1
|
Zin I, China A, Khan K, Nag JK, Vasu K, Deshpande GM, Ghosh PK, Khan D, Ramachandiran I, Ganguly S, Tamagno I, Willard B, Gogonea V, Fox PL. AKT-dependent nuclear localization of EPRS1 activates PARP1 in breast cancer cells. Proc Natl Acad Sci U S A 2024; 121:e2303642121. [PMID: 39012819 PMCID: PMC11287164 DOI: 10.1073/pnas.2303642121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.
Collapse
Affiliation(s)
- Isaac Zin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Life Sciences, School of Science, Gandhi Institute of Technology and Management, Bengaluru562163, India
| | - Jeetendra K. Nag
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | | | - Prabar K. Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Shinjini Ganguly
- Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Ilaria Tamagno
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
| | - Belinda Willard
- Proteomics and Metabolomics Core, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH44195
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| | - Paul L. Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH44195
- Department of Chemistry, Cleveland State University, Cleveland, OH44115
| |
Collapse
|
2
|
Wu J, Song L, Lu M, Gao Q, Xu S, Zhou P, Ma T. The multifaceted functions of DNA-PKcs: implications for the therapy of human diseases. MedComm (Beijing) 2024; 5:e613. [PMID: 38898995 PMCID: PMC11185949 DOI: 10.1002/mco2.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Liwei Song
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Mingjun Lu
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Qing Gao
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Shaofa Xu
- Department of Thoracic SurgeryBeijing Chest HospitalCapital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Teng Ma
- Cancer Research CenterBeijing Chest HospitalCapital Medical University/Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
| |
Collapse
|
3
|
Wakasugi K, Yokosawa T. The high-affinity tryptophan uptake transport system in human cells. Biochem Soc Trans 2024; 52:1149-1158. [PMID: 38813870 PMCID: PMC11346423 DOI: 10.1042/bst20230742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
The L-tryptophan (Trp) transport system is highly selective for Trp with affinity in the nanomolar range. This transport system is augmented in human interferon (IFN)-γ-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. Up-regulated cellular uptake of Trp causes a reduction in extracellular Trp and initiates immune suppression. Recent studies demonstrate that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are up-regulated by IFN-γ, play a pivotal role in high-affinity Trp uptake into human cells. Furthermore, overexpression of tryptophan 2,3-dioxygenase (TDO2) elicits a similar effect as IDO1 on TrpRS-mediated high-affinity Trp uptake. In this review, we summarize recent findings regarding this Trp uptake system and put forward a possible molecular mechanism based on Trp deficiency induced by IDO1 or TDO2 and tryptophanyl-AMP production by TrpRS.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takumi Yokosawa
- Komaba Organization for Educational Excellence, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Lazar I, Livneh I, Ciechanover A, Fabre B. Tryptophanyl-Transfer RNA Synthetase Is Involved in a Negative Feedback Loop Mitigating Interferon-γ-Induced Gene Expression. Cells 2024; 13:180. [PMID: 38247871 PMCID: PMC10813977 DOI: 10.3390/cells13020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes responsible for linking a transfer RNA (tRNA) with its cognate amino acid present in all the kingdoms of life. Besides their aminoacyl-tRNA synthetase activity, it was described that many of these enzymes can carry out non-canonical functions. They were shown to be involved in important biological processes such as metabolism, immunity, development, angiogenesis and tumorigenesis. In the present work, we provide evidence that tryptophanyl-tRNA synthetase might be involved in a negative feedback loop mitigating the expression of certain interferon-γ-induced genes. Mining the available TCGA and Gtex data, we found that WARS was highly expressed in cutaneous melanoma (SKCM) compared to other cancers and is of good prognosis for this particular cancer type. WARS expression correlates with genes involved in antigen processing and presentation but also transcription factors involved in IFN-γ signaling such as STAT1. In addition, WARS was found in complex with STAT1 in A375 cells treated with IFN-γ. Finally, we showed that knocking down WARS expression during IFN-γ stimulation further increases the expression of GBP2, APOL1, ISG15, HLA-A and IDO1.
Collapse
Affiliation(s)
- Ikrame Lazar
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (I.L.); (I.L.); (A.C.)
- MCD, Centre de Biologie Intégrative (CBI), CNRS, UT3, Université de Toulouse, 31400 Toulouse, France
| | - Ido Livneh
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (I.L.); (I.L.); (A.C.)
| | - Aaron Ciechanover
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (I.L.); (I.L.); (A.C.)
| | - Bertrand Fabre
- The Rappaport Technion Integrated Cancer Center (R-TICC) and the Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 3109601, Israel; (I.L.); (I.L.); (A.C.)
- Laboratoire de Recherche en Sciences Végétales (LRSV), CNRS/UT3/INPT, 31320 Auzeville-Tolosane, France
| |
Collapse
|
5
|
Sun WX, Zhang KH, Zhou Q, Hu SH, Lin Y, Xu W, Zhao SM, Yuan YY. Tryptophanylation of insulin receptor by WARS attenuates insulin signaling. Cell Mol Life Sci 2024; 81:25. [PMID: 38212570 PMCID: PMC11072365 DOI: 10.1007/s00018-023-05082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.
Collapse
Affiliation(s)
- Wen-Xing Sun
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, People's Republic of China
| | - Kai-Hui Zhang
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, People's Republic of China
- Children's Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, People's Republic of China
| | - Qian Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Song-Hua Hu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yan Lin
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Wei Xu
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China
- Shanghai Fifth People's Hospital of Fudan University, Fudan University, Shanghai, People's Republic of China
| | - Shi-Min Zhao
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai University for Nationalities, Xining, People's Republic of China.
| | - Yi-Yuan Yuan
- Obstetrics and Gynecology Hospital of Fudan University, Institutes of Biomedical Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, People's Republic of China.
- NHC Key Lab of Reproduction Regulation, Shanghai Key Laboratory of Metabolic Remodeling and Health, and Children's Hospital of Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
7
|
Zhao YT, Liu YR, Yan YF, Tang ZS, Duan JA, Yang H, Song ZX, You XL, Wang MG. Fushenmu treatment ameliorates RyR2 with related metabolites in a zebrafish model of barium chloride induced arrhythmia. Chin Med 2023; 18:103. [PMID: 37598173 PMCID: PMC10439546 DOI: 10.1186/s13020-023-00812-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/27/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.
Collapse
Affiliation(s)
- Yan-Ting Zhao
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Yan-Ru Liu
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China.
| | - Ya-Feng Yan
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Zhi-Shu Tang
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China.
- China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen, Beijing, 100700, People's Republic of China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing, 210023, People's Republic of China
| | - Hui Yang
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Zhong-Xing Song
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Xue-Lian You
- Shaanxi Collaborative Innovation Center Medicinal Resource Industrialization, Shaanxi University of Chinese Medicine, No. 1 Weiyang Road, Qindu District, Xianyang, 712083, People's Republic of China
| | - Ming-Geng Wang
- Shandong Buchang Pharmaceutical Co. Ltd, Heze, 250000, Shandong, People's Republic of China
| |
Collapse
|
8
|
Sung Y, Yu YC, Han JM. Nutrient sensors and their crosstalk. Exp Mol Med 2023; 55:1076-1089. [PMID: 37258576 PMCID: PMC10318010 DOI: 10.1038/s12276-023-01006-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/22/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The macronutrients glucose, lipids, and amino acids are the major components that maintain life. The ability of cells to sense and respond to fluctuations in these nutrients is a crucial feature for survival. Nutrient-sensing pathways are thus developed to govern cellular energy and metabolic homeostasis and regulate diverse biological processes. Accordingly, perturbations in these sensing pathways are associated with a wide variety of pathologies, especially metabolic diseases. Molecular sensors are the core within these sensing pathways and have a certain degree of specificity and affinity to sense the intracellular fluctuation of each nutrient either by directly binding to that nutrient or indirectly binding to its surrogate molecules. Once the changes in nutrient levels are detected, sensors trigger signaling cascades to fine-tune cellular processes for energy and metabolic homeostasis, for example, by controlling uptake, de novo synthesis or catabolism of that nutrient. In this review, we summarize the major discoveries on nutrient-sensing pathways and explain how those sensors associated with each pathway respond to intracellular nutrient availability and how these mechanisms control metabolic processes. Later, we further discuss the crosstalk between these sensing pathways for each nutrient, which are intertwined to regulate overall intracellular nutrient/metabolic homeostasis.
Collapse
Affiliation(s)
- Yulseung Sung
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, South Korea.
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul, 03722, South Korea.
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
9
|
Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1. Nat Commun 2022; 13:6732. [PMID: 36347866 PMCID: PMC9643514 DOI: 10.1038/s41467-022-34612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function.
Collapse
|
10
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
11
|
Dylgjeri E, Knudsen KE. DNA-PKcs: A Targetable Protumorigenic Protein Kinase. Cancer Res 2022; 82:523-533. [PMID: 34893509 PMCID: PMC9306356 DOI: 10.1158/0008-5472.can-21-1756] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings. This review summarizes the latest advances in the field, providing a comprehensive discussion of DNA-PKcs functions in cancer and an update on the clinical assessment of DNA-PK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Emanuela Dylgjeri
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania.,Corresponding Author: Karen E. Knudsen, Thomas Jefferson University, 233 South 10th Street, BLSB 1050, Philadelphia, PA 19107. Phone: 215-503-5692; E-mail:
| |
Collapse
|
12
|
tRNA biogenesis and specific aminoacyl-tRNA synthetases regulate senescence stability under the control of mTOR. PLoS Genet 2021; 17:e1009953. [PMID: 34928935 PMCID: PMC8722728 DOI: 10.1371/journal.pgen.1009953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 01/03/2022] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Oncogenes or chemotherapy treatments trigger the induction of suppressive pathways such as apoptosis or senescence. Senescence was initially defined as a definitive arrest of cell proliferation but recent results have shown that this mechanism is also associated with cancer progression and chemotherapy resistance. Senescence is therefore much more heterogeneous than initially thought. How this response varies is not really understood, it has been proposed that its outcome relies on the secretome of senescent cells and on the maintenance of their epigenetic marks. Using experimental models of senescence escape, we now described that the stability of this proliferative arrest relies on specific tRNAs and aminoacyl-tRNA synthetases. Following chemotherapy treatment, the DNA binding of the type III RNA polymerase was reduced to prevent tRNA transcription and induce a complete cell cycle arrest. By contrast, during senescence escape, specific tRNAs such as tRNA-Leu-CAA and tRNA-Tyr-GTA were up-regulated. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition through BRF1 depletion maintained senescence and blocked the generation of escaping cells. mTOR inhibition also prevented chemotherapy-induced senescence escape in association with a reduction of tRNA-Leu-CAA and tRNA-Tyr-GTA expression. Further confirming the role of the tRNA-Leu-CAA and tRNA-Tyr-GTA, results showed that their corresponding tRNA ligases, LARS and YARS, were necessary for senescence escape. This effect was specific since the CARS ligase had no effect on persistence. By contrast, the down-regulation of LARS and YARS reduced the emergence of persistent cells and this was associated with the modulation of E2F1 target genes expression. Overall, these findings highlight a new regulation of tRNA biology during senescence and suggest that specific tRNAs and ligases contribute to the strength and heterogeneity of this tumor suppressive pathway. Senescence is a tumor suppressive mechanism induced in response to oncogenes or chemotherapy. Senescence was initially defined as a definitive arrest of cell proliferation but doubts have emerged as to the value of this mechanism in terms of suppression. Recent findings published by several laboratories including our own have shown that some cells escape senescence to become more transformed. This study shows that different tRNAs are expressed in growing, senescent or emerging cells. The tRNA-Leu-CAA and tRNA-Tyr-GTA are up-regulated during senescence escape whereas this was not the case of the other tRNAs tested. In addition, using proteomic analysis and inactivation experiments, we found that the corresponding tRNA ligases, YARS for tRNA-Tyr-GTA and LARS for the tRNA-Leu-CAA, are necessary for senescence escape. Results also show that the expression of the tRNA-Leu-CAA and tRNA-Tyr-GTA are controlled by the mTOR pathway and that this kinase is necessary for senescence escape. Reducing tRNA transcription appears necessary to control the strength of senescence since RNA pol III inhibition maintained senescence and blocked the generation of escaping cells. In light of these results, we propose the hypothesis that the heterogeneity of tRNAs and ligases expression leads to distinct states of light or deep senescence.
Collapse
|
13
|
Zou Y, Yang Y, Fu X, He X, Liu M, Zong T, Li X, Htet Aung L, Wang Z, Yu T. The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:372-387. [PMID: 34484863 PMCID: PMC8399643 DOI: 10.1016/j.omtn.2021.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are widely found in organisms, which can activate amino acids and make them bind to tRNA through ester bond to form the corresponding aminoyl-tRNA. The classic function of ARS is to provide raw materials for protein biosynthesis. Recently, emerging evidence demonstrates that ARSs play critical roles in controlling inflammation, immune responses, and tumorigenesis as well as other important physiological and pathological processes. With the recent development of genome and exon sequencing technology, as well as the discovery of new clinical cases, ARSs have been reported to be closely associated with a variety of cardiovascular diseases (CVDs), particularly angiogenesis and cardiomyopathy. Intriguingly, aminoacylation was newly identified and reported to modify substrate proteins, thereby regulating protein activity and functions. Sensing the availability of intracellular amino acids is closely related to the regulation of a variety of cell physiology. In this review, we summarize the research progress on the mechanism of CVDs caused by abnormal ARS function and introduce the clinical phenotypes and characteristics of CVDs related to ARS dysfunction. We also highlight the potential roles of aminoacylation in CVDs. Finally, we discuss some of the limitations and challenges of present research. The current findings suggest the significant roles of ARSs involved in the progress of CVDs, which present the potential clinical values as novel diagnostic and therapeutic targets in CVD treatment.
Collapse
Affiliation(s)
- Yulin Zou
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266021, People's Republic of China
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tingyu Zong
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Lynn Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People's Republic of China.,Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People's Republic of China
| |
Collapse
|
14
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
15
|
Lee KM, Hwang EH, Kang SE, Lee CH, Lee H, Oh HJ, Kim K, Koh J, Ryu HS. Tryptophanyl-tRNA Synthetase Sensitizes Hormone Receptor-Positive Breast Cancer to Docetaxel-Based Chemotherapy. J Breast Cancer 2020; 23:599-609. [PMID: 33408886 PMCID: PMC7779724 DOI: 10.4048/jbc.2020.23.e67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/06/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose A relatively low response to chemotherapy has been reported for hormone receptor (HR)-positive breast cancer. In this study, we investigated the role of tryptophanyl-transfer RNA synthetase (WARS) in the chemotherapeutic response of HR-positive breast cancer. Methods Pre-chemotherapeutic needle biopsy samples of 45 HR-positive breast cancer patients undergoing the same chemotherapeutic regimen were subjected to immunohistochemistry. To investigate the biological functions of WARS in HR-positive breast cancer, we conducted cell viability assay, flow cytometry analysis, caspase activity assay, Quantitative real-time polymerase chain reaction, and western blotting using WARS gene-modulated HR-positive breast cancer cells (T47D, ZR-75-1, and MCF7). Results WARS overexpression in HR-positive breast cancer patients showed a significant correlation with favorable chemotherapy response. Downregulation of WARS increased cell viability following docetaxel treatment in tumor cell lines. On the other hand, WARS overexpression sensitized the therapeutic response to docetaxel. Additionally, downregulation of WARS caused a decrease in the number of apoptotic cell populations by docetaxel. Poly (ADP-ribose) polymerase cleavage and caspase 3/7 activity were increased in docetaxel-treated tumor cells with WARS overexpression. Conclusion Our results suggest that WARS might be a potential predictor for chemotherapy response in patients with HR-positive breast cancer as well as a novel molecular target to improve chemosensitivity.
Collapse
Affiliation(s)
- Kyung-Min Lee
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Eun Hye Hwang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Eun Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Cheng Hyun Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyebin Lee
- Department of Radiation Oncology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, 82 Gumi-ro 173, Bundang-gu, Seongnam, Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han Suk Ryu
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Yokosawa T, Sato A, Wakasugi K. Tryptophan Depletion Modulates Tryptophanyl-tRNA Synthetase-Mediated High-Affinity Tryptophan Uptake into Human Cells. Genes (Basel) 2020; 11:genes11121423. [PMID: 33261077 PMCID: PMC7760169 DOI: 10.3390/genes11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
The novel high-affinity tryptophan (Trp)-selective transport system is present at elevated levels in human interferon-γ (IFN-γ)-treated and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells. High-affinity Trp uptake into cells results in extracellular Trp depletion and immune suppression. We have previously shown that both IDO1 and tryptophanyl-tRNA synthetase (TrpRS), whose expression levels are increased by IFN-γ, have a crucial function in high-affinity Trp uptake into human cells. Here, we aimed to elucidate the relationship between TrpRS and IDO1 in high-affinity Trp uptake. We demonstrated that overexpression of IDO1 in HeLa cells drastically enhances high-affinity Trp uptake upon addition of purified TrpRS protein to uptake assay buffer. We also clarified that high-affinity Trp uptake by Trp-starved cells is significantly enhanced by the addition of TrpRS protein to the assay buffer. Moreover, we showed that high-affinity Trp uptake is also markedly elevated by the addition of TrpRS protein to the assay buffer of cells overexpressing another Trp-metabolizing enzyme, tryptophan 2,3-dioxygenase (TDO2). Taken together, we conclude that Trp deficiency is crucial for high-affinity Trp uptake mediated by extracellular TrpRS.
Collapse
Affiliation(s)
- Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Aomi Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| | - Keisuke Wakasugi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Correspondence: ; Tel.: +81-3-5454-4392
| |
Collapse
|
17
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
18
|
Abstract
Aminoacyl-tRNA synthetases (AARSs) have been considered very attractive drug-targets for decades. This interest probably emerged with the identification of differences in AARSs between prokaryotic and eukaryotic species, which provided a rationale for the development of antimicrobials targeting bacterial AARSs with minimal effect on the homologous human AARSs. Today we know that AARSs are not only attractive, but also valid drug targets as they are housekeeping proteins that: (i) play a fundamental role in protein translation by charging the corresponding amino acid to its cognate tRNA and preventing mistranslation mistakes [1], a critical process during fast growing conditions of microbes; and (ii) present significant differences between microbes and humans that can be used for drug development [2]. Together with the vast amount of available data on both pathogenic and mammalian AARSs, it is expected that, in the future, the numerous reported inhibitors of AARSs will provide the basis to develop new therapeutics for the treatment of human diseases. In this chapter, a detailed summary on the state-of-the-art in drug discovery and drug development for each aminoacyl-tRNA synthetase will be presented.
Collapse
Affiliation(s)
- Maria Lukarska
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences (IAB), Structural Biology of Novel Drug Targets in Human Diseases, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France.
| |
Collapse
|
19
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
20
|
Plant-Specific Domains and Fragmented Sequences Imply Non-Canonical Functions in Plant Aminoacyl-tRNA Synthetases. Genes (Basel) 2020; 11:genes11091056. [PMID: 32906706 PMCID: PMC7564348 DOI: 10.3390/genes11091056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Accepted: 09/01/2020] [Indexed: 12/01/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs. A genome-wide search for aaRS genes in Arabidopsis thaliana revealed a total of 59 aaRS genes. Among them, asparaginyl-tRNA synthetase (AsnRS) was found to possess a WHEP domain inserted into the catalytic domain in a plant-specific manner. This insertion was observed only in the cytosolic isoform. In addition, a long stretch of sequence that exhibited weak homology with histidine ammonia lyase (HAL) was found at the N-terminus of histidyl-tRNA synthetase (HisRS). This HAL-like domain has only been seen in plant HisRS, and only in cytosolic isoforms. Additionally, a number of genes lacking minor or major portions of the full-length aaRS sequence were found. These genes encode 14 aaRS fragments that lack key active site sequences and are likely catalytically null. These identified genes that encode plant-specific additional domains or aaRS fragment sequences are candidates for aaRSs possessing non-canonical functions.
Collapse
|
21
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of essential "housekeeping" enzymes ubiquitous in the three major domains of life. ARSs uniquely connect the essential minimal units of both major oligomer classes-the 3-nucleotide codons of oligonucleotides and the amino acids of proteins. They catalyze the esterification of amino acids to the 3'-end of cognate transfer RNAs (tRNAs) bearing the correct anticodon triplet to ensure accurate transfer of information from mRNA to protein according to the genetic code. As an essential translation factor responsible for the first biochemical reaction in protein biosynthesis, ARSs control protein production by catalyzing aminoacylation, and by editing of mischarged aminoacyl-tRNAs to maintain translational fidelity. In addition to their primary enzymatic activities, many ARSs have noncanonical functions unrelated to their catalytic activity in protein synthesis. Among the ARSs with "moonlighting" activities, several, including GluProRS (or EPRS), LeuRS, LysRS, SerRS, TyrRS, and TrpRS, exhibit cell signaling-related activities that sense environmental signals, regulate gene expression, and modulate cellular functions. ARS signaling functions generally depend on catalytically-inactive, appended domains not present in ancient enzyme forms, and are activated by stimulus-dependent post-translational modification. Activation often results in cellular re-localization and gain of new interacting partners. The newly formed ARS-bearing complexes conduct a host of signal transduction functions, including immune response, mTORC1 pathway signaling, and fibrogenic and angiogenic signaling, among others. Because noncanonical functions of ARSs in signal transduction are uncoupled from canonical aminoacylation functions, function-specific inhibitors can be developed, thus providing promising opportunities and therapeutic targets for treatment of human disease.
Collapse
Affiliation(s)
- Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine and Department of Biochemistry & Biophysics, The Center for RNA Biology, The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.
| | - Paul L Fox
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.
| |
Collapse
|
22
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
24
|
Jobin PG, Solis N, Machado Y, Bell PA, Rai SK, Kwon NH, Kim S, Overall CM, Butler GS. Moonlighting matrix metalloproteinase substrates: Enhancement of proinflammatory functions of extracellular tyrosyl-tRNA synthetase upon cleavage. J Biol Chem 2019; 295:2186-2202. [PMID: 31771979 PMCID: PMC7039567 DOI: 10.1074/jbc.ra119.010486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/03/2019] [Indexed: 12/19/2022] Open
Abstract
Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/β, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell–derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation.
Collapse
Affiliation(s)
- Parker G Jobin
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nestor Solis
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yoan Machado
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Peter A Bell
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Simran K Rai
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia V5T 4S6, Canada
| | - Nam Hoon Kwon
- College of Pharmacy, Seoul National University, 151-742, Seoul, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, 151-742, Seoul, Republic of Korea
| | - Sunghoon Kim
- College of Pharmacy, Seoul National University, 151-742, Seoul, Republic of Korea; Medicinal Bioconvergence Research Center, Seoul National University, 151-742, Seoul, Republic of Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Georgina S Butler
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
25
|
Yang PP, Yu XH, Zhou J. Tryptophanyl-tRNA synthetase (WARS) expression in uveal melanoma - possible contributor during uveal melanoma progression. Biosci Biotechnol Biochem 2019; 84:471-480. [PMID: 31694485 DOI: 10.1080/09168451.2019.1686967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study aimed to explore the influence of Tryptophanyl-tRNA synthetase (WARS) expression on the proliferation and migration of uveal melanoma (UM) cells, and the potential mechanisms. Bioinformatics analysis based on Gene Expression Omnibus (GEO) database showed that WARS expression in metastatic cancer was significantly higher than that in no-metastatic group. Kaplan-Meier analysis based on The Cancer Genome Atlas (TCGA) database showed that high WARS expression was associated with lower survival. Biological function experiments showed that overexpression of WARS in OCM-1A cells can promote cell proliferation, migration, and invasion, whereas knockdown of WARS in C918 cells showed the opposite effect. Finally, we observed that the up-regulation of WARS induced the activation of phosphatidylinositol 3-kinase/AKT (PI3K/AKT) signaling, whilst depletion of WARS resulted in opponent outcomes. Taken together, our results illustrated that WARS was overexpressed in UM cells and contributed to the viability and motility of UM cells via modulating PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Pan-Pan Yang
- Department of Oncology, Jining First People's Hospital, Jining, P.R. China
| | - Xiao-Hui Yu
- Department of Ophthalmology, Yantai Yuhuangding Hospital, Yantai, P.R. China
| | - Jiao Zhou
- Department of blood transfusion, Suizhou central hospital, Hubei university of medicine, Hubei, China
| |
Collapse
|
26
|
Han Y, Jin F, Xie Y, Liu Y, Hu S, Liu XD, Guan H, Gu Y, Ma T, Zhou PK. DNA‑PKcs PARylation regulates DNA‑PK kinase activity in the DNA damage response. Mol Med Rep 2019; 20:3609-3616. [PMID: 31485633 PMCID: PMC6755157 DOI: 10.3892/mmr.2019.10640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/05/2019] [Indexed: 11/29/2022] Open
Abstract
DNA-dependent protein kinase catalytic subunit (-PKcs) is the core protein involved in the non-homologous end-joining repair of double-strand breaks. In addition, it can form a complex with poly(ADP-ribose) polymerase 1 (PARP1), which catalyzes protein PARylation. However, it is unclear how DNA-PKcs interacts with PARP1 in the DNA damage response and how PARylation affects DNA-PK kinase activity. Using immunoprecipitation, immunofluorescence and flow cytometry the present study found that DNA-PKcs was PARylated after DNA damage, and the PARP1/2 inhibitor olaparib completely abolished DNA-PKcs PARylation. Olaparib treatment prevented DNA-PKcs protein detachment from chromatin after DNA damage and maintained DNA-PK activation, as evidenced by DNA-PKcs Ser2056 phosphorylation. Furthermore, olaparib treatment synergized with DNA-PK inhibition to suppress cell survival. All of the above results are suggestive of the important role of DNA-PKcs PARylation in regulating DNA-PK activity.
Collapse
Affiliation(s)
- Yang Han
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Feng Jin
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Ying Xie
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yike Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Sai Hu
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Dan Liu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yongqing Gu
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Teng Ma
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
27
|
Levi O, Garin S, Arava Y. RNA mimicry in post-transcriptional regulation by aminoacyl tRNA synthetases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1564. [PMID: 31414576 DOI: 10.1002/wrna.1564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Aminoacyl tRNA synthetases (aaRS) are well studied for their roles in tRNA charging with cognate amino acid. Nevertheless, numerous lines of evidence indicate that these proteins have roles other than tRNA charging. These include coordination of cellular signaling cascades, induction of cytokines outside the cell and transcription regulation. Herein, we focus on their roles in post-transcriptional regulation of mRNA expression. We describe functions that are related to antitermination of transcription, RNA splicing and mRNA translation. Cases were recognition of mRNA by the aaRS involves recognition of tRNA-like structures are described. Such recognition may be achieved by repurposing tRNA-binding domains or through domains added to the aaRS later in evolution. Furthermore, we describe cases in which binding by aaRS is implicated in autogenous regulation of expression. Overall, we propose RNA-mimicry as a common mode of interaction between aaRS and mRNA which allows efficient expression regulation. This article is categorized under: RNA Processing > tRNA Processing RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation.
Collapse
Affiliation(s)
- Ofri Levi
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shahar Garin
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Arava
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Yanez M, Jhanji M, Murphy K, Gower RM, Sajish M, Jabbarzadeh E. Nicotinamide Augments the Anti-Inflammatory Properties of Resveratrol through PARP1 Activation. Sci Rep 2019; 9:10219. [PMID: 31308445 PMCID: PMC6629694 DOI: 10.1038/s41598-019-46678-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023] Open
Abstract
Resveratrol (RSV) and nicotinamide (NAM) have garnered considerable attention due to their anti-inflammatory and anti-aging properties. NAM is a transient inhibitor of class III histone deacetylase SIRTs (silent mating type information regulation 2 homologs) and SIRT1 is an inhibitor of poly-ADP-ribose polymerase-1 (PARP1). The debate on the relationship between RSV and SIRT1 has precluded the use of RSV as a therapeutic drug. Recent work demonstrated that RSV facilitates tyrosyl-tRNA synthetase (TyrRS)-dependent activation of PARP1. Moreover, treatment with NAM is sufficient to facilitate the nuclear localization of TyrRS that activates PARP1. RSV and NAM have emerged as potent agonists of PARP1 through inhibition of SIRT1. In this study, we evaluated the effects of RSV and NAM on pro-inflammatory macrophages. Our results demonstrate that treatment with either RSV or NAM attenuates the expression of pro-inflammatory markers. Strikingly, the combination of RSV with NAM, exerts additive effects on PARP1 activation. Consistently, treatment with PARP1 inhibitor antagonized the anti-inflammatory effect of both RSV and NAM. For the first time, we report the ability of NAM to augment PARP1 activation, induced by RSV, and its associated anti-inflammatory effects mediated through the induction of BCL6 with the concomitant down regulation of COX-2.
Collapse
Affiliation(s)
- Maria Yanez
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Kendall Murphy
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
| | - R Michael Gower
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ehsan Jabbarzadeh
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
29
|
Wang B, Li X, Huang S, Zhao H, Liu J, Hu Z, Lin Z, Liu L, Xie Y, Jin Q, Zhao H, Tang B, Niu Q, Zhang R. A novel WARS mutation (p.Asp314Gly) identified in a Chinese distal hereditary motor neuropathy family. Clin Genet 2019; 96:176-182. [PMID: 31069783 DOI: 10.1111/cge.13563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Abstract
Distal hereditary motor neuropathy (dHMN) is a clinically and genetically heterogeneous group of inherited neuropathies characterized by distal limb muscle wasting and weakness with no or minimal sensory abnormalities. To investigate the clinical and genetic features of dHMN caused by WARS mutations in mainland China, we performed Sanger sequencing of the coding and untranslated region (UTR) regions of WARS in 160 unresolved dHMN and Charcot-Marie-Tooth (CMT) index patients. We detected a novel heterozygous variant c.941A>G (p.Asp314Gly) of WARS in an index patient from an autosomal dominant dHMN family including five affected members over three generations. The variant completely co-segregates with the dHMN phenotype in the family, and it was classified as likely pathogenic according to the American College of Medical Genetics and Genomics standards and guidelines. The clinical features included juvenile to adult onset (15-23 years), distal wasting and weakness, minimal sensory disturbance and length-dependent motor axonal degeneration with CMT examination score ranging from 6 to 10. Our report further confirms the role of WARS in dHMN and indicates that the variant c.941A>G (p.Asp314Gly) of WARS is related to a mild to moderate affected and later onset phenotype of dHMN.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Li
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shunxiang Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Huadong Zhao
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Zhiqiang Lin
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lei Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongzhi Xie
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingwen Jin
- Department of Neurology, The Affiliated Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Huihui Zhao
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Beisha Tang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Qi Niu
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Huang S, Wang X, Lin G, Cheng J, Chen X, Sun W, Xiang R, Yu Y, Li L, Yang S. Discovery of human TyrRS inhibitors by structure-based virtual screening, structural optimization, and bioassays. RSC Adv 2019; 9:9323-9330. [PMID: 35517706 PMCID: PMC9062088 DOI: 10.1039/c9ra00458k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/18/2019] [Indexed: 02/05/2023] Open
Abstract
The human tyrosyl transfer-RNA (tRNA) synthetase (TyrRS), which is well known for its essential aminoacylation function in protein synthesis, has been shown to translocate to the nucleus and protect against DNA damage caused by external stimuli. Small molecules that can fit into the active site pocket of TyrRS are thought to affect the nuclear role. The exploitation of TyrRS inhibitors has attracted attention recently. In this investigation, we adopted a structure-based virtual screening strategy and subsequent structure-activity relationship analysis to discover new TyrRS inhibitors, and identified a potent compound 5,7-dihydroxy-6,8-bis((3-hydroxyphenyl)thio)-2-phenyl-4H-chromen-4-one (compound 11, K i = 8.8 μM). In intact HeLa cells, this compound showed a protective effect against DNA damage. Compound 11 is a good lead compound for the further development of drugs against disorders caused by DNA damage.
Collapse
Affiliation(s)
- Shenzhen Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Xiang Wang
- Department of Clinical Medicine, School of Medicine, Nankai University Tianjin 300071 China
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Jie Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Weining Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University Tianjin 300071 China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University Chengdu Sichuan 610041 China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/Collaborative Innovation Center of Biotherapy Chengdu Sichuan 610041 China
| |
Collapse
|
31
|
Huo D, Sun L, Zhang L, Ru X, Liu S, Yang X, Yang H. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. J Proteomics 2019; 193:27-43. [DOI: 10.1016/j.jprot.2018.12.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/05/2018] [Accepted: 12/14/2018] [Indexed: 12/28/2022]
|
32
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
33
|
Jin M. Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Exp Mol Med 2019; 51:1-10. [PMID: 30613102 PMCID: PMC6321835 DOI: 10.1038/s12276-018-0196-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tryptophanyl tRNA synthetase (WRS) is an essential enzyme as it catalyzes the ligation of tryptophan to its cognate tRNA during translation. Interestingly, mammalian WRS has evolved to acquire domains or motifs for novel functions beyond protein synthesis; WRS can also further expand its functions via alternative splicing and proteolytic cleavage. WRS is localized not only to the nucleus but also to the extracellular space, playing a key role in innate immunity, angiogenesis, and IFN-γ signaling. In addition, the expression of WRS varies significantly in different tissues and pathological states, implying that it plays unique roles in physiological homeostasis and immune defense. This review addresses the current knowledge regarding the evolution, structural features, and context-dependent functions of WRS, particularly focusing on its roles in immune regulation. Targeting tryptophanyl tRNA synthetase (WRS), an evolutionarily conserved enzyme involved in protein synthesis, could be an effective strategy for modulating the immune system. In addition to helping translate mRNA into amino acid sequences in cytoplasm, human WRS can be secreted and activate immune responses against invading pathogens. Mirim Jin at Gachon University, Incheon, South Korea, reviews recent studies on the structure, expression pattern and functions of WRS other than protein synthesis. High levels of WRS protein have been found in patients with sepsis and autoimmune diseases suggesting that inhibiting WRS could be a potential therapeutic approach for treating these conditions. Further research into WRS will shed light not only on how it regulates the immune system, but also on how it exerts other reported effects on blood vessel formation and cell migration.
Collapse
Affiliation(s)
- Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Korea. .,Department of Health Science and Technology, GAIHST, Gachon University, Incheon, Korea.
| |
Collapse
|
34
|
Released Tryptophanyl-tRNA Synthetase Stimulates Innate Immune Responses against Viral Infection. J Virol 2019; 93:JVI.01291-18. [PMID: 30355684 DOI: 10.1128/jvi.01291-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/14/2018] [Indexed: 01/31/2023] Open
Abstract
Tryptophanyl-tRNA synthetase (WRS) is one of the aminoacyl-tRNA synthetases (ARSs) that possesses noncanonical functions. Full-length WRS is released during bacterial infection and primes the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex to elicit innate immune responses. However, the role of WRS in viral infection remains unknown. Here, we show that full-length WRS is secreted by immune cells in the early phase of viral infection and functions as an antiviral cytokine. Treatment of cells with recombinant WRS protein promotes the production of inflammatory cytokines and type I interferons (IFNs) and curtails virus replication in THP-1 and Raw264.7 cells but not in TLR4-/- or MD2-/- bone marrow-derived macrophages (BMDMs). Intravenous and intranasal administration of recombinant WRS protein induces an innate immune response and blocks viral replication in vivo These findings suggest that secreted full-length WRS has a noncanonical role in inducing innate immune responses to viral infection as well as to bacterial infection.IMPORTANCE ARSs are essential enzymes in translation that link specific amino acids to their cognate tRNAs. In higher eukaryotes, some ARSs possess additional, noncanonical functions in the regulation of cell metabolism. Here, we report a novel noncanonical function of WRS in antiviral defense. WRS is rapidly secreted in response to viral infection and primes the innate immune response by inducing the secretion of proinflammatory cytokines and type I IFNs, resulting in the inhibition of virus replication both in vitro and in vivo Thus, we consider WRS to be a member of the antiviral innate immune response. The results of this study enhance our understanding of host defense systems and provide additional information on the noncanonical functions of ARSs.
Collapse
|
35
|
The Ribosome as a Missing Link in Prebiotic Evolution III: Over-Representation of tRNA- and rRNA-Like Sequences and Plieofunctionality of Ribosome-Related Molecules Argues for the Evolution of Primitive Genomes from Ribosomal RNA Modules. Int J Mol Sci 2019; 20:ijms20010140. [PMID: 30609737 PMCID: PMC6337102 DOI: 10.3390/ijms20010140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022] Open
Abstract
We propose that ribosomal RNA (rRNA) formed the basis of the first cellular genomes, and provide evidence from a review of relevant literature and proteonomic tests. We have proposed previously that the ribosome may represent the vestige of the first self-replicating entity in which rRNAs also functioned as genes that were transcribed into functional messenger RNAs (mRNAs) encoding ribosomal proteins. rRNAs also encoded polymerases to replicate itself and a full complement of the transfer RNAs (tRNAs) required to translate its genes. We explore here a further prediction of our “ribosome-first” theory: the ribosomal genome provided the basis for the first cellular genomes. Modern genomes should therefore contain an unexpectedly large percentage of tRNA- and rRNA-like modules derived from both sense and antisense reading frames, and these should encode non-ribosomal proteins, as well as ribosomal ones with key cell functions. Ribosomal proteins should also have been co-opted by cellular evolution to play extra-ribosomal functions. We review existing literature supporting these predictions. We provide additional, new data demonstrating that rRNA-like sequences occur at significantly higher frequencies than predicted on the basis of mRNA duplications or randomized RNA sequences. These data support our “ribosome-first” theory of cellular evolution.
Collapse
|
36
|
Lee DH, Jo YJ, Eom HJ, Yum S, Rhee JS. Nonylphenol induces mortality and reduces hatching rate through increase of oxidative stress and dysfunction of antioxidant defense system in marine medaka embryo. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0048-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Adam I, Dewi DL, Mooiweer J, Sadik A, Mohapatra SR, Berdel B, Keil M, Sonner JK, Thedieck K, Rose AJ, Platten M, Heiland I, Trump S, Opitz CA. Upregulation of tryptophanyl-tRNA synthethase adapts human cancer cells to nutritional stress caused by tryptophan degradation. Oncoimmunology 2018; 7:e1486353. [PMID: 30524887 PMCID: PMC6279332 DOI: 10.1080/2162402x.2018.1486353] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 01/19/2023] Open
Abstract
Tryptophan (Trp) metabolism is an important target in immuno-oncology as it represents a powerful immunosuppressive mechanism hijacked by tumors for protection against immune destruction. However, it remains unclear how tumor cells can proliferate while degrading the essential amino acid Trp. Trp is incorporated into proteins after it is attached to its tRNA by tryptophanyl-tRNA synthestases. As the tryptophanyl-tRNA synthestases compete for Trp with the Trp-catabolizing enzymes, the balance between these enzymes will determine whether Trp is used for protein synthesis or is degraded. In human cancers expression of the Trp-degrading enzymes indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan-2,3-dioxygenase (TDO2) was positively associated with the expression of the tryptophanyl-tRNA synthestase WARS. One mechanism underlying the association between IDO1 and WARS identified in this study is their joint induction by IFNγ released from tumor-infiltrating T cells. Moreover, we show here that IDO1- and TDO2-mediated Trp deprivation upregulates WARS expression by activating the general control non-derepressible-2 (GCN2) kinase, leading to phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α) and induction of activating transcription factor 4 (ATF4). Trp deprivation induced cytoplasmic WARS expression but did not increase nuclear or extracellular WARS levels. GCN2 protected the cells against the effects of Trp starvation and enabled them to quickly make use of Trp for proliferation once it was replenished. Computational modeling of Trp metabolism revealed that Trp deficiency shifted Trp flux towards WARS and protein synthesis. Our data therefore suggest that the upregulation of WARS via IFNγ and/or GCN2-peIF2α-ATF4 signaling protects Trp-degrading cancer cells from excessive intracellular Trp depletion.
Collapse
Affiliation(s)
- Isabell Adam
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joram Mooiweer
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Soumya R Mohapatra
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Berdel
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Keil
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana K Sonner
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin Thedieck
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signalling, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department for Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Adam J Rose
- Nutrient Metabolism and Signalling Lab, Department of Biochemistry & Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurology, University Hospital and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT Arctic University of Norway, Tromsø, Norway
| | - Saskia Trump
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Christiane A Opitz
- Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Xu Z, Lo WS, Beck DB, Schuch LA, Oláhová M, Kopajtich R, Chong YE, Alston CL, Seidl E, Zhai L, Lau CF, Timchak D, LeDuc CA, Borczuk AC, Teich AF, Juusola J, Sofeso C, Müller C, Pierre G, Hilliard T, Turnpenny PD, Wagner M, Kappler M, Brasch F, Bouffard JP, Nangle LA, Yang XL, Zhang M, Taylor RW, Prokisch H, Griese M, Chung WK, Schimmel P. Bi-allelic Mutations in Phe-tRNA Synthetase Associated with a Multi-system Pulmonary Disease Support Non-translational Function. Am J Hum Genet 2018; 103:100-114. [PMID: 29979980 PMCID: PMC6035289 DOI: 10.1016/j.ajhg.2018.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022] Open
Abstract
The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5'-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.
Collapse
Affiliation(s)
- Zhiwen Xu
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China; aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Wing-Sze Lo
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - David B Beck
- Department of Medicine, Columbia University, New York, NY 10032, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luise A Schuch
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert Kopajtich
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Yeeting E Chong
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elias Seidl
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Liting Zhai
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ching-Fun Lau
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Donna Timchak
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ 07960, USA
| | - Charles A LeDuc
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| | | | - Christina Sofeso
- Center for Human Genetics and Laboratory Diagnostics (AHC) Dr. Klein, Dr. Rost and Colleagues, Lochhamer Str. 29, 82152 Martinsried, Germany
| | - Christoph Müller
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, 79085 Freiburg, Germany
| | - Germaine Pierre
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8BJ, UK
| | - Tom Hilliard
- Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol BS2 8BJ, UK
| | | | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Kappler
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Frank Brasch
- Klinikum Bielefeld Mitte, Institute for Pathology, Teutoburger Straße 50, 33604 Bielefeld, Germany
| | - John Paul Bouffard
- Department Pathology, Morristown Memorial Hospital, Morristown, NJ 07960, USA
| | - Leslie A Nangle
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Xiang-Lei Yang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Molecular Medicine, The Scripps Research Insitute, La Jolla, CA 92037, USA
| | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technical University Munich, 81675 Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich, German Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Wendy K Chung
- Department of Medicine, Columbia University, New York, NY 10032, USA; Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | - Paul Schimmel
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research Institute, 10650 North Torrey Pines Road, La Jolla, CA 92037, USA; The Scripps Laboratories for tRNA Synthetase Research, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
39
|
Miyanokoshi M, Yokosawa T, Wakasugi K. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. J Biol Chem 2018; 293:8428-8438. [PMID: 29666190 DOI: 10.1074/jbc.ra117.001247] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/03/2018] [Indexed: 01/08/2023] Open
Abstract
The tryptophan (Trp) transport system has a high affinity and selectivity toward Trp, and has been reported to exist in both human and mouse macrophages. Although this system is highly expressed in interferon-γ (IFN-γ)-treated cells and indoleamine 2,3-dioxygenase 1 (IDO1)-expressing cells, its identity remains incompletely understood. Tryptophanyl-tRNA synthetase (TrpRS) is also highly expressed in IFN-γ-treated cells and also has high affinity and selectivity for Trp. Here, we investigated the effects of human TrpRS expression on Trp uptake into IFN-γ-treated human THP-1 monocytes or HeLa cells. Inhibition of human TrpRS expression by TrpRS-specific siRNAs decreased and overexpression of TrpRS increased Trp uptake into the cells. Of note, the TrpRS-mediated uptake system had more than hundred-fold higher affinity for Trp than the known System L amino acid transporter, promoted uptake of low Trp concentrations, and had very high Trp selectivity. Moreover, site-directed mutagenesis experiments indicated that Trp- and ATP-binding sites, but not tRNA-binding sites, in TrpRS are essential for TrpRS-mediated Trp uptake into the human cells. We further demonstrate that the addition of purified TrpRS to cell culture medium increases Trp uptake into cells. Taken together, our results reveal that TrpRS plays an important role in high-affinity Trp uptake into human cells.
Collapse
Affiliation(s)
- Miki Miyanokoshi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Wakasugi
- From the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan and .,Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Fröhlich D, Suchowerska AK, Voss C, He R, Wolvetang E, von Jonquieres G, Simons C, Fath T, Housley GD, Klugmann M. Expression Pattern of the Aspartyl-tRNA Synthetase DARS in the Human Brain. Front Mol Neurosci 2018; 11:81. [PMID: 29615866 PMCID: PMC5869200 DOI: 10.3389/fnmol.2018.00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Translation of mRNA into protein is an evolutionarily conserved, fundamental process of life. A prerequisite for translation is the accurate charging of tRNAs with their cognate amino acids, a reaction catalyzed by specific aminoacyl-tRNA synthetases. One of these enzymes is the aspartyl-tRNA synthetase DARS, which pairs aspartate with its corresponding tRNA. Missense mutations of the gene encoding DARS result in the leukodystrophy hypomyelination with brainstem and spinal cord involvement and leg spasticity (HBSL) with a distinct pattern of hypomyelination, motor abnormalities, and cognitive impairment. A thorough understanding of the DARS expression domains in the central nervous system is essential for the development of targeted therapies to treat HBSL. Here, we analyzed endogenous DARS expression on the mRNA and protein level in different brain regions and cell types of human post mortem brain tissue as well as in human stem cell derived neurons, oligodendrocytes, and astrocytes. DARS expression is significantly enriched in the cerebellum, a region affected in HBSL patients and important for motor control. Although obligatorily expressed in all cells, DARS shows a distinct expression pattern with enrichment in neurons but only low abundance in oligodendrocytes, astrocytes, and microglia. Our results reveal little homogeneity across the different cell types, largely matching previously published data in the murine brain. This human gene expression study will significantly contribute to the understanding of DARS gene function and HBSL pathology and will be instrumental for future development of animal models and targeted therapies. In particular, we anticipate high benefit from a gene replacement approach in neurons of HBSL mouse models, given the abundant endogenous DARS expression in this lineage cell.
Collapse
Affiliation(s)
- Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Alexandra K Suchowerska
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Carola Voss
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Ruojie He
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ernst Wolvetang
- Stem Cell Engineering Group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cas Simons
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas Fath
- Neurodegenerative and Repair Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Gary D Housley
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
41
|
Yakobov N, Debard S, Fischer F, Senger B, Becker HD. Cytosolic aminoacyl-tRNA synthetases: Unanticipated relocations for unexpected functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:387-400. [PMID: 29155070 DOI: 10.1016/j.bbagrm.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.
Collapse
Affiliation(s)
- Nathaniel Yakobov
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Sylvain Debard
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Frédéric Fischer
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Bruno Senger
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- Génétique Moléculaire, Génomique, Microbiologie, UMR 7156, CNRS, Université de Strasbourg, Institut de Botanique, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
42
|
Sun L, Xu D, Xu Q, Sun J, Xing L, Zhang L, Yang H. iTRAQ reveals proteomic changes during intestine regeneration in the sea cucumber Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:39-49. [PMID: 28189057 DOI: 10.1016/j.cbd.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/25/2017] [Accepted: 02/02/2017] [Indexed: 12/14/2022]
Abstract
Sea cucumbers have a striking capacity to regenerate most of their viscera after evisceration, which has drawn the interest of many researchers. In this study, the isobaric tag for relative and absolute quantitation (iTRAQ) was utilized to investigate protein abundance changes during intestine regeneration in sea cucumbers. A total of 4073 proteins were identified, and 2321 proteins exhibited significantly differential expressions, with 1100 upregulated and 1221 downregulated proteins. Our results suggest that intestine regeneration constitutes a complex life activity regulated by the cooperation of various biological processes, including cytoskeletal changes, extracellular matrix (ECM) remodeling and ECM-receptor interactions, protein synthesis, signal recognition and transduction, energy production and conversion, and substance transport and metabolism. Additionally, real-time PCR showed mRNA expression of differentially expressed genes correlated positively with their protein levels. Our results provided a basis for studying the regulatory mechanisms associated with sea cucumber regeneration.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Dongxue Xu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Jingchun Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lili Xing
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
43
|
Acetylation promotes TyrRS nuclear translocation to prevent oxidative damage. Proc Natl Acad Sci U S A 2017; 114:687-692. [PMID: 28069943 DOI: 10.1073/pnas.1608488114] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tyrosyl-tRNA synthetase (TyrRS) is well known for its essential aminoacylation function in protein synthesis. Recently, TyrRS has been shown to translocate to the nucleus and protect against DNA damage due to oxidative stress. However, the mechanism of TyrRS nuclear localization has not yet been determined. Herein, we report that TyrRS becomes highly acetylated in response to oxidative stress, which promotes nuclear translocation. Moreover, p300/CBP-associated factor (PCAF), an acetyltransferase, and sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, regulate the nuclear localization of TyrRS in an acetylation-dependent manner. Oxidative stress increases the level of PCAF and decreases the level of SIRT1 and deacetylase activity, all of which promote the nuclear translocation of hyperacetylated TyrRS. Furthermore, TyrRS is primarily acetylated on the K244 residue near the nuclear localization signal (NLS), and acetylation inhibits the aminoacylation activity of TyrRS. Molecular dynamics simulations have shown that the in silico acetylation of K244 induces conformational changes in TyrRS near the NLS, which may promote the nuclear translocation of acetylated TyrRS. Herein, we show that the acetylated K244 residue of TyrRS protects against DNA damage in mammalian cells and zebrafish by activating DNA repair genes downstream of transcription factor E2F1. Our study reveals a previously unknown mechanism by which acetylation regulates an aminoacyl-tRNA synthetase, thus affecting the repair pathways for damaged DNA.
Collapse
|
44
|
Debard S, Bader G, De Craene JO, Enkler L, Bär S, Laporte D, Hammann P, Myslinski E, Senger B, Friant S, Becker HD. Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells. Methods 2017; 113:91-104. [DOI: 10.1016/j.ymeth.2016.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 11/26/2022] Open
|
45
|
Zheng ML, Zhou NK, Luo CH. MiRNA-155 and miRNA-132 as potential diagnostic biomarkers for pulmonary tuberculosis: A preliminary study. Microb Pathog 2016; 100:78-83. [PMID: 27616444 DOI: 10.1016/j.micpath.2016.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/19/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
In our study, we aimed to profile a panel microRNAs (miRNAs) as potential biomarkers for the early diagnosis of pulmonary tuberculosis (PTB) and to illuminate the molecular mechanisms in the development of PTB. Firstly, gene expression profile of E-GEOD-49951 was downloaded from ArrayExpress database, and quantile-adjusted conditional maximum likelihood method was utilized to identify statistical difference between miRNAs of Mycobacterium tuberculosis (MTB)-infected individuals and healthy subjects. Furthermore, in order to assess the performance of our methodology, random forest (RF) classification model was utilized to identify the top 10 miRNAs with better Area Under The Curve (AUC) using 10-fold cross-validation method. Additionally, Monte Carlo Cross-Validation was repeated 50 times to explore the best miRNAs. In order to learn more about the differentially-expressed miRNAs, the target genes of differentially-expressed miRNAs were retrieved from TargetScan database and Ingenuity Pathways Analysis (IPA) was used to screen out biological pathways where target genes were involved. After normalization, a total of 478 miRNAs with higher than 0.25-fold quantile average across all samples were required. Based on the differential expression analysis, 38 differentially expressed miRNAs were identified when the significance was set as false discovery rate (FDR) < 0.01. Among the top 10 differentially expressed miRNAs, miRNA-155 obtained a highest AUC value 0.976, showing a good performance between PTB and control groups. Similarly, miRNA-449a, miRNA-212 and miRNA-132 revealed also a good performance with AUC values 0.947, 0.931 and 0.930, respectively. Moreover, miRNA-155, miRNA-449a, miRNA-29b-1* and miRNA-132 appeared in 50, 49, 49 and 48 bootstraps. Thus, miRNA-155 and miRNA-132 might be important in the progression of PTB and thereby, might present potential signatures for diagnosis of PTB.
Collapse
Affiliation(s)
- Meng-Li Zheng
- Department of Chest Surgery, The 309th Hospital, PLA, Beijing, 100091, China.
| | - Nai-Kang Zhou
- Department of Chest Surgery, General Hospital, PLA, Beijing, 100853, China
| | - Cheng-Hua Luo
- Department of General Surgery, Peking University International Hospital, Beijing, 100026, China
| |
Collapse
|
46
|
Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity. Nat Immunol 2016; 17:1252-1262. [PMID: 27595231 DOI: 10.1038/ni.3542] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/28/2016] [Indexed: 12/17/2022]
Abstract
The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.
Collapse
|
47
|
Neddylation requires glycyl-tRNA synthetase to protect activated E2. Nat Struct Mol Biol 2016; 23:730-7. [PMID: 27348078 PMCID: PMC4972647 DOI: 10.1038/nsmb.3250] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022]
Abstract
Neddylation is a post-translational modification that controls cell cycle and proliferation by conjugating the ubiquitin-like protein NEDD8 to specific targets. Here we report that glycyl-tRNA synthetase (GlyRS), an essential enzyme for protein synthesis, also plays a critical role in neddylation. In human cells, knockdown of GlyRS, but not a different tRNA synthetase, decreases the global level of neddylation and causes cell cycle abnormality. This function of GlyRS is achieved through direct interactions with multiple components of the neddylation pathway, including NEDD8, E1, and E2 (Ubc12). Using various structural and functional approaches, we show that GlyRS binds to the APPBP1 subunit of E1 to capture and protect the activated E2 (NEDD8-conjugated Ubc12) before it reaches a downstream target. Therefore, GlyRS functions as a chaperone to critically support neddylation. This function is likely to be conserved in all eukaryotic GlyRS, and may contribute to the strong association of GlyRS with cancer progression.
Collapse
|
48
|
Xu G, Zou WQ, Du SJ, Wu MJ, Xiang TX, Luo ZG. Mechanism of dihydroartemisinin-induced apoptosis in prostate cancer PC3 cells: An iTRAQ-based proteomic analysis. Life Sci 2016; 157:1-11. [PMID: 27234895 DOI: 10.1016/j.lfs.2016.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/18/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
AIMS Prostate cancer (PCa) is one of the most common cancers in men in the world. Advanced PCa, especially castration-resistant PCa (CRPC), is difficult to cure. There is an urgent need to develop novel agents for CPRC. Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and is a well-known antimalarial drug. DHA has been documented to be a potential anticancer agent for PCa. However, the mechanisms underlying the anticancer activity of DHA are still unknown. MAIN METHODS Proteomics analysis based on iTRAQ technology was performed to determine the protein profile changes in human prostate cancer PC3 cells treated by DHA, and apoptosis was detected by flow cytometry and transmission electron microscopy. KEY FINDINGS DHA induced obvious apoptosis in PC3 cells. Using iTRAQ technology, we found 86 differentially expressed proteins linked to the cytotoxicity of DHA in PC3 cells. Gene ontology analysis showed the differentially expressed proteins were mainly associated with the protein synthesis and translation. Protein interaction network analysis and KEGG pathway analysis revealed altered aminoacyl-tRNA biosynthesis and metabolic pathways. Moreover, one candidate protein, heat shock protein HSP70 (HSPA1A), was identified by western blot analysis. SIGNIFICANCE Our results indicate that multiple mechanisms involved in the anticancer activity of DHA in PC3 cells. Decreased HSP70 expression may have an important role in DHA-induced apoptosis in PC3 cells. Our data also provide novel insights into the anticancer mechanisms of DHA.
Collapse
Affiliation(s)
- Ge Xu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Wen-Qin Zou
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Shi-Juan Du
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ming-Jun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China
| | - Ting-Xiu Xiang
- Artron BioResearch Inc., 3938 North Fraser Way, Burnaby, BC, V5J 5H6, Canada
| | - Zi-Guo Luo
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
49
|
Zou LH, Shang ZF, Tan W, Liu XD, Xu QZ, Song M, Wang Y, Guan H, Zhang SM, Yu L, Zhong CG, Zhou PK. TNKS1BP1 functions in DNA double-strand break repair though facilitating DNA-PKcs autophosphorylation dependent on PARP-1. Oncotarget 2016; 6:7011-22. [PMID: 25749521 PMCID: PMC4466666 DOI: 10.18632/oncotarget.3137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/10/2015] [Indexed: 11/25/2022] Open
Abstract
TNKS1BP1 was originally identified as an interaction protein of tankyrase 1, which belongs to the poly(ADP-ribose) polymerase (PARP) superfamily. PARP members play important roles for example in DNA repair, telomere stability and mitosis regulation. Although the TNKS1BP1 protein was considered to be a poly(ADP-ribosyl)ation acceptor of tankyrase 1, its function is still unknown. Here we firstly identified that TNKS1BP1 was up-regulated by ionizing radiation (IR) and the depletion of TNKS1BP1 significantly sensitized cancer cells to IR. Neutral comet assay, pulsed-field gel electrophoresis, and γH2AX foci analysis indicated that TNKS1BP1 is required for the efficient repair of DNA double-strand breaks (DSB). The TNKS1BP1 protein was demonstrated to interact with DNA-dependent protein kinase (DNA-PKcs) and poly(ADP-ribose) polymerase 1 (PARP-1), by co-immunoprecipitation analysis. Moreover, TNKS1BP1 was shown to promote the association of PARP-1 and DNA-PKcs. Overexpression of TNKS1BP1 induced the autophosphorylation of DNA-PKcs/Ser2056 in a PARP-1 dependent manner, which contributed to an increased capability of DNA DSB repair. Inhibition of PARP-1 blocked the TNKS1BP1-mediated DNA-PKcs autophosphorylation and attenuated the PARylation of DNA-PKcs. TNKS1BP1 is a newly described component of the DNA DSB repair machinery, which provides much more mechanistic evidence for the rationale of developing effective anticancer measures by targeting PARP-1 and DNA-PKcs.
Collapse
Affiliation(s)
- Lian-Hong Zou
- School of Public Heath, Central South University, Changsha, Hunan Province 410078, P. R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Zeng-Fu Shang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Wei Tan
- School of Public Heath, Central South University, Changsha, Hunan Province 410078, P. R. China.,Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Xiao-Dan Liu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Qin-Zhi Xu
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Man Song
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| | - Yu Wang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Hua Guan
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Shi-Meng Zhang
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China
| | - Lan Yu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cai-Gao Zhong
- School of Public Heath, Central South University, Changsha, Hunan Province 410078, P. R. China
| | - Ping-Kun Zhou
- Department of Radiation Toxicology and Oncology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P. R. China.,School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, P. R. China
| |
Collapse
|
50
|
Wei Z, Xu Z, Liu X, Lo WS, Ye F, Lau CF, Wang F, Zhou JJ, Nangle LA, Yang XL, Zhang M, Schimmel P. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase. Nucleic Acids Res 2016; 44:1247-55. [PMID: 26773056 PMCID: PMC4756856 DOI: 10.1093/nar/gkw002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/03/2016] [Indexed: 11/15/2022] Open
Abstract
Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues.
Collapse
Affiliation(s)
- Zhiyi Wei
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Departmentof Biology, South University of Science and Technology of China, Shenzhen, Guangdong 518055, China
| | - Zhiwen Xu
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Xiaotian Liu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wing-Sze Lo
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ching-Fun Lau
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Feng Wang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Jie J Zhou
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Pangu Biopharma, Edinburgh Tower, The landmark, 15 Queen'sRoad Central, Hong Kong, China
| | - Leslie A Nangle
- aTyr Pharma, 3545 John Hopkins Court, Suite 250, San Diego, CA 92121, USA
| | - Xiang-Lei Yang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China The Scripps Laboratories for tRNA Synthetase Research and the Departments of Chemical Physiology and of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mingjie Zhang
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Division of Life Science, State Key Laboratory of Molecular Neuroscience Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Paul Schimmel
- IAS HKUST - Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China The Scripps Laboratories for tRNA Synthetase Research and the Departments of Cell and Molecular Biology, and Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA The Scripps Laboratories for tRNA Synthetase Research and Departments of Metabolism & Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|