1
|
Montoya S, Bourcier J, Noviski M, Lu H, Thompson MC, Chirino A, Jahn J, Sondhi AK, Gajewski S, Tan YS(M, Yung S, Urban A, Wang E, Han C, Mi X, Kim WJ, Sievers Q, Auger P, Bousquet H, Brathaban N, Bravo B, Gessner M, Guiducci C, Iuliano JN, Kane T, Mukerji R, Reddy PJ, Powers J, Sanchez Garcia de los Rios M, Ye J, Risso CB, Tsai D, Pardo G, Notti RQ, Pardo A, After M, Nawaratne V, Totiger TM, Pena-Velasquez C, Rhodes JM, Zelenetz AD, Alencar A, Roeker LE, Mehta S, Garippa R, Linley A, Soni RK, Skånland SS, Brown RJ, Mato AR, Hansen GM, Abdel-Wahab O, Taylor J. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 2024; 383:eadi5798. [PMID: 38301010 PMCID: PMC11103405 DOI: 10.1126/science.adi5798] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 12/08/2023] [Indexed: 02/03/2024]
Abstract
Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.
Collapse
Affiliation(s)
- Skye Montoya
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jessie Bourcier
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hao Lu
- Nurix Therapeutics, San Francisco, CA, USA
| | - Meghan C. Thompson
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Chirino
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jacob Jahn
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K. Sondhi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | - Aleksandra Urban
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Xiaoli Mi
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Quinlan Sievers
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Auger
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | | | | | - Tim Kane
- Nurix Therapeutics, San Francisco, CA, USA
| | | | | | | | | | - Jordan Ye
- Nurix Therapeutics, San Francisco, CA, USA
| | - Carla Barrientos Risso
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Tsai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gabriel Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ryan Q. Notti
- Laboratory of Molecular Electron Microscopy, Rockefeller University, New York, NY, USA
| | - Alejandro Pardo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maurizio After
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vindhya Nawaratne
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tulasigeri M. Totiger
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Camila Pena-Velasquez
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joanna M. Rhodes
- division of Hematology-Oncology, Department of Medicine at Zucker School of Medicine at Hofstra/Northwell, CLL Research and Treatment Center, Lake Success, NY, USA
| | - Andrew D. Zelenetz
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alvaro Alencar
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lindsey E. Roeker
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Institute and Cancer Center, New York, NY, USA
| | - Adam Linley
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Sigrid S. Skånland
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Anthony R. Mato
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Jain V, Giménez-Arnau A, Hayama K, Reich A, Carr W, Tillinghast J, Dahale S, Lheritier K, Walsh P, Zharkov A, Hugot S, Haemmerle S. Remibrutinib demonstrates favorable safety profile and sustained efficacy in chronic spontaneous urticaria over 52 weeks. J Allergy Clin Immunol 2024; 153:479-486.e4. [PMID: 37866460 DOI: 10.1016/j.jaci.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Remibrutinib (LOU064), an oral, highly selective Bruton tyrosine kinase inhibitor, offers fast disease control in patients with chronic spontaneous urticaria (CSU) who remain symptomatic despite treatment with second-generation H1 antihistamines. It is currently in phase 3 development for CSU. OBJECTIVE We sought to evaluate long-term safety and efficacy of remibrutinib in patients with CSU inadequately controlled with H1 antihistamines. METHODS In this phase 2b extension study, patients who completed the core study and had a weekly Urticaria Activity Score (UAS7) ≥16 at the beginning of the extension study received remibrutinib 100 mg twice daily for 52 weeks. The primary objective was to assess long-term safety and tolerability. Key efficacy end points included change from baseline in UAS7 and proportion of patients with complete response to treatment (UAS7 = 0) and well-controlled disease (UAS7 ≤6) at week 4 and over 52 weeks. RESULTS Overall, 84.3% (194/230) of patients entered the treatment period and received ≥1 doses of remibrutinib. The overall safety profile of remibrutinib was comparable between the extension and core studies. Most treatment-emergent adverse events were mild to moderate and considered unrelated to remibrutinib by investigators. The 3 most common treatment-emergent adverse events by system organ class were infections (30.9%), skin and subcutaneous tissue (26.8%), and gastrointestinal disorders (16.5%). At week 4 and 52, mean ± SD change from baseline in UAS7 was -17.6 ± 13.40 and -21.8 ± 10.70; UAS7 = 0 (as observed) was achieved in 28.2% and 55.8% and UAS7 ≤6 (as observed) was achieved in 52.7% and 68.0% of patients, respectively. CONCLUSIONS Remibrutinib demonstrated a consistent favorable safety profile with fast and sustained efficacy for up to 52 weeks in patients with CSU.
Collapse
Affiliation(s)
- Vipul Jain
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Ana Giménez-Arnau
- Department of Dermatology, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Barcelona, Spain
| | - Koremasa Hayama
- Department of Dermatology, Nihon University Itabashi Hospital, Tokyo, Japan
| | - Adam Reich
- Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszów University, Rzeszów, Poland
| | - Warner Carr
- Allergy and Asthma Associates of Southern California, and Southern California Research, Mission Viejo
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Abdellateif MS, Bayoumi AK, Mohammed MA. c-Kit Receptors as a Therapeutic Target in Cancer: Current Insights. Onco Targets Ther 2023; 16:785-799. [PMID: 37790582 PMCID: PMC10544070 DOI: 10.2147/ott.s404648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
c-Kit is a type III receptor tyrosine kinase (RTK) that has an essential role in various biological functions including gametogenesis, melanogenesis, hematopoiesis, cell survival, and apoptosis. c-KIT aberrations, either overexpression or loss-of-function mutations, have been implicated in the pathogenesis and development of many cancers, including gastrointestinal stromal tumors, mastocytosis, acute myeloid leukemia, breast, thyroid, and colorectal cancer, making c-KIT an attractive molecular target for the treatment of cancers. Therefore, a lot of effort has been put into investigating the utility of tyrosine kinase inhibitors for the management of c-KIT mutated tumors. This review of the literature illustrates the role of c-KIT mutations in many cancers, aiming to provide insights into the role of TKIs as a therapeutic option for cancer patients with c-KIT aberrations. In conclusion, c-KIT is implicated in different types of cancer, and it could be a successful molecular target; however, proper detection of the underlying mutation type is required before starting the appropriate personalized therapy.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Ahmed K Bayoumi
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
- Children’s Cancer Hospital 57357, Cairo, 11617, Egypt
| | - Mohammed Aly Mohammed
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| |
Collapse
|
4
|
Lu T, Li T, Wu MK, Zheng CC, He XM, Zhu HL, Li L, Man RJ. Molecular simulations required to target novel and potent inhibitors of cancer invasion. Expert Opin Drug Discov 2023; 18:1367-1377. [PMID: 37676052 DOI: 10.1080/17460441.2023.2254695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
INTRODUCTION Computer-aided drug design (CADD) is a computational approach used to discover, develop, and analyze drugs and active molecules with similar biochemical properties. Molecular simulation technology has significantly accelerated drug research and reduced manufacturing costs. It is an optimized drug discovery method that greatly improves the efficiency of novel drug development processes. AREASCOVERED This review discusses the development of molecular simulations of effective cancer inhibitors and traces the main outcomes of in silico studies by introducing representative categories of six important anticancer targets. The authors provide views on this topic from the perspective of both medicinal chemistry and artificial intelligence, indicating the major challenges and predicting trends. EXPERT OPINION The goal of introducing CADD into cancer treatment is to realize a highly efficient, accurate, and desired approach with a high success rate for identifying potent drug candidates. However, the major challenge is the lack of a sophisticated data-filtering mechanism to verify bottom data from mixed-quality references. Consequently, despite the continuous development of algorithms, computer power, and interface optimization, specific data filtering mechanisms will become an urgent and crucial issue in the future.
Collapse
Affiliation(s)
| | - Tong Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Meng-Ke Wu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Chi-Chong Zheng
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| | - Xue-Mei He
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Li
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Science, Nanning, China
| | - Ruo-Jun Man
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning, China
| |
Collapse
|
5
|
Wallace DJ, Dörner T, Pisetsky DS, Sanchez‐Guerrero J, Patel AC, Parsons‐Rich D, Le Bolay C, Drouin EE, Kao AH, Guehring H, Dall'Era M. Efficacy and Safety of the Bruton's Tyrosine Kinase Inhibitor Evobrutinib in Systemic Lupus Erythematosus: Results of a Phase II, Randomized, Double-Blind, Placebo-Controlled Dose-Ranging Trial. ACR Open Rheumatol 2022; 5:38-48. [PMID: 36530019 PMCID: PMC9837396 DOI: 10.1002/acr2.11511] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Evobrutinib is a highly selective, orally administered Bruton's tyrosine kinase (BTK) inhibitor. The objective of this phase II, multicenter, randomized, double-blind, placebo-controlled trial was to evaluate the efficacy and safety of evobrutinib in patients with active autoantibody-positive systemic lupus erythematosus (SLE). METHODS Patients were diagnosed with SLE by either the Systemic Lupus International Collaborating Clinics criteria or at least four American College of Rheumatology criteria 6 months or more prior to screening, had an SLE Disease Activity Index-2000 score of 6 or more, were autoantibody-positive and on standard-of-care therapy. Randomization was 1:1:1:1 to oral evobrutinib 25 mg once daily (QD), 75 mg QD, 50 mg twice daily, or placebo. Primary efficacy endpoints were SLE responder index (SRI)-4 response at week 52 and SRI-6 response at week 52 in the high disease activity subpopulation. Safety endpoints included treatment-emergent adverse events (TEAEs). RESULTS A total of 469 patients were randomized and received at least one dose of evobrutinib or placebo at the time of primary analysis. Mean (SD) age at baseline was 40.7 (±12.3) years; 94.9% of patients were female. Neither primary efficacy endpoint was met. All doses of evobrutinib were well tolerated, and there was no clear dose effect on the incidence of reported TEAEs, or serious TEAEs, including severe infections. CONCLUSION This phase II, dose-ranging trial in SLE failed to show a treatment effect of evobrutinib versus placebo at any dose. Evobrutinib was generally well tolerated, with no dose effect observed for TEAEs. These results suggest that BTK inhibition does not appear to be an effective therapeutic intervention for patients with SLE.
Collapse
Affiliation(s)
- Daniel J. Wallace
- Cedars‐Sinai Medical Center and David Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Thomas Dörner
- Dept. Medicine/Rheumatology and Clinical ImmunologyCharité UniversitätsmedizinBerlinGermany
| | - David S. Pisetsky
- Division of Rheumatology and Immunology at Duke University Medical CenterDurhamNorth CarolinaUSA,Medical Research Service, Durham VAMCDurhamNorth CarolinaUSA
| | | | - Anand C. Patel
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Dana Parsons‐Rich
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | | | - Elise E. Drouin
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Amy H. Kao
- Pioneering Medicines, Flagship Pioneering, Cambridge, Massachusetts, USA; ECD‐Early Clinical Development, Pfizer, Cambridge, Massachusetts, USA; EMD SeronoBillericaMassachusettsUSA
| | - Hans Guehring
- The healthcare business of Merck KGaADarmstadtGermany
| | - Maria Dall'Era
- Division of RheumatologyRussell/Engleman Rheumatology Research Center, University of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
6
|
Wang M, Wang Z, Zhang S, Wu Y, Zhang L, Zhao J, Wang Q, Tian X, Li M, Zeng X. Progress in the Pathogenesis and Treatment of Neuropsychiatric Systemic Lupus Erythematosus. J Clin Med 2022; 11:4955. [PMID: 36078885 PMCID: PMC9456588 DOI: 10.3390/jcm11174955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) has a broad spectrum of subtypes with diverse severities and prognoses. Ischemic and inflammatory mechanisms, including autoantibodies and cytokine-mediated pathological processes, are key components of the pathogenesis of NPSLE. Additional brain-intrinsic elements (such as the brain barrier and resident microglia) are also important facilitators of NPSLE. An improving understanding of NPSLE may provide further options for managing this disease. The attenuation of neuropsychiatric disease in mouse models demonstrates the potential for novel targeted therapies. Conventional therapeutic algorithms include symptomatic, anti-thrombotic, and immunosuppressive agents that are only supported by observational cohort studies, therefore performing controlled clinical trials to guide further management is essential and urgent. In this review, we aimed to present the latest pathogenetic mechanisms of NPSLE and discuss the progress in its management.
Collapse
Affiliation(s)
| | | | - Shangzhu Zhang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | | | | | | | | | | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | |
Collapse
|
7
|
Ma C, Li Q, Zhao M, Fan G, Zhao J, Zhang D, Yang S, Zhang S, Gao D, Mao L, Zhu L, Li W, Xu G, Jiang Y, Ding Q. Discovery of 1-Amino-1 H-imidazole-5-carboxamide Derivatives as Highly Selective, Covalent Bruton's Tyrosine Kinase (BTK) Inhibitors. J Med Chem 2021; 64:16242-16270. [PMID: 34672559 DOI: 10.1021/acs.jmedchem.1c01559] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bruton's tyrosine kinase (BTK) inhibitors suppressing the aberrant activation of BTK have led to a paradigm shift in the therapy of B-cell malignancies. However, there is an urgent need to discover more selective covalent BTK inhibitors owing to the off-target adverse effects of the approved inhibitor, ibrutinib. Herein, we disclose the discovery and preliminary activity studies of novel BTK inhibitors carrying 1-amino-1H-imidazole-5-carboxamide as a hinge binder. The most potent BTK inhibitor 26 demonstrates impressive selectivity, favorable pharmacokinetic properties, and robust antitumor efficacy in vivo, which indicates its potential as a novel therapeutic option for B-cell lymphomas. Importantly, to the best of our knowledge, this is the first example of a 1-amino-1H-imidazole-5-carboxamide scaffold used as the hinge binder of kinase inhibitors, which will largely expand the chemical diversity of kinase inhibitors.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingyun Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Minghao Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Goujie Fan
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dandan Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shouning Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Shuting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Longfei Mao
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Liang Zhu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Henan Zhiwei Biomedicine Co., Ltd., Xinxiang, Henan 453007, China
| | - Guiqing Xu
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qingjie Ding
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Scheible H, Dyroff M, Seithel‐Keuth A, Harrison‐Moench E, Mammasse N, Port A, Bachmann A, Dong J, van Lier JJ, Tracewell W, Mitchell D. Evobrutinib, a covalent Bruton's tyrosine kinase inhibitor: Mass balance, elimination route, and metabolism in healthy participants. Clin Transl Sci 2021; 14:2420-2430. [PMID: 34374206 PMCID: PMC8604242 DOI: 10.1111/cts.13108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022] Open
Abstract
The highly selective, covalent Bruton's tyrosine kinase inhibitor evobrutinib is under investigation for treatment of patients with multiple sclerosis (MS). Early clinical studies in healthy participants and patients with relapsing MS indicated that evobrutinib is well-tolerated and effective. We undertook a mass balance study in six men who received a single 75-mg oral dose of evobrutinib containing ~ 3.6 MBq (100 μCi) 14 C-evobrutinib, to determine the absorption, metabolic pathways, and routes of excretion of evobrutinib. The primary objectives of this phase I study (NCT03725072) were to (1) determine the rates and routes of total radioactivity excretion, including the mass balance of total drug-related radioactivity in urine and feces, (2) assess the pharmacokinetics (PKs) of total radioactivity in blood and plasma, and (3) characterize the plasma PKs of evobrutinib. Exploratory end points included identifying and quantifying evobrutinib and its metabolites in plasma and excreta (urine and feces) and exploring key biotransformation pathways and clearance mechanisms. Evobrutinib was primarily eliminated in feces (arithmetic mean percentage, SD, 71.0, 2.1) and, to a lesser extent, in urine (20.6, 2.0), with most of the total radioactivity (85.3%) excreted in the first 72 h after administration. No unchanged evobrutinib was detected in excreta. Evobrutinib was rapidly absorbed and substantially metabolized upon absorption. Only one major metabolite M463-2 (MSC2430422) was identified in plasma above the 10% of total drug exposure threshold, which classifies M463-2 (MSC2430422) as a major metabolite according to the US Food and Drug Administration (FDA; metabolites in safety testing [MIST]) and the European Medicines Agency (EMA; International Conference on Harmonization [ICH] M3). These results support further development of evobrutinib and may help inform subsequent investigations.
Collapse
Affiliation(s)
| | | | | | | | | | - Andreas Port
- The healthcare business of Merck KGaADarmstadtGermany
| | | | | | | | | | | |
Collapse
|
9
|
Correale J, Halfon MJ, Jack D, Rubstein A, Villa A. Acting centrally or peripherally: A renewed interest in the central nervous system penetration of disease-modifying drugs in multiple sclerosis. Mult Scler Relat Disord 2021; 56:103264. [PMID: 34547609 DOI: 10.1016/j.msard.2021.103264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
With the recent approval of cladribine tablets, siponimod and ozanimod, there has been a renewed interest into the extent to which these current generation disease-modifying therapies (DMTs) are able to cross into the central nervous system (CNS), and how this penetration of the blood-brain barrier (BBB) may influence their ability to treat multiple sclerosis (MS). The integrity of the CNS is maintained by the BBB, blood-cerebrospinal fluid barrier, and the arachnoid barrier, which all play an important role in preserving the immunological environment and homeostasis within the CNS. The integrity of the BBB decreases during the course of MS, with a putative temporal relationship to disease worsening. Furthermore, it is currently considered that progression of the disease is mediated mainly by resident cells of the CNS. The existing literature provides evidence to show that some of the current generation DMTs for MS are able to penetrate the CNS and potentially exert direct effects on CNS-resident cells, in particular the CNS-penetrating prodrugs cladribine and fingolimod, and other sphingosine-1 phosphate receptor modulators; siponimod and ozanimod. Other current generation DMTs appear to be restricted to the periphery due to their high molecular weight or physicochemical properties. As more effective brain penetrant therapies are developed for the treatment of MS, there is a need to understand whether the potential for direct effects within the CNS are of significance, and whether this brings additional benefits over and above treatment effects mediated in the periphery. In turn, this will require an improved understanding of the structure and function of the BBB, the role it plays in MS and subsequent treatments. This narrative review summarizes the data supporting the biological plausibility of a potential benefit from therapeutic molecules entering the CNS, and discusses the potential significance in the current and future treatment of MS.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina.
| | | | - Dominic Jack
- Merck Serono Ltd, Feltham, United Kingdom (an affiliate of Merck KGaA)
| | - Adrián Rubstein
- Merck S.A., Buenos Aires, Argentina (an affiliate of Merck KGaA)
| | - Andrés Villa
- Hospital Ramos Mejía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
10
|
Reich DS, Arnold DL, Vermersch P, Bar-Or A, Fox RJ, Matta A, Turner T, Wallström E, Zhang X, Mareš M, Khabirov FA, Traboulsee A. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: a phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2021; 20:729-738. [PMID: 34418400 PMCID: PMC8434816 DOI: 10.1016/s1474-4422(21)00237-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Tolebrutinib is an oral, CNS-penetrant, irreversible inhibitor of Bruton's tyrosine kinase, an enzyme expressed in B lymphocytes and myeloid cells including microglia, which are major drivers of inflammation in multiple sclerosis. We aimed to determine the dose-response relationship between tolebrutinib and the reduction in new active brain MRI lesions in patients with relapsing multiple sclerosis. METHODS We did a 16-week, phase 2b, randomised, double-blind, placebo-controlled, crossover, dose-finding trial at 40 centres (academic sites, specialty clinics, and general neurology centres) in ten countries in Europe and North America. Eligible participants were adults aged 18-55 years with diagnosed relapsing multiple sclerosis (either relapsing-remitting or relapsing secondary progressive multiple sclerosis), and one or more of the following criteria: at least one relapse within the previous year, at least two relapses within the previous 2 years, or at least one active gadolinium-enhancing brain lesion in the 6 months before screening. Exclusion criteria included a diagnosis of primary progressive multiple sclerosis or a diagnosis of secondary progressive multiple sclerosis without relapse. We used a two-step randomisation process to randomly assign eligible participants (1:1) to two cohorts, then further randomly assign participants in each cohort (1:1:1:1) to four tolebrutinib dose groups (5, 15, 30, and 60 mg administered once daily as an oral tablet). Cohort 1 received tolebrutinib for 12 weeks, then matched placebo (ie, identical looking tablets) for 4 weeks; cohort 2 received 4 weeks of placebo followed by 12 weeks of tolebrutinib. Participants and investigators were masked for dose and tolebrutinib-placebo administration sequence; investigators, study team members, and study participants did not have access to unmasked data. MRI scans were done at screening and every 4 weeks over 16 weeks. The primary efficacy endpoint was the number of new gadolinium-enhancing lesions detected on the scan done after 12 weeks of tolebrutinib treatment (assessed at week 12 for cohort 1 and week 16 for cohort 2), relative to the scan done 4 weeks previously, and compared with the lesions accumulated during 4 weeks of placebo run-in period in cohort 2. Efficacy data were analysed in a modified intention-to-treat population, using a two-step multiple comparison procedure with modelling analysis. Safety was assessed for all participants who received at least one dose of study drug. This trial is registered with ClinicalTrials.gov (NCT03889639), EudraCT (2018-003927-12), and WHO (U1111-1220-0572), and has been completed. FINDINGS Between May 14, 2019, and Jan 2, 2020, we enrolled and randomly assigned 130 participants to tolebrutinib: 33 to 5 mg, 32 to 15 mg, 33 to 30 mg, and 32 to 60 mg. 129 (99%) completed the treatment regimen and 126 were included in the primary analysis. At treatment week 12, there was a dose-dependent reduction in the number of new gadolinium-enhancing lesions (mean [SD] lesions per patient: placebo, 1·03 [2·50]; 5 mg, 1·39 [3·20]; 15 mg, 0·77 [1·48]; 30 mg, 0·76 [3·31]; 60 mg, 0·13 [0·43]; p=0·03). One serious adverse event was reported (one patient in the 60 mg group was admitted to hospital because of a multiple sclerosis relapse). The most common non-serious adverse event during tolebrutinib treatment was headache (in one [3%] of 33 in the 5 mg group; three [9%] of 32 in the 15 mg group; one [3%] of 33 in the 30 mg group; and four [13%] of 32 in the 60 mg group). No safety-related discontinuations or treatment-related deaths occurred. INTERPRETATION 12 weeks of tolebrutinib treatment led to a dose-dependent reduction in new gadolinium-enhancing lesions, the 60 mg dose being the most efficacious, and the drug was well tolerated. Reduction of acute inflammation, combined with the potential to modulate the immune response within the CNS, provides a scientific rationale to pursue phase 3 clinical trials of tolebrutinib in patients with relapsing and progressive forms of multiple sclerosis. FUNDING Sanofi.
Collapse
Affiliation(s)
- Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| | - Douglas L Arnold
- NeuroRx Research and Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Patrick Vermersch
- Lille Neuroscience et Cognition, University Lille, INSERM UMR-S1172, CHU Lille, FHU Imminent, Lille, France
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics and the Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Fox
- MellenCenter for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | | | - Miroslav Mareš
- Department of Neurology, Pardubice Regional Hospital, Pardubice, Czech Republic
| | | | - Anthony Traboulsee
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Liang Z, Damianou A, Di Daniel E, Kessler BM. Inflammasome activation controlled by the interplay between post-translational modifications: emerging drug target opportunities. Cell Commun Signal 2021; 19:23. [PMID: 33627128 PMCID: PMC7905589 DOI: 10.1186/s12964-020-00688-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022] Open
Abstract
Controlling the activation of the NLRP3 inflammasome by post-translational modifications (PTMs) of critical protein subunits has emerged as a key determinant in inflammatory processes as well as in pathophysiology. In this review, we put into context the kinases, ubiquitin processing and other PTM enzymes that modify NLRP3, ASC/PYCARD and caspase-1, leading to inflammasome regulation, activation and signal termination. Potential target therapeutic entry points for a number of inflammatory diseases focussed on PTM enzyme readers, writers and erasers, leading to the regulation of inflammasome function, are discussed. Video Abstract.
Collapse
Affiliation(s)
- Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Andreas Damianou
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Elena Di Daniel
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
- ARUK Oxford Drug Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| | - Benedikt M. Kessler
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ UK
| |
Collapse
|
12
|
Abstract
Pemphigus vulgaris (PV) is a severe chronic autoimmune blistering disease that affects the skin and mucous membranes. It is characterized by suprabasal acantholysis due to disruption of desmosomal connections between keratinocytes. Autoantibodies against desmosomal cadherins, desmoglein 3 and 1, have been shown to induce disease. Certain human leukocyte antigen (HLA) types and non-HLA foci confer genetic susceptibility. Until the discovery of corticosteroids in the 1950s, PV was 75% fatal. Since then, multiple PV treatments, such as systemic corticosteroids and adjunctive therapy with immunosuppressive medications (mycophenolate mofetil, azathioprine, cyclophosphamide, cyclosporine, methotrexate, gold, and others) have been introduced; however, none have led to long-term remissions and many have undesired adverse effects. Our growing understanding of the pathophysiologic mechanisms in PV is leading to development of new targeted therapies, such as intravenous immunoglobulin, anti-CD20 monoclonal antibodies, inhibitors of Bruton tyrosine kinase and neonatal Fc receptors, and adoptive cellular transfer, that may result in lasting control of this life-threatening disease.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Combined Modality Therapy/methods
- Drug Therapy, Combination/methods
- Genetic Predisposition to Disease
- HLA Antigens/genetics
- HLA Antigens/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoglobulins, Intravenous/pharmacology
- Immunoglobulins, Intravenous/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Immunotherapy, Adoptive/methods
- Molecular Targeted Therapy/methods
- Pemphigus/genetics
- Pemphigus/immunology
- Pemphigus/therapy
- Plasmapheresis
- Receptors, Fc/antagonists & inhibitors
- Receptors, Fc/metabolism
- Remission Induction/methods
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Emily M Altman
- Department of Dermatology, University of New Mexico, 1021 Medical Arts Avenue NE, Albuquerque, NM, 87102, USA.
| |
Collapse
|
13
|
Martin E, Aigrot MS, Grenningloh R, Stankoff B, Lubetzki C, Boschert U, Zalc B. Bruton's Tyrosine Kinase Inhibition Promotes Myelin Repair. Brain Plast 2020; 5:123-133. [PMID: 33282676 PMCID: PMC7685672 DOI: 10.3233/bpl-200100] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Microglia are the resident macrophages of the central nervous system (CNS). In multiple sclerosis (MS) and related experimental models, microglia have either a pro-inflammatory or a pro-regenerative/pro-remyelinating function. Inhibition of Bruton’s tyrosine kinase (BTK), a member of the Tec family of kinases, has been shown to block differentiation of pro-inflammatory macrophages in response to granulocyte–macrophage colony-stimulating factor in vitro. However, the role of BTK in the CNS is unknown. Methods: Our aim was to investigate the effect of BTK inhibition on myelin repair in ex vivo and in vivo experimental models of demyelination and remyelination. The remyelination effect of a BTK inhibitor (BTKi; BTKi-1) was then investigated in LPC-induced demyelinated cerebellar organotypic slice cultures and metronidazole-induced demyelinated Xenopus MBP-GFP-NTR transgenic tadpoles. Results: Cellular detection of BTK and its activated form BTK-phospho-Y223 (p-BTK) was determined by immunohistochemistry in organotypic cerebellar slice cultures, before and after lysophosphatidylcholine (LPC)-induced demyelination. A low BTK signal detected by immunolabeling under normal conditions in cerebellar slices was in sharp contrast to an 8.5-fold increase in the number of BTK-positive cells observed in LPC-demyelinated slice cultures. Under both conditions, approximately 75% of cells expressing BTK and p-BTK were microglia and 25% were astrocytes. Compared with spontaneous recovery, treatment of demyelinated slice cultures and MTZ-demyelinated transgenic tadpoles with BTKi resulted in at least a 1.7-fold improvement of remyelination. Conclusion: Our data demonstrate that BTK inhibition is a promising therapeutic strategy for myelin repair.
Collapse
Affiliation(s)
- Elodie Martin
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Marie-Stéphane Aigrot
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Roland Grenningloh
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States (a business of Merck KGaA, Darmstadt, Germany)
| | - Bruno Stankoff
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Catherine Lubetzki
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France.,AP-HP, GH Pitié-Salpêtrière, F-75013 Paris, France
| | - Ursula Boschert
- Ares Trading S.A. an affiliate of Merck Serono S.A., Eysins, Switzerland
| | - Bernard Zalc
- Sorbonne Université, Inserm, CNRS, Institut du Cerveau et de la Moelle Épinière, GH Pitié-Salpêtrière, F-75013 Paris, France
| |
Collapse
|
14
|
Morphologic Patterns and the Correlation With MYD88 L265P, CD79B Mutations in Primary Adrenal Diffuse Large B-Cell Lymphoma. Am J Surg Pathol 2020; 44:444-455. [PMID: 31609782 DOI: 10.1097/pas.0000000000001386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Primary adrenal diffuse large B-cell lymphoma (PA-DLBCL) is a rare subtype of extranodal DLBCL. Because of the rarity of this disease, its morphologic and genetic features are not comprehensively studied. Here, we systematically reviewed the clinicopathologic features of 42 cases of PA-DLBCL from our institution and investigated the frequency of MYD88 L265P and CD79B (exon 5) mutation in 29 eligible cases using Sanger sequencing. Clinically, PA-DLBCL was predominant in elderly male patients with advanced clinical stage and poor outcomes. Morphologically, the tumors often showed a sinusoidal and/or cohesive pattern with condensed chromatin and inconspicuous nucleolus which mimicked neuroendocrine carcinoma. Moreover, increased Reed-Sternberg-like cells were observed frequently. These confounding morphologic manifestations may lead to misdiagnosis. Genetically, PA-DLBCL harbored a high prevalence of MYD88 L265P (24%) and CD79B mutations (52%) which may be involved in lymphomagenesis. The CD79B mutation was significantly associated with a worse prognosis. A novel Histo-Molecular Classification system (4 categories) was proposed based on correlation with genetic changes. Generally, the neuroendocrine carcinoma-like type was associated with CD79B mutation, whereas the RS-like cell type indicated MYD88 L265P. The biphasic type was correlated with coexisting mutations of MYD88 and CD79B, whereas the common type implied no mutation. Furthermore, the common type showed significantly better survival. In conclusion, the proposed new category system could indicate the genetic changes as well as facilitate risk stratification to guide treatment and predict prognosis. Although this study augmented our understanding of PA-DLBCL, further analysis is required to validate our results and extend them to extranodal DLBCL at other sites.
Collapse
|
15
|
Pham DDM, Guhan S, Tsao H. KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Med J 2020; 61:562-571. [PMID: 32608199 PMCID: PMC7329741 DOI: 10.3349/ymj.2020.61.7.562] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Melanoma, originating from epidermal melanocytes, is a heterogeneous disease that has the highest mortality rate among all types of skin cancers. Numerous studies have revealed the cause of this cancer as related to various somatic driver mutations, including alterations in KIT-a proto-oncogene encoding for a transmembrane receptor tyrosine kinase. Although accounting for only 3% of all melanomas, mutations in c-KIT are mostly derived from acral, mucosal, and chronically sun-damaged melanomas. As an important factor for cell differentiation, proliferation, and survival, inhibition of c-KIT has been exploited for clinical trials in advanced melanoma. Here, apart from the molecular background of c-KIT and its cellular functions, we will review the wide distribution of alterations in KIT with a catalogue of more than 40 mutations reported in various articles and case studies. Additionally, we will summarize the association of KIT mutations with clinicopathologic features (age, sex, melanoma subtypes, anatomic location, etc.), and the differences of mutation rate among subgroups. Finally, several therapeutic trials of c-KIT inhibitors, including imatinib, dasatinib, nilotinib, and sunitinib, will be analyzed for their success rates and limitations in advanced melanoma treatment. These not only emphasize c-KIT as an attractive target for personalized melanoma therapy but also propose the requirement for additional investigational studies to develop novel therapeutic trials co-targeting c-KIT and other cytokines such as members of signaling pathways and immune systems.
Collapse
Affiliation(s)
- Duc Daniel M Pham
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | - Hensin Tsao
- Harvard Medical School, Boston, MA, USA
- Department of Dermatology, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Lee KW, Lee WH, Han BS, Lee JH, Doo EK, Kim JH. Molecular Drug Discovery of Single Ginsenoside Compounds as a Potent Bruton's Tyrosine Kinase Inhibitor. Int J Mol Sci 2020; 21:E3065. [PMID: 32357562 PMCID: PMC7247683 DOI: 10.3390/ijms21093065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
: Bruton's tyrosine kinase (BTK) is known as a direct regulator of inflammasome, which is an intracellular target to therapeutically modulate innate immunity. Although there is great interest in developing small molecule-based drugs with BTK inhibition, there are only a few drugs available in the market, due to the difficulty of drug discovery and the potential side effects. To select suitable drug compounds to inhibit BTK signaling, molecular drug screening bioassay processes of single ginsenosides integrated with in silico molecular simulation were performed. The experimental results for the ginsenoside compositions (Rb2 and Rb3) exhibited showed that they effectively suppressed the activity of BTK expression in a rational agreement with molecular docking calculations of the compounds against the BTK binding site. They implemented a possible inhibiting effect of BTK signaling through increasing their molecular affinity for targeting BTK, enabling them to be useful in treating BTK-mediated diseases.
Collapse
Affiliation(s)
- Keun Woo Lee
- MODNBIO Inc. Digital road 34, Kolon Science Valley I, Guro-gu, Seoul 08378, Korea; (K.W.L.); (W.H.L.); (J.H.L.); (E.K.D.)
| | - Woong Hee Lee
- MODNBIO Inc. Digital road 34, Kolon Science Valley I, Guro-gu, Seoul 08378, Korea; (K.W.L.); (W.H.L.); (J.H.L.); (E.K.D.)
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 306-809, Korea;
| | - Jin Ha Lee
- MODNBIO Inc. Digital road 34, Kolon Science Valley I, Guro-gu, Seoul 08378, Korea; (K.W.L.); (W.H.L.); (J.H.L.); (E.K.D.)
| | - Eun Kyung Doo
- MODNBIO Inc. Digital road 34, Kolon Science Valley I, Guro-gu, Seoul 08378, Korea; (K.W.L.); (W.H.L.); (J.H.L.); (E.K.D.)
| | - Jeong-Hwan Kim
- MODNBIO Inc. Digital road 34, Kolon Science Valley I, Guro-gu, Seoul 08378, Korea; (K.W.L.); (W.H.L.); (J.H.L.); (E.K.D.)
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
17
|
Schwartz N, Stock AD, Putterman C. Neuropsychiatric lupus: new mechanistic insights and future treatment directions. Nat Rev Rheumatol 2020; 15:137-152. [PMID: 30659245 DOI: 10.1038/s41584-018-0156-8] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) frequently show symptoms of central nervous system (CNS) involvement, termed neuropsychiatric SLE (NPSLE). The CNS manifestations of SLE are diverse and have a broad spectrum of severity and prognostic implications. Patients with NPSLE typically present with nonspecific symptoms, such as headache and cognitive impairment, but might also experience devastating features, such as memory loss, seizures and stroke. Some features of NPSLE, in particular those related to coagulopathy, have been characterized and an evidence-based treatment algorithm is available. The cognitive and affective manifestations of NPSLE, however, remain poorly understood. Various immune effectors have been evaluated as contributors to its pathogenesis, including brain-reactive autoantibodies, cytokines and cell-mediated inflammation. Additional brain-intrinsic elements (such as resident microglia, the blood-brain barrier and other neurovascular interfaces) are important facilitators of NPSLE. As yet, however, no unifying model has been found to underlie the pathogenesis of NPSLE, suggesting that this disease has multiple contributors and perhaps several distinct aetiologies. This heterogeneity presents a challenge for clinicians who have traditionally relied on empirical judgement in choosing treatment modalities for patients with NPSLE. Improved understanding of this manifestation of SLE might yield further options for managing this disease.
Collapse
Affiliation(s)
- Noa Schwartz
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | - Ariel D Stock
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
18
|
Becker A, Martin EC, Mitchell DY, Grenningloh R, Bender AT, Laurent J, Mackenzie H, Johne A. Safety, Tolerability, Pharmacokinetics, Target Occupancy, and Concentration-QT Analysis of the Novel BTK Inhibitor Evobrutinib in Healthy Volunteers. Clin Transl Sci 2019; 13:325-336. [PMID: 31654487 PMCID: PMC7070898 DOI: 10.1111/cts.12713] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/18/2019] [Indexed: 01/07/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is a key regulator of B cell receptor and Fc receptor signaling, and a rational therapeutic target for autoimmune diseases. This first‐in‐human phase I, double‐blind, placebo‐controlled trial investigated the safety, tolerability, pharmacokinetics (PK), target occupancy, and effects on QT interval of evobrutinib, a highly selective, oral inhibitor of BTK, in healthy subjects. This dose escalation trial consisted of two parts. Part 1 included 48 subjects in 6 ascending dose cohorts (25, 50, 100, 200, 350, and 500 mg) randomized to a single dose of evobrutinib or placebo. Part 2 included 36 subjects in 3 ascending dose cohorts (25, 75, and 200 mg/day) randomized to evobrutinib or placebo once daily for 14 days. Safety and tolerability, as well as PK and target occupancy (total and free BTK in peripheral blood mononuclear cells), were assessed following single and multiple dosing. PK parameters were determined by noncompartmental methods. QT interval was obtained from 12‐lead electrocardiogram recordings and corrected for heart rate by Fridericia's method (QTcF). Treatment‐emergent adverse events (TEAEs) were mostly mild, occurring in 25% of subjects after single dosing, and 48.1% after multiple dosing. There was no apparent dose relationship regarding frequency or type of TEAE among evobrutinib‐treated subjects. Absorption was rapid (time to reach maximum plasma concentration (Tmax) ~ 0.5 hour), half‐life short (~ 2 hours), and PK dose‐proportional, with no accumulation or time dependency on repeat dosing. BTK occupancy was dose‐dependent, reaching maximum occupancy of > 90% within ~ 4 hours after single doses ≥ 200 mg; the effect was long‐lasting (> 50% occupancy at 96 hours with ≥ 100 mg). After multiple dosing, full BTK occupancy was achieved with 25 mg, indicating slow turnover of BTK protein in vivo. Concentration‐QTcF analyses did not show any impact of evobrutinib concentration on corrected QT (QTc). In summary, evobrutinib was well‐tolerated, showed linear and time‐independent PK, induced long‐lasting BTK inhibition, and was associated with no prolongation of QT/QTc interval in healthy subjects. Evobrutinib is, therefore, suitable for investigation in autoimmune diseases.
Collapse
Affiliation(s)
| | - Emily C Martin
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | | | - Roland Grenningloh
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | - Andrew T Bender
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | | | - Harald Mackenzie
- EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts, USA
| | | |
Collapse
|
19
|
Diao Y, Fang X, Song P, Lai M, Tong L, Hao Y, Dou D, Liu Y, Ding J, Zhao Z, Xie H, Li H. Discovery and Biological evaluation of pyrimido[4,5-d]pyrimidine-2,4(1H,3H)-dione derivatives as potent Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem 2019; 27:3390-3395. [DOI: 10.1016/j.bmc.2019.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
|
20
|
Bhaskaran M, Cornwell PD, Sorden SD, Elwell MR, Russell NR, Pritt ML, Vahle JL. Pancreatic Effects of a Bruton's Tyrosine Kinase Small-molecule Inhibitor in Rats Are Strain-dependent. Toxicol Pathol 2018; 46:460-472. [PMID: 29699458 DOI: 10.1177/0192623318770163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inhibitors of Bruton's tyrosine kinase (BTK) are under development as potential therapies for various autoimmune diseases. In repeat-dose toxicity studies, small-molecule BTK inhibitors (BTKi) have been reported to cause a constellation of histologic effects at the pancreatic endocrine-exocrine interface in male rats; however, similar findings were not reported in other species. Since the BTKi-induced pancreatic effect is morphologically similar to well-documented spontaneous changes (predominantly characterized by insular/peri-insular hemorrhage, pigment deposition, chronic inflammation, and fibrosis) that are known to vary by rat strain, we investigated potential strain-dependent differences in the pancreatic effects of a small-molecule BTKi, LY3337641. Following 13 weeks of LY3337641 treatment, Crl:CD(SD) rats were most sensitive, Crl:WI(Han) rats were of intermediate sensitivity, and Hsd:SD rats were least sensitive. These strain differences appear to be related to differences in rate of weight gain across strains and sexes; however, a definitive mechanism was not determined. This study demonstrated that BTKi-induced pancreatic effects were highly dependent on rat strain and correlated with differences in the incidence and severity of the spontaneous background change. When considered with the lack of pancreas effects in nonrat species, these changes in rats are unlikely predictive of similar changes in humans administered a BTK inhibitor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John L Vahle
- 1 Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
21
|
Design, synthesis and biological evaluation of 7 H -pyrrolo[2,3- d ]pyrimidin-4-amine derivatives as selective Btk inhibitors with improved pharmacokinetic properties for the treatment of rheumatoid arthritis. Eur J Med Chem 2018; 145:96-112. [DOI: 10.1016/j.ejmech.2017.12.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 12/18/2022]
|
22
|
Chalmers SA, Wen J, Doerner J, Stock A, Cuda CM, Makinde HM, Perlman H, Bosanac T, Webb D, Nabozny G, Fine JS, Klein E, Ramanujam M, Putterman C. Highly selective inhibition of Bruton's tyrosine kinase attenuates skin and brain disease in murine lupus. Arthritis Res Ther 2018; 20:10. [PMID: 29370834 PMCID: PMC5785891 DOI: 10.1186/s13075-017-1500-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/20/2017] [Indexed: 05/30/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects different end organs, including skin and brain. We and others have previously shown the importance of macrophages in the pathogenesis of cutaneous and neuropsychiatric lupus. Additionally, autoantibodies produced by autoreactive B cells are thought to play a role in both the skin and central nervous system pathologies associated with SLE. Methods We used a novel inhibitor of Bruton’s tyrosine kinase (BTK), BI-BTK-1, to target both macrophage and B cell function in the MRL-lpr/lpr murine model of SLE, and examined the effect of treatment on skin and brain disease. Results We found that treatment with BI-BTK-1 significantly attenuated the lupus associated cutaneous and neuropsychiatric disease phenotypes in MRL/lpr mice. Specifically, BI-BTK-1 treated mice had fewer macroscopic and microscopic skin lesions, reduced cutaneous cellular infiltration, and diminished inflammatory cytokine expression compared to control mice. BTK inhibition also significantly improved cognitive function, and decreased accumulation of T cells, B cells, and macrophages within the central nervous system, specifically the choroid plexus. Conclusions Directed therapies may improve the response rate in lupus-driven target organ involvement, and decrease the dangerous side effects associated with global immunosuppression. Overall, our results suggest that inhibition of BTK may be a promising therapeutic option for cutaneous and neuropsychiatric disease associated with SLE. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1500-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samantha A Chalmers
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jing Wen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jessica Doerner
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Carla M Cuda
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hadijat M Makinde
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Harris Perlman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Todd Bosanac
- Small Molecule Discovery Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Deborah Webb
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Gerald Nabozny
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Jay S Fine
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Elliott Klein
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Meera Ramanujam
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, CT, USA
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Rheumatology, Albert Einstein College of Medicine, F701N, 1300 Morris Park Ave, Bronx, NY, 10461, USA.
| |
Collapse
|
23
|
Liu X, Pichulik T, Wolz OO, Dang TM, Stutz A, Dillen C, Delmiro Garcia M, Kraus H, Dickhöfer S, Daiber E, Münzenmayer L, Wahl S, Rieber N, Kümmerle-Deschner J, Yazdi A, Franz-Wachtel M, Macek B, Radsak M, Vogel S, Schulte B, Walz JS, Hartl D, Latz E, Stilgenbauer S, Grimbacher B, Miller L, Brunner C, Wolz C, Weber ANR. Human NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome activity is regulated by and potentially targetable through Bruton tyrosine kinase. J Allergy Clin Immunol 2017; 140:1054-1067.e10. [PMID: 28216434 DOI: 10.1016/j.jaci.2017.01.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The Nod-like receptor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) and Bruton tyrosine kinase (BTK) are protagonists in innate and adaptive immunity, respectively. NLRP3 senses exogenous and endogenous insults, leading to inflammasome activation, which occurs spontaneously in patients with Muckle-Wells syndrome; BTK mutations cause the genetic immunodeficiency X-linked agammaglobulinemia (XLA). However, to date, few proteins that regulate NLRP3 inflammasome activity in human primary immune cells have been identified, and clinically promising pharmacologic targeting strategies remain elusive. OBJECTIVE We sought to identify novel regulators of the NLRP3 inflammasome in human cells with a view to exploring interference with inflammasome activity at the level of such regulators. METHODS After proteome-wide phosphoproteomics, the identified novel regulator BTK was studied in human and murine cells by using pharmacologic and genetic BTK ablation. RESULTS Here we show that BTK is a critical regulator of NLRP3 inflammasome activation: pharmacologic (using the US Food and Drug Administration-approved inhibitor ibrutinib) and genetic (in patients with XLA and Btk knockout mice) BTK ablation in primary immune cells led to reduced IL-1β processing and secretion in response to nigericin and the Staphylococcus aureus toxin leukocidin AB (LukAB). BTK affected apoptosis-associated speck-like protein containing a CARD (ASC) speck formation and caspase-1 cleavage and interacted with NLRP3 and ASC. S aureus infection control in vivo and IL-1β release from cells of patients with Muckle-Wells syndrome were impaired by ibrutinib. Notably, IL-1β processing and release from immune cells isolated from patients with cancer receiving ibrutinib therapy were reduced. CONCLUSION Our data suggest that XLA might result in part from genetic inflammasome deficiency and that NLRP3 inflammasome-linked inflammation could potentially be targeted pharmacologically through BTK.
Collapse
Affiliation(s)
- Xiao Liu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Tica Pichulik
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Truong-Minh Dang
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Andrea Stutz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Carly Dillen
- Department of Dermatology, Johns Hopkins University, Baltimore, Md
| | - Magno Delmiro Garcia
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Helene Kraus
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Ellen Daiber
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lisa Münzenmayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Silke Wahl
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Nikolaus Rieber
- Department of Pediatrics I, University Hospital Tübingen, Tübingen, Germany
| | | | - Amir Yazdi
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Boris Macek
- Proteome Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Markus Radsak
- Medical Hospital III, University Hospital Mainz, Mainz, Germany
| | - Sebastian Vogel
- Department of Cardiology and Cardiovascular Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Berit Schulte
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Juliane Sarah Walz
- Medical Hospital II (Department of Hematology and Oncology), University Hospital Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University Hospital Tübingen, Tübingen, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany; Division of Infectious Diseases & Immunology, University of Massachusetts, Worcester, Mass
| | | | - Bodo Grimbacher
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Lloyd Miller
- Department of Dermatology, Johns Hopkins University, Baltimore, Md
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Ulm University Medical Center, Ulm, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Pandey MK, Gowda K, Sung SS, Abraham T, Budak-Alpdogan T, Talamo G, Dovat S, Amin S. A novel dual inhibitor of microtubule and Bruton's tyrosine kinase inhibits survival of multiple myeloma and osteoclastogenesis. Exp Hematol 2017. [DOI: 10.1016/j.exphem.2017.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Korphaisarn K, Loree JM, Nguyen V, Coulson R, Holla V, Litzenburger BC, Chen K, Mills GB, Maru DM, Meric-Bernstan F, Shaw KRM, Kopetz S. Genomic analysis of exceptional responder to regorafenib in treatment-refractory metastatic rectal cancer: a case report and review of the literature. Oncotarget 2017; 8:57882-57888. [PMID: 28915719 PMCID: PMC5593691 DOI: 10.18632/oncotarget.18357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/20/2017] [Indexed: 12/19/2022] Open
Abstract
We present the case of a 53-year-old male with metastatic rectal cancer who was treatment resistant to FOLFOX and FOLFOXIRI. Due to a Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, regorafenib was given in the third line setting. Surprisingly, the patient had a prolonged partial response that lasted 27 months. Mutational status was extensively evaluated to identify potential alterations that might play a role as predictive markers for this unusual event. A poorly characterized but nontransforming mutation in Fms-like tyrosine kinase 4 (FLT4) was present in the tumor. Prior to and at the time of clinical progression, we found amplification of fibroblast growth factor receptor 1 (FGFR1) and epidermal growth factor receptor (EGFR), loss of the FLT4 mutation, and gain of KIT proto-oncogene receptor tyrosine kinase (KIT) G961S suggesting potential roles in acquired resistance.
Collapse
Affiliation(s)
- Krittiya Korphaisarn
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Medicine, Division of Medical Oncology, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Van Nguyen
- Department of Pharmacy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryanne Coulson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vijaykumar Holla
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Beate C Litzenburger
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ken Chen
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dipen M Maru
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Funda Meric-Bernstan
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenna R Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy (IPCT), The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Frequent MYD88 L265P and CD79B Mutations in Primary Breast Diffuse Large B-Cell Lymphoma. Am J Surg Pathol 2016; 40:324-34. [PMID: 26752547 DOI: 10.1097/pas.0000000000000592] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary breast diffuse large B-cell lymphoma (PB-DLBCL) is a rare disease comprising <3% of extranodal lymphomas. It frequently reveals an activated B-cell (ABC)-like phenotype. ABC-like DLBCL was reported to have gain-of-function mutations in MYD88, CD79B, CARD11, and TNFAIP3, resulting in constitutive activation of the NFκB pathway. Because of the rare occurrence of PB-DLBCL, the frequency of MYD88 and CD79B mutations is still unknown. We used Sanger sequencing to study these mutations from 46 breast DLBCL cases and also investigated the associated clinicopathologic factors. MYD88 L265P was confirmed by allele-specific polymerase chain reaction and compared with the Sanger sequencing results. MYD88 L265P and CD79B mutations were detected in 27/46 (58.7%) and 11/33 (33.3%) cases, respectively. Twenty-eight of 46 cases met the criteria for PB-DLBCL, and the latter 18 cases were further classified as clinical breast DLBCL (CLB-DLBCL). The frequency of MYD88 L265P and CD79B mutations was 16/28 (57.1%) and 9/23 (39.1%), respectively, in PB-DLBCL and 11/18 (61.1%) and 2/10 (20%), respectively, in CLB-DLBCL. When the cutoff value was set at ΔCt≤1, the result of allele-specific polymerase chain reaction for MYD88 corresponded to those of the Sanger sequence at 92.6% sensitivity and 100% specificity. According to Choi's algorithm, 16/27 (59.3%) demonstrated an ABC-like phenotype in PB-DLBCL, and 15/18 (83.3%) demonstrated an ABC-like phenotype in CLB-DLBCL. In conclusion, MYD88 L265P and CD79B mutations were frequently detected in PB-DLBCL, and they may be key molecules associated with PB-DLBCL lymphomagenesis. Further analysis will be required to clarify the mechanism of its pathogenesis.
Collapse
|
27
|
Huang W, Morales JL, Gazivoda VP, August A. Nonreceptor tyrosine kinases ITK and BTK negatively regulate mast cell proinflammatory responses to lipopolysaccharide. J Allergy Clin Immunol 2015; 137:1197-1205. [PMID: 26581914 DOI: 10.1016/j.jaci.2015.08.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/06/2015] [Accepted: 08/28/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Mast cells are indispensable for LPS-induced septic hypothermia, in which TNF-α plays an essential role to initiate septic responses. ITK and BTK regulate mast cell responses to allergens, but their roles in mast cell responses in LPS-induced sepsis are unclear. OBJECTIVE We sought to investigate the roles of ITK and BTK in mast cell responses during LPS-induced septic inflammation. METHODS Mice (genetically modified or bone marrow-derived mast cell-reconstituted Sash) were given LPS to induce septic hypothermia in the presence or absence of indicated inhibitors. Flow cytometry was used to determine LPS-induced cell influx and TNF-α production in peritoneal cells. Microarray was used for genomewide gene expression analysis on bone marrow-derived mast cells. Quantitative PCR and multiplex were used to determine transcribed and secreted proinflammatory cytokines. Microscopy and Western blotting were used to determine activation of signal transduction pathways. RESULTS The absence of ITK and BTK leads to exacerbation of LPS-induced septic hypothermia and neutrophil influx. Itk(-/-)Btk(-/-) mast cells exhibit hyperactive preformed and LPS-induced TNF-α production, and lead to more severe LPS-induced septic hypothermia when reconstituted into mast cell-deficient Sash mice. LPS-induced nuclear factor kappa B, Akt, and p38 activation is enhanced in Itk(-/-)Btk(-/-) mast cells, and blockage of phosphatidylinositol-4,5-bisphosphate 3-kinase, Akt, or p38 downstream mitogen-activated protein kinase interacting serine/threonine kinase 1 activation significantly suppresses TNF-α hyperproduction and attenuates septic hypothermia. CONCLUSIONS ITK and BTK regulate thermal homeostasis during septic response through mast cell function in mice. They share regulatory function downstream of Toll-like receptor 4/LPS in mast cells, through regulating the activation of canonical nuclear factor kappa B, phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt, and p38 signaling pathways.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - J Luis Morales
- Department of Veterinary and Biomedical Science, Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pa
| | - Victor P Gazivoda
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY.
| |
Collapse
|
28
|
Synthesis and biological evaluation of novel 7-substituted 3-(4-phenoxyphenyl)thieno[3,2-c]pyridin-4-amines as potent Bruton’s tyrosine kinase (BTK) inhibitors. Bioorg Med Chem 2015; 23:6250-7. [DOI: 10.1016/j.bmc.2015.08.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/22/2022]
|
29
|
Kaneshiro S, Ebina K, Shi K, Yoshida K, Otsuki D, Yoshikawa H, Higuchi C. Bruton tyrosine kinase (Btk) suppresses osteoblastic differentiation. J Bone Miner Metab 2015; 33:486-95. [PMID: 25230818 DOI: 10.1007/s00774-014-0612-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/15/2014] [Indexed: 12/13/2022]
Abstract
The Tec family of nonreceptor tyrosine kinases has been shown to play a key role in inflammation and bone destruction. Bruton tyrosine kinase (Btk) has been the most widely studied because of its critical role in B cells. Furthermore, recent evidence has demonstrated that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. The role of Btk in osteoblastic differentiation has not been well elucidated. In this study, we demonstrated the role of Btk in osteoblastic differentiation and investigated the effects of a Btk inhibitor on osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells, primary calvarial osteoblasts, and bone marrow stromal ST2 cells. Btk expression was detected in all three cell lines. Btk inhibition stimulated mRNA expression of osteoblastic markers (alkaline phosphatase, osteocalcin, and osterix) and promoted mineralization of the extracellular matrix. In addition, Btk knockdown caused increased mRNA expression of osteoblastic markers. Furthermore, Btk inhibition suppressed the phosphorylation of mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NFκB), and protein kinase Cα (PKCα). Our results indicate that Btk may regulate osteoblastic differentiation through the MAPK, NFκB, and PKCα signaling pathways.
Collapse
Affiliation(s)
- Shoichi Kaneshiro
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Eswaran J, Sinclair P, Heidenreich O, Irving J, Russell LJ, Hall A, Calado DP, Harrison CJ, Vormoor J. The pre-B-cell receptor checkpoint in acute lymphoblastic leukaemia. Leukemia 2015; 29:1623-31. [PMID: 25943180 DOI: 10.1038/leu.2015.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 02/06/2023]
Abstract
The B-cell receptor (BCR) and its immature form, the precursor-BCR (pre-BCR), have a central role in the control of B-cell development, which is dependent on a sequence of cell-fate decisions at specific antigen-independent checkpoints. Pre-BCR expression provides the first checkpoint, which controls differentiation of pre-B to immature B-cells in normal haemopoiesis. Pre-BCR signalling regulates and co-ordinates diverse processes within the pre-B cell, including clonal selection, proliferation and subsequent maturation. In B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), B-cell development is arrested at this checkpoint. Moreover, malignant blasts avoid clonal extinction by hijacking pre-BCR signalling in favour of the development of BCP-ALL. Here, we discuss three mechanisms that occur in different subtypes of BCP-ALL: (i) blocking pre-BCR expression; (ii) activating pre-BCR-mediated pro-survival and pro-proliferative signalling, while inhibiting cell cycle arrest and maturation; and (iii) bypassing the pre-BCR checkpoint and activating pro-survival signalling through pre-BCR independent alternative mechanisms. A complete understanding of the BCP-ALL-specific signalling networks will highlight their application in BCP-ALL therapy.
Collapse
Affiliation(s)
- J Eswaran
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - P Sinclair
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - O Heidenreich
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Irving
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - L J Russell
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - A Hall
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - D P Calado
- 1] Cancer Research UK, London Research Institute, London, UK [2] Peter Gorer Department of Immunobiology, Kings College London, London, UK
| | - C J Harrison
- Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
| | - J Vormoor
- 1] Leukaemia Research Cytogenetics Group, Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK [2] Great North Children's Hospital, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
31
|
Zhao X, Xin M, Wang Y, Huang W, Jin Q, Tang F, Wu G, Zhao Y, Xiang H. Discovery of thieno[3,2-c]pyridin-4-amines as novel Bruton's tyrosine kinase (BTK) inhibitors. Bioorg Med Chem 2015; 23:6059-68. [PMID: 26277759 DOI: 10.1016/j.bmc.2015.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
A novel series of BTK inhibitors bearing thieno[3,2-c]pyridin-4-amine framework as the core scaffold were designed, synthesized and well characterized. In this paper, twenty one compounds displayed variant inhibitory activities against BTK in vitro, and compound 14 g showed the most potent inhibitory activity against BTK enzyme, with the IC50 value of 12.8 nM. Moreover, compounds 14 g displayed relatively good kinase selectivity and was subsequently evaluated in vivo for profiling its PK properties. This work identified the thieno[3,2-c]pyridin-4-amine derivatives as novel BTK inhibitors and verified the value of thieno[3,2-c]pyridin-4-amine scaffold in drug design.
Collapse
Affiliation(s)
- Xinge Zhao
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, PR China; Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No 76, Yanta West Road, Xi'an 710061, PR China
| | - Yazhou Wang
- Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Wei Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiu Jin
- Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Feng Tang
- Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Gang Wu
- Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Yong Zhao
- Jiangsu Simcere Pharmaceutical Co. Ltd, Jiangsu Key Laboratory of Molecular Targeted Antitumor Drug Research, No 699-18, Xuan Wu District, Nanjing 210042, PR China
| | - Hua Xiang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
32
|
Bruton's TK inhibitors: structural insights and evolution of clinical candidates. Future Med Chem 2015; 6:675-95. [PMID: 24895895 DOI: 10.4155/fmc.14.24] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bruton's TK (BTK) is a promising biological target for therapeutic intervention of several diseases including inflammatory diseases and cancer/B cell malignancies. Numerous research groups are actively engaged in investigating the functions of BTK, and discovering potent and selective BTK inhibitors as drug candidates. Revealed by x-ray crystal structures with ligands of diverse chemical structures, the ability of BTK kinase domain to adopt various inactive conformations offers unique opportunities to identify highly potent and exquisitely selective inhibitors. Both reversible and covalent inhibitor approaches have yielded candidates demonstrating safety profiles and efficacies in multiple preclinical models of autoimmunity and oncology. Two BTK inhibitors have entered human clinical trials for oncology indications. Ibrutinib won the US FDA approval in November 2013 to become the first-in-class BTK inhibitor for treating mantle cell lymphoma. This encouraging outcome and the other on-going human studies could ultimately expand the utility of BTK inhibitors to broader autoimmune disease areas.
Collapse
|
33
|
Hanson EP, Schwartz DM, Bonelli M, O'Shea JJ, Aringer M. Signal transduction in immune cells. Rheumatology (Oxford) 2015. [DOI: 10.1016/b978-0-323-09138-1.00014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
34
|
Zhao X, Xin M, Huang W, Ren Y, Jin Q, Tang F, Jiang H, Wang Y, Yang J, Mo S, Xiang H. Design, synthesis and evaluation of novel 5-phenylpyridin-2(1H)-one derivatives as potent reversible Bruton’s tyrosine kinase inhibitors. Bioorg Med Chem 2015; 23:348-64. [DOI: 10.1016/j.bmc.2014.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
|
35
|
Lee CS, Rattu MA, Kim SS. A review of a novel, Bruton's tyrosine kinase inhibitor, ibrutinib. J Oncol Pharm Pract 2014; 22:92-104. [PMID: 25425007 DOI: 10.1177/1078155214561281] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ibrutinib, a Bruton's kinase inhibitor, was granted an accelerated approval by the US Food and Drug Administration in November, 2013, for the treatment of relapsed or refractory mantle cell lymphoma and subsequently for the treatment of relapsed refractory chronic lymphocytic leukemia in February, 2014. In the pivotal phase 2 study of 111 patients with relapsed or refractory mantle cell lymphoma, the overall response rate in patients who received ibrutinib 560 mg daily was 68%. The median progression-free survival was 13.9 months, and the overall survival was 58% at 18 months. In a recently published phase 3 trial (RESONATE) that compared ibrutinib and ofatumumab for the treatment of relapsed and refractory chronic lymphocytic leukemia or small lymphocytic lymphoma, ibrutinib at the daily dosage of 420 mg demonstrated a significantly higher overall response rate (43% in ibrutinib vs. 4% in ofatumumab) and a significantly improved overall survival at 12 months (90% ibrutinib vs. 81% ofatumumab). Similar clinical benefits were shown regardless of del (17 p). Ibrutinib was well tolerated, and dose-limiting toxicity was not observed. Ibrutinib has shown durable remission, improved progression-free survival and overall survival, and favorable safety profile in indolent B-cell lymphoid malignancies. Ibrutinib, as a monotherapy, is an effective treatment modality as a salvage therapy for treatment of mantle cell lymphoma and chronic lymphocytic leukemia / small lymphocytic lymphoma, particularly in older patients (age ≥70 years) who are not a candidate for intensive chemotherapy and/or those with del (17 p). In patients with chronic lymphocytic leukemia and del (17 p), the current practice guideline recommends ibrutinib as an upfront treatment option. Current on-going trials will further define its role as upfront therapy and/or as a combination therapy in indolent B-cell lymphoid malignancies.
Collapse
Affiliation(s)
- Chung-Shien Lee
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY, USA
| | - Mohammad A Rattu
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY, USA
| | - Sara S Kim
- Department of Pharmacy, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
36
|
Purine derivatives as potent Bruton’s tyrosine kinase (BTK) inhibitors for autoimmune diseases. Bioorg Med Chem Lett 2014; 24:2206-11. [DOI: 10.1016/j.bmcl.2014.02.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 11/20/2022]
|
37
|
New insights into pre-BCR and BCR signalling with relevance to B cell malignancies. Nat Rev Immunol 2013; 13:578-91. [DOI: 10.1038/nri3487] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D, Doench JG, Bogusz AM, Habermann TM, Dogan A, Witzig TE, Kutok JL, Rodig SJ, Golub T, Shipp MA. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 2013; 23:826-38. [PMID: 23764004 PMCID: PMC3700321 DOI: 10.1016/j.ccr.2013.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/23/2013] [Accepted: 05/01/2013] [Indexed: 12/21/2022]
Abstract
B cell receptor (BCR) signaling pathway components represent promising treatment targets in diffuse large B cell lymphoma (DLBCL) and additional B cell tumors. BCR signaling activates spleen tyrosine kinase (SYK) and downstream pathways including PI3K/AKT and NF-κB. In previous studies, chemical SYK blockade selectively decreased BCR signaling and induced apoptosis of BCR-dependent DLBCLs. Herein, we characterize distinct SYK/PI3K-dependent survival pathways in DLBCLs with high or low baseline NF-κB activity including selective repression of the pro-apoptotic HRK protein in NF-κB-low tumors. We also define SYK/PI3K-dependent cholesterol biosynthesis as a feed-forward mechanism of maintaining the integrity of BCRs in lipid rafts in DLBCLs with low or high NF-κB. In addition, SYK amplification and PTEN deletion are identified as selective genetic alterations in primary "BCR"-type DLBCLs.
Collapse
Affiliation(s)
- Linfeng Chen
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Stefano Monti
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | | | - Jing Ouyang
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Bjoern Chapuy
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Donna Neuberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, MA
| | - John G. Doench
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Agata M. Bogusz
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Ahmet Dogan
- Department of Pathology, Mayo Clinic, Rochester, MN
| | | | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | - Todd Golub
- Cancer Program, Broad Institute of MIT & Harvard, Cambridge, MA
| | - Margaret A. Shipp
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA
- Corresponding author: Margaret A. Shipp, MD, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; phone: 617-632-3874; fax: 617-632-4734;
| |
Collapse
|
39
|
Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H. The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci 2013; 9:435-43. [PMID: 23678293 PMCID: PMC3654492 DOI: 10.7150/ijbs.6087] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 04/15/2013] [Indexed: 02/04/2023] Open
Abstract
As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases.
Collapse
Affiliation(s)
- Jing Liang
- Department of Biopharmaceutical Science, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | | | | | | | | | | |
Collapse
|
40
|
Kelly V, Genovese M. Novel small molecule therapeutics in rheumatoid arthritis. Rheumatology (Oxford) 2013; 52:1155-62. [DOI: 10.1093/rheumatology/kes367] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
41
|
|
42
|
MYD88 Somatic Mutation Is a Genetic Feature of Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg Type. J Invest Dermatol 2012; 132:2118-20. [DOI: 10.1038/jid.2012.102] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120:1877-87. [PMID: 22689860 DOI: 10.1182/blood-2011-12-396853] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton tyrosine kinase (Btk) has a well-defined role in B-cell development, whereas its expression in osteoclasts (OCs) further suggests a role in osteoclastogenesis. Here we investigated effects of PCI-32765, an oral and selective Btk inhibitor, on osteoclastogenesis as well as on multiple myeloma (MM) growth within the BM microenvironment. PCI-32765 blocked RANKL/M-CSF-induced phosphorylation of Btk and downstream PLC-γ2 in OCs, resulting in diminished TRAP5b (ED50 = 17 nM) and bone resorption activity. PCI-32765 also inhibited secretion of multiple cytokines and chemokines from OC and BM stromal cell cultures from both normal donors (ED50 = 0.5 nM) and MM patients. It decreased SDF-1-induced migration of MM cells, and down-regulated MIP1-α/CCL3 in MM cells. It also blocked MM cell growth and survival triggered by IL-6 or coculture with BM stromal cells or OCs in vitro. Importantly, PCI-32765 treatment significantly inhibits in vivo MM cell growth (P < .03) and MM cell-induced osteolysis of implanted human bone chips in SCID mice. Moreover, PCI-32765 prevents in vitro colony formation by stem-like cells from MM patients. Together, these results delineate functional sequelae of Btk activation mediating osteolysis and growth of MM cells, supporting evaluation of PCI-32765 as a novel therapeutic in MM.
Collapse
|
44
|
Bonilla-Hernán MG, Miranda-Carús ME, Martin-Mola E. New drugs beyond biologics in rheumatoid arthritis: the kinase inhibitors. Rheumatology (Oxford) 2011; 50:1542-50. [PMID: 21622522 DOI: 10.1093/rheumatology/ker192] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Orally available small molecule compounds have recently been developed for the treatment of RA, and inhibitors of signalling cascades, specifically inhibitors of kinases, have reached advanced stages of clinical development. The p38 mitogen-activated protein kinase blockers have shown poor clinical response despite encouraging preclinical data. In contrast, inhibitors of the non-receptor tyrosine kinases, spleen tyrosine kinase and janus kinase 3, have demonstrated a significant clinical efficacy together with an acceptable safety profile. We herein present a review on published preclinical and clinical data on these new drugs.
Collapse
Affiliation(s)
- M Gema Bonilla-Hernán
- Rheumatology Department, Hospital Universitario La Paz, Universidad Autónoma, Madrid, Spain
| | | | | |
Collapse
|
45
|
Jaffe ES, Pittaluga S. Aggressive B-cell lymphomas: a review of new and old entities in the WHO classification. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:506-514. [PMID: 22160082 PMCID: PMC6329301 DOI: 10.1182/asheducation-2011.1.506] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aggressive B-cell lymphomas are clinically and pathologically diverse and reflect multiple pathways of transformation. The 2008 World Health Organization (WHO) classification reflects this complexity with the addition of several new entities and variants. Whereas MYC translocations have long been associated with Burkitt lymphoma (BL), deregulation of MYC has been shown to occur in other aggressive B-cell lymphomas, most often as a secondary event. Lymphomas with translocations of both MYC and BCL2 are highly aggressive tumors, with a high failure rate with most treatment protocols. These "double-hit" lymphomas are now separately delineated in the WHO classification as B-cell lymphoma, unclassifiable, with features intermediate between diffuse large B-cell lymphoma (DLBCL) and BL. A MYC translocation is also found uncommonly in DLBCL, but the clinical consequences of this in the absence of a double hit are not yet fully delineated. Most recently, MYC translocations have been identified as a common secondary event in plasma cell neoplasms, seen in approximately 50% of plasmablastic lymphoma. Another area that has received recent attention is the spectrum of EBV-driven B-cell proliferations in patients without iatrogenic or congenital immunosuppression; most of these occur in patients of advanced age and include the EBV-positive large B-cell lymphomas of the elderly.
Collapse
Affiliation(s)
- Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | |
Collapse
|