1
|
Xu Z, Yang S, Cui L. Understanding the heterogeneity and dysfunction of HDL in chronic kidney disease: insights from recent reviews. BMC Nephrol 2024; 25:400. [PMID: 39511510 PMCID: PMC11542271 DOI: 10.1186/s12882-024-03808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024] Open
Abstract
Chronic kidney disease (CKD) is a complex disease that affects the global population's health, with dyslipidemia being one of its major complications. High density lipoprotein (HDL) is regarded as the "hero" in the bloodstream due to its role in reverse cholesterol transport, which lowers cholesterol levels in the blood and prevents atherosclerosis. However, in the complex internal environment of CKD, even this "hero" may struggle to perform its beneficial functions and could potentially become harmful. This article reviews HDL heterogeneity, HDL subclasses, functional changes in HDL during the progression of CKD, and the application of HDL in CKD treatment. This review aims to deepen understanding of lipid metabolism abnormalities in CKD patients and provide a basis for new therapeutic strategies.
Collapse
Affiliation(s)
- Zhen Xu
- Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
3
|
Liu J, McRae EKS, Zhang M, Geary C, Andersen ES, Ren G. Non-averaged single-molecule tertiary structures reveal RNA self-folding through individual-particle cryo-electron tomography. Nat Commun 2024; 15:9084. [PMID: 39433544 PMCID: PMC11494099 DOI: 10.1038/s41467-024-52914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Large-scale and continuous conformational changes in the RNA self-folding process present significant challenges for structural studies, often requiring trade-offs between resolution and observational scope. Here, we utilize individual-particle cryo-electron tomography (IPET) to examine the post-transcriptional self-folding process of designed RNA origami 6-helix bundle with a clasp helix (6HBC). By avoiding selection, classification, averaging, or chemical fixation and optimizing cryo-ET data acquisition parameters, we reconstruct 120 three-dimensional (3D) density maps from 120 individual particles at an electron dose of no more than 168 e-Å-2, achieving averaged resolutions ranging from 23 to 35 Å, as estimated by Fourier shell correlation (FSC) at 0.5. Each map allows us to identify distinct RNA helices and determine a unique tertiary structure. Statistical analysis of these 120 structures confirms two reported conformations and reveals a range of kinetically trapped, intermediate, and highly compacted states, demonstrating a maturation folding landscape likely driven by helix-helix compaction interactions.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ewan K S McRae
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Cody Geary
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, 69120, Heidelberg, Germany
| | - Ebbe Sloth Andersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000, Aarhus, Denmark.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Wańczura P, Aebisher D, Iwański MA, Myśliwiec A, Dynarowicz K, Bartusik-Aebisher D. The Essence of Lipoproteins in Cardiovascular Health and Diseases Treated by Photodynamic Therapy. Biomedicines 2024; 12:961. [PMID: 38790923 PMCID: PMC11117957 DOI: 10.3390/biomedicines12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.
Collapse
Affiliation(s)
- Piotr Wańczura
- Department of Cardiology, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Mateusz A Iwański
- English Division Science Club, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland
| |
Collapse
|
5
|
Dabravolski S, Orekhov NA, Melnichenko A, Sukhorukov VN, Popov MA, Orekhov A. Cholesteryl Ester Transfer Protein (CETP) Variations in Relation to Lipid Profiles and Cardiovascular Diseases: An Update. Curr Pharm Des 2024; 30:742-756. [PMID: 38425105 DOI: 10.2174/0113816128284695240219093612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
Lipid metabolism plays an essential role in the pathogenesis of cardiovascular and metabolic diseases. Cholesteryl ester transfer protein (CETP) is a crucial glycoprotein involved in lipid metabolism by transferring cholesteryl esters (CE) and triglycerides (TG) between plasma lipoproteins. CETP activity results in reduced HDL-C and increased VLDL- and LDL-C concentrations, thus increasing the risk of cardiovascular and metabolic diseases. In this review, we discuss the structure of CETP and its mechanism of action. Furthermore, we focus on recent experiments on animal CETP-expressing models, deciphering the regulation and functions of CETP in various genetic backgrounds and interaction with different external factors. Finally, we discuss recent publications revealing the association of CETP single nucleotide polymorphisms (SNPs) with the risk of cardiovascular and metabolic diseases, lifestyle factors, diet and therapeutic interventions. While CETP SNPs can be used as effective diagnostic markers, diet, lifestyle, gender and ethnic specificity should also be considered for effective treatment.
Collapse
Affiliation(s)
- Siarhei Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Braude Academic College of Engineering, Karmiel, Israel
| | - Nikolay A Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexandra Melnichenko
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Vasily N Sukhorukov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Mikhail A Popov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| | - Alexander Orekhov
- Laboratory of Angiopatology, Research Institute of General Pathology and Pathophysiology, The Russian Academy of Medical Sciences, Moscow, Russian Federation
| |
Collapse
|
6
|
Merrill NJ, Davidson WS, He Y, Díaz Ludovico I, Sarkar S, Berger MR, McDermott JE, Van Eldik LJ, Wilcock DM, Monroe ME, Kyle JE, Bruce KD, Heinecke JW, Vaisar T, Raber J, Quinn JF, Melchior JT. Human cerebrospinal fluid contains diverse lipoprotein subspecies enriched in proteins implicated in central nervous system health. SCIENCE ADVANCES 2023; 9:eadi5571. [PMID: 37647397 PMCID: PMC10468133 DOI: 10.1126/sciadv.adi5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
Lipoproteins in cerebrospinal fluid (CSF) of the central nervous system (CNS) resemble plasma high-density lipoproteins (HDLs), which are a compositionally and structurally diverse spectrum of nanoparticles with pleiotropic functionality. Whether CSF lipoproteins (CSF-Lps) exhibit similar heterogeneity is poorly understood because they are present at 100-fold lower concentrations than plasma HDL. To investigate the diversity of CSF-Lps, we developed a sensitive fluorescent technology to characterize lipoprotein subspecies in small volumes of human CSF. We identified 10 distinctly sized populations of CSF-Lps, most of which were larger than plasma HDL. Mass spectrometric analysis identified 303 proteins across the populations, over half of which have not been reported in plasma HDL. Computational analysis revealed that CSF-Lps are enriched in proteins important for wound healing, inflammation, immune response, and both neuron generation and development. Network analysis indicated that different subpopulations of CSF-Lps contain unique combinations of these proteins. Our study demonstrates that CSF-Lp subspecies likely exist that contain compositional signatures related to CNS health.
Collapse
Affiliation(s)
- Nathaniel J. Merrill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
| | - Yi He
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Snigdha Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Madelyn R. Berger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jason E. McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Donna M. Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40504, USA
| | - Matthew E. Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E. Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jay W. Heinecke
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Jacob Raber
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Department of Behavioral Neuroscience and Radiation Medicine, ONPRC, Oregon Health and Science University, Portland, OR 97239, USA
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Neurology and Parkinson’s Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland OR 97239, USA
| | - John T. Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA
- Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
7
|
Sacher S, Mukherjee A, Ray A. Deciphering structural aspects of reverse cholesterol transport: mapping the knowns and unknowns. Biol Rev Camb Philos Soc 2023; 98:1160-1183. [PMID: 36880422 DOI: 10.1111/brv.12948] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023]
Abstract
Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.
Collapse
Affiliation(s)
- Sukriti Sacher
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| | - Abhishek Mukherjee
- Dhiti Life Sciences Pvt Ltd, B-107, Okhla Phase I, New Delhi, 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Phase III, New Delhi, 110019, India
| |
Collapse
|
8
|
Zhao Y, Hao D, Zhao Y, Zhang S, Zhang L, Yang Z. Dissecting the Structural Dynamics of Authentic Cholesteryl Ester Transfer Protein for the Discovery of Potential Lead Compounds: A Theoretical Study. Int J Mol Sci 2023; 24:12252. [PMID: 37569628 PMCID: PMC10418423 DOI: 10.3390/ijms241512252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Current structural and functional investigations of cholesteryl ester transfer protein (CETP) inhibitor design are nearly entirely based on a fully active mutation (CETPMutant) constructed for protein crystallization, limiting the study of the dynamic structural features of authentic CETP involved in lipid transport under physiological conditions. In this study, we conducted comprehensive molecular dynamics (MD) simulations of both authentic CETP (CETPAuthentic) and CETPMutant. Considering the structural differences between the N- and C-terminal domains of CETPAuthentic and CETPMutant, and their crucial roles in lipid transfer, we identified the two domains as binding pockets of the ligands for virtual screening to discover potential lead compounds targeting CETP. Our results revealed that CETPAuthentic displays greater flexibility and pronounced curvature compared to CETPMutant. Employing virtual screening and MD simulation strategies, we found that ZINC000006242926 has a higher binding affinity for the N- and C-termini, leading to reduced N- and C-opening sizes, disruption of the continuous tunnel, and increased curvature of CETP. In conclusion, CETPAuthentic facilitates the formation of a continuous tunnel in the "neck" region, while CETPMutant does not exhibit such characteristics. The ligand ZINC000006242926 screened for binding to the N- and C-termini induces structural changes in the CETP unfavorable to lipid transport. This study sheds new light on the relationship between the structural and functional mechanisms of CETP. Furthermore, it provides novel ideas for the precise regulation of CETP functions.
Collapse
Affiliation(s)
- Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yifan Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Keshavamurthy A, Revanasiddappa PD, Dixit SM, Priyanka GR. Bound Phospholipids Assist Cholesteryl Ester Transfer in the Cholesteryl Ester Transfer Protein. J Chem Inf Model 2023; 63:3054-3067. [PMID: 37161266 DOI: 10.1021/acs.jcim.2c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein that assists the transfer of cholesteryl esters (CEs) from antiatherogenic high-density lipoproteins (HDLs) to proatherogenic low-density lipoproteins (LDLs), initiating cholesterol plaques in the arteries. Consequently, inhibiting the activity of CETP is therefore being pursued as a novel strategy to reduce the risk of cardiovascular diseases (CVDs). The crystal structure of CETP has revealed the presence of two CEs running in the hydrophobic tunnel and two plugged-in phospholipids (PLs) near the concave surface. Other than previous animal models that rule out the PL transfer by CETP and PLs in providing the structural stability, the functional importance of bound phospholipids in CETP is not fully explored. Here, we employ a series of molecular dynamics (MD) simulations, steered molecular dynamics (SMD) simulations, and free energy calculations to unravel the effect of PLs on the functionality of the protein. Our results suggest that PLs play an important role in the transfer of neutral lipids by transforming the unfavorable bent conformation of CEs into a favorable linear conformation to facilitate the smooth transfer. The results also suggest that the making and breaking interactions of the hydrophobic tunnel residues with CEs with a combined effort from PLs are responsible for the transfer of CEs. Further, the findings demonstrate that the N-PL has a more pronounced effort on CE transfer than C-PL but efforts from both PLs are essential in the transfer. Thus, we propose that the functionally important PLs can be considered with potential research interest in targeting cardiovascular diseases.
Collapse
Affiliation(s)
- Amrutha Keshavamurthy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India
| | | | - Sneha M Dixit
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Gandasi R Priyanka
- Department of Biotechnology, Siddaganga Institute of Technology, Tumkur 572103, Karnataka, India
| |
Collapse
|
10
|
Canepari C, Cantore A. Gene transfer and genome editing for familial hypercholesterolemia. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140997. [PMID: 39086674 PMCID: PMC11285693 DOI: 10.3389/fmmed.2023.1140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by high circulating low-density lipoprotein (LDL) cholesterol. High circulating LDL cholesterol in FH is due to dysfunctional LDL receptors, and is mainly expressed by hepatocytes. Affected patients rapidly develop atherosclerosis, potentially leading to myocardial infarction and death within the third decade of life if left untreated. Here, we introduce the disease pathogenesis and available treatment options. We highlight different possible targets of therapeutic intervention. We then review different gene therapy strategies currently under development, which may become novel therapeutic options in the future, and discuss their advantages and disadvantages. Finally, we briefly outline the potential applications of some of these strategies for the more common acquired hypercholesterolemia disease.
Collapse
Affiliation(s)
- Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Structure-based mechanism and inhibition of cholesteryl ester transfer protein. Curr Atheroscler Rep 2023; 25:155-166. [PMID: 36881278 PMCID: PMC10027838 DOI: 10.1007/s11883-023-01087-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Cholesteryl ester transfer proteins (CETP) regulate plasma cholesterol levels by transferring cholesteryl esters (CEs) among lipoproteins. Lipoprotein cholesterol levels correlate with the risk factors for atherosclerotic cardiovascular disease (ASCVD). This article reviews recent research on CETP structure, lipid transfer mechanism, and its inhibition. RECENT FINDINGS Genetic deficiency in CETP is associated with a low plasma level of low-density lipoprotein cholesterol (LDL-C) and a profoundly elevated plasma level of high-density lipoprotein cholesterol (HDL-C), which correlates with a lower risk of atherosclerotic cardiovascular disease (ASCVD). However, a very high concentration of HDL-C also correlates with increased ASCVD mortality. Considering that the elevated CETP activity is a major determinant of the atherogenic dyslipidemia, i.e., pro-atherogenic reductions in HDL and LDL particle size, inhibition of CETP emerged as a promising pharmacological target during the past two decades. CETP inhibitors, including torcetrapib, dalcetrapib, evacetrapib, anacetrapib and obicetrapib, were designed and evaluated in phase III clinical trials for the treatment of ASCVD or dyslipidemia. Although these inhibitors increase in plasma HDL-C levels and/or reduce LDL-C levels, the poor efficacy against ASCVD ended interest in CETP as an anti-ASCVD target. Nevertheless, interest in CETP and the molecular mechanism by which it inhibits CE transfer among lipoproteins persisted. Insights into the structural-based CETP-lipoprotein interactions can unravel CETP inhibition machinery, which can hopefully guide the design of more effective CETP inhibitors that combat ASCVD. Individual-molecule 3D structures of CETP bound to lipoproteins provide a model for understanding the mechanism by which CETP mediates lipid transfer and which in turn, guide the rational design of new anti-ASCVD therapeutics.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
12
|
Sprankel L, Vizarraga D, Martín J, Manger S, Meier-Credo J, Marcos M, Julve J, Rotllan N, Scheffer MP, Escolà-Gil JC, Langer JD, Piñol J, Fita I, Frangakis AS. Essential protein P116 extracts cholesterol and other indispensable lipids for Mycoplasmas. Nat Struct Mol Biol 2023; 30:321-329. [PMID: 36782049 PMCID: PMC10023570 DOI: 10.1038/s41594-023-00922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023]
Abstract
Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent. Lipidomics analysis shows that P116 specifically extracts lipids such as phosphatidylcholine, sphingomyelin and cholesterol. Structures of different conformational states reveal the mechanism by which lipids are extracted. This finding immediately suggests a way to control Mycoplasma infection by interfering with lipid uptake.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Jesús Martín
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Marina Marcos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Noemi Rotllan
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Margot P Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Julian D Langer
- Proteomics, Max Planck Institute of Biophysics, Frankfurt, Germany
- Proteomics, Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignacio Fita
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, Spain.
| | - Achilleas S Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
13
|
Effects of Dietary Vitamin E on Intramuscular Fat Deposition and Transcriptome Profile of the Pectoral Muscle of Broilers. J Poult Sci 2023; 60:2023006. [PMID: 36756043 PMCID: PMC9884639 DOI: 10.2141/jpsa.2023006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Vitamin E is an essential micronutrient for animals. The aim of this study was to determine the effect of vitamin E on intramuscular fat (IMF) deposition and the transcriptome profile of the pectoral muscle in broiler chickens. Arbor Acres chickens were divided into five treatment groups fed a basal diet supplemented with 0, 20, 50, 75, and 100 IU/kg dietary DL-α-tocopheryl acetate (vitamin E), respectively. Body weight, carcass performance, and IMF content were recorded. Transcriptome profiles of the pectoral muscles of 35-day-old chickens in the control and treatment groups (100 IU/kg of vitamin E) were obtained by RNA sequencing. The results showed that diets supplemented with 100 IU/kg of vitamin E significantly increased IMF deposition in chickens on day 35. In total, 159 differentially expressed genes (DEGs), including 57 up-regulated and 102 down-regulated genes, were identified in the treatment (100 IU/kg vitamin E) group compared to the control group. These DEGs were significantly enriched in 13 Gene Ontology terms involved in muscle development and lipid metabolism; three signaling pathways, including the mitogen-activated protein kinase and FoxO signaling pathways, which play key roles in muscular and lipid metabolism; 28 biofunctional categories associated with skeletal and muscular system development; 17 lipid metabolism functional categories; and three lipid metabolism and muscle development-related networks. The DEGs, pathways, functional categories, and networks identified in this study provide new insights into the regulatory roles of vitamin E on IMF deposition in broilers. Therefore, diets supplemented with 100 IU/kg of vitamin E will be more beneficial to broiler production.
Collapse
|
14
|
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:1-21. [PMID: 36120532 DOI: 10.1177/25152564221096024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid transfer proteins (LTPs) transfer lipids between different organelles, and thus play key roles in lipid homeostasis and organelle dynamics. The lipid transfer often occurs at the membrane contact sites (MCS) where two membranes are held within 10-30 nm. While most LTPs act as a shuttle to transfer lipids, recent experiments reveal a new category of eukaryotic LTPs that may serve as a bridge to transport lipids in bulk at MCSs. However, the molecular mechanisms underlying lipid transfer and MCS formation are not well understood. Here, we first review two recent studies of extended synaptotagmin (E-Syt)-mediated membrane binding and lipid transfer using novel approaches. Then we describe mathematical models to quantify the kinetics of lipid transfer by shuttle LTPs based on a lipid exchange mechanism. We find that simple lipid mixing among membranes of similar composition and/or lipid partitioning among membranes of distinct composition can explain lipid transfer against a concentration gradient widely observed for LTPs. We predict that selective transport of lipids, but not membrane proteins, by bridge LTPs leads to osmotic membrane tension by analogy to the osmotic pressure across a semipermeable membrane. A gradient of such tension and the conventional membrane tension may drive bulk lipid flow through bridge LTPs at a speed consistent with the fast membrane expansion observed in vivo. Finally, we discuss the implications of membrane tension and lipid transfer in organelle biogenesis. Overall, the quantitative models may help clarify the mechanisms of LTP-mediated MCS formation and lipid transfer.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Present address: State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
15
|
Xue H, Zhang M, Liu J, Wang J, Ren G. Cryo-electron tomography related radiation-damage parameters for individual-molecule 3D structure determination. Front Chem 2022; 10:889203. [PMID: 36110139 PMCID: PMC9468540 DOI: 10.3389/fchem.2022.889203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/13/2022] [Indexed: 11/28/2022] Open
Abstract
To understand the dynamic structure-function relationship of soft- and biomolecules, the determination of the three-dimensional (3D) structure of each individual molecule (nonaveraged structure) in its native state is sought-after. Cryo-electron tomography (cryo-ET) is a unique tool for imaging an individual object from a series of tilted views. However, due to radiation damage from the incident electron beam, the tolerable electron dose limits image contrast and the signal-to-noise ratio (SNR) of the data, preventing the 3D structure determination of individual molecules, especially at high-resolution. Although recently developed technologies and techniques, such as the direct electron detector, phase plate, and computational algorithms, can partially improve image contrast/SNR at the same electron dose, the high-resolution structure, such as tertiary structure of individual molecules, has not yet been resolved. Here, we review the cryo-electron microscopy (cryo-EM) and cryo-ET experimental parameters to discuss how these parameters affect the extent of radiation damage. This discussion can guide us in optimizing the experimental strategy to increase the imaging dose or improve image SNR without increasing the radiation damage. With a higher dose, a higher image contrast/SNR can be achieved, which is crucial for individual-molecule 3D structure. With 3D structures determined from an ensemble of individual molecules in different conformations, the molecular mechanism through their biochemical reactions, such as self-folding or synthesis, can be elucidated in a straightforward manner.
Collapse
Affiliation(s)
- Han Xue
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Jianjun Wang
- Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
16
|
Deng S, Liu J, Niu C. HDL and Cholesterol Ester Transfer Protein (CETP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1377:13-26. [PMID: 35575918 DOI: 10.1007/978-981-19-1592-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cholesterol ester transfer protein (CETP) is important clinically and is one of the major targets in cardiovascular disease studies. With high conformational flexibility, its tunnel structure allows unforced movement of high-density lipoproteins (HDLs), VLDLs, and LDLs. Research in reverse cholesterol transports (RCT) reveals that the regulation of CETP activity can change the concentration of cholesteryl esters (CE) in HDLs, VLDLs, and LDLs. These molecular insights demonstrate the mechanisms of CETP activities and manifest the correlation between CETP and HDL. However, animal and cell experiments focused on CETP give controversial results. Inhibiting CETP is found to be beneficial to anti-atherosclerosis in terms of increasing plasma HDL-C, while it is also claimed that CETP weakens atherosclerosis formation by promoting RCT. Currently, the CETP-related drugs are still immature. Research on CETP inhibitors is targeted at improving efficacy and minimizing adverse reactions. As for CETP agonists, research has proved that they also can be used to resist atherosclerosis.
Collapse
Affiliation(s)
- Siying Deng
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | | | - Chenguang Niu
- Key Laboratory of Clinical Resources Translation, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
17
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
18
|
Zhao Y, Zhang Q, Li Y, Chen L, Yi R, Peng B, Nie D, Zhang L, Shi G, Zhang S, Zhang L. Graphitic-like Hexagonal Phase of Alkali Halides in Quasi-Two-Dimensional Confined Space under Ambient Conditions. ACS NANO 2022; 16:2046-2053. [PMID: 35137582 DOI: 10.1021/acsnano.1c07424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The discovery of specific matter phases with abnormal physical properties in low-dimensional systems and/or on particular substrates, such as the hexagonal phase of ice and two-dimensional (2D) CaCl with an abnormal valence state, continuously reveals more fundamental mechanisms of the nature. Alkali halides, represented by NaCl, are one of the most common compounds and usually thought to be well-understood. In the past decades, many theoretical studies suggested the existence of one particular phase, that is, the graphitic-like hexagonal phase of alkali halides at high pressure or in low-dimension states, with the expectation of improved properties of this matter phase but lacking experimental evidence due to severe technical challenges. Here, by optimized cryo-electron microscopy, we report the direct atomic-resolution observation and in situ characterization of the prevalent and stable graphitic-like alkali halide hexagonal phases, which were spontaneously formed by unsaturated NaCl and LiCl solution, respectively, in the quasi-2D confined space between reduced graphene oxide layers under ambient conditions. Combined with a control experiment, density functional theory calculations, and previous theoretical studies, we believe that a delicate balance among the cation-π interaction of the solute and substrate, electrostatic interactions of anions and cations, solute-solvent interactions, and thermodynamics under confinement synergistically results in the formation of such hexagonal crystalline phases. These findings highlight the effects of the substrate and the confined space on the formation of specific matter phases and provide a universal scheme for the preparation of special graphitic-like hexagonal phases of alkali halides.
Collapse
Affiliation(s)
- Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Quan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yunzhang Li
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Liang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Ruobing Yi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Optical Engineering, Zhejiang Prov Key Lab Carbon Cycling Forest Ecosy, Zhejiang Prov Key Lab of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Lin'an 311300, China
| | - Bingquan Peng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dexi Nie
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lihao Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Reisinger AC, Schuller M, Sourij H, Stadler JT, Hackl G, Eller P, Marsche G. Impact of Sepsis on High-Density Lipoprotein Metabolism. Front Cell Dev Biol 2022; 9:795460. [PMID: 35071235 PMCID: PMC8766710 DOI: 10.3389/fcell.2021.795460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Background: High-density lipoproteins (HDL) are thought to play a protective role in sepsis through several mechanisms, such as promotion of steroid synthesis, clearing bacterial toxins, protection of the endothelial barrier, and antioxidant/inflammatory activities. However, HDL levels decline rapidly during sepsis, but the contributing mechanisms are poorly understood. Methods/Aim: In the present study, we investigated enzymes involved in lipoprotein metabolism in sepsis and non-sepsis patients admitted to the intensive care unit (ICU). Results: In 53 ICU sepsis and 25 ICU non-sepsis patients, we observed significant differences in several enzymes involved in lipoprotein metabolism. Lecithin-cholesterol acyl transferase (LCAT) activity, LCAT concentration, and cholesteryl transfer protein (CETP) activity were significantly lower, whereas phospholipid transfer activity protein (PLTP) and endothelial lipase (EL) were significantly higher in sepsis patients compared to non-sepsis patients. In addition, serum amyloid A (SAA) levels were increased 10-fold in sepsis patients compared with non-sepsis patients. Furthermore, we found that LCAT activity was significantly associated with ICU and 28-day mortality whereas SAA levels, representing a strong inflammatory marker, did not associate with mortality outcomes. Conclusion: We provide novel data on the rapid and robust changes in HDL metabolism during sepsis. Our results clearly highlight the critical role of specific metabolic pathways and enzymes in sepsis pathophysiology that may lead to novel therapeutics.
Collapse
Affiliation(s)
- Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Max Schuller
- Department of Internal Medicine, Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Julia T Stadler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gerald Hackl
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Nurmohamed NS, Ditmarsch M, Kastelein JJP. CETP-inhibitors: from HDL-C to LDL-C lowering agents? Cardiovasc Res 2021; 118:2919-2931. [PMID: 34849601 PMCID: PMC9648826 DOI: 10.1093/cvr/cvab350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is a liver-synthesized glycoprotein whose main functions are facilitating transfer of both cholesteryl esters from high-density lipoprotein (HDL) particles to apolipoprotein B (apoB)-containing particles as well as transfer of triglycerides from apoB-containing particles to HDL particles. Novel crystallographic data have shown that CETP exchanges lipids in the circulation by a dual molecular mechanism. Recently, it has been suggested that the atherosclerotic cardiovascular disease (ASCVD) benefit from CETP inhibition is the consequence of the achieved low-density lipoprotein cholesterol (LDL-C) and apoB reduction, rather than through the HDL cholesterol (HDL-C) increase. The use of CETP inhibitors is supported by genetic evidence from Mendelian randomization studies, showing that LDL-C lowering by CETP gene variants achieves equal ASCVD risk reduction as LDL-C lowering through gene proxies for statins, ezetimibe, and proprotein convertase subtilisin–kexin Type 9 inhibitors. Although first-generation CETP inhibitors (torcetrapib, dalcetrapib) were mainly raising HDL-C or had off-target effects, next generation CETP inhibitors (anacetrapib, evacetrapib) were also effective in reducing LDL-C and apoB and have been proven safe. Anacetrapib was the first CETP inhibitor to be proven effective in reducing ASCVD risk. In addition, CETP inhibitors have been shown to lower the risk of new-onset diabetes, improve glucose tolerance, and insulin sensitivity. The newest-generation CETP inhibitor obicetrapib, specifically designed to lower LDL-C and apoB, has achieved significant reductions of LDL-C up to 45%. Obicetrapib, about to enter phase III development, could become the first CETP inhibitor as add-on therapy for patients not reaching their guideline LDL-C targets.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Zhang L, Shi G, Peng B, Gao P, Chen L, Zhong N, Mu L, Zhang L, Zhang P, Gou L, Zhao Y, Liang S, Jiang J, Zhang Z, Ren H, Lei X, Yi R, Qiu Y, Zhang Y, Liu X, Wu M, Yan L, Duan C, Zhang S, Fang H. Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property and monovalent calcium ions. Natl Sci Rev 2021; 8:nwaa274. [PMID: 34691690 PMCID: PMC8310769 DOI: 10.1093/nsr/nwaa274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/12/2022] Open
Abstract
Under ambient conditions, the only known valence state of calcium ions is +2, and the corresponding crystals with calcium ions are insulating and nonferromagnetic. Here, using cryo-electron microscopy, we report direct observation of two-dimensional (2D) CaCl crystals on reduced graphene oxide (rGO) membranes, in which the calcium ions are only monovalent (i.e. +1). Remarkably, metallic rather than insulating properties are displayed by those CaCl crystals. More interestingly, room-temperature ferromagnetism, graphene-CaCl heterojunction, coexistence of piezoelectricity-like property and metallicity, as well as the distinct hydrogen storage and release capability of the CaCl crystals in rGO membranes are experimentally demonstrated. We note that such CaCl crystals are obtained by simply incubating rGO membranes in salt solutions below the saturated concentration, under ambient conditions. Theoretical studies suggest that the formation of those abnormal crystals is attributed to the strong cation-π interactions of the Ca cations with the aromatic rings in the graphene surfaces. The findings highlight the realistic potential applications of such abnormal CaCl material with unusual electronic properties in designing novel transistors and magnetic devices, hydrogen storage, catalyzers, high-performance conducting electrodes and sensors, with a size down to atomic scale.
Collapse
Affiliation(s)
- Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Bingquan Peng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Gao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liang Chen
- Department of Optical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Liuhua Mu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Peng Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lu Gou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimin Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan Liang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jie Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zejun Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hongtao Ren
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoling Lei
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Ruobing Yi
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yinwei Qiu
- Department of Optical Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yufeng Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Long Yan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Chungang Duan
- Key Laboratory of Polar Materials and Devices of Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiping Fang
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Hao D, Wang H, Zang Y, Zhang L, Yang Z, Zhang S. Mechanism of Glycans Modulating Cholesteryl Ester Transfer Protein: Unveiled by Molecular Dynamics Simulation. J Chem Inf Model 2021; 62:5246-5257. [PMID: 33858135 DOI: 10.1021/acs.jcim.1c00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of the cholesteryl ester transfer protein (CETP) has been considered as a promising way for the treatment of cardiovascular disease (CVD) for three decades. However, clinical trials of several CETP inhibitors with various potencies have been marginally successful at best, raising doubts on the target drugability of CETP. The in-depth understanding of the glycosylated CETP structure could be beneficial to more definitive descriptions of the CETP function and the underlying mechanism. In this work, large-scale molecular dynamics simulations were performed to thoroughly explore the mechanism of glycans modulating CETP. Here, the extensive simulation results intensely suggest that glycan88 tends to assist CETP in forming a continuous tunnel throughout interacting with the upper-right region of the N-barrel, while it also could prevent the formation of a continuous tunnel by swinging toward the right-rear of the N-barrel. Furthermore, glycan240 formed stable H-bonds with Helix-B and might further stabilize the central cavity of CETP. Furthermore, the nonspecific involvement of the hydroxyl groups from the various glycans with protein core interactions and the similar influence of different glycans trapped at similar regions on the protein structure suggest that physiological glycan may lead to a similar effect. This study would provide valuable insights into devising novel methods for CVD treatment targeting CETP and functional studies about glycosylation for other systems.
Collapse
Affiliation(s)
- Dongxiao Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
23
|
Singh SA, Andraski AB, Higashi H, Lee LH, Ramsaroop A, Sacks FM, Aikawa M. Metabolism of PLTP, CETP, and LCAT on multiple HDL sizes using the Orbitrap Fusion Lumos. JCI Insight 2021; 6:143526. [PMID: 33351780 PMCID: PMC7934878 DOI: 10.1172/jci.insight.143526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Recent in vivo tracer studies demonstrated that targeted mass spectrometry (MS) on the Q Exactive Orbitrap could determine the metabolism of HDL proteins 100s-fold less abundant than apolipoprotein A1 (APOA1). In this study, we demonstrate that the Orbitrap Lumos can measure tracer in proteins whose abundances are 1000s-fold less than APOA1, specifically the lipid transfer proteins phospholipid transfer protein (PLTP), cholesterol ester transfer protein (CETP), and lecithin-cholesterol acyl transferase (LCAT). Relative to the Q Exactive, the Lumos improved tracer detection by reducing tracer enrichment compression, thereby providing consistent enrichment data across multiple HDL sizes from 6 participants. We determined by compartmental modeling that PLTP is secreted in medium and large HDL (alpha2, alpha1, and alpha0) and is transferred from medium to larger sizes during circulation from where it is catabolized. CETP is secreted mainly in alpha1 and alpha2 and remains in these sizes during circulation. LCAT is secreted mainly in medium and small HDL (alpha2, alpha3, prebeta). Unlike PLTP and CETP, LCAT’s appearance on HDL is markedly delayed, indicating that LCAT may reside for a time outside of systemic circulation before attaching to HDL in plasma. The determination of these lipid transfer proteins’ unique metabolic structures was possible due to advances in MS technologies.
Collapse
Affiliation(s)
- Sasha A Singh
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Allison B Andraski
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Hideyuki Higashi
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lang Ho Lee
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ashisha Ramsaroop
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Frank M Sacks
- Department of Nutrition and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Channing Division of Network Medicine, Department of Medicine, and.,Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Kimura AK, Kimura T. Phosphatidylserine biosynthesis pathways in lipid homeostasis: Toward resolution of the pending central issue for decades. FASEB J 2020; 35:e21177. [PMID: 33205488 DOI: 10.1096/fj.202001802r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/28/2022]
Abstract
Enzymatic control of lipid homeostasis in the cell is a vital element in the complex organization of life. Phosphatidylserine (PS) is an essential anionic phospholipid of cell membranes, and conducts numerous roles for their structural and functional integrity. In mammalian cells, two distinct enzymes phosphatidylserine synthases-1 (PSS1) and -2 (PSS2) in the mitochondria-associated membrane (MAM) in the ER perform de novo synthesis of PS. It is based on base-exchange reactions of the preexisting dominant phospholipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). While PSS2 specifically catalyzes the reaction "PE → PS," whether or not PSS1 is responsible for the same reaction along with the reaction "PC → PS" remains unsettled despite its fundamental impact on the major stoichiometry. We propose here that a key but the only report that appeared to have put scientists on hold for decades in answering to this issue may be viewed consistently with other available research reports; PSS1 utilizes the two dominant phospholipid classes at a similar intrinsic rate. In this review, we discuss the issue in view of the current information for the enzyme machineries, membrane structure and dynamics, intracellular network of lipid transport, and PS synthesis in health and disease. Resolution of the pending issue is thus critical in advancing our understanding of roles of the essential anionic lipid in biology, health, and disease.
Collapse
Affiliation(s)
- Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Tomohiro Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
LoTToR: An Algorithm for Missing-Wedge Correction of the Low-Tilt Tomographic 3D Reconstruction of a Single-Molecule Structure. Sci Rep 2020; 10:10489. [PMID: 32591588 PMCID: PMC7320192 DOI: 10.1038/s41598-020-66793-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 05/27/2020] [Indexed: 01/01/2023] Open
Abstract
A single-molecule three-dimensional (3D) structure is essential for understanding the thermal vibrations and dynamics as well as the conformational changes during the chemical reaction of macromolecules. Individual-particle electron tomography (IPET) is an approach for obtaining a snap-shot 3D structure of an individual macromolecule particle by aligning the tilt series of electron tomographic (ET) images of a targeted particle through a focused iterative 3D reconstruction method. The method can reduce the influence on the 3D reconstruction from large-scale image distortion and deformation. Due to the mechanical tilt limitation, 3D reconstruction often contains missing-wedge artifacts, presented as elongation and an anisotropic resolution. Here, we report a post-processing method to correct the missing-wedge artifact. This low-tilt tomographic reconstruction (LoTToR) method contains a model-free iteration process under a set of constraints in real and reciprocal spaces. A proof of concept is conducted by using the LoTToR on a phantom, i.e., a simulated 3D reconstruction from a low-tilt series of images, including that within a tilt range of ±15°. The method is validated by using both negative-staining (NS) and cryo-electron tomography (cryo-ET) experimental data. A significantly reduced missing-wedge artifact verifies the capability of LoTToR, suggesting a new tool to support the future study of macromolecular dynamics, fluctuation and chemical activity from the viewpoint of single-molecule 3D structure determination.
Collapse
|
26
|
Gaubatz JW, Gillard BK, Rosales C, Pownall HJ. Dietary Alcohol and Fat Differentially Affect Plasma Cholesteryl Ester Transfer Activity and Triglycerides in Normo- and Hypertriglyceridemic Subjects. Lipids 2020; 55:299-307. [PMID: 32255209 DOI: 10.1002/lipd.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/11/2022]
Abstract
Moderate alcohol consumption is associated with increased plasma high-density lipoprotein (HDL)-cholesterol concentrations and reduced risk for cardiovascular disease. Plasma cholesteryl ester transfer activity (CETA) mediates the exchange of HDL-cholesteryl ester (CE) for the triacylglycerol (TAG) of very-low-density lipoproteins. We compared the effects of oral challenges of Alcohol, saturated fat (SAT), and (Alcohol + SAT) on plasma CETA, cholesterol, nonesterified fatty acids (NEFA), and TAG among normo-triglyceridemic (NTG) and mildly hypertriglyceridemic (HTG) volunteers having a range of plasma TAG concentrations. The major changes were (1) CETA increased more after ingestion of SAT and (Alcohol + SAT) in the HTG group versus the NTG group; (2) after all three challenges, elevation of plasma TAG concentration persisted longer in the HTG versus NTG group. Plasma cholesterol was not affected by the three dietary challenges, while Alcohol increased NEFA more in the HTG group than the NTG group. Plasma TAG best predicted plasma CETA, suggesting that intestinally derived lipoproteins are acceptors of HDL-CE. Unexpectedly, ingestion of (Alcohol + SAT) reduced the strength of the correlation between plasma TAG and CETA, that is the effects of (SAT and Alcohol) on plasma CETA are not synergistic nor additive but rather mutually suppressive. The alcohol-mediated inhibition of CE-transfer to chylomicrons maintains a higher plasma HDL-cholesterol concentration, which is athero-protective, although the suppressive metabolite underlying this correlation could be acetate, the terminal alcohol metabolite, other factors, including CETA inhibitors, are also likely important.
Collapse
Affiliation(s)
- John W Gaubatz
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States
| | - Baiba K Gillard
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.,Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, United States
| | - Corina Rosales
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.,Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, United States
| | - Henry J Pownall
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, United States.,Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, United States
| |
Collapse
|
27
|
Dupas S, Neiers F, Granon E, Rougeux E, Dupont S, Beney L, Bousquet F, Shaik HA, Briand L, Wojtasek H, Charles JP. Collisional mechanism of ligand release by Bombyxmori JHBP, a member of the TULIP / Takeout family of lipid transporters. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103293. [PMID: 31809784 DOI: 10.1016/j.ibmb.2019.103293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Juvenile hormones (JHs) regulate important processes in insects, such as postembryonic development and reproduction. In the hemolymph of Lepidoptera, these lipophilic sesquiterpenic hormones are transported from their site of synthesis to target tissues by high affinity carriers, the juvenile hormone binding proteins (JHBPs). Lepidopteran JHBPs belong to a recently uncovered, yet very ancient family of proteins sharing a common lipid fold (TULIP domain) and involved in shuttling various lipid ligands. One important, but poorly understood aspect of JHs action, is the mechanism of hormone transfer to or through the plasma membranes of target cells. Since many membrane-active peptides and proteins, such as the pore-forming bacterial toxins, are activated by low pH or interaction with phospholipid membranes, we have examined the effect of these factors on JH binding by JHBPs. The affinity of Bombyx mori and Manduca sexta JHBPs for JH III was determined by the DCC assay, equilibrium dialysis, and isothermal titration calorimetry, and found to be greatly reduced at low pH, in agreement with previous observations. Loss of binding was accompanied by changes in fluorescence and near-UV CD spectra, indicating significant changes in protein structure in the environment of aromatic residues. The apparent dissociation rate constant (koff) of the JHBP-JH III complex was greater at acidic pH, suggesting that low pH favors ligand release by opening of the binding pocket. The affinity of recombinant B. mori JHBP (rBmJHBP) was also decreased in the presence of anionic phospholipid vesicles. Measurements of steady-state fluorescence anisotropy with the lipophilic probe TMA-DPH demonstrated that rBmJHBP specifically interacts with anionic membranes. These results suggest the existence of a collisional mechanism for ligand release that may be important for delivery of JHs to the target cells, and could be relevant to the function of related members of this emerging family of lipid-transport proteins.
Collapse
Affiliation(s)
- Stéphane Dupas
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Fabrice Neiers
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Emma Granon
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Erwan Rougeux
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Sébastien Dupont
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Laurent Beney
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - François Bousquet
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Haq Abdul Shaik
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Loic Briand
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France
| | - Hubert Wojtasek
- Institute of Chemistry, Opole University, Ul. Oleska 48, 45-052, Opole, Poland.
| | - Jean-Philippe Charles
- Université de Bourgogne Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, UMR 6265 CNRS, UMR 1324 INRA, 6, Bd Gabriel, F-21000, Dijon, France.
| |
Collapse
|
28
|
Izem L, Liu Y, Morton RE. Exon 9-deleted CETP inhibits full length-CETP synthesis and promotes cellular triglyceride storage. J Lipid Res 2020; 61:422-431. [PMID: 31988147 DOI: 10.1194/jlr.ra120000583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) exists as full-length (FL) and exon 9 (E9)-deleted isoforms. The function of E9-deleted CETP is poorly understood. Here, we investigated the role of E9-deleted CETP in regulating the secretion of FL-CETP by cells and explored its possible role in intracellular lipid metabolism. CETP overexpression in cells that naturally express CETP confirmed that E9-deleted CETP is not secreted, and showed that cellular FL- and E9-deleted CETP form an isolatable complex. Coexpression of CETP isoforms lowered cellular levels of both proteins and impaired FL-CETP secretion. These effects were due to reduced synthesis of both isoforms; however, the predominate consequence of FL- and E9-deleted CETP coexpression is impaired FL-CETP synthesis. We reported previously that reducing both CETP isoforms or overexpressing FL-CETP impairs cellular triglyceride (TG) storage. To investigate this further, E9-deleted CETP was expressed in SW872 cells that naturally synthesize CETP and in mouse 3T3-L1 cells that do not. E9-deleted CETP overexpression stimulated SW872 triglyceride synthesis and increased stored TG 2-fold. Expression of E9-deleted CETP in mouse 3T3-L1 cells produced a similar lipid phenotype. In vitro, FL-CETP promotes the transfer of TG from ER-enriched membranes to lipid droplets. E9-deleted CETP also promoted this transfer, although less effectively, and it inhibited the transfer driven by FL-CETP. We conclude that FL- and E9-deleted CETP isoforms interact to mutually decrease their intracellular levels and impair FL-CETP secretion by reducing CETP biosynthesis. E9-deleted CETP, like FL-CETP, alters cellular TG metabolism and storage but in a contrary manner.
Collapse
Affiliation(s)
- Lahoucine Izem
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Yan Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Richard E Morton
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| |
Collapse
|
29
|
Abstract
Lipids are distributed in a highly heterogeneous fashion in different cellular membranes. Only a minority of lipids achieve their final intracellular distribution through transport by vesicles. Instead, the bulk of lipid traffic is mediated by a large group of lipid transfer proteins (LTPs), which move small numbers of lipids at a time using hydrophobic cavities that stabilize lipid molecules outside membranes. Although the first LTPs were discovered almost 50 years ago, most progress in understanding these proteins has been made in the past few years, leading to considerable temporal and spatial refinement of our understanding of the function of these lipid transporters. The number of known LTPs has increased, with exciting discoveries of their multimeric assembly. Structural studies of LTPs have progressed from static crystal structures to dynamic structural approaches that show how conformational changes contribute to lipid handling at a sub-millisecond timescale. A major development has been the finding that many intracellular LTPs localize to two organelles at the same time, forming a shuttle, bridge or tube that links donor and acceptor compartments. The understanding of how different lipids achieve their final destination at the molecular level allows a better explanation of the range of defects that occur in diseases associated with lipid transport and distribution, opening up the possibility of developing therapies that specifically target lipid transfer.
Collapse
|
30
|
Sharma V, Hiller M. Losses of human disease-associated genes in placental mammals. NAR Genom Bioinform 2019; 2:lqz012. [PMID: 33575564 PMCID: PMC7671337 DOI: 10.1093/nargab/lqz012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
We systematically investigate whether losses of human disease-associated genes occurred in other mammals during evolution. We first show that genes lost in any of 62 non-human mammals generally have a lower degree of pleiotropy, and are highly depleted in essential and disease-associated genes. Despite this under-representation, we discovered multiple genes implicated in human disease that are truly lost in non-human mammals. In most cases, traits resembling human disease symptoms are present but not deleterious in gene-loss species, exemplified by losses of genes causing human eye or teeth disorders in poor-vision or enamel-less mammals. We also found widespread losses of PCSK9 and CETP genes, where loss-of-function mutations in humans protect from atherosclerosis. Unexpectedly, we discovered losses of disease genes (TYMP, TBX22, ABCG5, ABCG8, MEFV, CTSE) where deleterious phenotypes do not manifest in the respective species. A remarkable example is the uric acid-degrading enzyme UOX, which we found to be inactivated in elephants and manatees. While UOX loss in hominoids led to high serum uric acid levels and a predisposition for gout, elephants and manatees exhibit low uric acid levels, suggesting alternative ways of metabolizing uric acid. Together, our results highlight numerous mammals that are 'natural knockouts' of human disease genes.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany.,Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
31
|
Dixit SM, Ahsan M, Senapati S. Steering the Lipid Transfer To Unravel the Mechanism of Cholesteryl Ester Transfer Protein Inhibition. Biochemistry 2019; 58:3789-3801. [PMID: 31418269 DOI: 10.1021/acs.biochem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma cholesteryl ester transfer protein (CETP) mediates the transfer of neutral lipids from antiatherogenic high-density lipoproteins (HDLs) to proatherogenic low-density lipoproteins (LDLs). Recent cryo-electron microscopy studies have suggested that CETP penetrates its N- and C-terminal domains in HDL and LDL to form a ternary complex, which facilitates the lipid transfer between different lipoproteins. Inhibition of CETP lipid transfer activity has been shown to increase the plasma HDL-C levels and, therefore, became an effective strategy for combating cardiovascular diseases. Thus, understanding the molecular mechanism of inhibition of lipid transfer through CETP is of paramount importance. Recently reported inhibitors, torcetrapib and anacetrapib, exhibited low potency in addition to severe side effects, which essentially demanded a thorough knowledge of the inhibition mechanism. Here, we employ steered molecular dynamics simulations to understand how inhibitors interfere with the neutral lipid transfer mechanism of CETP. Our study revealed that inhibitors physically occlude the tunnel posing a high energy barrier for lipid transfer. In addition, inhibitors bring about the conformational changes in CETP that hamper CE passage and expose protein residues that disrupt the optimal hydrophobicity of the CE transfer path. The atomic level details presented here could accelerate the designing of safe and efficacious CETP inhibitors.
Collapse
Affiliation(s)
- Sneha M Dixit
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Mohd Ahsan
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
32
|
Tárraga WA, Garda HA, Toledo JD, Gonzalez MC. Potential Inhibitors of the Activity of the Cholesterol-Ester Transfer Protein. J Comput Biol 2019; 26:1458-1469. [PMID: 31356116 DOI: 10.1089/cmb.2018.0227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cholesterol-ester transfer protein (CETP) exchanges lipids between high-density lipoproteins (HDLs) and low-density lipoproteins (LDLs). The excessive transport of lipids from HDLs to LDLs mediated by this protein can cause an alteration in the deposition of lipoproteins onto the arterial walls, thus promoting the development of arteriosclerosis. Different CETP inhibitors have been tested in recent years, but none has been confirmed as being effectively palliative for the disease. We employed in silico databases and molecular docking as a computational method to predict how potential CETP inhibitors could interact with the active site of the CETP protein. Upon previously comparing two computer software packages to determine which generated a greater number of accurate CETP-inhibitor-complex structures, we chose the more appropriate program for our studies. We then abstracted a series of databases of known CETP inhibitors and noninhibitors exhibiting different 50% concentrations of CETP-inhibitory (INH) activity, to generate virtual structures for docking with different combinations of the CETP receptor. From this process, we obtained as the most suitable structure 4F2A_1OB_C_PCW-it accordingly having a greater area under the receiver operating characteristic curve. The molecular docking of known compounds in comparison with the respective conformation of this inhibitor enabled us to obtain ΔGs (in kcal/mol) from which data we made a first exploration of unknown compounds for CETP-INH activity. Thus, the 4F2A_1OB_C_PCW structure was docked with DrugBank-Approved commercial compounds in an extensive database, whose status had already been established from pharmacokinetics and toxicology. In this study, we present a group of potential compounds as CETP-inhibitor candidates.
Collapse
Affiliation(s)
- Wilson Alberto Tárraga
- Institute of Biochemical Research of La Plata Rodolfo Brenner (INIBIOLP), CONICET-CCT La Plata, Faculty of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Horacio Alberto Garda
- Institute of Biochemical Research of La Plata Rodolfo Brenner (INIBIOLP), CONICET-CCT La Plata, Faculty of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Juan Domingo Toledo
- Institute of Biochemical Research of La Plata Rodolfo Brenner (INIBIOLP), CONICET-CCT La Plata, Faculty of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| | - Marina Cecilia Gonzalez
- Institute of Biochemical Research of La Plata Rodolfo Brenner (INIBIOLP), CONICET-CCT La Plata, Faculty of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
33
|
Lei D, Liu J, Liu H, Cleveland TE, Marino JP, Lei M, Ren G. Single-Molecule 3D Images of "Hole-Hole" IgG1 Homodimers by Individual-Particle Electron Tomography. Sci Rep 2019; 9:8864. [PMID: 31221961 PMCID: PMC6586654 DOI: 10.1038/s41598-019-44978-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
The engineering of immunoglobulin-G molecules (IgGs) is of wide interest for improving therapeutics, for example by modulating the activity or multiplexing the specificity of IgGs to recognize more than one antigen. Optimization of engineered IgG requires knowledge of three-dimensional (3D) structure of synthetic IgG. However, due to flexible nature of the molecules, their structural characterization is challenging. Here, we use our reported individual-particle electron tomography (IPET) method with optimized negative-staining (OpNS) for direct 3D reconstruction of individual IgG hole-hole homodimer molecules. The hole-hole homodimer is an undesired variant generated during the production of a bispecific antibody using the knob-into-hole heterodimer technology. A total of 64 IPET 3D density maps at ~15 Å resolutions were reconstructed from 64 individual molecules, revealing 64 unique conformations. In addition to the known Y-shaped conformation, we also observed an unusual X-shaped conformation. The 3D structure of the X-shaped conformation contributes to our understanding of the structural details of the interaction between two heavy chains in the Fc domain. The IPET approach, as an orthogonal technique to characterize the 3D structure of therapeutic antibodies, provides insight into the 3D structural variety and dynamics of heterogeneous IgG molecules.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hongbin Liu
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Thomas E Cleveland
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, MD, 20850, USA
| | - Ming Lei
- Protein Analytical Chemistry, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
34
|
Liu J, Wu H, Huang C, Lei D, Zhang M, Xie W, Li J, Ren G. Optimized Negative-Staining Protocol for Lipid-Protein Interactions Investigated by Electron Microscopy. Methods Mol Biol 2019; 2003:163-173. [PMID: 31218618 PMCID: PMC6817366 DOI: 10.1007/978-1-4939-9512-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A large number of proteins are capable of inserting themselves into lipids, and interacting with membranes, such as transmembrane proteins and apolipoproteins. Insights into the lipid-protein interactions are important in understanding biological processes, and the structure of proteins at the lipid binding stage can help identify their roles and critical functions. Previously, such structural determination was challenging to obtain because the traditional methods, such as X-ray crystallography, are unable to capture the conformational and compositional heterogeneity of protein-lipid complexes. Electron microscopy (EM) is an alternative approach to determining protein structures and visualizing lipid-protein interactions directly, and negative-staining (OpNS), a subset of EM techniques, is a rapid, frequently used qualitative approach. The concern, however, is that current NS protocols often generate artifacts with lipid-related proteins, such as rouleaux formation from lipoproteins. To overcome this artifact formation, Ren and his colleagues have refined early NS protocols, and developed an optimized NS protocol that validated by comparing images of lipoproteins from cryo-electron microscopy (cryo-EM). This optimized NS protocol produces "near native-state" particle images and high contrast images of the protein in its native lipid-binding state, which can be used to create higher-quality three-dimensional (3D) reconstruction by single-particle analysis and electron tomography (e.g. IPET). This optimized protocol is thus a promising hands-on approach for examining the structure of proteins at their lipid-binding status.
Collapse
Affiliation(s)
- Jianfang Liu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Hao Wu
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Computer Science, College of Information Science and Technology, Beijing Normal University, Beijing, China
| | - Changyu Huang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dongsheng Lei
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Meng Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wei Xie
- State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
- Center for Cellular and Structural Biology, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jinping Li
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Gang Ren
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
35
|
Lei D, Yu Y, Kuang YL, Liu J, Krauss RM, Ren G. Single-molecule 3D imaging of human plasma intermediate-density lipoproteins reveals a polyhedral structure. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:260-270. [PMID: 30557627 PMCID: PMC6409128 DOI: 10.1016/j.bbalip.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 11/25/2022]
Abstract
Intermediate-density lipoproteins (IDLs), the remnants of very-low-density lipoproteins via lipolysis, are rich in cholesteryl ester and are associated with cardiovascular disease. Despite pharmacological interest in IDLs, their three-dimensional (3D) structure is still undetermined due to their variation in size, composition, and dynamic structure. To explore the 3D structure of IDLs, we reconstructed 3D density maps from individual IDL particles using cryo-electron microscopy (cryo-EM) and individual-particle electron tomography (IPET, without averaging from different molecules). 3D reconstructions of IDLs revealed an unexpected polyhedral structure that deviates from the generally assumed spherical shape model (Frias et al., 2007; Olson, 1998; Shen et al., 1977). The polyhedral-shaped IDL contains a high-density shell formed by flat surfaces that are similar to those of very-low-density lipoproteins but have sharper dihedral angles between nearby surfaces. These flat surfaces would be less hydrophobic than the curved surface of mature spherical high-density lipoprotein (HDL), leading to a lower binding affinity of IDL to hydrophobic proteins (such as cholesteryl ester transfer protein) than HDL. This is the first visualization of the IDL 3D structure, which could provide fundamental clues for delineating the role of IDL in lipid metabolism and cardiovascular disease.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yadong Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yu-Lin Kuang
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ronald M Krauss
- Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Bülow S, Zeller L, Werner M, Toelge M, Holzinger J, Entzian C, Schubert T, Waldow F, Gisch N, Hammerschmidt S, Gessner A. Bactericidal/Permeability-Increasing Protein Is an Enhancer of Bacterial Lipoprotein Recognition. Front Immunol 2018; 9:2768. [PMID: 30581431 PMCID: PMC6293271 DOI: 10.3389/fimmu.2018.02768] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Adequate perception of immunologically important pathogen-associated molecular patterns like lipopolysaccharide and bacterial lipoproteins is essential for efficient innate and adaptive immune responses. In the context of Gram-negative infection, bactericidal/permeability-increasing protein (BPI) neutralizes endotoxic activity of lipopolysaccharides, and thus prohibits hyperactivation. So far, no immunological function of BPI has been described in Gram-positive infections. Here, we show a significant elevation of BPI in Gram-positive meningitis and, surprisingly, a positive correlation between BPI and pro-inflammatory markers like TNFα. To clarify the underlying mechanisms, we identify BPI ligands of Gram-positive origin, specifically bacterial lipopeptides and lipoteichoic acids, and determine essential structural motifs for this interaction. Importantly, the interaction of BPI with these newly defined ligands significantly enhances the immune response in peripheral blood mononuclear cells (PBMCs) mediated by Gram-positive bacteria, and thereby ensures their sensitive perception. In conclusion, we define BPI as an immune enhancing pattern recognition molecule in Gram-positive infections.
Collapse
Affiliation(s)
- Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Lisa Zeller
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Maren Werner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Martina Toelge
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Jonas Holzinger
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Franziska Waldow
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomcis of Microbes, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Wu H, Zhai X, Lei D, Liu J, Yu Y, Bie R, Ren G. An Algorithm for Enhancing the Image Contrast of Electron Tomography. Sci Rep 2018; 8:16711. [PMID: 30420636 PMCID: PMC6232092 DOI: 10.1038/s41598-018-34652-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) reconstruction of a single protein molecule is essential for understanding the relationship between the structural dynamics and functions of the protein. Electron tomography (ET) provides a tool for imaging an individual particle of protein from a series of tilted angles. Individual-particle electron tomography (IPET) provides an approach for reconstructing a 3D density map from a single targeted protein particle (without averaging from different particles of this type of protein), in which the target particle was imaged from a series of tilting angles. However, owing to radiation damage limitations, low-dose images (high noise, and low image contrast) are often challenging to be aligned for 3D reconstruction at intermediate resolution (1-3 nm). Here, we propose a computational method to enhance the image contrast, without increasing any experimental dose, for IPET 3D reconstruction. Using an edge-preserving smoothing-based multi-scale image decomposition algorithm, this method can detect the object against a high-noise background and enhance the object image contrast without increasing the noise level or significantly decreasing the image resolution. The method was validated by using both negative staining (NS) ET and cryo-ET images. The successful 3D reconstruction of a small molecule (<100 kDa) indicated that this method can be used as a supporting tool to current ET 3D reconstruction methods for studying protein dynamics via structure determination from each individual particle of the same type of protein.
Collapse
Affiliation(s)
- Hao Wu
- College of Information Science and Technology, Beijing Normal University, Beijing, China.
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Xiaobo Zhai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yadong Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rongfang Bie
- College of Information Science and Technology, Beijing Normal University, Beijing, China.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
38
|
Liu J, Misra A, Reddy MVVVS, White MA, Ren G, Rudenko G. Structural Plasticity of Neurexin 1α: Implications for its Role as Synaptic Organizer. J Mol Biol 2018; 430:4325-4343. [PMID: 30193986 PMCID: PMC6223652 DOI: 10.1016/j.jmb.2018.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/24/2022]
Abstract
α-Neurexins are synaptic organizing molecules implicated in neuropsychiatric disorders. They bind and arrange an array of different partners in the synaptic cleft. The extracellular region of neurexin 1α (n1α) contains six LNS domains (L1-L6) interspersed by three Egf-like repeats. N1α must encode highly evolved structure-function relationships in order to fit into the narrow confines of the synaptic cleft, and also recruit its large, membrane-bound partners. Internal molecular flexibility could provide a solution; however, it is challenging to delineate because currently no structural methods permit high-resolution structure determination of large, flexible, multi-domain protein molecules. To investigate the structural plasticity of n1α, in particular the conformation of domains that carry validated binding sites for different protein partners, we used a panel of structural techniques. Individual particle electron tomography revealed that the N-terminally and C-terminally tethered domains, L1 and L6, have a surprisingly limited range of conformational freedom with respect to the linear central core containing L2 through L5. A 2.8-Å crystal structure revealed an unexpected arrangement of the L2 and L3 domains. Small-angle X-ray scattering and electron tomography indicated that incorporation of the alternative splice insert SS6 relieves the restricted conformational freedom between L5 and L6, suggesting that SS6 may work as a molecular toggle. The architecture of n1α thus encodes a combination of rigid and flexibly tethered domains that are uniquely poised to work together to promote its organizing function in the synaptic cleft, and may permit allosterically regulated and/or concerted protein partner binding.
Collapse
Affiliation(s)
- Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Anurag Misra
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M V V V Sekhar Reddy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark Andrew White
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
39
|
Zhang M, Zhai X, Li J, Albers JJ, Vuletic S, Ren G. Structural basis of the lipid transfer mechanism of phospholipid transfer protein (PLTP). Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1082-1094. [PMID: 29883800 PMCID: PMC6114099 DOI: 10.1016/j.bbalip.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/10/2018] [Accepted: 06/01/2018] [Indexed: 12/14/2022]
Abstract
Human phospholipid transfer protein (PLTP) mediates the transfer of phospholipids among atheroprotective high-density lipoproteins (HDL) and atherogenic low-density lipoproteins (LDL) by an unknown mechanism. Delineating this mechanism would represent the first step towards understanding PLTP-mediated lipid transfers, which may be important for treating lipoprotein abnormalities and cardiovascular disease. Here, using various electron microscopy techniques, PLTP is revealed to have a banana-shaped structure similar to cholesteryl ester transfer protein (CETP). We provide evidence that PLTP penetrates into the HDL and LDL surfaces, respectively, and then forms a ternary complex with HDL and LDL. Insights into the interaction of PLTP with lipoproteins at the molecular level provide a basis to understand the PLTP-dependent lipid transfer mechanisms for dyslipidemia treatment.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Xiaobo Zhai
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, United States
| | - John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Seattle, WA 98109, United States.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
40
|
Hao D, Yang Z, Gao T, Tian Z, Zhang L, Zhang S. Role of glycans in cholesteryl ester transfer protein revealed by molecular dynamics simulation. Proteins 2018; 86:882-891. [DOI: 10.1002/prot.25520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Dongxiao Hao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiwei Yang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Applied Chemistry, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Teng Gao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiqi Tian
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lei Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Shengli Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
41
|
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59:772-783. [PMID: 29487091 PMCID: PMC5928430 DOI: 10.1194/jlr.r082735] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
Most of the cholesterol in plasma is in an esterified form that is generated in potentially cardioprotective HDLs. Cholesteryl ester transfer protein (CETP) mediates bidirectional transfers of cholesteryl esters (CEs) and triglycerides (TGs) between plasma lipoproteins. Because CE originates in HDLs and TG enters the plasma as a component of VLDLs, activity of CETP results in a net mass transfer of CE from HDLs to VLDLs and LDLs, and of TG from VLDLs to LDLs and HDLs. As inhibition of CETP activity increases the concentration of HDL-cholesterol and decreases the concentration of VLDL- and LDL-cholesterol, it has the potential to reduce atherosclerotic CVD. This has led to the development of anti-CETP neutralizing monoclonal antibodies, vaccines, and antisense oligonucleotides. Small molecule inhibitors of CETP have also been developed and four of them have been studied in large scale cardiovascular clinical outcome trials. This review describes the structure of CETP and its mechanism of action. Details of its regulation and nonlipid transporting functions are discussed, and the results of the large scale clinical outcome trials of small molecule CETP inhibitors are summarized.
Collapse
Affiliation(s)
- Sudichhya Shrestha
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ben J Wu
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Liam Guiney
- Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
42
|
Barter PJ, Rye KA. Cholesteryl Ester Transfer Protein Inhibitors as Agents to Reduce Coronary Heart Disease Risk. Cardiol Clin 2018; 36:299-310. [DOI: 10.1016/j.ccl.2017.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
IgG Antibody 3D Structures and Dynamics. Antibodies (Basel) 2018; 7:antib7020018. [PMID: 31544870 PMCID: PMC6698877 DOI: 10.3390/antib7020018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.
Collapse
|
44
|
Revanasiddappa PD, Sankar R, Senapati S. Role of the Bound Phospholipids in the Structural Stability of Cholesteryl Ester Transfer Protein. J Phys Chem B 2018; 122:4239-4248. [DOI: 10.1021/acs.jpcb.7b12095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Prasanna D. Revanasiddappa
- BJM School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Revathi Sankar
- BJM School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- BJM School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
45
|
Lei D, Marras AE, Liu J, Huang CM, Zhou L, Castro CE, Su HJ, Ren G. Three-dimensional structural dynamics of DNA origami Bennett linkages using individual-particle electron tomography. Nat Commun 2018; 9:592. [PMID: 29426880 PMCID: PMC5807444 DOI: 10.1038/s41467-018-03018-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/11/2018] [Indexed: 01/25/2023] Open
Abstract
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. Here we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~ 6-14 nm resolution. The statistical analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.
Collapse
Affiliation(s)
- Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alexander E Marras
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chao-Min Huang
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Lifeng Zhou
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Hai-Jun Su
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
46
|
Xue Z, Hou X, Yu W, Wen H, Zhang Q, Li D, Kou X. Lipid metabolism potential and mechanism of CPe-III from chickpea (Cicer arietinum L.). Food Res Int 2018; 104:126-133. [DOI: 10.1016/j.foodres.2017.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 11/17/2022]
|
47
|
Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol Res 2017; 128:29-41. [PMID: 29287689 DOI: 10.1016/j.phrs.2017.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022]
Abstract
Therapeutic interventions aimed at increasing high-density lipoprotein (HDL) levels in order to reduce the residual cardiovascular (CV) risk of optimally drug treated patients have not provided convincing results, so far. Transfer of cholesterol from extrahepatic tissues to the liver appears to be the major atheroprotective function of HDL, and an elevation of HDL levels could represent an effective strategy. Inhibition of the cholesteryl ester transfer protein (CETP), raising HDL-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, reduces low-density lipoprotein-cholesterol (LDL-C) and apoB levels, thus offering a promising approach. Despite the beneficial influence on cholesterol metabolism, off-target effects and lack of reduction in CV events and mortality (with torcetrapib, dalcetrapib and evacetrapib) highlighted the complex mechanism of CETP inhibition. After the failure of the above mentioned inhibitors in phase III clinical development, possibly due to the short duration of the trials masking benefit, the secondary prevention REVEAL trial has recently shown that the inhibitor anacetrapib significantly raised HDL-C (+104%), reduced LDL-C (-18%), with a protective effect on major coronary events (RR, 0.91; 95%CI, 0.85-0.97; p = 0.004). Whether LDL-C lowering fully accounts for the CV benefit or if HDL-C-rise is a crucial factor still needs to be determined, although the reduction of non-HDL (-18%) and Lp(a) (-25%), should be also taken into account. In spite of the positive results of the REVEAL Study, Merck decided not to proceed in asking regulatory approval for anacetrapib. Dalcetrapib (Dal-GenE study) and CKD-519 remain the two molecules within this area still in clinical development.
Collapse
|
48
|
Zhang M, Lei D, Peng B, Yang M, Zhang L, Charles MA, Rye KA, Krauss RM, Johns DG, Ren G. Assessing the mechanisms of cholesteryl ester transfer protein inhibitors. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1606-1617. [PMID: 28911944 PMCID: PMC6239860 DOI: 10.1016/j.bbalip.2017.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/11/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors are a new class of therapeutics for dyslipidemia that simultaneously improve two major cardiovascular disease (CVD) risk factors: elevated low-density lipoprotein (LDL) cholesterol and decreased high-density lipoprotein (HDL) cholesterol. However, the detailed molecular mechanisms underlying their efficacy are poorly understood, as are any potential mechanistic differences among the drugs in this class. Herein, we used electron microscopy (EM) to investigate the effects of three of these agents (Torcetrapib, Dalcetrapib and Anacetrapib) on CETP structure, CETP-lipoprotein complex formation and CETP-mediated cholesteryl ester (CE) transfer. We found that although none of these inhibitors altered the structure of CETP or the conformation of CETP-lipoprotein binary complexes, all inhibitors, especially Torcetrapib and Anacetrapib, increased the binding ratios of the binary complexes (e.g., HDL-CETP and LDLCETP) and decreased the binding ratios of the HDL-CETP-LDL ternary complexes. The findings of more binary complexes and fewer ternary complexes reflect a new mechanism of inhibition: one distal end of CETP bound to the first lipoprotein would trigger a conformational change at the other distal end, thus resulting in a decreased binding ratio to the second lipoprotein and a degraded CE transfer rate among lipoproteins. Thus, we suggest a new inhibitor design that should decrease the formation of both binary and ternary complexes. Decreased concentrations of the binary complex may prevent the inhibitor was induced into cell by the tight binding of binary complexes during lipoprotein metabolism in the treatment of CVD.
Collapse
Affiliation(s)
- Meng Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Applied Science & Technology, University of California, Berkeley, CA 94720, USA
| | - Dongsheng Lei
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bo Peng
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mickey Yang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lei Zhang
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - M Art Charles
- School of Medicine, University of California-San Francisco, San Francisco, CA 94110, USA
| | - Kerry-Anne Rye
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | | | - Gang Ren
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
49
|
Yang Z, Cao Y, Hao D, Yuan X, Zhang L, Zhang S. Binding profiles of cholesterol ester transfer protein with current inhibitors: a look at mechanism and drawback. J Biomol Struct Dyn 2017; 36:2567-2580. [PMID: 28777919 DOI: 10.1080/07391102.2017.1363661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhiwei Yang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Cao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Dongxiao Hao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Shengli Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| |
Collapse
|
50
|
Wang Z, Niimi M, Ding Q, Liu Z, Wang L, Zhang J, Xu J, Fan J. Comparative studies of three cholesteryl ester transfer proteins and their interactions with known inhibitors. PLoS One 2017; 12:e0180772. [PMID: 28767652 PMCID: PMC5540280 DOI: 10.1371/journal.pone.0180772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates bidirectional transfers of cholesteryl esters and triglycerides between low-density lipoproteins and high-density lipoproteins (HDL). Because low levels of plasma CETP are associated with increased plasma HDL-cholesterol, therapeutic inhibition of CETP activity is considered an attractive strategy for elevating plasma HDL-cholesterol, thereby hoping to reduce the risk of cardiovascular disease. Interestingly, only a few laboratory animals, such as rabbits, guinea pigs, and hamsters, have plasma CETP activity, whereas mice and rats do not. It is not known whether all CETPs in these laboratory animals are functionally similar to human CETP. In the current study, we compared plasma CETP activity and characterized the plasma lipoprotein profiles of these animals. Furthermore, we studied the three CETP molecular structures, physicochemical characteristics, and binding properties with known CETP inhibitors in silico. Our results showed that rabbits exhibited higher CETP activity than guinea pigs and hamsters, while these animals had different lipoprotein profiles. CETP inhibitors can inhibit rabbit and hamster CETP activity in a similar manner to human CETP. Analysis of CETP molecules in silico revealed that rabbit and hamster CETP showed many features that are similar to human CETP. These results provide novel insights into understanding CETP functions and molecular properties.
Collapse
Affiliation(s)
- Ziyun Wang
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Manabu Niimi
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Qianzhi Ding
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ling Wang
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Pre-Incubator for Innovative Drugs & Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jun Xu
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Deparment of Pathology, Xi’an Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|