1
|
Capponi S, Wang S. AI in cellular engineering and reprogramming. Biophys J 2024; 123:2658-2670. [PMID: 38576162 PMCID: PMC11393708 DOI: 10.1016/j.bpj.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
During the last decade, artificial intelligence (AI) has increasingly been applied in biophysics and related fields, including cellular engineering and reprogramming, offering novel approaches to understand, manipulate, and control cellular function. The potential of AI lies in its ability to analyze complex datasets and generate predictive models. AI algorithms can process large amounts of data from single-cell genomics and multiomic technologies, allowing researchers to gain mechanistic insights into the control of cell identity and function. By integrating and interpreting these complex datasets, AI can help identify key molecular events and regulatory pathways involved in cellular reprogramming. This knowledge can inform the design of precision engineering strategies, such as the development of new transcription factor and signaling molecule cocktails, to manipulate cell identity and drive authentic cell fate across lineage boundaries. Furthermore, when used in combination with computational methods, AI can accelerate and improve the analysis and understanding of the intricate relationships between genes, proteins, and cellular processes. In this review article, we explore the current state of AI applications in biophysics with a specific focus on cellular engineering and reprogramming. Then, we showcase a couple of recent applications where we combined machine learning with experimental and computational techniques. Finally, we briefly discuss the challenges and prospects of AI in cellular engineering and reprogramming, emphasizing the potential of these technologies to revolutionize our ability to engineer cells for a variety of applications, from disease modeling and drug discovery to regenerative medicine and biomanufacturing.
Collapse
Affiliation(s)
- Sara Capponi
- IBM Almaden Research Center, San Jose, California; Center for Cellular Construction, San Francisco, California.
| | - Shangying Wang
- Bay Area Institute of Science, Altos Labs, Redwood City, California.
| |
Collapse
|
2
|
Lazaro O, Li S, Carter W, Awosika O, Robertson S, Hickey BE, Angus SP, House A, Clapp WD, Qadir AS, Johnson TS, Rhodes SD. A novel induced pluripotent stem cell model of Schwann cell differentiation reveals NF2 - related gene regulatory networks of the extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591952. [PMID: 38746313 PMCID: PMC11092660 DOI: 10.1101/2024.05.02.591952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Schwann cells are vital to development and maintenance of the peripheral nervous system and their dysfunction has been implicated in a range of neurological and neoplastic disorders, including NF2 -related schwannomatosis. We developed a novel human induced pluripotent stem cell (hiPSC) model to study Schwann cell differentiation in health and disease. We performed transcriptomic, immunofluorescence, and morphological analysis of hiPSC derived Schwann cell precursors (SPCs) and terminally differentiated Schwann cells (SCs) representing distinct stages of development. To validate our findings, we performed integrated, cross-species analyses across multiple external datasets at bulk and single cell resolution. Our hiPSC model of Schwann cell development shared overlapping gene expression signatures with human amniotic mesenchymal stem cell (hAMSCs) derived SCs and in vivo mouse models, but also revealed unique features that may reflect species-specific aspects of Schwann cell biology. Moreover, we identified gene co-expression modules that are dynamically regulated during hiPSC to SC differentiation associated with ear and neural development, cell fate determination, the NF2 gene, and extracellular matrix (ECM) organization. By cross-referencing results between multiple datasets, we identified new genes potentially associated with NF2 expression. Our hiPSC model further provides a tractable platform for studying Schwann cell development in the context of human disease.
Collapse
|
3
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Sarker DB, Xue Y, Mahmud F, Jocelyn JA, Sang QXA. Interconversion of Cancer Cells and Induced Pluripotent Stem Cells. Cells 2024; 13:125. [PMID: 38247819 PMCID: PMC10814385 DOI: 10.3390/cells13020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Cancer cells, especially cancer stem cells (CSCs), share many molecular features with induced pluripotent stem cells (iPSCs) that enable the derivation of induced pluripotent cancer cells by reprogramming malignant cells. Conversely, normal iPSCs can be converted into cancer stem-like cells with the help of tumor microenvironment components and genetic manipulation. These CSC models can be utilized in oncogenic initiation and progression studies, understanding drug resistance, and developing novel therapeutic strategies. This review summarizes the role of pluripotency factors in the stemness, tumorigenicity, and therapeutic resistance of cancer cells. Different methods to obtain iPSC-derived CSC models are described with an emphasis on exposure-based approaches. Culture in cancer cell-conditioned media or cocultures with cancer cells can convert normal iPSCs into cancer stem-like cells, aiding the examination of processes of oncogenesis. We further explored the potential of reprogramming cancer cells into cancer-iPSCs for mechanistic studies and cancer dependencies. The contributions of genetic, epigenetic, and tumor microenvironment factors can be evaluated using these models. Overall, integrating iPSC technology into cancer stem cell research holds significant promise for advancing our knowledge of cancer biology and accelerating the development of innovative and tailored therapeutic interventions.
Collapse
Affiliation(s)
- Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (D.B.S.); (Y.X.); (F.M.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
5
|
Clairmont CD, Gell JJ, Lau CC. Pediatric Tumors as Disorders of Development: The Case for In Vitro Modeling Based on Human Stem Cells. Cancer Control 2024; 31:10732748241270564. [PMID: 39118322 PMCID: PMC11311176 DOI: 10.1177/10732748241270564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Despite improvements in patient outcomes, pediatric cancer remains a leading cause of non-accidental death in children. Recent genetic analysis of patients with pediatric cancers indicates an important role for both germline genetic predisposition and cancer-specific somatic driver mutations. Increasingly, evidence demonstrates that the developmental timepoint at which the cancer cell-of-origin transforms is critical to tumor identity and therapeutic response. Therefore, future therapeutic development would be bolstered by the use of disease models that faithfully recapitulate the genetic context, cell-of-origin, and developmental window of vulnerability in pediatric cancers. Human stem cells have the potential to incorporate all of these characteristics into a pediatric cancer model, while serving as a platform for rapid genetic and pharmacological testing. In this review, we describe how human stem cells have been used to model pediatric cancers and how these models compare to other pediatric cancer model modalities.
Collapse
Affiliation(s)
- Cullen D. Clairmont
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joanna J. Gell
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| | - Ching C. Lau
- University of Connecticut School of Medicine, Farmington, CT, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Connecticut Children’s Medical Center, Center for Cancer and Blood Disorders, Hartford, CT, USA
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, UConn Health, Farmington, CT, USA
| |
Collapse
|
6
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
7
|
Buskin A, Scott E, Nelson R, Gaughan L, Robson CN, Heer R, Hepburn AC. Engineering prostate cancer in vitro: what does it take? Oncogene 2023; 42:2417-2427. [PMID: 37438470 PMCID: PMC10403358 DOI: 10.1038/s41388-023-02776-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
A key challenge in the clinical management and cause of treatment failure of prostate cancer (PCa) is its molecular, cellular and clinical heterogeneity. Modelling systems that fully recapitulate clinical diversity and resistant phenotypes are urgently required for the development of successful personalised PCa therapies. The advent of the three-dimensional (3D) organoid model has revolutionised preclinical cancer research through reflecting heterogeneity and offering genomic and environmental manipulation that has opened up unparalleled opportunities for applications in disease modelling, high-throughput drug screening and precision medicine. Despite these remarkable achievements of organoid technology, several shortcomings in emulating the complex tumor microenvironment and dynamic process of metastasis as well as the epigenome profile limit organoids achieving true in vivo functionality. Technological advances in tissue engineering have enabled the development of innovative tools to facilitate the design of improved 3D cancer models. In this review, we highlight the current in vitro 3D PCa models with a special focus on organoids and discuss engineering approaches to create more physiologically relevant PCa organoid models and maximise their translational relevance that ultimately will help to realise the transformational power of precision medicine.
Collapse
Affiliation(s)
- Adriana Buskin
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emma Scott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ryan Nelson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig N Robson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| | - Anastasia C Hepburn
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
8
|
Schloo C, Kutscher LM. Modeling brain and neural crest neoplasms with human pluripotent stem cells. Neuro Oncol 2023; 25:1225-1235. [PMID: 36757217 PMCID: PMC10326493 DOI: 10.1093/neuonc/noad034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Indexed: 02/10/2023] Open
Abstract
Pluripotent stem cells offer unique avenues to study human-specific aspects of disease and are a highly versatile tool in cancer research. Oncogenic processes and developmental programs often share overlapping transcriptomic and epigenetic signatures, which can be reactivated in induced pluripotent stem cells. With the emergence of brain organoids, the ability to recapitulate brain development and structure has vastly improved, making in vitro models more realistic and hence more suitable for biomedical modeling. This review highlights recent research and current challenges in human pluripotent stem cell modeling of brain and neural crest neoplasms, and concludes with a call for more rigorous quality control and for the development of models for rare tumor subtypes.
Collapse
Affiliation(s)
- Cedar Schloo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Wang X, Sun Y, Zhang DY, Ming GL, Song H. Glioblastoma modeling with 3D organoids: progress and challenges. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad008. [PMID: 38596241 PMCID: PMC10913843 DOI: 10.1093/oons/kvad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Glioblastoma (GBM) is the most aggressive adult primary brain tumor with nearly universal treatment resistance and recurrence. The mainstay of therapy remains maximal safe surgical resection followed by concurrent radiation therapy and temozolomide chemotherapy. Despite intensive investigation, alternative treatment options, such as immunotherapy or targeted molecular therapy, have yielded limited success to achieve long-term remission. This difficulty is partly due to the lack of pre-clinical models that fully recapitulate the intratumoral and intertumoral heterogeneity of GBM and the complex tumor microenvironment. Recently, GBM 3D organoids originating from resected patient tumors, genetic manipulation of induced pluripotent stem cell (iPSC)-derived brain organoids and bio-printing or fusion with non-malignant tissues have emerged as novel culture systems to portray the biology of GBM. Here, we highlight several methodologies for generating GBM organoids and discuss insights gained using such organoid models compared to classic modeling approaches using cell lines and xenografts. We also outline limitations of current GBM 3D organoids, most notably the difficulty retaining the tumor microenvironment, and discuss current efforts for improvements. Finally, we propose potential applications of organoid models for a deeper mechanistic understanding of GBM and therapeutic development.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yusha Sun
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Y Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Qin Z, Liang W, Zhang Z, Li P, Wang T, Chen Q, Guo B, Zhong Y, Kang H, Wang L. Activated KRAS reprograms neural progenitor cells to glioma stem cell‑like phenotype. Int J Oncol 2023; 63:88. [PMID: 37326110 PMCID: PMC10552691 DOI: 10.3892/ijo.2023.5536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/17/2023] [Indexed: 06/17/2023] Open
Abstract
Glioma is the most common primary brain tumor. Glioma stem cells (GSCs) are the origin of gliomagenesis and may develop from normal neural progenitor cells (NPCs). However, how neoplastic transformation occurs in normal NPCs and the role of the Ras/Raf/MAPK pathway in NPC transformation is unclear. The present study generated NPCs from human embryonic stem cells (ESCs) carrying gene alterations in the Ras/Raf/MAPK pathway. The CCK‑8 proliferation, single‑cell clonal expansion, cell migration, RT‑qPCR, immunofluorescence staining, western blotting, transcriptome and Seahorse analyses, and intracranial implantation assay were performed to identify the characterization of transformed NPCs in vitro and in vivo. Brain organoids were used to verify the phenotypes transforming in NPCs. KRAS‑activated NPCs exhibited increased proliferation and migration in vitro. KRAS‑activated NPCs showed atypical morphology and formed aggressive tumors in immunodeficient mice. At the molecular level, KRAS‑activated NPCs displayed neoplasm‑associated metabolic and gene expression profiles. Moreover, activation of KRAS led to substantial cell proliferation and abnormal structure in ESC‑derived brain organoids. The present study showed that activated KRAS transformed normal NPCs to GSC‑like cells and established a simple cellular model to investigate gliomagenesis.
Collapse
Affiliation(s)
- Zixi Qin
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Weiye Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Zixuan Zhang
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Peiwen Li
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Tianyu Wang
- Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Qianyu Chen
- Chinese Academy of Sciences Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, P.R. China
| | - Baoyin Guo
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Ying Zhong
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Hui Kang
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| | - Lihui Wang
- Department of Pathology, Medical College, Jinan University, Guangzhou, Guangdong 510632
| |
Collapse
|
11
|
Duan J, Wang Y. Modeling nervous system tumors with human stem cells and organoids. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:4. [PMID: 36854987 PMCID: PMC9975125 DOI: 10.1186/s13619-022-00150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/05/2022] [Indexed: 03/02/2023]
Abstract
Nervous system cancers are the 10th leading cause of death worldwide, many of which are difficult to diagnose and exhibit varying degrees of treatment resistance. The limitations of existing cancer models, such as patient-derived xenograft (PDX) models and genetically engineered mouse (GEM) models, call for the development of novel preclinical cancer models to more faithfully mimic the patient's cancer and offer additional insights. Recent advances in human stem cell biology, organoid, and genome-editing techniques allow us to model nervous system tumors in three types of next-generation tumor models: cell-of-origin models, tumor organoids, and 3D multicellular coculture models. In this review, we introduced and compared different human stem cell/organoid-derived models, and comprehensively summarized and discussed the recently developed models for various primary tumors in the central and peripheral nervous systems, including glioblastoma (GBM), H3K27M-mutant Diffuse Midline Glioma (DMG) and H3G34R-mutant High-grade Glioma (HGG), Low-grade Glioma (LGG), Neurofibromatosis Type 1 (NF1), Neurofibromatosis Type 2 (NF2), Medulloblastoma (MB), Atypical Teratoid/rhabdoid Tumor (AT/RT), and meningioma. We further compared these models with PDX and GEM models, and discussed the opportunities and challenges of precision nervous cancer modeling with human stem cells and organoids.
Collapse
Affiliation(s)
- Jie Duan
- grid.412901.f0000 0004 1770 1022Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041 China
| | - Yuan Wang
- Department of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
12
|
Khamis ZI, Sarker DB, Xue Y, Al-Akkary N, James VD, Zeng C, Li Y, Sang QXA. Modeling Human Brain Tumors and the Microenvironment Using Induced Pluripotent Stem Cells. Cancers (Basel) 2023; 15:cancers15041253. [PMID: 36831595 PMCID: PMC9954701 DOI: 10.3390/cancers15041253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Brain cancer is a group of diverse and rapidly growing malignancies that originate in the central nervous system (CNS) and have a poor prognosis. The complexity of brain structure and function makes brain cancer modeling extremely difficult, limiting pathological studies and therapeutic developments. Advancements in human pluripotent stem cell technology have opened a window of opportunity for brain cancer modeling, providing a wealth of customizable methods to simulate the disease in vitro. This is achieved with the advent of genome editing and genetic engineering technologies that can simulate germline and somatic mutations found in human brain tumors. This review investigates induced pluripotent stem cell (iPSC)-based approaches to model human brain cancer. The applications of iPSCs as renewable sources of individual brain cell types, brain organoids, blood-brain barrier (BBB), and brain tumor models are discussed. The brain tumor models reviewed are glioblastoma and medulloblastoma. The iPSC-derived isogenic cells and three-dimensional (3D) brain cancer organoids combined with patient-derived xenografts will enhance future compound screening and drug development for these deadly human brain cancers.
Collapse
Affiliation(s)
- Zahraa I. Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Nancy Al-Akkary
- Laboratory of Cancer Biology and Molecular Immunology, Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Viviana D. James
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Changchun Zeng
- Department of Industrial and Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA
- High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: ; Tel.: +1-850-644-8683; Fax: +1-850-644-8281
| |
Collapse
|
13
|
Liang W, Zuo J, Liu M, Su Y, Guo B, Hou J, Xing Q, Peng Y, Fang L, Cao Y, Shan J, Sun R, Zhao J, Wang J. VASN promotes colorectal cancer progression by activating the YAP/TAZ and AKT signaling pathways via YAP. FASEB J 2023; 37:e22688. [PMID: 36468780 DOI: 10.1096/fj.202201181r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies. Vasorin (VASN) has been reported to be critical in tumor development and angiogenesis. However, VASN has not been reported in CRC, and its role is unclear. In this study, VASN expression is upregulated in CRC compared with the normal tissues, and VASN expression positively correlates with N stage and poor overall survival by analysis of different datasets and 32 CRC clinicopathologic samples. Overexpression of VASN significantly promotes CRC cell progression, including proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), while knockdown of VASN inhibits CRC progression. We found that VASN was associated with the YAP/TAZ and PI3K/AKT pathways by gene set enrichment analysis (GSEA) and gene ontology (GO) analysis. Notably, western blotting, immunofluorescence staining and co-immunofluorescence (co-IP) confirmed that VASN could interact with YAP and activate the YAP/TAZ and PTEN/PI3K/AKT pathways, and knockdown of YAP reversed this effect. Importantly, our findings indicate that VASN interacts with YAP to inhibit YAP phosphorylation and stimulates CRC proliferation, migration, and invasion through activation of the YAP/TAZ-TEAD target gene CTGF and PTEN/PI3K/AKT pathways. Our results also show that knockdown of YAP reverses the cellular phenotype induced by increased VASN. In conclusion, our study reveals that VASN acts as an oncogene to stimulate tumor progression in CRC, providing new insights into the molecular mechanisms of CRC development and representing a possible novel biomarker for CRC.
Collapse
Affiliation(s)
- Weiye Liang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jia Zuo
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mingkai Liu
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuling Su
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Baoyin Guo
- Department of Pathology, Guangzhou First People's Hospital, Guangzhou, China
| | - Jiangtao Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of TCM, Guangzhou, China
| | - Qi Xing
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinglong Peng
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lian Fang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yihui Cao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiajie Shan
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruixia Sun
- Bioscience Laboratory, BIOS Bioscience and Technology Limited Company, Guangzhou, China
| | - Jie Zhao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China.,Bioscience Laboratory, BIOS Bioscience and Technology Limited Company, Guangzhou, China
| |
Collapse
|
14
|
Rust R, Weber RZ, Generali M, Kehl D, Bodenmann C, Uhr D, Wanner D, Zürcher KJ, Saito H, Hoerstrup SP, Nitsch RM, Tackenberg C. Xeno-free induced pluripotent stem cell-derived neural progenitor cells for in vivo applications. J Transl Med 2022; 20:421. [PMID: 36114512 PMCID: PMC9482172 DOI: 10.1186/s12967-022-03610-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications. METHODS We generated good manufacturing practice (GMP)-compatible neural progenitor cells (NPCs) from transgene- and xeno-free induced pluripotent stem cells (iPSCs) that can be smoothly adapted for clinical applications. NPCs were characterized in vitro for their differentiation potential and in vivo after transplantation into wild type as well as genetically immunosuppressed mice. RESULTS Generated NPCs had a stable gene-expression over at least 15 passages and could be scaled for up to 1018 cells per initially seeded 106 cells. After withdrawal of growth factors in vitro, cells adapted a neural fate and mainly differentiated into active neurons. To ensure a pure NPC population for in vivo applications, we reduced the risk of iPSC contamination by applying micro RNA-switch technology as a safety checkpoint. Using lentiviral transduction with a fluorescent and bioluminescent dual-reporter construct, combined with non-invasive in vivo bioluminescent imaging, we longitudinally tracked the grafted cells in healthy wild-type and genetically immunosuppressed mice as well as in a mouse model of ischemic stroke. Long term in-depth characterization revealed that transplanted NPCs have the capability to survive and spontaneously differentiate into functional and mature neurons throughout a time course of a month, while no residual pluripotent cells were detectable. CONCLUSION We describe the generation of transgene- and xeno-free NPCs. This simple differentiation protocol combined with the ability of in vivo cell tracking presents a valuable tool to develop safe and effective cell therapies for various brain injuries.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Melanie Generali
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Debora Kehl
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Chantal Bodenmann
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Daniela Uhr
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Debora Wanner
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Kathrin J Zürcher
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Wyss Translational Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Wagistrasse 12, 8952, Schlieren, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Anastasaki C, Chatterjee J, Cobb O, Sanapala S, Scheaffer SM, De Andrade Costa A, Wilson AF, Kernan CM, Zafar AH, Ge X, Garbow JR, Rodriguez FJ, Gutmann DH. Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling. Acta Neuropathol Commun 2022; 10:120. [PMID: 35986378 PMCID: PMC9392324 DOI: 10.1186/s40478-022-01428-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022] Open
Abstract
A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Shilpa Sanapala
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Suzanne M Scheaffer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Amanda De Andrade Costa
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Anna F Wilson
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Chloe M Kernan
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ameera H Zafar
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Hagey DW, Bergsland M, Muhr J. SOX2 transcription factor binding and function. Development 2022; 149:276045. [DOI: 10.1242/dev.200547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The transcription factor SOX2 is a vital regulator of stem cell activity in various developing and adult tissues. Mounting evidence has demonstrated the importance of SOX2 in regulating the induction and maintenance of stemness as well as in controlling cell proliferation, lineage decisions and differentiation. Recent studies have revealed that the ability of SOX2 to regulate these stem cell features involves its function as a pioneer factor, with the capacity to target nucleosomal DNA, modulate chromatin accessibility and prepare silent genes for subsequent activation. Moreover, although SOX2 binds to similar DNA motifs in different stem cells, its multifaceted and cell type-specific functions are reliant on context-dependent features. These cell type-specific properties include variations in partner factor availability and SOX2 protein expression levels. In this Primer, we discuss recent findings that have increased our understanding of how SOX2 executes its versatile functions as a master regulator of stem cell activities.
Collapse
Affiliation(s)
- Daniel W. Hagey
- Karolinska Institutet 1 Department of Laboratory Medicine , , SE-171 77 Stockholm , Sweden
| | - Maria Bergsland
- Karolinska Institutet 2 Department of Cell and Molecular Biology , , Solnavägen 9, SE-171 65 Stockholm , Sweden
| | - Jonas Muhr
- Karolinska Institutet 2 Department of Cell and Molecular Biology , , Solnavägen 9, SE-171 65 Stockholm , Sweden
| |
Collapse
|
17
|
Abstract
Although tumourigenesis occurs due to genetic mutations, the role of epigenetic dysregulations in cancer is also well established. Epigenetic dysregulations in cancer may occur as a result of mutations in genes encoding histone/DNA-modifying enzymes and chromatin remodellers or mutations in histone protein itself. It is also true that misregulated gene expression without genetic mutations in these factors could also support tumour initiation and progression. Interestingly, metabolic rewiring has emerged as a hallmark of cancer due to gene mutations in specific metabolic enzymes or dietary/environmental factors. Recent studies report an intricate cross-talk between epigenetic and metabolic reprogramming in cancer. This review discusses the role of epigenetic and metabolic dysregulations and their cross-talk in tumourigenesis with a special focus on gliomagenesis. We also discuss the role of recently developed human embryonic stem cells/induced pluripotent stem cells-derived organoid models of gliomas and how these models are proving instrumental in uncovering human-specific cellular and molecular complexities of gliomagenesis.
Collapse
Affiliation(s)
- Bismi Phasaludeen
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, Abu Dhabi, United Arab Emirates,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| |
Collapse
|
18
|
Uhlmann C, Nickel AC, Picard D, Rossi A, Li G, Hildebrandt B, Brockerhoff G, Bendt F, Hübenthal U, Hewera M, Steiger HJ, Wieczorek D, Perrakis A, Zhang W, Remke M, Koch K, Tigges J, Croner RS, Fritsche E, Kahlert UD. Progenitor cells derived from gene-engineered human induced pluripotent stem cells as synthetic cancer cell alternatives for in vitro pharmacology. Biotechnol J 2022; 17:e2100693. [PMID: 35334498 DOI: 10.1002/biot.202100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
Limitations in genetic stability and recapitulating accurate physiological disease properties challenge the utility of patient-derived (PD) cancer models for reproducible and translational research. We have genetically engineered a portfolio of isogenic human induced pluripotent stem cells (hiPSCs) with different pan-cancer relevant oncoprotein signatures followed by differentiation into lineage-committed progenitor cells. Characterization on molecular and biological level validated successful stable genetic alterations in pluripotency state as well as upon differentiation to prove the functionality of our approach Meanwhile proposing core molecular networks possibly involved in early dysregulation of stem cell homeostasis, the application of our cell systems in comparative substance testing indicates the potential for cancer research such as identification of augmented therapy resistance of stem cells in response to activation of distinct oncogenic signatures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ann-Christin Nickel
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Daniel Picard
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Andrea Rossi
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Guanzhang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | | | - Farina Bendt
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulrike Hübenthal
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Michael Hewera
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department for Neurosurgery, Medical Faculty and University Medical Center Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Aristoteles Perrakis
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Wei Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, P. R. China
| | - Marc Remke
- Division of Pediatric Neuro-Oncogenomics, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), partner site Essen/Düsseldorf, Düsseldorf, Germany.,Department of Pediatric Oncology, Hematology, and Clinical Immunology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,Department of Neuropathology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katharina Koch
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Tigges
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Roland S Croner
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Ulf D Kahlert
- Molecular and Experimental Surgery, University Clinic for General, Visceral and Vascular Surgery, University Medical Center Magdeburg and Faculty of Medicine, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
19
|
Lindner K, Beckenbauer K, van Ek LC, Titeca K, de Leeuw SM, Awwad K, Hanke F, Korepanova AV, Rybin V, van der Kam EL, Mohler EG, Tackenberg C, Lakics V, Gavin AC. Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Rep 2022; 38:110435. [PMID: 35235798 DOI: 10.1016/j.celrep.2022.110435] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 01/21/2023] Open
Abstract
Apolipoprotein E transports lipids and couples metabolism between astrocytes and neurons. The E4 variant (APOE4) affects these functions and represents a genetic predisposition for Alzheimer's disease, but the molecular mechanisms remain elusive. We show that ApoE produces different types of lipoproteins via distinct lipidation pathways. ApoE forms high-density lipoprotein (HDL)-like, cholesterol-rich particles via the ATP-binding cassette transporter 1 (ABCA1), a mechanism largely unaffected by ApoE polymorphism. Alternatively, ectopic accumulation of fat in astrocytes, a stress-associated condition, redirects ApoE toward the assembly and secretion of triacylglycerol-rich lipoproteins, a process boosted by the APOE4 variant. We demonstrate in vitro that ApoE can detect triacylglycerol in membranes and spontaneously assemble lipoprotein particles (10-20 nm) rich in unsaturated triacylglycerol, and that APOE4 has remarkable properties behaving as a strong triacylglycerol binder. We propose that fatty APOE4 astrocytes have reduced ability to clear toxic fatty acids from the extracellular milieu, because APOE4 reroutes them back to secretion.
Collapse
Affiliation(s)
- Karina Lindner
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Katharina Beckenbauer
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Larissa C van Ek
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Kevin Titeca
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sherida M de Leeuw
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Khader Awwad
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Franziska Hanke
- AbbVie Deutschland GmbH & Co. KG Drug Metabolism and Pharmacokinetics, Knollstrasse, 67061 Ludwigshafen, Germany
| | | | - Vladimir Rybin
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | - Eric G Mohler
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Viktor Lakics
- AbbVie Deutschland GmbH & Co. KG Neuroscience Discovery, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Anne-Claude Gavin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland; European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
20
|
Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. NATURE CANCER 2022; 2:932-949. [PMID: 35121864 PMCID: PMC8809511 DOI: 10.1038/s43018-021-00238-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022]
Abstract
Pseudouridine is the most frequent epitranscriptomic modification. However, its cellular functions remain largely unknown. Here we show that the pseudouridine synthase PUS7 is highly expressed in glioblastoma versus normal brain tissues, and high PUS7 expression levels are associated with worse survival in glioblastoma patients. The PUS7 expression and catalytic activity are required for glioblastoma stem cell (GSC) tumorigenesis. Mechanistically, we identified PUS7 targets in GSCs through small RNA pseudouridine sequencing, and showed that pseudouridylation of PUS7-regulated tRNA is critical for codon-specific translational control of key regulators of GSCs. Moreover, we identified chemical inhibitors for PUS7, and showed that these compounds prevented PUS7-mediated pseudouridine modification, suppressed tumorigenesis, and extended lifespan of tumor-bearing mice. Overall, we identified an epitranscriptomic regulatory mechanism in glioblastoma and provided preclinical evidence of a potential therapeutic strategy for glioblastoma.
Collapse
|
21
|
APOE2, E3, and E4 differentially modulate cellular homeostasis, cholesterol metabolism, and inflammatory response in isogenic iPSC-derived astrocytes. Stem Cell Reports 2021; 17:110-126. [PMID: 34919811 PMCID: PMC8758949 DOI: 10.1016/j.stemcr.2021.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
The apolipoprotein E4 (APOE4) variant is the strongest genetic risk factor for Alzheimer disease (AD), while the APOE2 allele is protective. A major question is how different APOE genotypes affect the physiology of astrocytes, the main APOE-producing brain cells. Here, we differentiated human APOE-isogenic induced pluripotent stem cells (iPSCs) (APOE4, E3, E2, and APOE knockout [APOE-KO]) to functional “iAstrocytes”. Mass-spectrometry-based proteomic analysis showed genotype-dependent reductions of cholesterol and lipid metabolic and biosynthetic pathways (reduction: APOE4 > E3 > E2). Cholesterol efflux and biosynthesis were reduced in APOE4 iAstrocytes, while subcellular localization of cholesterol in lysosomes was elevated. An increase in immunoregulatory proteomic pathways (APOE4 > E3 > E2) was accompanied by elevated cytokine release in APOE4 cells (APOE4 > E3 > E2 > KO). Activation of iAstrocytes exacerbated proteomic changes and cytokine secretion mostly in APOE4 iAstrocytes, while APOE2 and APOE-KO iAstrocytes were least affected. Taken together, APOE4 iAstrocytes reveal a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signaling, and reduced β-amyloid uptake, while APOE2 iAstrocytes show opposing effects. Human astrocytes show strong proteomic differences depending on their APOE genotype Aβ uptake is highest in APOE-KO and lowest in APOE4 astrocytes (KO > E2 > E3 > E4) APOE4 astrocytes show exacerbated pro-inflammatory reactions (APOE4 > E3 > E2 > KO) Cholesterol synthesis and efflux are reduced in APOE4 astrocytes
Collapse
|
22
|
Turhan AG, Hwang JW, Chaker D, Tasteyre A, Latsis T, Griscelli F, Desterke C, Bennaceur-Griscelli A. iPSC-Derived Organoids as Therapeutic Models in Regenerative Medicine and Oncology. Front Med (Lausanne) 2021; 8:728543. [PMID: 34722569 PMCID: PMC8548367 DOI: 10.3389/fmed.2021.728543] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Progress made during the last decade in stem cell biology allows currently an unprecedented potential to translate these advances into the clinical applications and to shape the future of regenerative medicine. Organoid technology is amongst these major developments, derived from primary tissues or more recently, from induced pluripotent stem cells (iPSC). The use of iPSC technology offers the possibility of cancer modeling especially in hereditary cancers with germline oncogenic mutations. Similarly, it has the advantage to be amenable to genome editing with introduction of specific oncogenic alterations using CRISPR-mediated gene editing. In the field of regenerative medicine, iPSC-derived organoids hold promise for the generation of future advanced therapeutic medicinal products (ATMP) for organ repair. Finally, it appears that they can be of highly useful experimental tools to determine cell targets of SARS-Cov-2 infections allowing to test anti-Covid drugs. Thus, with the possibilities of genomic editing and the development of new protocols for differentiation toward functional tissues, it is expected that iPSC-derived organoid technology will represent also a therapeutic tool in all areas of medicine.
Collapse
Affiliation(s)
- Ali G Turhan
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,APHP Paris Saclay, Department of Hematology, Hopital Bicetre and Paul Brousse, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France.,CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Genopole, Evry, France
| | - Jinwook W Hwang
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France
| | - Diana Chaker
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France.,CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Genopole, Evry, France
| | - Albert Tasteyre
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France.,CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Genopole, Evry, France
| | - Theodoros Latsis
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France
| | - Frank Griscelli
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France.,CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Genopole, Evry, France.,Université Paris Descartes, Faculté Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Christophe Desterke
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- INSERM UA/09 UMR-S 935, Université Paris Saclay, Villejuif, France.,ESTeam Paris Sud, Université Paris Saclay, Villejuif, France.,APHP Paris Saclay, Department of Hematology, Hopital Bicetre and Paul Brousse, Villejuif, France.,INGESTEM National iPSC Infrastructure, Villejuif, France.,CITHERA, Centre for IPSC Therapies, INSERM UMS-45, Genopole, Evry, France
| |
Collapse
|
23
|
Testing the Stability of Drug Resistance on Cryopreserved, Gene-Engineered Human Induced Pluripotent Stem Cells. Pharmaceuticals (Basel) 2021; 14:ph14090919. [PMID: 34577619 PMCID: PMC8466661 DOI: 10.3390/ph14090919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for in vitro modelling of diseases with broad application in drug development or toxicology testing. These assays usually require large quantities of hiPSC, which can entail long-term storage via cryopreservation of the same cell charges. However, it is essential that cryopreservation does not oppose durable changes on the cells. In this project, we characterize one parameter of functionality of one that is well established in the field, in a different research context, an applied hiPSC line (iPS11), namely their resistance to a medium size library of chemo interventions (>160 drugs). We demonstrate that cells, before and after cryopreservation, do not change their relative overall drug response phenotypes, as defined by identification of the top 20 interventions causing dose-dependent reduction of cell growth. Importantly, also frozen cells that are exogenously enforced for stable overexpression of oncogenes myelocytomatosis (cMYC) or tumor protein 53 mutation (TP53R175H), respectively, are not changed in their relative top 20 drugs response compared to their non-frozen counterparts. Taken together, our results support iPSCs as a reliable in vitro platform for in vitro pharmacology, further raising hopes that this technology supports biomarker-associated drug development. Given the general debate on ethical and economic problems associated with the reproducibly crisis in biomedicine, our results may be of interest to a wider audience beyond stem cell research.
Collapse
|
24
|
Uhlmann C, Kuhn LM, Tigges J, Fritsche E, Kahlert UD. Efficient Modulation of TP53 Expression in Human Induced Pluripotent Stem Cells. ACTA ACUST UNITED AC 2021; 52:e102. [PMID: 31883435 DOI: 10.1002/cpsc.102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TP53 point mutations are found in 50% of all cancers and seem to play an important role in cancer pathogenesis. Thus, human induced pluripotent stem cells (hiPSCs) overexpressing mutant TP53 are a valuable tool for the generation of in vitro models of cancer stem cells or for in vivo xenograft models. Here, we describe a protocol for the alteration of gene expression in hiPSCs via overexpression of a mutant form of the TP53 (R249S) gene using lentiviral transduction. A high amount of TP53 protein is detected 1 week after transduction and antibiotic selection. Differentiation of transduced hiPSCs gives insight into better understanding cancer formation in different tissues and may be a useful tool for genetic or pharmacologic screening assays. © 2019 The Authors. Basic Protocol 1: Production and concentration of third-generation lentivirus Support Protocol 1: Cloning of gene of interest into modulation vector Support Protocol 2: Preparation of DMEM GlutaMAX™ with 10% fetal bovine serum and 1% penicillin-streptomycin Basic Protocol 2: Transduction of human induced pluripotent stem cells and selection of positively transfected cells Support Protocol 3: Preparation of Matrigel® -coated plates Support Protocol 4: Preparation of mTeSR™1 medium.
Collapse
Affiliation(s)
- Constanze Uhlmann
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Lisa-Maria Kuhn
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine University, Düsseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ulf Dietrich Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), partner site Essen, Düsseldorf, Germany
| |
Collapse
|
25
|
Paolillo M, Comincini S, Schinelli S. In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers (Basel) 2021; 13:cancers13102449. [PMID: 34070023 PMCID: PMC8157833 DOI: 10.3390/cancers13102449] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In this review, the thorny issue of glioblastoma models is addressed, with a focus on 3D in vitro models. In the first part of the manuscript, glioblastoma features and classification are recapitulated, in order to highlight the major critical aspects that should be taken into account when choosing a glioblastoma 3D model. In the second part of the review, the 3D models described in the literature are critically discussed, considering the advantages, disadvantages, and feasibility for each experimental model, in the light of the potential issues that researchers want to address. Abstract Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, with an average survival time of about one year from initial diagnosis. In the attempt to overcome the complexity and drawbacks associated with in vivo GBM models, together with the need of developing systems dedicated to screen new potential drugs, considerable efforts have been devoted to the implementation of reliable and affordable in vitro GBM models. Recent findings on GBM molecular features, revealing a high heterogeneity between GBM cells and also between other non-tumor cells belonging to the tumoral niche, have stressed the limitations of the classical 2D cell culture systems. Recently, several novel and innovative 3D cell cultures models for GBM have been proposed and implemented. In this review, we first describe the different populations and their functional role of GBM and niche non-tumor cells that could be used in 3D models. An overview of the current available 3D in vitro systems for modeling GBM, together with their major weaknesses and strengths, is presented. Lastly, we discuss the impact of groundbreaking technologies, such as bioprinting and multi-omics single cell analysis, on the future implementation of 3D in vitro GBM models.
Collapse
Affiliation(s)
- Mayra Paolillo
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
- Correspondence:
| | - Sergio Comincini
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Schinelli
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
26
|
Gao HS, Lin SY, Han X, Xu HZ, Gao YL, Qin ZY. Casein kinase 1 (CK1) promotes the proliferation and metastasis of glioma cells via the phosphatidylinositol 3 kinase-matrix metalloproteinase 2 (AKT-MMP2) pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:659. [PMID: 33987357 PMCID: PMC8106055 DOI: 10.21037/atm-21-935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background Glioma is a type of tumor that usually occurs in the adult central nervous system. Protein kinases have become important targets for oncotherapy since they are closely correlated with signal transduction. The role of the casein kinase 1 (CK1) gene in glioma remains to be fully elucidated. Methods The mRNA and protein expression of CK1 were analyzed by Realtime PCR, Western blot and immunohistochemistry. The cell behavior was assayed by MTT, Transwell and cell scratch methods. Cell cycle and cell apoptosis were performed by flow cytometer. Construction of stable cell line was completed by lentivirus infection. The nude mouse model was used for in vivo analysis on the role of CK1 by injecting the cells into subcutaneous tissue, tail vein and cerebral cortex. The prognostic role of CK1 in glioma was evaluated using Kaplan-Meier and Cox regression analyses. Results immunohistochemical staining demonstrated that the expression of CK1 in glioma samples was correlated with the grade of glioma. Survival analysis using Kaplan-Meier and multivariate analysis by Cox regression indicated that CK1 could be used as an independent prognostic marker for glioma. The methyl thiazolyl tetrazolium (MTT), transwell, and cell scratch assays demonstrated that the CK1 gene promoted cell proliferation and invasion through the phosphatidylinositol 3 kinase/matrix metalloproteinase 2 (AKT-MMP2) signaling pathway. In vivo experiments in mice also confirmed the ability of CK1 to enhance tumor proliferation and metastasis, with the metastatic site being the small intestine. Conclusions the expression of CK1 was correlated with glioma grade and patient survival and it may enhance glioma proliferation and metastasis via AKT-MMP2 pathway.
Collapse
Affiliation(s)
- Hua-Song Gao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - She-Yu Lin
- Department of Biological Sciences, School of Life Sciences, Nantong University, Nantong, China
| | - Xi Han
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Zhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lu Gao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhi-Yong Qin
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
27
|
Xue Y, Fu Y, Zhao F, Gui G, Li Y, Rivero-Hinojosa S, Liu G, Li Y, Xia S, Eberhart CG, Ying M. Frondoside A Inhibits an MYC-Driven Medulloblastoma Model Derived from Human-Induced Pluripotent Stem Cells. Mol Cancer Ther 2021; 20:1199-1209. [PMID: 33722850 DOI: 10.1158/1535-7163.mct-20-0603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. MYC-driven MBs, commonly found in the group 3 MB, are aggressive and metastatic with the worst prognosis. Modeling MYC-driven MB is the foundation of therapeutic development. Here, we applied a synthetic mRNA-driven strategy to generate neuronal precursors from human-induced pluripotent stem cells (iPSCs). These neuronal precursors were transformed by the MYC oncogene combined with p53 loss of function to establish an MYC-driven MB model recapitulating the histologic and transcriptomic hallmarks of group 3 MB. We further show that the marine compound Frondoside A (FA) effectively inhibits this MYC-driven MB model without affecting isogenic neuronal precursors with undetectable MYC expression. Consistent results from a panel of MB models support that MYC levels are positively correlated with FA's antitumor potency. Next, we show that FA suppresses MYC expression and its downstream gene targets in MB cells, suggesting a potential mechanism underlying FA's inhibitory effects on MYC-driven cancers. In orthotopic xenografts of MYC-driven MB, intratumoral FA administration potently induces cytotoxicity in tumor xenografts, significantly extends the survival of tumor-bearing animals, and enhances the recruitment of microglia/macrophages and cytotoxic T lymphocytes to tumors. Moreover, we show that MYC levels also predict FA potency in glioblastoma and non-small cell lung cancer cells. Taken together, this study provides an efficient human iPSC-based strategy for personalizable cancer modeling, widely applicable to mechanistic studies (e.g., genetic predisposition to cancer) and drug discovery. Our preclinical results justify the clinical translation of FA in treating MYC-driven MB and other human cancers.
Collapse
Affiliation(s)
- Yingchao Xue
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Yi Fu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Fenghong Zhao
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland
| | - Gege Gui
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Yuguo Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, District of Columbia
| | - Guanshu Liu
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shuli Xia
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mingyao Ying
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Hassan G, Afify SM, Du J, Seno A, Seno M. Availability of Pluripotent Stem Cells from Normal Cells in Cancer Science. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Different Calculation Strategies Are Congruent in Determining Chemotherapy Resistance of Brain Tumors In Vitro. Cells 2020; 9:cells9122689. [PMID: 33333810 PMCID: PMC7765228 DOI: 10.3390/cells9122689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023] Open
Abstract
In cancer pharmacology, a drug candidate’s therapeutic potential is typically expressed as its ability to suppress cell growth. Different methods in assessing the cell phenotype and calculating the drug effect have been established. However, inconsistencies in drug response outcomes have been reported, and it is still unclear whether and to what extent the choice of data post-processing methods is responsible for that. Studies that systematically examine these questions are rare. Here, we compare three established calculation methods on a collection of nine in vitro models of glioblastoma, exposed to a library of 231 clinical drugs. The therapeutic potential of the drugs is determined on the growth curves, using growth inhibition 50% (GI50) and point-of-departure (PoD) as the criteria. An effect is detected on 36% of the drugs when relying on GI50 and on 27% when using PoD. For the area under the curve (AUC), a threshold of 9.5 or 10 could be set to discriminate between the drugs with and without an effect. GI50, PoD, and AUC are highly correlated. The ranking of substances by different criteria varies somewhat, but the group of the top 20 substances according to one criterion typically includes 17–19 top candidates according to another. In addition to generating preclinical values with high clinical potential, we present off-target appreciation of top substance predictions by interrogating the drug response data of non-cancer cells in our calculation technology.
Collapse
|
30
|
Modeling cancer progression using human pluripotent stem cell-derived cells and organoids. Stem Cell Res 2020; 49:102063. [PMID: 33137568 PMCID: PMC7849931 DOI: 10.1016/j.scr.2020.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Conventional cancer cell lines and animal models have been mainstays of cancer research. More recently, human pluripotent stem cells (hPSCs) and hPSC-derived organoid technologies, together with genome engineering approaches, have provided a complementary platform to model cancer progression. Here, we review the application of these technologies in cancer modeling with respect to the cell-of-origin, cancer propagation, and metastasis. We further discuss the benefits and challenges accompanying the use of hPSC models for cancer research and discuss their broad applicability in drug discovery, biomarker identification, decoding molecular mechanisms, and the deconstruction of clonal and intra-tumoral heterogeneity. In summary, hPSC-derived organoids provide powerful models to recapitulate the pathogenic states in cancer and to perform drug discovery.
Collapse
|
31
|
Pasqualini C, Kozaki T, Bruschi M, Nguyen THH, Minard-Colin V, Castel D, Grill J, Ginhoux F. Modeling the Interaction between the Microenvironment and Tumor Cells in Brain Tumors. Neuron 2020; 108:1025-1044. [PMID: 33065047 DOI: 10.1016/j.neuron.2020.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/26/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Despite considerable recent advances in understanding and treating many other cancers, malignant brain tumors remain associated with low survival or severe long-term sequelae. Limited progress, including development of immunotherapies, relates in part to difficulties in accurately reproducing brain microenvironment with current preclinical models. The cellular interactions among resident microglia, recruited tumor-associated macrophages, stromal cells, glial cells, neurons, and cancer cells and how they affect tumor growth or behavior are emerging, yet many questions remain. The role of the blood-brain barrier, extracellular matrix components, and heterogeneity among tumor types and within different regions of a single tumor further complicate the matter. Here, we focus on brain microenvironment features impacted by tumor biology. We also discuss limits of current preclinical models and how complementary models, such as humanized animals and organoids, will allow deeper mechanistic insights on cancer biology, allowing for more efficient testing of therapeutic strategies, including immunotherapy, for brain cancers.
Collapse
Affiliation(s)
- Claudia Pasqualini
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Tatsuya Kozaki
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Marco Bruschi
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Thi Hai Hoa Nguyen
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Véronique Minard-Colin
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; INSERM U1015, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - David Castel
- Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Children and Adolescent Oncology Department, Gustave Roussy, Paris-Saclay University, Villejuif, France; Genomics & Oncogenesis of Pediatric Brain Tumors, INSERM U981, Gustave Roussy, Paris-Saclay University, Villejuif, France.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore; Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
32
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
33
|
Human Pluripotent Stem Cell-Derived Tumor Model Uncovers the Embryonic Stem Cell Signature as a Key Driver in Atypical Teratoid/Rhabdoid Tumor. Cell Rep 2020; 26:2608-2621.e6. [PMID: 30840885 DOI: 10.1016/j.celrep.2019.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 02/02/2019] [Indexed: 02/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT), which harbors SMARCB1 mutation and exhibits a characteristic histology of rhabdoid cells, has a poor prognosis because of the lack of effective treatments. Here, we establish human SMARCB1-deficient pluripotent stem cells (hPSCs). SMARCB1-deficient hPSC-derived neural progenitor-like cells (NPLCs) efficiently give rise to brain tumors when transplanted into the mouse brain. Notably, activation of an embryonic stem cell (ESC)-like signature confers a rhabdoid histology in SMARCB1-deficient NPLC-derived tumors and causes a poor prognosis. Consistently, we find the activation of the ESC-like gene expression signature and an ESC-like DNA methylation landscape in clinical specimens of AT/RT. Finally, we identify candidate genes that maintain the activation of the ESC-like signature and the growth of AT/RT cells. Collectively, SMARCB1-deficient hPSCs offer the human models for AT/RT, which uncover the role of the activated ESC-like signature in the poor prognosis and unique histology of AT/RT.
Collapse
|
34
|
Combined proteomics/miRNomics of dendritic cell immunotherapy-treated glioblastoma patients as a screening for survival-associated factors. NPJ Vaccines 2020; 5:5. [PMID: 31969991 PMCID: PMC6965118 DOI: 10.1038/s41541-019-0149-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most prevalent and aggressive brain cancer. With a median overall survival of ~15–20 months under standard therapy, novel treatment approaches are desperately needed. A recent phase II clinical trial with a personalized immunotherapy based on tumor lysate-charged dendritic cell (DC) vaccination, however, failed to prolong survival. Here, we investigated tumor tissue from trial patients to explore glioblastoma survival-related factors. We followed an innovative approach of combining mass spectrometry-based quantitative proteomics (n = 36) with microRNA sequencing plus RT-qPCR (n = 38). Protein quantification identified, e.g., huntingtin interacting protein 1 (HIP1), retinol-binding protein 1 (RBP1), ferritin heavy chain (FTH1) and focal adhesion kinase 2 (FAK2) as factor candidates correlated with a dismal prognosis. MicroRNA analysis identified miR-216b, miR-216a, miR-708 and let-7i as molecules potentially associated with favorable tissue characteristics as they were enriched in patients with a comparably longer survival. To illustrate the utility of integrated miRNomics and proteomics findings, focal adhesion was studied further as one example for a pathway of potential general interest. Taken together, we here mapped possible drivers of glioblastoma outcome under immunotherapy in one of the largest DC vaccination tissue analysis cohorts so far—demonstrating usefulness and feasibility of combined proteomics/miRNomics approaches. Future research should investigate agents that sensitize glioblastoma to (immuno)therapy—potentially building on insights generated here. Glioblastoma is an aggressive form of brain cancer and effective immunotherapeutics are limited, with treatment currently based on chemotherapy and radiotherapy. A recent phase II clinical trial tested a personalized, targeted dendritic cell-based immunotherapy but there was no observed improvement in patient survival or progression-free survival compared to standard-of-care therapy. Here, Carmen Visus and colleagues have used tumor tissue samples from glioblastoma patients involved in this trial and receiving immunotherapy. Using a combination of mass spectrometry-based proteomics, microRNA sequencing and RT-qPCR they identified factors associated with survival or poor prognosis. Proteomics associated poor prognosis with various proteins including focal adhesion kinase 2 (FAK2), whilst microRNAs, miR-216b, miR-216a, miR-708 and let-7i, were associated with longer survival. Focussing on one pathway, FAK2, they integrated the proteomic and microRNA datasets and saw a negative association with overall survival across all patients. To test this, they added an FAK inhibitor to glioblastoma cell lines, including cells isolated from trial patients, and observed inhibition of gliomaspheres in treated cells, providing insights into potential immunotherapy targets.
Collapse
|
35
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
36
|
Koh SP, Brasch HD, de Jongh J, Itinteang T, Tan ST. Cancer stem cell subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma. Heliyon 2019; 5:e02257. [PMID: 31463389 PMCID: PMC6709152 DOI: 10.1016/j.heliyon.2019.e02257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023] Open
Abstract
Cancer stem cells (CSC), the putative origin of cancer, account for local recurrence and metastasis. We aimed to identify and characterize CSCs within moderately differentiated head and neck cutaneous squamous cell carcinoma (MDHNCSCC). Formalin-fixed paraffin-embedded MDHNCSCC sections of ten patients underwent 3,3-diaminobenzidine (DAB) immunohistochemical (IHC) staining for induced pluripotent stem cell (iPSC) markers OCT4, NANOG, SOX2, KLF4 and c-MYC. Localization of these markers was investigated using immunofluorescence (IF) IHC staining of three of these MDHNCSCC samples. mRNA expression of these iPSC markers in the MDHNCSCC tissue samples was determined by colorimetric in-situ hybridization (CISH, n = 6), and reverse-transcription quantitative polymerase chain reaction (RT-qPCR, n = 4). RT-qPCR was also performed on four MDHNCSCC-derived primary cell lines. DAB IHC staining demonstrated expression of all five iPSC markers within all ten MDHNCSCC tissues samples. CISH and RT-qPCR confirmed mRNA expression of all five iPSC markers within all MDHNCSCC tissues samples examined. RT-PCR demonstrated mRNA transcripts of all five iPSC markers in all four MDHNCSCC-derived primary cell lines. IF IHC staining showed co-expression of OCT4 with SOX2 and KLF4 throughout the tumor nests (TNs) and peri-tumoral stroma (PTS). There was an OCT4+/NANOG+ subpopulation within the TNs, and an OCT4+/NANOG− subpopulation and an OCT4+/NANOG+ subpopulation within the PTS. All iPSC markers were expressed by the endothelium of microvessels within the PTS. Our findings suggest the presence of an OCT4+/NANOG+/SOX2+/KLF4+/c-MYC+ CSC subpopulation within the TNs, PTS and endothelium of microvessels within the PTS; and an OCT4+/NANOG−/SOX2+/KLF4+/c-MYC+ subpopulation exclusively within the PTS in MDHNCSCC. These CSC subpopulations could be a potential novel therapeutic target for treatment of MDHNCSCC.
Collapse
Affiliation(s)
| | | | | | | | - Swee T Tan
- Gillies McIndoe Research Institute, New Zealand.,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand
| |
Collapse
|
37
|
Treatment Strategies Based on Histological Targets against Invasive and Resistant Glioblastoma. JOURNAL OF ONCOLOGY 2019; 2019:2964783. [PMID: 31320900 PMCID: PMC6610731 DOI: 10.1155/2019/2964783] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most common and the most malignant primary brain tumor and is characterized by rapid proliferation, invasion into surrounding normal brain tissues, and consequent aberrant vascularization. In these characteristics of GBM, invasive properties are responsible for its recurrence after various therapies. The histomorphological patterns of glioma cell invasion have often been referred to as the “secondary structures of Scherer.” The “secondary structures of Scherer” can be classified mainly into four histological types as (i) perineuronal satellitosis, (ii) perivascular satellitosis, (iii) subpial spread, and (iv) invasion along the white matter tracts. In order to develop therapeutic interventions to mitigate glioma cell migration, it is important to understand the biological mechanism underlying the formation of these secondary structures. The main focus of this review is to examine new molecular pathways based on the histopathological evidence of GBM invasion as major prognostic factors for the high recurrence rate for GBMs. The histopathology-based pharmacological and biological targets for treatment strategies may improve the management of invasive and resistant GBMs.
Collapse
|
38
|
Turhan A, Foudi A, Hwang JW, Desterke C, Griscelli F, Bennaceur-Griscelli A. Modeling malignancies using induced pluripotent stem cells: from chronic myeloid leukemia to hereditary cancers. Exp Hematol 2019; 71:61-67. [PMID: 30659851 DOI: 10.1016/j.exphem.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/18/2022]
Abstract
Over the last decade, the possibility of reprogramming malignant cells to a pluripotent state has been achieved in several hematological malignancies, including myeloproliferative neoplasms, myelodysplastic syndromes, and chronic myeloid leukemia (CML). It has been shown that it is readily possible to generate induced pluripotent stem cells (iPSCs) from several types of primary CML cells and to generate progenitors and differentiated cells with variable efficiency. Although these experiments have brought some new insights in the understanding of CML pathophysiology, the ultimate goal of generating induced leukemic stem cells (LSCs) with long-term multilineage potential has not yet been demonstrated. Experiments under way will determine whether additional signaling events are required to induce the emergence of bona fide LSCs. However, iPSC modeling offers the unique possibility to generate pluripotent cells harboring cancer-predisposing mutations using patient-derived noncancerous cells, as has been shown in Li-Fraumeni syndrome, BRCA-1 associated breast carcinomas, or RET-mutated medullary thyroid carcinomas. In these conditions, mutated iPSCs can then be used to study the mutational history that precedes the appearance of the malignant transformation and to develop novel drug-screening strategies. The ability to induce a successful differentiation program toward the tissue in which a given cancer develops or to generate tissue-specific cancer organoids in which the full oncogenic potential can be revealed remains a major challenge in the field. Similarly, in hematological malignancies, a significant hurdle remains due to the lack of adequate technology to induce the emergence of leukemic cells that resemble LSCs, which hinders our ability to study the mechanisms of therapy resistance.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Susceptibility
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Neoplastic Syndromes, Hereditary/etiology
- Neoplastic Syndromes, Hereditary/metabolism
- Neoplastic Syndromes, Hereditary/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Ali Turhan
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France.
| | - Adlen Foudi
- ATIP-Avenir INSERM UMR-S 935, Université Paris Sud, Villejuif, France
| | - Jin Wook Hwang
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Christophe Desterke
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Frank Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France; Université Paris Descartes, Faculté Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France
| |
Collapse
|
39
|
Abstract
Cell lines and animal models have provided the foundation of cancer research for many years. However, human pluripotent stem cells (hPSCs) and organoids are increasingly enabling insights into tumor development, progression, and treatment. Here, we review recent studies using hPSCs to elucidate the reciprocal roles played by genetic alterations and cell identity in cancer formation. We also review studies using human organoids as models that recapitulate both intra- and inter-tumoral heterogeneity to gain new insights into tumorigenesis and treatment responses. Finally, we highlight potential opportunities for cancer research using hPSC-derived organoids and genome editing in the future.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Neurosurgery, Brain Tumor Center, and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Department of Neurosurgery, Brain Tumor Center, and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner, Jr., Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
40
|
Prytkova I, Goate A, Hart RP, Slesinger PA. Genetics of Alcohol Use Disorder: A Role for Induced Pluripotent Stem Cells? Alcohol Clin Exp Res 2018; 42:1572-1590. [PMID: 29897633 PMCID: PMC6120805 DOI: 10.1111/acer.13811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) affects millions of people and costs nearly 250 billion dollars annually. Few effective FDA-approved treatments exist, and more are needed. AUDs have a strong heritability, but only a few genes have been identified with a large effect size on disease phenotype. Genomewide association studies (GWASs) have identified common variants with low effect sizes, most of which are in noncoding regions of the genome. Animal models frequently fail to recapitulate key molecular features of neuropsychiatric disease due to the polygenic nature of the disease, partial conservation of coding regions, and significant disparity in noncoding regions. By contrast, human induced pluripotent stem cells (hiPSCs) derived from patients provide a powerful platform for evaluating genes identified by GWAS and modeling complex interactions in the human genome. hiPSCs can be differentiated into a wide variety of human cells, including neurons, glia, and hepatic cells, which are compatible with numerous functional assays and genome editing techniques. In this review, we focus on current applications and future directions of patient hiPSC-derived central nervous system cells for modeling AUDs in addition to highlighting successful applications of hiPSCs in polygenic neuropsychiatric diseases.
Collapse
Affiliation(s)
- Iya Prytkova
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Alison Goate
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer’s disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway NJ 08854, USA
| | - Paul A. Slesinger
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| |
Collapse
|
41
|
Efficient Recreation of t(11;22) EWSR1-FLI1 + in Human Stem Cells Using CRISPR/Cas9. Stem Cell Reports 2018; 8:1408-1420. [PMID: 28494941 PMCID: PMC5425785 DOI: 10.1016/j.stemcr.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Efficient methodologies for recreating cancer-associated chromosome translocations are in high demand as tools for investigating how such events initiate cancer. The CRISPR/Cas9 system has been used to reconstruct the genetics of these complex rearrangements at native loci while maintaining the architecture and regulatory elements. However, the CRISPR system remains inefficient in human stem cells. Here, we compared three strategies aimed at enhancing the efficiency of the CRISPR-mediated t(11;22) translocation in human stem cells, including mesenchymal and induced pluripotent stem cells: (1) using end-joining DNA processing factors involved in repair mechanisms, or (2) ssODNs to guide the ligation of the double-strand break ends generated by CRISPR/Cas9; and (3) all-in-one plasmid or ribonucleoprotein complex-based approaches. We report that the generation of targeted t(11;22) is significantly increased by using a combination of ribonucleoprotein complexes and ssODNs. The CRISPR/Cas9-mediated generation of targeted t(11;22) in human stem cells opens up new avenues in modeling Ewing sarcoma.
Collapse
|
42
|
Zuccarini M, Giuliani P, Ziberi S, Carluccio M, Iorio PD, Caciagli F, Ciccarelli R. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel) 2018; 9:genes9020105. [PMID: 29462960 PMCID: PMC5852601 DOI: 10.3390/genes9020105] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/26/2022] Open
Abstract
Wnt is a complex signaling pathway involved in the regulation of crucial biological functions such as development, proliferation, differentiation and migration of cells, mainly stem cells, which are virtually present in all embryonic and adult tissues. Conversely, dysregulation of Wnt signal is implicated in development/progression/invasiveness of different kinds of tumors, wherein a certain number of multipotent cells, namely “cancer stem cells”, are characterized by high self-renewal and aggressiveness. Hence, the pharmacological modulation of Wnt pathway could be of particular interest, especially in tumors for which the current standard therapy results to be unsuccessful. This might be the case of glioblastoma multiforme (GBM), one of the most lethal, aggressive and recurrent brain cancers, probably due to the presence of highly malignant GBM stem cells (GSCs) as well as to a dysregulation of Wnt system. By examining the most recent literature, here we point out several factors in the Wnt pathway that are altered in human GBM and derived GSCs, as well as new molecular strategies or experimental drugs able to modulate/inhibit aberrant Wnt signal. Altogether, these aspects serve to emphasize the existence of alternative pharmacological targets that may be useful to develop novel therapies for GBM.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, via dei Vestini 29, 66100 Chieti, Italy.
- Aging Research Center and Translational Medicine (CeSI-MeT), via L. Polacchi 11, 66100 Chieti, Italy.
- StemTeCh Group, via L. Polacchi 11, 66100 Chieti, Italy.
| |
Collapse
|
43
|
Panaliappan TK, Wittmann W, Jidigam VK, Mercurio S, Bertolini JA, Sghari S, Bose R, Patthey C, Nicolis SK, Gunhaga L. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development 2018; 145:145/2/dev153791. [PMID: 29352015 PMCID: PMC5825848 DOI: 10.1242/dev.153791] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
Abstract
The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression. Summary: Analysis of Sox2 mutant mouse and Sox2 CRISPR-targeted chick embryos reveals that Sox2 controls the establishment of sensory progenitors in the olfactory epithelium by suppressing Bmp4 and upregulating Hes5 expression.
Collapse
Affiliation(s)
| | - Walter Wittmann
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Sara Mercurio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Jessica A Bertolini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Soufien Sghari
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Raj Bose
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
44
|
Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1119:169-183. [PMID: 30069853 DOI: 10.1007/5584_2018_257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In 2006, Noble Prize laureate Shinya Yamanaka discovered that a set of transcription factors can reprogram terminally differentiated somatic cells to a pluripotent stem cell state. Since then, induced pluripotent stem cells (iPSCs) have come into the public spotlight. Amidst a growing field of promising clinical uses of iPSCs in recent years, cancer disease modeling has emerged as a particularly promising and rapidly translatable application of iPSCs. Technological advances in genome editing over the past few years have facilitated increasingly rapid progress in generation of iPSCs with clearly defined genetic backgrounds to complement existing patient-derived models. Improved protocols for differentiation of iPSCs, engineered iPSCs and embryonic stem cells (ESCs) now permit the study of disease biology in the majority of somatic cell types. Here, we highlight current efforts to create patient-derived iPSC disease models to study various cancer types. We review the advantages and current challenges of using iPSCs in cancer disease modeling.
Collapse
|
45
|
Abstract
Background Malignant glioma is the second leading cause of cancer-related death worldwide, and is known to exhibit a high degree of heterogeneity in its deregulation of different oncogenic pathways. The molecular subclasses of human glioma are not well known. Thus, it is crucial to identify vital oncogenic pathways in glioma with significant relationships to patient survival. Methods In this study, we devised a bioinformatics strategy to map patterns of oncogenic pathway activation in glioma, from the Gene Expression Omnibus (GEO). Bioinformatics analysis revealed that 749 genes were differentially expressed and classified into different glioma grades. Results Using gene expression signatures, we identified three oncogenic pathways (MAPK signaling pathway, Wnt signaling pathway, and ErbB signaling pathway) deregulated in the majority of human glioma. Following gene microarray analysis, the gene expression profile in the differential grade glioma was further validated by bioinformatic analyses, with coexpression network construction. Furthermore, we found that cytochrome c oxidase subunit Vb (COX5B), the terminal enzyme of the electron transport chain, was the central gene in a coexpression network that transfers electrons from reduced cytochrome c to oxygen and, in the process, generates an electrochemical gradient across the mitochondrial inner membrane. The expression level of COX5B was then detected in 87 glioma tissues as well as adjacent normal tissues using immunohistochemistry. We found that COX5B was significantly upregulated in 67 of 87 (77.0%) glioma and glioblastoma tissues, compared with adjacent tissue (p<0.01). Furthermore, statistical analysis showed the COX5B expression level was significantly associated with clinical stage and lymph node status, while there were no correlations between COX5B expression and age or tumor size. Conclusion These data indicate that COX5B may be implicated in glioma pathogenesis and as a biomarker for identification of the pathological grade of glioma.
Collapse
Affiliation(s)
| | - Jiazhuang Xi
- Department of Public Health, The People's Hospital of Dazu District Chongqing, Chongqing, People's Republic of China
| |
Collapse
|
46
|
Miyai M, Tomita H, Soeda A, Yano H, Iwama T, Hara A. Current trends in mouse models of glioblastoma. J Neurooncol 2017; 135:423-432. [PMID: 29052807 PMCID: PMC5700231 DOI: 10.1007/s11060-017-2626-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/01/2017] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most deadly brain tumor type and is characterized by a severe and high rate of angiogenesis, remaining an incurable disease in the majority of cases. Mechanistic understanding of glioblastoma initiation and progression is complicated by the complexity of genetic and/or environmental initiating events and lack of clarity regarding the cell or tissue of origin. To determine these mechanisms, mouse models that recapitulate the molecular and histological characteristics of glioblastoma are required. Unlike in other malignancies, viral-mediated mouse models of glioblastoma rather than chemically induced mouse models have been developed because of its sensitivity to viruses. Based on recent molecular analyses reported for human glioblastoma, this review critically evaluates genetically engineered, xenograft, allograft, viral-mediated, and chemically induced mouse models of glioblastoma. Further, we focus on the clinical value of these models by examining their contributions to studies of glioblastoma prevention, tumorigenesis, and chemoresistance.
Collapse
Affiliation(s)
- Masafumi Miyai
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.,Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Akio Soeda
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| |
Collapse
|
47
|
O'Duibhir E, Carragher NO, Pollard SM. Accelerating glioblastoma drug discovery: Convergence of patient-derived models, genome editing and phenotypic screening. Mol Cell Neurosci 2017; 80:198-207. [PMID: 27825983 PMCID: PMC6128397 DOI: 10.1016/j.mcn.2016.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
Patients diagnosed with glioblastoma (GBM) continue to face a bleak prognosis. It is critical that new effective therapeutic strategies are developed. GBM stem cells have molecular hallmarks of neural stem and progenitor cells and it is possible to propagate both non-transformed normal neural stem cells and GBM stem cells, in defined, feeder-free, adherent culture. These primary stem cell lines provide an experimental model that is ideally suited to cell-based drug discovery or genetic screens in order to identify tumour-specific vulnerabilities. For many solid tumours, including GBM, the genetic disruptions that drive tumour initiation and growth have now been catalogued. CRISPR/Cas-based genome editing technologies have recently emerged, transforming our ability to functionally annotate the human genome. Genome editing opens prospects for engineering precise genetic changes in normal and GBM-derived neural stem cells, which will provide more defined and reliable genetic models, with critical matched pairs of isogenic cell lines. Generation of more complex alleles such as knock in tags or fluorescent reporters is also now possible. These new cellular models can be deployed in cell-based phenotypic drug discovery (PDD). Here we discuss the convergence of these advanced technologies (iPS cells, neural stem cell culture, genome editing and high content phenotypic screening) and how they herald a new era in human cellular genetics that should have a major impact in accelerating glioblastoma drug discovery.
Collapse
Affiliation(s)
- Eoghan O'Duibhir
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK
| | - Neil O Carragher
- Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK.
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK; Institute of Genetics and Molecular Medicine, CRUK Edinburgh Centre, University of Edinburgh, UK.
| |
Collapse
|
48
|
Lenting K, Verhaak R, Ter Laan M, Wesseling P, Leenders W. Glioma: experimental models and reality. Acta Neuropathol 2017; 133:263-282. [PMID: 28074274 PMCID: PMC5250671 DOI: 10.1007/s00401-017-1671-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/12/2022]
Abstract
In theory, in vitro and in vivo models for human gliomas have great potential to not only enhance our understanding of glioma biology, but also to facilitate the development of novel treatment strategies for these tumors. For reliable prediction and validation of the effects of different therapeutic modalities, however, glioma models need to comply with specific and more strict demands than other models of cancer, and these demands are directly related to the combination of genetic aberrations and the specific brain micro-environment gliomas grow in. This review starts with a brief introduction on the pathological and molecular characteristics of gliomas, followed by an overview of the models that have been used in the last decades in glioma research. Next, we will discuss how these models may play a role in better understanding glioma development and especially in how they can aid in the design and optimization of novel therapies. The strengths and weaknesses of the different models will be discussed in light of genotypic, phenotypic and metabolic characteristics of human gliomas. The last part of this review provides some examples of how therapy experiments using glioma models can lead to deceptive results when such characteristics are not properly taken into account.
Collapse
Affiliation(s)
- Krissie Lenting
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Roel Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - William Leenders
- Department of Pathology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Joshi R, Buchanan JC, Paruchuri S, Morris N, Tavana H. Molecular Analysis of Stromal Cells-Induced Neural Differentiation of Mouse Embryonic Stem Cells. PLoS One 2016; 11:e0166316. [PMID: 27832161 PMCID: PMC5104328 DOI: 10.1371/journal.pone.0166316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/26/2016] [Indexed: 12/02/2022] Open
Abstract
Deriving specific neural cells from embryonic stem cells (ESCs) is a promising approach for cell replacement therapies of neurodegenerative diseases. When co-cultured with certain stromal cells, mouse ESCs (mESCs) differentiate efficiently to neural cells. In this study, a comprehensive gene and protein expression analysis of differentiating mESCs is performed over a two-week culture period to track temporal progression of cells from a pluripotent state to specific terminally-differentiated neural cells such as neurons, astrocytes, and oligodendrocytes. Expression levels of 26 genes consisting of marker genes for pluripotency, neural progenitors, and specific neuronal, astroglial, and oligodendrocytic cells are tracked using real time q-PCR. The time-course gene expression analysis of differentiating mESCs is combined with the hierarchal clustering and functional principal component analysis (FPCA) to elucidate the evolution of specific neural cells from mESCs at a molecular level. These statistical analyses identify three major gene clusters representing distinct phases of transition of stem cells from a pluripotent state to a terminally-differentiated neuronal or glial state. Temporal protein expression studies using immunohistochemistry demonstrate the generation of neural stem/progenitor cells and specific neural lineages and show a close agreement with the gene expression profiles of selected markers. Importantly, parallel gene and protein expression analysis elucidates long-term stability of certain proteins compared to those with a quick turnover. Describing the molecular regulation of neural cells commitment of mESCs due to stromal signaling will help identify major promoters of differentiation into specific cell types for use in cell replacement therapy applications.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - James Carlton Buchanan
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - Sailaja Paruchuri
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States of America
| | - Nathan Morris
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, United States of America
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| |
Collapse
|
50
|
Sancho-Martinez I, Izpisua Belmonte JC. Reprogramming strategies for the establishment of novel human cancer models. Cell Cycle 2016; 15:2393-7. [PMID: 27314153 DOI: 10.1080/15384101.2016.1196305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cancer comprises heterogeneous cells, ranging from highly proliferative immature precursors to more differentiated cell lineages. The emergence of the "cancer stem cell" (CSC) hypothesis that they are the cells responsible for resistance, metastasis and secondary tumor appearance identifies these populations as novel obligatory targets for the treatment of cancer. CSCs, like their normal tissue-specific stem cell counterparts, are multipotent, partially differentiated, self-sustaining, yet transformed cells. To date, most studies on CSC biology have relied on the use of murine models and primary human material. In spite of much progress, the use of primary material presents several limitations that limit our understanding of the mechanisms underlying CSC formation, the similarities between normal stem cells and CSCs and ultimately, the possibility for developing targeted therapies. Recently, different strategies for controlling cell fate have been applied to the modeling of human cancer initiation and for the generation of human CSC models. Here we will summarize recent developments in the establishment and application of reprogramming strategies for the modeling of human cancer initiation and CSC formation.
Collapse
Affiliation(s)
- Ignacio Sancho-Martinez
- a Institute of Hepatology, Foundation for Liver Research , London , UK.,b Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital , London , UK
| | | |
Collapse
|