PMC11700868 DOI: 10.7150/thno.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Rationale: Radiofrequency ablation (RFA), as a minimally invasive surgery strategy based on local thermal-killing effect, is widely used in the clinical treatment of multiple solid tumors. Nevertheless, RFA cannot achieve the complete elimination of tumor lesions with larger burden or proximity to blood vessels. Incomplete RFA (iRFA) has even been validated to promote residual tumor growth due to the suppressive tumor immune microenvironment (TIME). Therefore, exploring strategies to remodel TIME is a key issue for the development of RFA therapy. Methods: The negative effect of iRFA on colorectal cancer therapy was firstly investigated. Then a zoledronate-mineralized nanoparticle loaded with IFNγ (Nano-IFNγ/Zole) was designed and its tumor suppressive efficacy was evaluated. Finally, the metabolic reprogramming mechanism of Nano-IFNγ/Zole on tumor-associated macrophages (TAMs) was studied in detail. Results: We found iRFA dynamically altered TIME and promoted TAM differentiation from M1 to M2. Nano-IFNγ/Zole was fabricated to metabolically remodel TAMs. IFNγ in Nano-IFNγ/Zole concentrated in the ablation site to play a long-term remodeling role. Acting on mevalonate pathway, Nano-IFNγ/Zole was discovered to reduce lysosomal acidification and activate transcription factor TFEB by inhibiting isoprene modification of the Rab protein family. These mechanisms, in conjunction with IFNγ-activated JAK/STAT1 signaling, accelerated the reprogramming of TAMs from M2 to M1, and suppressed tumor recurrence after iRFA. Conclusions: This study elaborates the synergistic mechanism of zoledronate and IFNγ in Nano-IFNγ/Zole to reshape suppressive TIME caused by iRFA by remodeling TAMs, and highlights the important value of metabolically induced cellular reprogramming. Since both zoledronate and IFNγ have already been approved in clinics, this integrative nano-drug delivery system establishes an effective strategy with great translational promise to overcome the poor prognosis after clinically incomplete RFA.
Collapse
Affiliation(s)
- Zhicheng Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Yuhan Shen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Junji Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yunhui Jiang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hao Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Peking University, Beijing 100142, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
31
|
Wu C, Chen Y, Chen X, Zhang Y, Zhao X, Deng Y, Li C, Zhang D, Zhang X, Wang S. 20-Deoxyingenol Activates Mitophagy Through TFEB and Promotes Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2025; 62:445-460. [PMID: 38865079 DOI: 10.1007/s12035-024-04283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Spinal cord injury (SCI) can lead to permanent paralysis and various motor, sensory and autonomic nervous system dysfunction. The complex pathophysiological processes limit the effectiveness of many clinical treatments. Mitochondria has been reported to play a key role in the pathogenesis of SCI; while mitophagy is a protective mechanism against mitochondrial dysfunction. However, there is recently little drugs that may targeted activate mitophagy to treat SCI. In this study, we evaluated the role of 20-Deoxyingenol (20-DOI) in SCI and explored its potential mechanisms. We used a SCI rat model and evaluated the functional outcomes after the injury. Western blotting and immunofluorescence techniques were used to analyze the levels of mitophagy, apoptosis, and TFEB-related signaling pathways. Our research results show that 20-DOI significantly improves the apoptosis of neural cells after TBHP stimulation and functional recovery after spinal cord injury. In addition, mitophagy, TFEB levels, and apoptosis are related to the mechanism of 20-DOI treatment for spinal cord injury. Specifically, our research results indicate that 20-DOI restored the autophagic flux after injury, thereby inducing mitophagy, eliminating the accumulation of Cyto C, and inhibiting apoptosis. Further mechanism research suggests that 20-DOI may regulate mitophagy by promoting TFEB nuclear translocation. These results indicate that 20-DOI can significantly promote recovery after spinal cord injury, which may be a promising treatment method for spinal cord injury.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Xiaoying Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yuxin Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| |
Collapse
|
32
|
Lauritzen I, Bini A, Bécot A, Gay A, Badot C, Pagnotta S, Chami M, Checler F. Presenilins as hub proteins controlling the endocytic and autophagic pathways and small extracellular vesicle secretion. J Extracell Vesicles 2025; 14:e70019. [PMID: 39815792 PMCID: PMC11735957 DOI: 10.1002/jev2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
Emerging evidence indicates that autophagy is tightly connected to the endocytic pathway. Here, we questioned the role of presenilins (PSENs 1 and 2), previously shown to be involved in autophagy regulation, in the secretion of small endocytic-originating extracellular vesicles known as exosomes. Indeed, while wild-type cells responded to stimuli promoting both multivesicular endosome (MVE) formation and secretion of small extracellular vesicles (sEVs) enriched in canonical exosomal proteins, PSEN-deficient cells were almost unaffected to these stimuli. Moreover, in PSEN-deficient cells, the re-expression of either PSEN1 or the functional active PSEN1delta9 mutant led to a rescue of most sEV secretion, while the deletion of PSEN1 alone almost fully phenocopied total PSEN invalidation. We found that the lack of sEV secretion in PSEN-deficient cells was also due to overactivated autophagy promoting MVEs to degradation rather than to plasma membrane fusion. Hence, in these cells, the autophagic blocker bafilomycin A1 (BafA1) not only increased the intracellular levels of the MVE protein CD63, but also turned on sEV secretion by stimulating autophagy-dependent unconventional secretion. In that case, sEVs arised from amphisomes and were enriched in both canonical exosomal proteins and lysosomal-autophagy-associated cargo. Altogether, we here demonstrate that PSENs, and particularly PSEN1, act as hub proteins controlling the balance between endosomal/autophagic degradation and secretion. More generally, our findings strengthen the view of a strong interconnection between the endocytic and autophagic pathways and their complementary roles in sEV secretion.
Collapse
Affiliation(s)
- Inger Lauritzen
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bini
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Anaïs Bécot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266Université de ParisParisFrance
| | - Anne‐Sophie Gay
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Céline Badot
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Sophie Pagnotta
- Microscopy center (CCMA)Valrose, Université Côte d'Azur (UniCA)NiceFrance
| | - Mounia Chami
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| | - Frédéric Checler
- IPMCUMR7275 CNRS‐UniCA, INSERM U1323, team certified “Laboratory of Excellence (LABEX) Distalz”ValbonneFrance
| |
Collapse
|
33
|
Ali A, Matveyenka M, Pickett DN, Rodriguez A, Kurouski D. Tubulin-Binding Region Modulates Cholesterol-Triggered Aggregation of Tau Proteins. J Neurochem 2025; 169:e16294. [PMID: 39777699 PMCID: PMC11731895 DOI: 10.1111/jnc.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
A hallmark of Alzheimer disease (AD) and tauopathies, severe neurodegenerative diseases, is the progressive aggregation of Tau, also known as microtubule-associated Tau protein. Full-length Tau1-441, also known as 2N4R, contains two N-terminal inserts that bind to tubulin. This facilitates the self-assembly of tubulin simultaneously enhancing stability of cell microtubules. Other Tau isoforms have one (1N4R) or zero (0N4R) N-terminal inserts, which makes 2N4R Tau more and 0N4R less effective in promoting microtubule self-assembly. A growing body of evidence indicates that lipids can alter the aggregation rate of Tau isoforms. However, the role of N-terminal inserts in Tau-lipid interactions remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which N-terminal inserts alter interactions of Tau isoforms with cholesterol, one of the most important lipids in plasma membranes. Our results showed that 2 N insert prevents amyloid-driven aggregation of Tau at the physiological concentration of cholesterol, while the absence of this N-terminal repeat (1N4R and 0N4R Tau) resulted in the self-assembly of Tau into toxic amyloid fibrils. We also found that the presence of cholesterol in the lipid bilayers caused a significant increase in the cytotoxicity of 1N4R and 0N4R Tau to neurons. This effect was not observed for 2N4R Tau fibrils formed in the presence of lipid membranes with low, physiological, and elevated concentrations of cholesterol. Using molecular assays, we found that Tau aggregates primarily exert cytotoxicity by damaging cell endosomes, endoplasmic reticulum, and mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Davis N Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
34
|
Li C, Li C, Jiang Y, Liu M, Yang C, Lu J, Jiang Y. Hypoxia-induced TPC2 transcription and glycosylation aggravates pulmonary arterial hypertension by blocking autophagy flux. Sci Rep 2024; 14:31223. [PMID: 39732974 DOI: 10.1038/s41598-024-82552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development. We established an experimental PAH rat model via monocrotaline administration. Human and rat pulmonary arterial smooth muscle cells (PASMCs) were treated hypoxia as in vitro cell PAH models. The thickness of pulmonary arterial wall and obstructive arteriopathy in rats were examined. Autophagy was detected through TEM, and Ca2+ measurement and mRFP-GFP-LC3 transfection. The expression of α-SMA, LC3, p62, TPC2, HIF1α and STT3B were analyzed by qRT-PCR, western blot or IHC staining. The binding of HIF1α to TPC2 promoter was determined by ChIP-qPCR and EMSA assays. TPC2 glycosylation was evaluated by western blot. Transwell assay was applied to analyze cell migration. TPC2 expression was promoted and autophagy was inhibited in PAH rats and hypoxia-treated PASMCs. HIF1α directly bound to the promoter of TPC2, thus transcriptionally activating its expression in PAH rats and hypoxic PASMCs. Knockdown of TPC2 facilitated autophagic flux and repressed PASMC migration. STT3B enhanced TPC2 glycosylation in hypoxic PASMCs. Furthermore, Overexpression of TPC2 suppressed autophagic flux and promoted PASMC migration, but these effects were abrogated by STT3B knockdown or PNGase F, an eraser of N-linked glycans. Suppression of TPC2 enhanced autophagy and alleviated PAH in vivo. HIF1α-induced TPC2 transcription and subsequent STT3B-dependent TPC2 glycosylation inhibit autophagic flux and aggravate PAH. Our study suggests TCP2 as a potential therapeutic target for PAH.
Collapse
Affiliation(s)
- Chao Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
| | - Cheng Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
| | - YuFei Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
- Faculty of Healthy Science, University of Macau, Macau, 999078, China
| | - MoFei Liu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
| | - ChengYi Yang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
| | - JiaXin Lu
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China
| | - YongLiang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
| |
Collapse
|
35
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
36
|
Gielecińska A, Kciuk M, Kontek R. The Impact of Calcium Overload on Cellular Processes: Exploring Calcicoptosis and Its Therapeutic Potential in Cancer. Int J Mol Sci 2024; 25:13727. [PMID: 39769488 PMCID: PMC11679949 DOI: 10.3390/ijms252413727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The key role of calcium in various physiological and pathological processes includes its involvement in various forms of regulated cell death (RCD). The concept of 'calcicoptosis' has been introduced as a calcium-induced phenomenon associated with oxidative stress and cellular damage. However, its definition remains controversial within the research community, with some considering it a general form of calcium overload stress, while others view it as a tumor-specific calcium-induced cell death. This review examines 'calcicoptosis' in the context of established RCD mechanisms such as apoptosis, necroptosis, ferroptosis, and others. It further analyzes the intricate relationship between calcium dysregulation and oxidative stress, emphasizing that while calcium overload often triggers cell death, it may not represent an entirely new type of RCD but rather an extension of known pathways. The purpose of this paper is to discuss the implications of this perspective for cancer therapy focusing on calcium-based nanoparticles. By investigating the connections between calcium dynamics and cell death pathways, this review contributes to the advancement of our understanding of calcicoptosis and its possible therapeutic uses.
Collapse
Affiliation(s)
- Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki Street 21/23, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (A.G.); (M.K.)
| |
Collapse
|
37
|
Abrahamian C, Ouologuem L, Tang R, Fröhlich T, Bartel K, Grimm C. TPC2: From Blond Hair to Melanoma? Cancers (Basel) 2024; 16:4065. [PMID: 39682251 DOI: 10.3390/cancers16234065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Two-pore channel 2 (TPC2) is expressed in endolysosomes throughout the human body, as well as in melanosomes of melanocytes. Melanocytes produce pigment, i.e., melanin, which determines hair and skin color but also protects from UV light. Extensive exposure to UV light is one of the major risk factors for the development of melanoma, which develops from pigment-producing cells, i.e., melanocytes. In recent years, several human TPC2 single nucleotide polymorphisms have been identified to increase the likelihood of carriers presenting with blond hair and hypopigmentation. These variants were all characterized as gain-of-function versions of TPC2. Vice versa, the loss of function of TPC2 increases melanin production and reduces cancer hallmarks such as proliferation, migration, invasion, tumor growth, and metastasis formation. The activity of TPC2 is controlled in a complex manner, with several endogenous ligands as well as a number of interacting proteins being involved. We will discuss here the role of TPC2 in pigmentation and its potential to impact melanoma development and progression and highlight recent findings on Rab7a as an enhancer of TPC2 activity.
Collapse
Affiliation(s)
- Carla Abrahamian
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, 80336 Munich, Germany
| | - Lina Ouologuem
- Department of Pharmacy, Ludwig Maximilians University, 80539 Munich, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, 80336 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig Maximilians University, 80539 Munich, Germany
| | - Karin Bartel
- Department of Pharmacy, Ludwig Maximilians University, 80539 Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig Maximilians University, 80336 Munich, Germany
- Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 80333 Munich, Germany
| |
Collapse
|
38
|
Tedeschi V, Nele V, Valsecchi V, Anzilotti S, Vinciguerra A, Zucaro L, Sisalli MJ, Cassiano C, De Iesu N, Pignataro G, Canzoniero LMT, Pannaccione A, De Rosa G, Secondo A. Nanoparticles encapsulating phosphatidylinositol derivatives promote neuroprotection and functional improvement in preclinical models of ALS via a long-lasting activation of TRPML1 lysosomal channel. Pharmacol Res 2024; 210:107491. [PMID: 39491634 DOI: 10.1016/j.phrs.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease currently incurable, in which motor neuron degeneration leads to voluntary skeletal muscle atrophy. Molecularly, ALS is characterized by protein aggregation, synaptic and organellar dysfunction, and Ca2+ dyshomeostasis. Of interest, autophagy dysfunction is emerging as one of the main putative targets of ALS therapy. A tune regulation of this cleansing process is affordable by a proper stimulation of TRPML1, one of the main lysosomal channels. However, TRPML1 activation by PI(3,5)P2 has low open probability to remain in an active conformation. To overcome this drawback we developed a lipid-based formulation of PI(3,5)P2 whose putative therapeutic potential has been tested in in vitro and in vivo ALS models. Pharmacodynamic properties of PI(3,5)P2 lipid-based formulations (F1 and F2) on TRPML1 activity have been characterized by means of patch-clamp electrophysiology and Fura-2AM video-imaging in motor neuronal cells. Once selected for the ability to stabilize TRPML1 activity, the most effective preparation F1 was studied in vivo to measure neuromuscular function and survival of SOD1G93A ALS mice, thereby establishing its therapeutic profile. F1, but not PI(3,5)P2 alone, stabilized the open state of the lysosomal channel TRPML1 and increased the persistence of intracellular calcium concentration ([Ca2+]i). Then, F1 was effective in delaying motor neuron loss, improving innervated endplants and muscle performance in SOD1G93A mice, extending overall lifespan by an average of 10 days. Of note F1 prevented gliosis and autophagy dysfunction in ALS mice by restoring PI(3,5)P2 level. Our novel self-assembling lipidic formulation for PI(3,5)P2 delivery exerts a neuroprotective effect in preclinical models of ALS mainly regulating dysfunctional autophagy through TRPML1 activity stabilization.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Serenella Anzilotti
- Department of Science and Technology-DST, University of Sannio, Via Port'Arsa 11, Benevento 82100, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy
| | - Laura Zucaro
- Biogem Scarl, Istituto di Ricerche Genetiche, Ariano Irpino, AV, Italy; Department of Translational Medical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Josè Sisalli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy.
| | - Agnese Secondo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy.
| |
Collapse
|
39
|
A Avelar R, Gupta R, Carvette G, da Veiga Leprevost F, Jasti M, Colina J, Teitel J, Nesvizhskii AI, O'Connor CM, Hatzoglou M, Shenolikar S, Arvan P, Narla G, DiFeo A. Integrated stress response plasticity governs normal cell adaptation to chronic stress via the PP2A-TFE3-ATF4 pathway. Cell Death Differ 2024; 31:1761-1775. [PMID: 39349971 PMCID: PMC11618521 DOI: 10.1038/s41418-024-01378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024] Open
Abstract
The integrated stress response (ISR) regulates cell fate during conditions of stress by leveraging the cell's capacity to endure sustainable and efficient adaptive stress responses. Protein phosphatase 2A (PP2A) activity modulation has been shown to be successful in achieving both therapeutic efficacy and safety across various cancer models. However, the molecular mechanisms driving its selective antitumor effects remain unclear. Here, we show for the first time that ISR plasticity relies on PP2A activation to regulate drug response and dictate cellular survival under conditions of chronic stress. We demonstrate that genetic and chemical modulation of the PP2A leads to chronic proteolytic stress and triggers an ISR to dictate whether the cell lives or dies. More specifically, we uncovered that the PP2A-TFE3-ATF4 pathway governs ISR cell plasticity during endoplasmic reticular and cellular stress independent of the unfolded protein response. We further show that normal cells reprogram their genetic signatures to undergo ISR-mediated adaptation and homeostatic recovery thereby avoiding toxicity following PP2A-mediated stress. Conversely, oncogenic specific cytotoxicity induced by chemical modulation of PP2A is achieved by activating chronic and irreversible ISR in cancer cells. Our findings propose that a differential response to chemical modulation of PP2A is determined by intrinsic ISR plasticity, providing a novel biological vulnerability to selectively induce cancer cell death and improve targeted therapeutic efficacy.
Collapse
Affiliation(s)
- Rita A Avelar
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Riya Gupta
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Grace Carvette
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | | | - Medhasri Jasti
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Jessica Teitel
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Caitlin M O'Connor
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Shirish Shenolikar
- Duke-NUS Medical School, Singapore, Singapore
- Duke University School of Medicine, Durham, NC, USA
| | - Peter Arvan
- Division of Metabolism Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Goutham Narla
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, The University of Michigan, Ann Arbor, MI, USA.
- Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
40
|
Zhang H, Wang Y, Wang R, Zhang X, Chen H. TRPML1 agonist ML-SA5 mitigates uranium-induced nephrotoxicity via promoting lysosomal exocytosis. Biomed Pharmacother 2024; 181:117728. [PMID: 39647321 DOI: 10.1016/j.biopha.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Uranium (U) released from U mining and spent nuclear fuel reprocessing in the nuclear industry, nuclear accidents and military activities as a primary environmental pollutant (e.g., drinking water pollution) is a threat to human health. Kidney is one of the main target organs for U accumulation, leading to nephrotoxicity mainly associated with the injuries in proximal tubular epithelial cells (PTECs). Transient receptor potential mucolipin 1 (TRPML1) is a novel therapeutic target for nephrotoxicity caused by acute or chronic U poisoning. We herein investigate the therapeutic efficacy of ML-SA5, a small molecule agonist of TRPML1, in U-induced nephrotoxicity in acute U intoxicated mice. We demonstrate that delayed treatment with ML-SA5 enhances U clearance from the kidneys via urine excretion by activating lysosomal exocytosis, and thereby attenuates U-induced kidney dysfunction and cell death/apoptosis of renal PTECs in acute U intoxicated mice. In addition, ML-SA5 promotes the nuclear translocation of transcription factor EB (TFEB) in renal PTECs in acute U intoxicated mice. Mechanistically, ML-SA5 triggers the TRPML1-mediated lysosomal calcium release and consequently induces TFEB activation in U-loaded renal PTECs-derived HK-2 cells. Moreover, knockdown of TRPML1 or TFEB abolishes the effects of ML-SA5 on the removal of intracellular U and reduction of the cellular injury/death in U-loaded HK-2 cells. Our findings indicate that pharmacological activation of TRPML1 is a promising therapeutic approach for the delayed treatment of U-induced nephrotoxicity via the activation of the positive feedback loop of TRPML1 and TFEB and consequent the induction of lysosomal exocytosis.
Collapse
Affiliation(s)
- Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Yifei Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China.
| |
Collapse
|
41
|
Kim YJ, Lee SG, Park SY, Jeon SM, Kim SI, Kim KT, Roh T, Lee SH, Lee MJ, Lee J, Kim HJ, Lee SE, Kim JK, Heo JY, Kim IS, Park C, Paik S, Jo EK. Ubiquitin regulatory X (UBX) domain-containing protein 6 is essential for autophagy induction and inflammation control in macrophages. Cell Mol Immunol 2024; 21:1441-1458. [PMID: 39438692 DOI: 10.1038/s41423-024-01222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Ubiquitin regulatory X (UBX) domain-containing protein 6 (UBXN6) is an essential cofactor for the activity of the valosin-containing protein p97, an adenosine triphosphatase associated with diverse cellular activities. Nonetheless, its role in cells of the innate immune system remains largely unexplored. In this study, we report that UBXN6 is upregulated in humans with sepsis and may serve as a pivotal regulator of inflammatory responses via the activation of autophagy. Notably, the upregulation of UBXN6 in sepsis patients was negatively correlated with inflammatory gene profiles but positively correlated with the expression of Forkhead box O3, an autophagy-driving transcription factor. Compared with those of control mice, the macrophages of mice subjected to myeloid cell-specific UBXN6 depletion exhibited exacerbated inflammation, increased mitochondrial oxidative stress, and greater impairment of autophagy and endoplasmic reticulum-associated degradation pathways. UBXN6-deficient macrophages also exhibited immunometabolic remodeling, characterized by a shift to aerobic glycolysis and elevated levels of branched-chain amino acids. These metabolic shifts amplify mammalian target of rapamycin pathway signaling, in turn reducing the nuclear translocation of the transcription factor EB and impairing lysosomal biogenesis. Together, these data reveal that UBXN6 serves as an activator of autophagy and regulates inflammation to maintain immune system suppression during human sepsis.
Collapse
Affiliation(s)
- Young Jae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym Medical Center, Seoul, 05355, Republic of Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Soo In Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyung Tae Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, Chungbuk, 28199, Republic of Korea
| | - Min Joung Lee
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jinyoung Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyeon Ji Kim
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - So Eui Lee
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, 42601, Republic of Korea
| | - Jun Young Heo
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
42
|
Peng T, Xie Y, Zhao S, Wang X, Zhang W, Xie Y, Wang C, Xie N. TRPML1 ameliorates seizures-related neuronal injury by regulating autophagy and lysosomal biogenesis via Ca 2+/TFEB signaling pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167477. [PMID: 39173889 DOI: 10.1016/j.bbadis.2024.167477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Alterations in autophagy have been observed in epilepsy, although their exact etiopathogenesis remains elusive. Transient Receptor Potential Mucolipin Protein 1 (TRPML1) is an ion channel protein that regulates autophagy and lysosome biogenesis. To explore the role of TRPML1 in seizures-induced neuronal injury and the potential mechanisms involved, an hyperexcitable neuronal model induced by Mg2+-free solution was used for the study. Our results revealed that TRPML1 expression was upregulated after seizures, which was accompanied by intracellular ROS accumulation, mitochondrial damage, and neuronal apoptosis. Activation of TRPML1 by ML-SA1 diminished intracellular ROS, restored mitochondrial function, and subsequently alleviated neuronal apoptosis. Conversely, inhibition of TRPML1 had the opposite effect. Further examination revealed that the accumulation of ROS and damaged mitochondria was associated with interrupted mitophagy flux and enlarged defective lysosomes, which were attenuated by TRPML1 activation. Mechanistically, TRPML1 activation allows more Ca2+ to permeate from the lysosome into the cytoplasm, resulting in the dephosphorylation of TFEB and its nuclear translocation. This process further enhances autophagy initiation and lysosomal biogenesis. Additionally, the expression of TRPML1 is positively regulated by WTAP-mediated m6A modification. Our findings highlighted crucial roles of TRPML1 and autophagy in seizures-induced neuronal injury, which provides a new target for epilepsy treatment.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Senfeng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China; Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China
| | - Xiaoyi Wang
- Institutes of Biological and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu Province, PR China
| | - Wanwan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China
| | - Cui Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Key Clinical Laboratory of Henan Province, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
43
|
Lin Y, Zhang Y, Li Y, Xu Q, Zhang Y, Chen T, Wang J, Li J, Gong J, Chen Z, Yang Q, Li X. EGCG suppressed activation of hepatic stellate cells by regulating the PLCE1/IP 3/Ca 2+ pathway. Eur J Nutr 2024; 63:3255-3268. [PMID: 39325099 DOI: 10.1007/s00394-024-03504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), one of the green tea catechins, exhibits significant antioxidant properties that play an essential role in various diseases. However, the functional role and underlying mechanism of EGCG in stimulating of hepatic stellate cells (HSCs) remain unexplored in transcriptomics sequencing studies. The present study suggests that oral administration of EGCG at a dosage of 200 mg/kg/day for a duration of four weeks exhibits significant therapeutic potential in a murine model of liver fibrosis induced by CCl4. The activation of HSCs in vitro was dose-dependently inhibited by EGCG. The sequencing analysis data reveled that EGCG exerted a regulatory effect on the calcium signal in mouse HSCs, resulting in a decrease in calcium ion concentration. Further analysis revealed that EGCG inhibited the expression of phospholipase C epsilon-1 (PLCE1) and inositol 1, 4, 5-trisphosphate (IP3) in activated mouse HSCs. Additionally, EGCG contributes to the reduction the concentration of calcium ions by regulating PLCE1. After the knockdown of PLCE1, free calcium ion concentrations decreased, resulting in the inhibition of both cell proliferation and migration. Interestingly, the expression of PLCE1 and cytosolic calcium levels were regulated by reactive oxygen species(ROS). Furthermore, our findings suggest that ROS might inhibit the expression of PLCE1 by inhibiting TFEB, a transcription activator involved in the nuclear translocation process. Our study provided novel evidence regarding the regulatory effects of EGCG on activated HSCs (aHSCs) in mice by the calcium signaling pathway, emphasizing the crucial role of PLCE1 within the calcium signaling network of HSCs. The proposition was also made that PLCE1 holds promise as a novel therapeutic target for murine liver fibrosis.
Collapse
Affiliation(s)
- Ying Lin
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yan Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qihan Xu
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijie Zhang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Wang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jierui Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiacheng Gong
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhuoer Chen
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiaomu Yang
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, No. 1838, North of Guangzhou Avenue, Guangzhou City, Guangdong Province, 510515, China.
| |
Collapse
|
44
|
Duran J, Salinas JE, Wheaton RP, Poolsup S, Allers L, Rosas-Lemus M, Chen L, Cheng Q, Pu J, Salemi M, Phinney B, Ivanov P, Lystad AH, Bhaskar K, Rajaiya J, Perkins DJ, Jia J. Calcium signaling from damaged lysosomes induces cytoprotective stress granules. EMBO J 2024; 43:6410-6443. [PMID: 39533058 PMCID: PMC11649789 DOI: 10.1038/s44318-024-00292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/18/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Lysosomal damage induces stress granule (SG) formation. However, the importance of SGs in determining cell fate and the precise mechanisms that mediate SG formation in response to lysosomal damage remain unclear. Here, we describe a novel calcium-dependent pathway controlling SG formation, which promotes cell survival during lysosomal damage. Mechanistically, the calcium-activated protein ALIX transduces lysosomal damage signals to SG formation by controlling eIF2α phosphorylation after sensing calcium leakage. ALIX enhances eIF2α phosphorylation by promoting the association between PKR and its activator PACT, with galectin-3 inhibiting this interaction; these regulatory events occur on damaged lysosomes. We further find that SG formation plays a crucial role in promoting cell survival upon lysosomal damage caused by factors such as SARS-CoV-2ORF3a, adenovirus, malarial pigment, proteopathic tau, or environmental hazards. Collectively, these data provide insights into the mechanism of SG formation upon lysosomal damage and implicate it in diseases associated with damaged lysosomes and SGs.
Collapse
Affiliation(s)
- Jacob Duran
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Jay E Salinas
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Rui Ping Wheaton
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Suttinee Poolsup
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Monica Rosas-Lemus
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Li Chen
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Qiuying Cheng
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Michelle Salemi
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Brett Phinney
- Proteomics Core Facility, University of California Davis Genome Center, University of California, Davis, CA, 95616, USA
| | - Pavel Ivanov
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School; HMS Initiative for RNA Medicine, Boston, MA, 02115, USA
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kiran Bhaskar
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jaya Rajaiya
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA
| | - Jingyue Jia
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87106, USA.
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, Albuquerque, NM, 87106, USA.
| |
Collapse
|
45
|
Yang Y, Li Y, Shang H, Liu Y, Li W, Chen L, Cheng N, Zhang Y, Zhang N, Yin Y, Tong L, Li Z, Yang J, Luo J. An artificial peptide inhibits autophagy through calcineurin-TFEB pathway. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119853. [PMID: 39353470 DOI: 10.1016/j.bbamcr.2024.119853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
We previously reported that a bioactive peptide (pep3) can potently inhibit the enzyme activity of purified calcineurin (CN). In this paper, we further demonstrate that transfected pep3 can strongly inhibit CN enzyme activity in HEK293 cells. Transcription factor EB (TFEB) plays an important role in the autophagy-lysosome pathway (ALP) as one of the substrates of CN, so we study the effect of pep3 on the CN-TFEB-ALP pathway. Pep3 can significantly inhibit the mRNA levels of the TFEB downstream genes and the expression of the autophagy-associated proteins, and autophagy flux in HEK293 cells. We also validated the inhibitory effect of pep3 on autophagy in mice. These findings may provide a new idea for discovering more CN inhibitors and autophagy inhibitory drugs.
Collapse
Affiliation(s)
- Yumeng Yang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanan Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hanxiao Shang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 111016, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China
| | - Wenying Li
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Limin Chen
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Na Cheng
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuchen Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanxia Yin
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Li Tong
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 111016, China.
| | - Jing Luo
- Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
46
|
Yang M, Zhou J, Lu L, Deng D, Huang J, Tang Z, Shi X, Lo P, Lovell JF, Zheng Y, Jin H. Tumor cell membrane-based vaccines: A potential boost for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230171. [PMID: 39713208 PMCID: PMC11655317 DOI: 10.1002/exp.20230171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 12/24/2024]
Abstract
Because therapeutic cancer vaccines can, in theory, eliminate tumor cells specifically with relatively low toxicity, they have long been considered for application in repressing cancer progression. Traditional cancer vaccines containing a single or a few discrete tumor epitopes have failed in the clinic, possibly due to challenges in epitope selection, target downregulation, cancer cell heterogeneity, tumor microenvironment immunosuppression, or a lack of vaccine immunogenicity. Whole cancer cell or cancer membrane vaccines, which provide a rich source of antigens, are emerging as viable alternatives. Autologous and allogenic cellular cancer vaccines have been evaluated as clinical treatments. Tumor cell membranes (TCMs) are an intriguing antigen source, as they provide membrane-accessible targets and, at the same time, serve as integrated carriers of vaccine adjuvants and other therapeutic agents. This review provides a summary of the properties and technologies for TCM cancer vaccines. Characteristics, categories, mechanisms, and preparation methods are discussed, as are the demonstrable additional benefits derived from combining TCM vaccines with chemotherapy, sonodynamic therapy, phototherapy, and oncolytic viruses. Further research in chemistry, biomedicine, cancer immunology, and bioinformatics to address current drawbacks could facilitate the clinical adoption of TCM vaccines.
Collapse
Affiliation(s)
- Muyang Yang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jie Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Liseng Lu
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deqiang Deng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zijian Tang
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Pui‐Chi Lo
- Department of Biomedical SciencesCity University of Hong KongKowloonHong KongChina
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNew YorkUSA
| | - Yongfa Zheng
- Department of OncologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
47
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
48
|
Sun J, Lin W, Hao X, Baudry M, Bi X. LAMTOR1 regulates dendritic lysosomal positioning in hippocampal neurons through TRPML1 inhibition. Front Cell Neurosci 2024; 18:1495546. [PMID: 39650798 PMCID: PMC11621854 DOI: 10.3389/fncel.2024.1495546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024] Open
Abstract
Intracellular lysosomal trafficking and positioning are fundamental cellular processes critical for proper neuronal function. Among the diverse array of proteins involved in regulating lysosomal positioning, the Transient Receptor Potential Mucolipin 1 (TRPML1) and the Ragulator complex have emerged as central players. TRPML1, a lysosomal cation channel, has been implicated in lysosomal biogenesis, endosomal/lysosomal trafficking including in neuronal dendrites, and autophagy. LAMTOR1, a subunit of the Ragulator complex, also participates in the regulation of lysosomal trafficking. Here we report that LAMTOR1 regulates lysosomal positioning in dendrites of hippocampal neurons by interacting with TRPML1. LAMTOR1 knockdown (KD) increased lysosomal accumulation in proximal dendrites of cultured hippocampal neurons, an effect reversed by TRPML1 KD or inhibition. On the other hand, TRPML1 activation with ML-SA1 or prevention of TRPML1 interaction with LAMTOR1 using a TAT-decoy peptide induced dendritic lysosomal accumulation. LAMTOR1 KD-induced proximal dendritic lysosomal accumulation was blocked by the dynein inhibitor, ciliobrevin D, suggesting the involvement of a dynein-mediated transport. These results indicate that LAMTOR1-mediated inhibition of TRPML1 is critical for normal dendritic lysosomal distribution and that release of this inhibition or direct activation of TRPML1 results in abnormal dendritic lysosomal accumulation. The roles of LAMTOR1-TRPML1 interactions in lysosomal trafficking and positioning could have broad implications for understanding cognitive disorders associated with lysosomal pathology and calcium dysregulation.
Collapse
Affiliation(s)
- Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Weiju Lin
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Hao
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| | - Michel Baudry
- College of Dental Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
49
|
Moradi N, Sanfrancesco VC, Champsi S, Hood DA. Regulation of lysosomes in skeletal muscle during exercise, disuse and aging. Free Radic Biol Med 2024; 225:323-332. [PMID: 39332541 DOI: 10.1016/j.freeradbiomed.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Lysosomes play a critical role as a terminal organelle in autophagy flux and in regulating protein degradation, but their function and adaptability in skeletal muscle is understudied. Lysosome functions include both housekeeping and signaling functions essential for cellular homeostasis. This review focuses on the regulation of lysosomes in skeletal muscle during exercise, disuse, and aging, with a consideration of sex differences as well as the role of lysosomes in mediating the degradation of mitochondria, termed mitophagy. Exercise enhances mitophagy during elevated mitochondrial stress and energy demand. A critical response to this deviation from homeostasis is the activation of transcription factors TFEB and TFE3, which drive the expression of lysosomal and autophagic genes. Conversely, during muscle disuse, the suppression of lysosomal activity contributes to the accumulation of defective mitochondria and other cellular debris, impairing muscle function. Aging further exacerbates these effects by diminishing lysosomal efficacy, leading to the accumulation of damaged cellular components. mTORC1, a key nutrient sensor, modulates lysosomal activity by inhibiting TFEB/TFE3 translocation to the nucleus under nutrient-rich conditions, thereby suppressing autophagy. During nutrient deprivation or exercise, AMPK activation inhibits mTORC1, facilitating TFEB/TFE3 nuclear translocation and promoting lysosomal biogenesis and autophagy. TRPML1 activation by mitochondrial ROS enhances lysosomal calcium release, which is essential for autophagy and maintaining mitochondrial quality. Overall, the intricate regulation of lysosomal functions and signaling pathways in skeletal muscle is crucial for adaptation to physiological demands, and disruptions in these processes during disuse and aging underscore the ubiquitous power of exercise-induced adaptations, and also highlight the potential for targeted therapeutic interventions to preserve muscle health.
Collapse
Affiliation(s)
- N Moradi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - V C Sanfrancesco
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - S Champsi
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - D A Hood
- Muscle Health Research Centre, Kinesiology and Health Science, York University, Toronto, ON, Canada.
| |
Collapse
|
50
|
Cunha MR, Do Amaral BS, Takarada JE, Valderrama GV, Batista ANL, Batista JM, Cass QB, Couñago RM, Massirer KB. (S)-ML-SA1 Activates Autophagy via TRPML1-TFEB Pathway. Chembiochem 2024; 25:e202400506. [PMID: 38923811 DOI: 10.1002/cbic.202400506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Bruno S Do Amaral
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Federal Institute of Education, Science and Technology of São Paulo, Av. Mutinga 951, São Paulo, 05110-000, Brazil
| | - Jéssica E Takarada
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Gabriel V Valderrama
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| | - Andrea N L Batista
- Chemistry Institute, Fluminense Federal University, Outeiro de São João Batista s/n, Niterói, 24020-141, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, Talim Street 330, São José dos Campos, 12231-280, Brazil
| | - Quezia B Cass
- SEPARARE-Chromatography Research Center, Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz, s/n Km 235, São Carlos, 13565-095, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Pharmacy Lane 301, North Carolina, 27599, United States
| | - Katlin B Massirer
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, Universidade Estadual de Campinas, Av. Dr. André Tosello 550, Campinas, 13083-886, Brazil
| |
Collapse
|