1
|
Córdova-Oriz I, Cuadrado-Torroglosa I, Madero-Molina M, Rodriguez-García A, Balmori C, Medrano M, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Telomeric RNAs, TERRA, as a Potential Biomarker for Spermatozoa Quality. Reprod Sci 2024; 31:3475-3484. [PMID: 39269661 DOI: 10.1007/s43032-024-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Characterization of long non-coding telomeric repeat-containing RNAs in sperm of normozoospermic and oligoasthenozoospermic men as new biomarker of idiopathic male infertility. We conducted an observational prospective study with two groups of men with normal or orligoasthenozoospermic spermiogram, aged 40 and above. Fertility parameters were analyzed in men undergoing intracytoplasmic sperm injection with donor oocytes, to avoid the female factor. Telomeric RNAs and telomere length were measured by quantitative fluorescent in situ hybridization. Data from seminal parameters and in-vitro fertilization were assessed according to IVIRMA protocols. Patients with oligoasthenozoospermia, who had worse seminal parameters, also obtained embryos with lower inner-cell-mass quality (p = 0.04), despite using donor oocytes. While mean levels of telomeric RNAs were similar for both groups, the percentage of spermatozoa with more than 3 foci was higher in oligoasthenozoospermic men (p = 0.02). Regarding telomere length, oligoasthenozoospermic men had shorter mean, a higher accumulation of short telomeres (15th percentile; p = 0.03) and a lower percentage of very-long telomeres (85th percentile; p = 0.01). Finally, a positive correlation was found between telomeric-RNAs intensity and total progressive motility in the spermatozoa of normozoospermic patients (r = 0.5; p = 0.03). Telomeric parameters were altered in the spermatozoa of the oligoasthenozoospermic group, which also showed lower quality embryos. Interestingly, in the normozoospermic group, a correlation was found between progressive motility and telomeric RNA levels, suggesting that they could be a good biomarker of sperm quality. Further studies are required to confirm these results and translate them into the clinical practice.Trial registration number: 1711-MAD-109-CB, 07/07/2021.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Maria Madero-Molina
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Angela Rodriguez-García
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Carlos Balmori
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alberto Pacheco
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Alfonso X El Sabio University, Madrid, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Edificio Departamental II. Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
2
|
Portillo AM, García-Velasco JA, Varela E. An in-silico approach to the dynamics of proliferation potential in stem cells and the study of different therapies in cases of ovarian dysfunction. Math Biosci 2024; 377:109305. [PMID: 39366452 DOI: 10.1016/j.mbs.2024.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
A discrete mathematical model based on ordinary differential equations and the associated continuous model formed by a partial differential equation, which simulate the generational and temporal evolution of a stem cell population, are proposed. The model parameters are the maximum proliferation potential and the rates of mitosis, death events and telomerase activity. The mean proliferation potential at each point in time is suggested as an indicator of population aging. The model is applied on hematopoietic stem cells (HSCs), with different telomerase activity rates, in a range of variation of maximum proliferation potential in healthy individuals, to study the temporal evolution of aging. HSCs express telomerase, however not at levels that are sufficient for maintaining constant telomere length with aging [1,2]. Women with primary ovarian insufficiency (POI) are known to have low telomerase activity in granulosa cells and peripheral blood mononuclear cells [3]. Extrapolating this to hematopoietic stem cells, the mathematical model shows the differences in proliferation potential of the cell populations when telomerase expression is activated using sexual steroids, though the endogenous promoter or with gene therapy using exogenous, stronger promoters within the adeno-associated virus. In the first case, proliferation potential of cells from POI condition increases, but when adeno-associated viruses are used, the proliferation potential reaches the levels of healthy cell populations.
Collapse
Affiliation(s)
- A M Portillo
- Instituto de Investigación en Matemáticas de la Universidad de Valladolid, Valladolid, Spain; Departamento de Matemática Aplicada, Escuela de Ingenierías Industriales, Universidad de Valladolid, Pso. Prado de la Magdalena 3-5, Valladolid, 47011, Spain.
| | - J A García-Velasco
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; IVIRMA Global Research Alliance, IVIRMA Madrid, Av. del Talgo, 68, Madrid, 28023, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| | - E Varela
- IVIRMA Global Research Alliance, The Health Research Institute La Fe (IIS La Fe), Edificio Biopolo. Av. Fernando Abril Martorell, 106 - Torre A, Planta 1, Valencia, 46026, Spain; Rey Juan Carlos University, Department of Medical Specialties and Public Health, Edificio Departamental II. Av. de Atenas, s/n, Alcorcón, Madrid, 28922, Spain.
| |
Collapse
|
3
|
Córdova-Oriz I, Polonio AM, Cuadrado-Torroglosa I, Chico-Sordo L, Medrano M, García-Velasco JA, Varela E. Chromosome ends and the theory of marginotomy: implications for reproduction. Biogerontology 2024; 25:227-248. [PMID: 37943366 DOI: 10.1007/s10522-023-10071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/10/2023]
Abstract
Telomeres are the protective structures located at the ends of linear chromosomes. They were first described in the 1930s, but their biology remained unexplored until the early 70s, when Alexey M. Olovnikov, a theoretical biologist, suggested that telomeres cannot be fully copied during DNA replication. He proposed a theory that linked this phenomenon with the limit of cell proliferation capacity and the "duration of life" (theory of marginotomy), and suggested a potential of telomere lenghthening for the prevention of aging (anti-marginotomy). The impact of proliferative telomere shortening on life expectancy was later confirmed. In humans, telomere shortening is counteracted by telomerase, an enzyme that is undetectable in most adult somatic cells, but present in cancer cells and adult and embryonic stem and germ cells. Although telomere length dynamics are different in male and female gametes during gametogenesis, telomere lengths are reset at the blastocyst stage, setting the initial length of the species. The role of the telomere pathway in reproduction has been explored for years, mainly because of increased infertility resulting from delayed childbearing. Short telomere length in ovarian somatic cells is associated to decreased fertility and higher aneuploidy rates in embryos. Consequently, there is a growing interest in telomere lengthening strategies, aimed at improving fertility. It has also been observed that lifestyle factors can affect telomere length and improve fertility outcomes. In this review, we discuss the implications of telomere theory in fertility, especially in oocytes, spermatozoa, and embryos, as well as therapies to enhance reproductive success.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Alba M Polonio
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Cuadrado-Torroglosa
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Juan A García-Velasco
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain
| | - Elisa Varela
- IVIRMA Global Research Alliance, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.
- Department of Medical Specialties and Public Health, Edificio Departamental II, Rey Juan Carlos University, Av. de Atenas, s/n, 28922, Alcorcón, Madrid, Spain.
| |
Collapse
|
4
|
Ma B, Martínez P, Sánchez-Vázquez R, Blasco MA. Telomere dynamics in human pluripotent stem cells. Cell Cycle 2023; 22:2505-2521. [PMID: 38219218 PMCID: PMC10936660 DOI: 10.1080/15384101.2023.2285551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024] Open
Abstract
Pluripotent stem cells (PSCs) are a promising source of stem cells for regenerative therapies. Stem cell function depends on telomere maintenance mechanisms that provide them with the proliferative capacity and genome stability necessary to multiply and regenerate tissues. We show here that established human embryonic stem cells (hESCs) have stable telomere length that is dependent on telomerase but not on alternative mechanisms based on homologous recombination pathways. Here, we show that human-induced pluripotent stem cells (hiPSCs) reprogrammed from somatic cells show progressive telomere lengthening until reaching a length similar to ESCs. hiPSCs also acquire telomeric chromatin marks of ESCs including decreased abundance of tri-methylated histone H3K9 and H4K20 and HP1 heterochromatic marks, as well as of the shelterin component TRF2. These chromatin features are accompanied with increased abundance of telomere transcripts or TERRAs. We also found that telomeres of both hESCs and hiPSCs are well protected from DNA damage during telomere elongation and once full telomere length is achieved, and exhibit stable genomes. Collectively, this study highlights that hiPSCs acquire ESC features during reprogramming and reveals the telomere biology in human pluripotent stem cells (hPSCs).
Collapse
Affiliation(s)
- Buyun Ma
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Raúl Sánchez-Vázquez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| |
Collapse
|
5
|
Córdova-Oriz I, Kohls G, Iglesias C, Polonio AM, Chico-Sordo L, Toribio M, Meseguer M, Varela E, Pellicer A, García-Velasco JA. A Randomized Controlled Intervention Trial with Danazol to Improve Telomeric and Fertility Parameters in Women with Diminished Ovarian Reserve: A Pilot Study. WOMEN'S HEALTH REPORTS (NEW ROCHELLE, N.Y.) 2023; 4:305-318. [PMID: 37476605 PMCID: PMC10354732 DOI: 10.1089/whr.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/22/2023]
Abstract
Background Most women who are treated at in vitro fertilization (IVF) clinics have trouble conceiving due to ovarian failure (OF), which seems to be associated to short telomeres and reduced or absent telomerase activity in their granulosa cells. Indeed, telomere pathways are involved in organ dysfunction. However, sexual steroids can stimulate the expression of the telomerase gene and have been successfully used to prevent telomere attrition. Thus, a strategy to improve IVF outcomes in women with OF could be telomerase reactivation using sexual steroids. Methods We conducted a double-blind, placebo-controlled study. Patients with diminished ovarian reserve were randomized to Danazol or placebo for 3 months. We included patients with normal ovarian reserve in the study as untreated controls. Patients and controls underwent several ovarian stimulations (OSs). Telomere and IVF parameters were assessed. Results We found that the mean telomere length in blood and the percentage of short and long telomeres were similar throughout the 3 months of treatment with Danazol. Remarkably, while the number of cells with one telomeric repeat-containing RNA (TERRA) focus decreased (p = 0.04) after the first month of Danazol treatment, the number of cells with 2 to 4 TERRA foci increased (p = 0.02). Regarding fertility, no differences were found in the antral follicle count. Interestingly, in OS performed after the trial, all Danazol-treated patients had a better MII oocyte rate compared to OS performed before the pilot study.EudraCT number: 2018-004400-19. Conclusions Danazol treatment seemed to affect telomere maintenance, since both the number of TERRA foci and the ratio of MII oocytes changed. However, further research is needed to confirm these results.
Collapse
Affiliation(s)
- Isabel Córdova-Oriz
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | | | | | - Alba M. Polonio
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | - Lucía Chico-Sordo
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
| | | | - Marcos Meseguer
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- Laboratory of In Vitro Fertilization, IVIRMA Valencia, Valencia, Spain
| | - Elisa Varela
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - Antonio Pellicer
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- School of Medicine, Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Juan A. García-Velasco
- The Health Research Institute La Fe (IIS La Fe), IVI Foundation, Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Medical Specialties and Public Health, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
6
|
Polonio AM, Medrano M, Chico-Sordo L, Córdova-Oriz I, Cozzolino M, Montans J, Herraiz S, Seli E, Pellicer A, García-Velasco JA, Varela E. Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence. Aging (Albany NY) 2023; 15:4600-4624. [PMID: 37338562 DOI: 10.18632/aging.204731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/21/2023]
Abstract
Ovarian aging is the main cause of infertility and telomere attrition is common to both aging and fertility disorders. Senescence-Accelerated Mouse Prone 8 (SAMP8) model has shortened lifespan and premature infertility, reflecting signs of reproductive senescence described in middle-aged women. Thus, our objective was to study SAMP8 female fertility and the telomere pathway at the point of reproductive senescence. The lifespan of SAMP8 and control mice was monitored. Telomere length (TL) was measured by in situ hybridization in blood and ovary. Telomerase activity (TA) was analyzed by telomere-repeat amplification protocol, and telomerase expression, by real-time quantitative PCR in ovaries from 7-month-old SAMP8 and controls. Ovarian follicles at different stages of maturation were evaluated by immunohistochemistry. Reproductive outcomes were analyzed after ovarian stimulation. Unpaired t-test or Mann-Whitney test were used to calculate p-values, depending on the variable distribution. Long-rank test was used to compare survival curves and Fisher's exact test was used in contingency tables. Median lifespan of SAMP8 females was reduced compared to SAMP8 males (p = 0.0138) and control females (p < 0.0001). In blood, 7-month-old SAMP8 females presented lower mean TL compared to age-matched controls (p = 0.041). Accordingly, the accumulation of short telomeres was higher in 7-month-old SAMP8 females (p = 0.0202). Ovarian TA was lower in 7-month-old SAMP8 females compared to controls. Similarly, telomerase expression was lower in the ovaries of 7-month-old SAMP8 females (p = 0.04). Globally, mean TL in ovaries and granulosa cells (GCs) were similar. However, the percentage of long telomeres in ovaries (p = 0.004) and GCs (p = 0.004) from 7-month-old SAMP8 females was lower compared to controls. In early-antral and antral follicles, mean TL of SAMP8 GCs was lower than in age-matched controls (p = 0.0156 for early-antral and p = 0.0037 for antral follicles). Middle-aged SAMP8 showed similar numbers of follicles than controls, although recovered oocytes after ovarian stimulation were lower (p = 0.0068). Fertilization rate in oocytes from SAMP8 was not impaired, but SAMP8 mice produced significantly more morphologically abnormal embryos than controls (27.03% in SAMP8 vs. 1.22% in controls; p < 0.001). Our findings suggest telomere dysfunction in SAMP8 females, at the time of reproductive senescence.
Collapse
Affiliation(s)
- Alba M Polonio
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Marta Medrano
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Lucía Chico-Sordo
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Isabel Córdova-Oriz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | | | | | - Sonia Herraiz
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ 07920, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Heaven, CT 06510, USA
| | - Antonio Pellicer
- IVIRMA Rome, Rome, Italy
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Juan A García-Velasco
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- IVIRMA Madrid, Madrid, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| | - Elisa Varela
- IVI Foundation, The Health Research Institute La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics and Gynecology, Rey Juan Carlos University, Madrid, Spain
| |
Collapse
|
7
|
Whittemore K, Fossel M. Editorial: Telomere length and species lifespan. Front Genet 2023; 14:1199667. [PMID: 37139235 PMCID: PMC10150125 DOI: 10.3389/fgene.2023.1199667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Affiliation(s)
- Kurt Whittemore
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Kurt Whittemore, ; Michael Fossel,
| | - Michael Fossel
- Telocyte, Grand Rapids, MI, United States
- *Correspondence: Kurt Whittemore, ; Michael Fossel,
| |
Collapse
|
8
|
Lupatov AY, Yarygin KN. Telomeres and Telomerase in the Control of Stem Cells. Biomedicines 2022; 10:biomedicines10102335. [PMID: 36289597 PMCID: PMC9598777 DOI: 10.3390/biomedicines10102335] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Stem cells serve as a source of cellular material in embryogenesis and postnatal growth and regeneration. This requires significant proliferative potential ensured by sufficient telomere length. Telomere attrition in the stem cells and their niche cells can result in the exhaustion of the regenerative potential of high-turnover organs, causing or contributing to the onset of age-related diseases. In this review, stem cells are examined in the context of the current telomere-centric theory of cell aging, which assumes that telomere shortening depends not just on the number of cell doublings (mitotic clock) but also on the influence of various internal and external factors. The influence of the telomerase and telomere length on the functional activity of different stem cell types, as well as on their aging and prospects of use in cell therapy applications, is discussed.
Collapse
|
9
|
Borges G, Criqui M, Harrington L. Tieing together loose ends: telomere instability in cancer and aging. Mol Oncol 2022; 16:3380-3396. [PMID: 35920280 PMCID: PMC9490142 DOI: 10.1002/1878-0261.13299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Telomere maintenance is essential for maintaining genome integrity in both normal and cancer cells. Without functional telomeres, chromosomes lose their protective structure and undergo fusion and breakage events that drive further genome instability, including cell arrest or death. One means by which this loss can be overcome in stem cells and cancer cells is via re-addition of G-rich telomeric repeats by the telomerase reverse transcriptase (TERT). During aging of somatic tissues, however, insufficient telomerase expression leads to a proliferative arrest called replicative senescence, which is triggered when telomeres reach a critically short threshold that induces a DNA damage response. Cancer cells express telomerase but do not entirely escape telomere instability as they often possess short telomeres; hence there is often selection for genetic alterations in the TERT promoter that result in increased telomerase expression. In this review, we discuss our current understanding of the consequences of telomere instability in cancer and aging, and outline the opportunities and challenges that lie ahead in exploiting the reliance of cells on telomere maintenance for preserving genome stability.
Collapse
Affiliation(s)
- Gustavo Borges
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Mélanie Criqui
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
| | - Lea Harrington
- Molecular Biology Programme, Institute for Research in Immunology and CancerUniversity of MontrealQCCanada
- Departments of Medicine and Biochemistry and Molecular MedicineUniversity of MontrealQCCanada
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Women's fertility decay starts at the mid 30 s. However, the current delay of childbearing leads to ovarian aging and the need of assisted reproduction technologies (ART). Telomere biology is one of the main pathways involved in organismal aging. Thus, this review will focus on the knowledge acquired during the last 2 years about the telomere pathway and its influence on female fertility and the consequences for the newborn. RECENT FINDINGS New research on telomere biology reaffirms the relationship of telomere attrition and female infertility. Shorter maternal telomeres, which could be aggravated by external factors, underly premature ovarian aging and other complications including preeclampsia, preterm birth and idiopathic pregnancy loss. Finally, the telomere length of the fetus or the newborn is also affected by external factors, such as stress and nutrition. SUMMARY Recent evidence shows that telomeres are implicated in most processes related to female fertility, embryo development and the newborn's health. Thus, telomere length and telomerase activity may be good biomarkers for early detection of ovarian and pregnancy failures, opening the possibility to use telomere therapies to try to solve the infertility situation.
Collapse
|
11
|
Impact of superovulation and in vitro fertilization on LINE-1 copy number and telomere length in C57BL/6 J mice blastocysts. Mol Biol Rep 2022; 49:4909-4917. [PMID: 35316424 DOI: 10.1007/s11033-022-07351-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/09/2022] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Millions of babies have been conceived by IVF, yet debate about its safety to offspring continues. We hypothesized that superovulation and in vitro fertilization (IVF) promote genomic changes, including altered telomere length (TL) and activation of the retrotransposon LINE-1 (L1), and tested this hypothesis in a mouse model. MATERIAL AND METHODS Experimental study analyzing TL and L1 copy number in C57BL/6 J mouse blastocysts in vivo produced from natural mating cycles (N), in vivo produced following superovulation (S), or in vitro produced following superovulation (IVF). We also examined the effects of prolonged culture on TL and L1 copy number in the IVF group comparing blastocysts cultured 96 h versus blastocysts cultured 120 h. TL and L1 copy number were measured by Real Time PCR. RESULTS TL in S (n = 77; Mean: 1.50 ± 1.15; p = 0.0007) and IVF (n = 82; Mean: 1.72 ± 1.44; p < 0.0001) exceeded that in N (n = 16; Mean: 0.61 ± 0.27). TL of blastocysts cultured 120 h (n = 15, Mean: 2.14 ± 1.05) was significantly longer than that of embryos cultured for 96 h (n = 67, Mean: 1.63 ± 1.50; p = 0.0414). L1 copy number of blastocysts cultured for 120 h (n = 15, Mean: 1.71 ± 1.49) exceeded that of embryos cultured for 96 h (n = 67, Mean: 0.95 ± 1.03; p = 0.0162). CONCLUSIONS Intriguingly ovarian stimulation, alone or followed by IVF, produced embryos with significantly longer telomeres compared to in vivo, natural cycle-produced embryos. The significance of this enriched telomere endowment for the health and longevity of offspring born from IVF merit future studies.
Collapse
|
12
|
Song S, Ma D, Xu L, Wang Q, Liu L, Tong X, Yan H. Low-intensity pulsed ultrasound-generated singlet oxygen induces telomere damage leading to glioma stem cell awakening from quiescence. iScience 2022; 25:103558. [PMID: 34988401 PMCID: PMC8693467 DOI: 10.1016/j.isci.2021.103558] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells, quiescent and drug resistant, have become a therapeutic target. Unlike high-intensity focused ultrasound directly killing tumor, low-intensity pulsed ultrasound (LIPUS), a new noninvasive physical device, promotes pluripotent stem cell differentiation and is primarily applied in tissue engineering but rarely in oncotherapy. We explored the effect and mechanism of LIPUS on glioma stem cell (GSC) expulsion from quiescence. Here, we observed that LIPUS led to attenuated expression of GSC biomarkers, promoted GSC escape from G0 quiescence, and significantly weakened the Wnt and Hh pathways. Of note, LIPUS transferred sonomechanical energy into cytochrome c and B5 proteins, which converted oxygen molecules into singlet oxygen, triggering telomere crisis. The in vivo and in vitro results confirmed that LIPUS enhanced the GSC sensitivity to temozolomide. These results demonstrated that LIPUS "waked up" GSCs to improve their sensitivity to chemotherapy, and importantly, we confirmed the direct targeted proteins of LIPUS in GSCs.
Collapse
Affiliation(s)
- Sirong Song
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Dongbin Ma
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin 300070, China
| | - Lixia Xu
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
| | - Qiong Wang
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, No. 258 Wenhua Road, Qinhuangdao 066000, Hebei Province, P.R. China
| | - Xiaoguang Tong
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
- Corresponding author
| | - Hua Yan
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, P.R.China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, P.R. China
- Corresponding author
| |
Collapse
|
13
|
T Cell Aging in Patients with Colorectal Cancer-What Do We Know So Far? Cancers (Basel) 2021; 13:cancers13246227. [PMID: 34944847 PMCID: PMC8699226 DOI: 10.3390/cancers13246227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary This review describes the role of T cell aging in colorectal cancer development. T cells are important mediators in cancer immunity. Aging affects T cells, leading to various dysfunctions which can impede antitumor immunity. While some hallmarks of T cell aging have been observed in colorectal cancer patients, the functional role of such cells is not clear. Therefore, understanding how aged T cells influence overall patient outcome could potentially help in the pursue to develop new therapies for the elderly. Abstract Colorectal cancer (CRC) continues to be one of the most frequently diagnosed types of cancers in the world. CRC is considered to affect mostly elderly patients, and the number of diagnosed cases increases with age. Even though general screening improves outcomes, the overall survival and recurrence-free CRC rates in aged individuals are highly dependent on their history of comorbidities. Furthermore, aging is also known to alter the immune system, and especially the adaptive immune T cells. Many studies have emphasized the importance of T cell responses to CRC. Therefore, understanding how age-related changes affect the outcome in CRC patients is crucial. This review focuses on what is so far known about age-related T cell dysfunction in elderly patients with colorectal cancer and how aged T cells can mediate its development. Last, this study describes the advances in basic animal models that have potential to be used to elucidate the role of aged T cells in CRC.
Collapse
|
14
|
Balmori C, Cordova-Oriz I, De Alba G, Medrano M, Jiménez-Tormo L, Polonio AM, Chico-Sordo L, Pacheco A, García-Velasco JA, Varela E. Effects of age and oligosthenozoospermia on telomeres of sperm and blood cells. Reprod Biomed Online 2021; 44:1090-1100. [DOI: 10.1016/j.rbmo.2021.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
|
15
|
Criscuolo F, Dobson FS, Schull Q. The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: A meta-analysis. Ecol Evol 2021; 11:12908-12922. [PMID: 34646443 DOI: 10.22541/au.162308930.07224518/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 05/19/2023] Open
Abstract
Longevity is highly variable among animal species and has coevolved with other life-history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -.340; with phylogenetic correction, r = -.490). Independent of body size, long-lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian-related species, yet telomere dynamics are strongly linked to the pace of life.
Collapse
Affiliation(s)
- François Criscuolo
- CNRS Institut Pluridisciplinaire Hubert Curien UMR 7178 University of Strasbourg Strasbourg France
| | - F Stephen Dobson
- CNRS Institut Pluridisciplinaire Hubert Curien UMR 7178 University of Strasbourg Strasbourg France
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Quentin Schull
- MARBEC IFREMER IRD CNRS University of Montpellier Sète France
| |
Collapse
|
16
|
Criscuolo F, Dobson FS, Schull Q. The influence of phylogeny and life history on telomere lengths and telomere rate of change among bird species: A meta-analysis. Ecol Evol 2021; 11:12908-12922. [PMID: 34646443 PMCID: PMC8495793 DOI: 10.1002/ece3.7931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
Longevity is highly variable among animal species and has coevolved with other life-history traits, such as body size and rates of reproduction. Telomeres, through their erosion over time, are one of the cell mechanisms that produce senescence at the cell level and might even have an influence on the rate of aging in whole organisms. However, uneroded telomeres are also risk factors of cell immortalization. The associations of telomere lengths, their rate of change, and life-history traits independent of body size are largely underexplored for birds. To test associations of life-history traits and telomere dynamics, we conducted a phylogenetic meta-analysis using studies of 53 species of birds. We restricted analyses to studies that applied the telomere restriction fragment length (TRF) method, and examined relationships between mean telomere length at the chick (Chick TL) and adult (Adult TL) stages, the mean rate of change in telomere length during life (TROC), and life-history traits. We examined 3 principal components of 12 life-history variables that represented: body size (PC1), the slow-fast continuum of pace of life (PC2), and postfledging parental care (PC3). Phylogeny had at best a small-to-medium influence on Adult and Chick TL (r 2 = .190 and .138, respectively), but a substantial influence on TROC (r 2 = .688). Phylogeny strongly influenced life histories: PC1 (r 2 = .828), PC2 (.838), and PC3 (.613). Adult TL and Chick TL were poorly associated with the life-history variables. TROC, however, was negatively and moderate-to-strongly associated with PC2 (unadjusted r = -.340; with phylogenetic correction, r = -.490). Independent of body size, long-lived species with smaller clutches, and slower embryonic rate of growth may exhibit less change in telomere length over their lifetimes. We suggest that telomere lengths may have diverged, even among closely avian-related species, yet telomere dynamics are strongly linked to the pace of life.
Collapse
Affiliation(s)
- François Criscuolo
- CNRSInstitut Pluridisciplinaire Hubert CurienUMR 7178University of StrasbourgStrasbourgFrance
| | - F. Stephen Dobson
- CNRSInstitut Pluridisciplinaire Hubert CurienUMR 7178University of StrasbourgStrasbourgFrance
- Department of Biological SciencesAuburn UniversityAuburnALUSA
| | | |
Collapse
|
17
|
Chico-Sordo L, Córdova-Oriz I, Polonio AM, S-Mellado LS, Medrano M, García-Velasco JA, Varela E. Reproductive aging and telomeres: Are women and men equally affected? Mech Ageing Dev 2021; 198:111541. [PMID: 34245740 DOI: 10.1016/j.mad.2021.111541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
Successful reproduction is very important for individuals and for society. Currently, the human health span and lifespan are the object of intense and productive investigation with great achievements, compared to the last century. However, reproduction span does not progress concomitantly with lifespan. Reproductive organs age, decreasing the levels of sexual hormones, which are protectors of health through their action on several organs of the body. Thus, this is the starting point of the organismal decay and infertility. This starting point is easily detected in women. In men, it goes under the surface, undetected, but it goes, nevertheless. Regarding fertility, aging alters the hormonal equilibrium, decreases the potential of reproductive organs, diminishes the quality of the gametes and worsen the reproductive outcomes. All these events happen at a different pace and affecting different organs in women and men. The question is what molecular pathways are involved in reproductive aging and if there is a possible halting or even reversion of the aging events. Answers to all these points will be explained in the present review.
Collapse
Affiliation(s)
- Lucía Chico-Sordo
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Isabel Córdova-Oriz
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Alba María Polonio
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Lucía Sánchez S-Mellado
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| | - Marta Medrano
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; IVIRMA Madrid, Spain.
| | - Juan Antonio García-Velasco
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; IVIRMA Madrid, Spain; Rey Juan Carlos University, Madrid, Spain.
| | - Elisa Varela
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IISLAFE), Valencia, Spain; Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rey Juan Carlos University, Madrid, Spain.
| |
Collapse
|
18
|
Hynds RE, Frese KK, Pearce DR, Grönroos E, Dive C, Swanton C. Progress towards non-small-cell lung cancer models that represent clinical evolutionary trajectories. Open Biol 2021; 11:200247. [PMID: 33435818 PMCID: PMC7881177 DOI: 10.1098/rsob.200247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites.
Collapse
Affiliation(s)
- Robert E. Hynds
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Kristopher K. Frese
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - David R. Pearce
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Caroline Dive
- Cancer Research UK Lung Cancer Centre of Excellence, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, University of Manchester, Alderley Park, Macclesfield, UK
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
19
|
Impact of Ovarian Aging in Reproduction: From Telomeres and Mice Models to Ovarian Rejuvenation. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:561-569. [PMID: 33005120 PMCID: PMC7513441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The trend in our society to delay procreation increases the difficulty to conceive spontaneously. Thus, there is a growing need to use assisted reproduction technologies (ART) to form a family. With advanced maternal age, ovaries not only produce a lower number of oocytes after ovarian stimulation but also a lower quality-mainly aneuploidies-requiring further complex analysis to avoid complications during implantation and pregnancy. Although there are different options to have a child at advanced maternal age (like donor eggs), this is not the preferred choice for most patients. Unless women had cryopreserved their eggs at a younger age, reproductive medicine should try to optimize their opportunities to become pregnant with their own oocytes, when chances of success are reasonable. Aging has many causes, but telomere attrition is ultimately one of the main pathways involved in this process. Several reports link telomere biology and reproduction, but the molecular reasons for the rapid loss of ovarian function at middle age are still elusive. This review will focus on the knowledge acquired during the last years about ovarian aging and disease, both in mouse models of reproductive senescence and in humans with ovarian failure, and the implication of telomeres in this process. In addition, the review will discuss recent results on ovarian rejuvenation, achieved with stem cell therapies that are currently under study, or ovarian reactivation by tissue fragmentation and the attempts to generate oocytes in vitro.
Collapse
|
20
|
Abstract
The Hanahan and Weinberg "hallmarks of cancer" papers provide a useful structure for considering the various mechanisms driving cancer progression, and the same might be useful for wound healing. In this Review, we highlight how tissue repair and cancer share cellular and molecular processes that are regulated in a wound but misregulated in cancer. From sustained proliferative signaling and the activation of invasion and angiogenesis to the promoting role of inflammation, there are many obvious parallels through which one process can inform the other. For some hallmarks, the parallels are more obscure. We propose some new prospective hallmarks that might apply to both cancer and wound healing and discuss how wounding, as in biopsy and surgery, might positively or negatively influence cancer in the clinic.
Collapse
Affiliation(s)
- Lucy MacCarthy-Morrogh
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
| | - Paul Martin
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
21
|
Casagrande S, Stier A, Monaghan P, Loveland JL, Boner W, Lupi S, Trevisi R, Hau M. Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. J Exp Biol 2020; 223:jeb222513. [PMID: 32532864 DOI: 10.1242/jeb.222513] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Telomeres are DNA structures that protect chromosome ends. However, telomeres shorten during cell replication and at critically low lengths can reduce cell replicative potential, induce cell senescence and decrease fitness. Stress exposure, which elevates glucocorticoid hormone concentrations, can exacerbate telomere attrition. This phenomenon has been attributed to increased oxidative stress generated by glucocorticoids ('oxidative stress hypothesis'). We recently suggested that glucocorticoids could increase telomere attrition during stressful periods by reducing the resources available for telomere maintenance through changes in the metabolic machinery ('metabolic telomere attrition hypothesis'). Here, we tested whether experimental increases in glucocorticoid levels affected telomere length and mitochondrial function in wild great tit (Parus major) nestlings during the energy-demanding early growth period. We monitored resulting corticosterone (Cort) concentrations in plasma and red blood cells, telomere lengths and mitochondrial metabolism (metabolic rate, proton leak, oxidative phosphorylation, maximal mitochondrial capacity and mitochondrial inefficiency). We assessed oxidative damage caused by reactive oxygen species (ROS) metabolites as well as the total non-enzymatic antioxidant protection in plasma. Compared with control nestlings, Cort-nestlings had higher baseline corticosterone, shorter telomeres and higher mitochondrial metabolic rate. Importantly, Cort-nestlings showed increased mitochondrial proton leak, leading to a decreased ATP production efficiency. Treatment groups did not differ in oxidative damage or antioxidants. Hence, glucocorticoid-induced telomere attrition is associated with changes in mitochondrial metabolism, but not with ROS production. These findings support the hypothesis that shortening of telomere length during stressful periods is mediated by glucocorticoids through metabolic rearrangements.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Antoine Stier
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Pat Monaghan
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jasmine L Loveland
- Max Planck Institute for Ornithology, Behavioural Genetics and Evolutionary Ecology Group, 82319 Seewiesen, Germany
| | - Winifred Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sara Lupi
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, A-1160 Vienna, Austria
| | - Rachele Trevisi
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
| | - Michaela Hau
- Max Planck Institute for Ornithology, Evolutionary Physiology Group, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, D-78464 Konstanz, Germany
| |
Collapse
|
22
|
Nemirovich-Danchenko NM, Khodanovich MY. Telomerase Gene Editing in the Neural Stem Cells in vivo as a Possible New Approach against Brain Aging. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Zheng JT, Zhang N, Yu YH, Gong PT, Li XH, Wu N, Wang C, Wang XC, Li X, Li JH, Zhang XC. Identification of a TRBD zinc finger-interacting protein in Giardia duodenalis and its regulation of telomerase. Parasit Vectors 2019; 12:568. [PMID: 31783771 PMCID: PMC6884763 DOI: 10.1186/s13071-019-3821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. Methods This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. Results Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. Conclusions Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.
Collapse
Affiliation(s)
- Jing-Tong Zheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,Department of Pathogenobiology, College of Basic Medicine, Jilin University, Changchun, 130021, Jilin, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.,State and Local Joint Engineering Laboratory for Animal Models of Human Diseases, Academy of Translational Medicine, First Hospital, Jilin University, Changchun, 130021, China
| | - Yan-Hui Yu
- Clinical Laboratory of Second Hospital, Jilin University, Changchun, 130021, China
| | - Peng-Tao Gong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xian-He Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Na Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Can Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xiao-Cen Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Xin Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - Jian-Hua Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| | - Xi-Chen Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Institute of Zoonosis, Jilin University, Changchun, 130062, China.
| |
Collapse
|
24
|
Muñoz-Lorente MA, Cano-Martin AC, Blasco MA. Mice with hyper-long telomeres show less metabolic aging and longer lifespans. Nat Commun 2019; 10:4723. [PMID: 31624261 PMCID: PMC6797762 DOI: 10.1038/s41467-019-12664-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/19/2019] [Indexed: 12/16/2022] Open
Abstract
Short telomeres trigger age-related pathologies and shorter lifespans in mice and humans. In the past, we generated mouse embryonic (ES) cells with longer telomeres than normal (hyper-long telomeres) in the absence of genetic manipulations, which contributed to all mouse tissues. To address whether hyper-long telomeres have deleterious effects, we generated mice in which 100% of their cells are derived from hyper-long telomere ES cells. We observe that these mice have longer telomeres and less DNA damage with aging. Hyper-long telomere mice are lean and show low cholesterol and LDL levels, as well as improved glucose and insulin tolerance. Hyper-long telomere mice also have less incidence of cancer and an increased longevity. These findings demonstrate that longer telomeres than normal in a given species are not deleterious but instead, show beneficial effects.
Collapse
Affiliation(s)
- Miguel A Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Alba C Cano-Martin
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain.
| |
Collapse
|
25
|
Abstract
Telomeres, the protective ends of linear chromosomes, shorten throughout an individual's lifetime. Accumulation of critically short telomeres is proposed to be a primary molecular cause of aging and age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as or telomeropathies. The rate of telomere shortening throughout life is determined by endogenous (genetic) and external (nongenetic) factors. Therapeutic strategies based on telomerase activation are being developed to treat and prevent telomere-associated diseases, namely aging-related diseases and telomeropathies. Here, we review the molecular mechanisms underlying telomere driven diseases with particular emphasis on cardiovascular diseases.
Collapse
Affiliation(s)
- Paula Martínez
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Maria A Blasco
- From the Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
26
|
Folgueras AR, Freitas-Rodríguez S, Velasco G, López-Otín C. Mouse Models to Disentangle the Hallmarks of Human Aging. Circ Res 2019; 123:905-924. [PMID: 30355076 DOI: 10.1161/circresaha.118.312204] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Model organisms have provided fundamental evidence that aging can be delayed and longevity extended. These findings gave rise to a new era in aging research aimed at elucidating the pathways and networks controlling this complex biological process. The identification of 9 hallmarks of aging has established a framework to evaluate the relative contribution of each hallmark and the interconnections among them. In this review, we revisit these hallmarks with the information obtained exclusively through the generation of genetically modified mouse models that have a significant impact on the aging process. We discuss within each hallmark those interventions that accelerate aging or that have been successful at increasing lifespan, with the final goal of identifying the most promising antiaging avenues based on the current knowledge provided by in vivo models.
Collapse
Affiliation(s)
- Alicia R Folgueras
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Sandra Freitas-Rodríguez
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Gloria Velasco
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| | - Carlos López-Otín
- From the Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Spain
| |
Collapse
|
27
|
Liu N, Yin Y, Wang H, Zhou Z, Sheng X, Fu H, Guo R, Wang H, Yang J, Gong P, Ning W, Ju Z, Liu Y, Liu L. Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling. PLoS Genet 2019; 15:e1008368. [PMID: 31518356 PMCID: PMC6760834 DOI: 10.1371/journal.pgen.1008368] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/25/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Yunnan Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Wen Ning
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yifei Liu
- Yale Fertility Center and Department of OB/GYN, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail: (YL); (LL)
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Key Laboratory of Bioactive Materials, Ministry of Education, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (YL); (LL)
| |
Collapse
|
28
|
Branca JJ, Gulisano M, Nicoletti C. Intestinal epithelial barrier functions in ageing. Ageing Res Rev 2019; 54:100938. [PMID: 31369869 DOI: 10.1016/j.arr.2019.100938] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The intestinal epithelial barrier protects the mucosa of the gastrointestinal (GI)-tract and plays a key role in maintaining the host homeostasis. It encompasses several elements that include the intestinal epithelium and biochemical and immunological products, such as the mucus layer, antimicrobial peptides (AMPs) and secretory immunologlobulin A (sIgA). These components are interlinked with the large microbial community inhabiting the gut to form a highly sophisticated biological system that plays an important role on many aspects of human health both locally and systemically. Like any other organ and tissue, the intestinal epithelial barrier is affected by the ageing process. New insights have surfaced showing that critical functions, including intestinal stem cell regeneration and regulation of the intestinal crypt homeostasis, barrier integrity, production of regulatory cytokines, and epithelial innate immunity to pathogenic antigens change across life. Here we review the age-associated changes of the various components of the intestinal epithelial barrier and we highlight the necessity to elucidate further the mechanisms underlying these changes. Expanding our knowledge in this area is a goal of high medical relevance and it will help to define intervention strategies to ameliorate the quality of life of the ever-expanding elderly population.
Collapse
|
29
|
The protective function of non-coding DNA in DNA damage accumulation with age and its roles in age-related diseases. Biogerontology 2019; 20:741-761. [PMID: 31473864 DOI: 10.1007/s10522-019-09832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
Aging is a progressive decline of physiological function in tissue and organ accompanying both accumulation of DNA damage and reduction of non-coding DNA. Peripheral non-coding DNA/heterochromatin has been proposed to protect the genome and centrally-located protein-coding sequences in soma and male germ cells against radiation and the invasion of exogenous nucleic acids. Therefore, this review summarizes the reduction of non-coding DNA/heterochromatin (including telomeric DNA and rDNA) and DNA damage accumulation during normal physiological aging and in various aging-related diseases. Based on analysis of data, it is found that DNA damage accumulation is roughly negatively correlated with the reduction of non-coding DNA and therefore speculated that DNA damage accumulation is likely due to the reduction of non-coding DNA protection in genome defense during aging. Therefore, it is proposed here that means to increase the total amount of non-coding DNA and/or heterochromatin prior to the onset of these diseases could potentially better protect the genome and protein-coding DNA, reduce the incidence of aging-related diseases, and thus lead to better health during aging.
Collapse
|
30
|
Lee Y, Sun D, Ori AP, Lu AT, Seeboth A, Harris SE, Deary IJ, Marioni RE, Soerensen M, Mengel-From J, Hjelmborg J, Christensen K, Wilson JG, Levy D, Reiner AP, Chen W, Li S, Harris JR, Magnus P, Aviv A, Jugessur A, Horvath S. Epigenome-wide association study of leukocyte telomere length. Aging (Albany NY) 2019; 11:5876-5894. [PMID: 31461406 PMCID: PMC6738430 DOI: 10.18632/aging.102230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/18/2019] [Indexed: 12/24/2022]
Abstract
Telomere length is associated with age-related diseases and is highly heritable. It is unclear, however, to what extent epigenetic modifications are associated with leukocyte telomere length (LTL). In this study, we conducted a large-scale epigenome-wide association study (EWAS) of LTL using seven large cohorts (n=5,713) - the Framingham Heart Study, the Jackson Heart Study, the Women's Health Initiative, the Bogalusa Heart Study, the Lothian Birth Cohorts of 1921 and 1936, and the Longitudinal Study of Aging Danish Twins. Our stratified analysis suggests that EWAS findings for women of African ancestry may be distinct from those of three other groups: males of African ancestry, and males and females of European ancestry. Using a meta-analysis framework, we identified DNA methylation (DNAm) levels at 823 CpG sites to be significantly associated (P<1E-7) with LTL after adjusting for age, sex, ethnicity, and imputed white blood cell counts. Functional enrichment analyses revealed that these CpG sites are near genes that play a role in circadian rhythm, blood coagulation, and wound healing. Weighted correlation network analysis identified four co-methylation modules associated with LTL, age, and blood cell counts. Overall, this study reveals highly significant relationships between two hallmarks of aging: telomere biology and epigenetic changes.
Collapse
Affiliation(s)
- Yunsung Lee
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Anil P.S. Ori
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA 20892, USA
| | - Daniel Levy
- The Framingham Heart Study, Framingham, MA 01702, USA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Seattle, MD 20892, USA
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University, New Orleans, LA 70118, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Jennifer R. Harris
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Astanand Jugessur
- Department of Genetics and Bioinformatics, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| |
Collapse
|
31
|
Yu Z, Pandian GN, Hidaka T, Sugiyama H. Therapeutic gene regulation using pyrrole-imidazole polyamides. Adv Drug Deliv Rev 2019; 147:66-85. [PMID: 30742856 DOI: 10.1016/j.addr.2019.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/22/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Recent innovations in cutting-edge sequencing platforms have allowed the rapid identification of genes associated with communicable, noncommunicable and rare diseases. Exploitation of this collected biological information has facilitated the development of nonviral gene therapy strategies and the design of several proteins capable of editing specific DNA sequences for disease control. Small molecule-based targeted therapeutic approaches have gained increasing attention because of their suggested clinical benefits, ease of control and lower costs. Pyrrole-imidazole polyamides (PIPs) are a major class of DNA minor groove-binding small molecules that can be predesigned to recognize specific DNA sequences. This programmability of PIPs allows the on-demand design of artificial genetic switches and fluorescent probes. In this review, we detail the progress in the development of PIP-based designer ligands and their prospects as advanced DNA-based small-molecule drugs for therapeutic gene modulation.
Collapse
|
32
|
Crhák T, Zachová D, Fojtová M, Sýkorová E. The region upstream of the telomerase reverse transcriptase gene is essential for in planta telomerase complementation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:41-51. [PMID: 30824060 DOI: 10.1016/j.plantsci.2019.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Telomerase is essential for the maintenance of telomeres, structures located at the ends of linear eukaryotic chromosomes that are crucial for genomic stability. Telomerase has been frequently explored in mammals because of its activity in many types of cancers, but knowledge in plants is rather sketchy despite plants representing useful models due to peculiarities in their telomeres and telomerase biology. We studied in planta complementation of telomerase in Arabidopsis thaliana mutant plants with disrupted expression of the gene encoding the telomerase protein subunit (AtTERT) and significantly shortened telomeres. We found that the upstream region of AtTERT, previously identified as a putative minimal promoter, was essential for reconstitution of telomerase function, as demonstrated by the full or partial recovery of the telomere phenotype in mutants. In contrast, transformation by the full length AtTERT gene construct resulted in more progressive telomere shortening in mutants and even in wild type plants, despite the high level of AtTERT transcript and telomerase activity detected by in vitro assay. Thus, the telomerase protein subunit putative promoter is essential for in planta telomerase reconstitution and restoration of its catalytical activity. Contributions from other factors, including those tissue-specific, for proper telomerase function are discussed.
Collapse
Affiliation(s)
- Tomáš Crhák
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic; Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Dagmar Zachová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Eva Sýkorová
- The Czech Academy of Sciences, Institute of Biophysics, Brno, Czech Republic.
| |
Collapse
|
33
|
Should we consider telomere length and telomerase activity in male factor infertility? Curr Opin Obstet Gynecol 2019; 30:197-202. [PMID: 29664790 DOI: 10.1097/gco.0000000000000451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to analyze what is known to date about the relation between telomeres and male fertility, and if it is possible for telomeres, or elements related to them, to be used as new prognostic biomarkers in fertility treatment. RECENT FINDINGS Cells in germ series, including spermatozoids, have longer telomeres (10-20 kb), and do not seem to undergo the shortening that takes place in somatic cells with age as they present telomerase activity. Longer telomere length found in the sperm of older fathers, influences their offspring possessing cells with longer telomere length. Infertile patients have spermatozoids with shorter telomere length than fertile people, but telomere length does neither correlate with the sperm concentration, mobility or morphology, nor with the DNA fragmentation indices (DFI) of spermatozoids. Embryo quality rate and transplantable embryo rate are related with the telomere length of spermatozoids (STL), but pregnancy rates are not affected. SUMMARY Telomere length and telomerase levels can be used as biomarkers of male fertility. Higher STL can have beneficial effects on fertility, thus the use of spermatozoids with longer telomere length in an assisted reproduction technique (ART) could be one way of solving some infertility cases.
Collapse
|
34
|
Eisenberg DTA, Kuzawa CW. The paternal age at conception effect on offspring telomere length: mechanistic, comparative and adaptive perspectives. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2016.0442. [PMID: 29335366 DOI: 10.1098/rstb.2016.0442] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2017] [Indexed: 01/14/2023] Open
Abstract
Telomeres are repeating DNA found at the ends of chromosomes that, in the absence of restorative processes, shorten with cell replications and are implicated as a cause of senescence. It appears that sperm telomere length (TL) increases with age in humans, and as a result offspring of older fathers inherit longer telomeres. We review possible mechanisms underlying this paternal age at conception (PAC) effect on TL, including sperm telomere extension due to telomerase activity, age-dependent changes in the spermatogonial stem cell population (possibly driven by 'selfish' spermatogonia) and non-causal confounding. In contrast to the lengthening of TL with PAC, higher maternal age at conception appears to predict shorter offspring TL in humans. We review evidence for heterogeneity across species in the PAC effect on TL, which could relate to differences in statistical power, sperm production rates or testicular telomerase activity. Finally, we review the hypothesis that the PAC effect on TL may allow a gradual multi-generational adaptive calibration of maintenance effort, and reproductive lifespan, to local demographic conditions: descendants of males who reproduced at a later age are likely to find themselves in an environment where increased maintenance effort, allowing later reproduction, represents a fitness improving resource allocation.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, Center for Studies in Demography and Ecology, University of Washington, Seattle, WA, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Institute for Policy Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
35
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|
36
|
Muñoz-Lorente MA, Martínez P, Tejera Á, Whittemore K, Moisés-Silva AC, Bosch F, Blasco MA. AAV9-mediated telomerase activation does not accelerate tumorigenesis in the context of oncogenic K-Ras-induced lung cancer. PLoS Genet 2018; 14:e1007562. [PMID: 30114189 PMCID: PMC6095492 DOI: 10.1371/journal.pgen.1007562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Short and dysfunctional telomeres are sufficient to induce a persistent DNA damage response at chromosome ends, which leads to the induction of senescence and/or apoptosis and to various age-related conditions, including a group of diseases known as “telomere syndromes”, which are provoked by extremely short telomeres owing to germline mutations in telomere genes. This opens the possibility of using telomerase activation as a potential therapeutic strategy to rescue short telomeres both in telomere syndromes and in age-related diseases, in this manner maintaining tissue homeostasis and ameliorating these diseases. In the past, we generated adeno-associated viral vectors carrying the telomerase gene (AAV9-Tert) and shown their therapeutic efficacy in mouse models of cardiac infarct, aplastic anemia, and pulmonary fibrosis. Although we did not observe increased cancer incidence as a consequence of Tert overexpression in any of those models, here we set to test the safety of AAV9-mediated Tert overexpression in the context of a cancer prone mouse model, owing to expression of oncogenic K-ras. As control, we also treated mice with AAV9 vectors carrying a catalytically inactive form of Tert, known to inhibit endogenous telomerase activity. We found that overexpression of Tert does not accelerate the onset or progression of lung carcinomas, even when in the setting of a p53-null background. These findings indicate that telomerase activation by using AAV9-mediated Tert gene therapy has no detectable cancer-prone effects in the context of oncogene-induced mouse tumors. The ends of our chromosomes, or telomeres, shorten with age. When telomeres become critically short cells stop dividing and die. Shortened telomeres are associated with onset of age-associated diseases. Telomerase is a retrotranscriptase enzyme that is able to elongate telomeres by coping an associated RNA template. Telomerase is silenced after birth in the majority of cells with the exception of adult stem cells. Cancer cells aberrantly reactivate telomerase facilitating indefinite cell division. Mutations in genes encoding for proteins involved in telomere maintenance lead the so-called “telomere syndromes” that include aplastic anemia and pulmonary fibrosis, among others. We have developed a telomerase gene therapy that has proven to be effective in delaying age-associated diseases and showed therapeutic effects in mouse models for the telomere syndromes. Given the potential cancer risk associated to telomerase expression in the organism, we set to analyze the effects of telomerase gene therapy in a lung cancer mouse model. Our work demonstrates that telomerase gene therapy does not aggravate the incidence, onset and progression of lung cancer in mice. These findings expand on the safety of AAV-mediated telomerase activation as a novel therapeutic strategy for the treatment of diseases associated to short telomeres.
Collapse
Affiliation(s)
- Miguel A. Muñoz-Lorente
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Águeda Tejera
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Kurt Whittemore
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Ana Carolina Moisés-Silva
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
| | - Fàtima Bosch
- Centre of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Maria A. Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, Spain
- * E-mail:
| |
Collapse
|
37
|
Zhang X, Yang J, Wang H, Guo R, Yin Y, Zhang D, Zhang Q, Wang H, Zhou Z, Chen L, Zhou J, Liu L. Overexpression of Hdac6 extends reproductive lifespan in mice. Protein Cell 2018; 8:360-364. [PMID: 28251586 PMCID: PMC5413599 DOI: 10.1007/s13238-017-0375-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xiaoxi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiao Yang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Renpeng Guo
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Yin
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongdong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qian Zhang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingyi Chen
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Collaborative Innovation Center for Biotherapy, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
38
|
Zhang C, Kibriya MG, Jasmine F, Roy S, Gao J, Sabarinathan M, Shinkle J, Delgado D, Ahmed A, Islam T, Eunus M, Islam MT, Hasan R, Graziano JH, Ahsan H, Pierce BL. A study of telomere length, arsenic exposure, and arsenic toxicity in a Bangladeshi cohort. ENVIRONMENTAL RESEARCH 2018; 164:346-355. [PMID: 29567420 PMCID: PMC6647858 DOI: 10.1016/j.envres.2018.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/02/2018] [Accepted: 03/03/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Chronic arsenic exposure is associated with increased risk for arsenical skin lesions, cancer, and other adverse health outcomes. One potential mechanism of arsenic toxicity is telomere dysfunction. However, prior epidemiological studies of arsenic exposure, telomere length (TL), and skin lesion are small and cross-sectional. We investigated the associations between arsenic exposure and TL and between baseline TL and incident skin lesion risk among individuals participating in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2000-2009). METHODS Quantitative PCR was used to measure the average TL of peripheral blood DNA collected at baseline. The association between baseline arsenic exposure (well water and urine) and TL was estimated in a randomly-selected subcohort (n = 1469). A nested case-control study (466 cases and 464 age- and sex-matched controls) was used to estimate the association between baseline TL and incident skin lesion risk (diagnosed < 8 years after baseline). RESULTS No association was observed between arsenic exposure (water or urine) and TL. Among incident skin lesion cases and matched controls, we observed higher skin lesion risk among individuals with shorter TL (Ptrend = 1.5 × 10-5) with odds ratios of 2.60, 1.59, and 1.10 for the first (shortest), second, and third TL quartiles compared to the fourth (longest). CONCLUSIONS Arsenic exposure was not associated with TL among Bangladeshi adults, suggesting that leukocyte TL may not reflect a primary mode of action for arsenic's toxicity. However, short TL was associated with increased skin lesion risk, and may be a biomarker of arsenic susceptibility modifying arsenic's effect on skin lesion risk.
Collapse
Affiliation(s)
- Chenan Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Shantanu Roy
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Jianjun Gao
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | - Dayana Delgado
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States
| | | | | | | | | | | | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States; Department of Medicine, University of Chicago, Chicago, IL 60615, United States
| | - Brandon L Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, IL 60615, United States; Department of Human Genetics, University of Chicago, Chicago, IL 60615, United States; Comprehensive Cancer Center, University of Chicago, Chicago, IL 60615, United States.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Telomere attrition and dysfunction has become a well established pathway involved in organismal aging, not only because it imposes a limitation to cell division and therefore, tissue regeneration but also because telomere homeostasis influences other pathways involved in aging. However, the implication of telomere biology in ovarian aging and fertility is barely starting to be unveiled. RECENT FINDINGS During the last years, mounting evidence in favor of the relationship between the accumulation of short telomeres and ovarian senescence has emerged. Telomere attrition and the loss of telomerase activity in ovarian cell types is a common characteristic of female infertility. SUMMARY Recent findings regarding telomere attrition in the ovary open the possibility of both, finding new molecular biomarkers related to telomere homeostasis that make possible the early detection of ovarian dysfunction before the ovarian reserve has vanished, and the search of new therapies to preserve or set up ovarian cell types so that new and better quality oocytes can be generated in aged ovaries to improve IVF outcomes.
Collapse
|
40
|
Li JSZ, Denchi EL. How stem cells keep telomeres in check. Differentiation 2018; 100:21-25. [PMID: 29413749 DOI: 10.1016/j.diff.2018.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 10/18/2022]
Abstract
In multicellular organisms, regulation of telomere length in pluripotent stem cells is critical to ensure organism development and survival. Telomeres consist of repetitive DNA that are progressively lost with each cellular division. When telomeres become critically short, they activate a DNA damage response that results in cell cycle arrest. To counteract telomere attrition, pluripotent stem cells are equipped with telomere elongation mechanisms that ensure prolonged proliferation capacity and self-renewal capacity. Excessive telomere elongation can also be deleterious and is counteracted by a rapid telomere deletion mechanism termed telomere trimming. While the consequences of critically short telomeres are well established, we are only beginning to understand the mechanisms that counteract excessive telomere elongation. The balance between telomere elongation and shortening determine the telomere length set point in pluripotent stem cells and ensures sustained proliferative potential without causing chromosome instability.
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Wang H, Zhang K, Liu Y, Fu Y, Gao S, Gong P, Wang H, Zhou Z, Zeng M, Wu Z, Sun Y, Chen T, Li S, Liu L. Telomere heterogeneity linked to metabolism and pluripotency state revealed by simultaneous analysis of telomere length and RNA-seq in the same human embryonic stem cell. BMC Biol 2017; 15:114. [PMID: 29216888 PMCID: PMC5721592 DOI: 10.1186/s12915-017-0453-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022] Open
Abstract
Background Telomere length heterogeneity has been detected in various cell types, including stem cells and cancer cells. Cell heterogeneity in pluripotent stem cells, such as embryonic stem cells (ESCs), is of particular interest; however, the implication and mechanisms underlying the heterogeneity remain to be understood. Single-cell analysis technology has recently been developed and effectively employed to investigate cell heterogeneity. Yet, methods that can simultaneously measure telomere length and analyze the global transcriptome in the same cell have not been available until now. Results We have established a robust method that can simultaneously measure telomere length coupled with RNA-sequencing analysis (scT&R-seq) in the same human ESC (hESC). Using this method, we show that telomere length varies with pluripotency state. Compared to those with long telomere, hESCs with short telomeres exhibit the lowest expressions of TERF1/TRF1, and ZFP42/REX1, PRDM14 and NANOG markers for pluripotency, suggesting that these hESCs are prone to exit from the pluripotent state. Interestingly, hESCs ubiquitously express NOP10 and DKC1, stabilizing components of telomerase complexes. Moreover, new candidate genes, such as MELK, MSH6, and UBQLN1, are highly expressed in the cluster of cells with long telomeres and higher expression of known pluripotency markers. Notably, short telomere hESCs exhibit higher oxidative phosphorylation primed for lineage differentiation, whereas long telomere hESCs show elevated glycolysis, another key feature for pluripotency. Conclusions Telomere length is a marker of the metabolic activity and pluripotency state of individual hESCs. Single cell analysis of telomeres and RNA-sequencing can be exploited to further understand the molecular mechanisms of telomere heterogeneity. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0453-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kunshan Zhang
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yifei Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Yudong Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shan Gao
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Peng Gong
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhongcheng Zhou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhenfeng Wu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu Sun
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tong Chen
- EHBIO Gene Technology co., LTD, Beijing, 100029, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China. .,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
42
|
Červenák F, Juríková K, Sepšiová R, Neboháčová M, Nosek J, Tomáška L. Double-stranded telomeric DNA binding proteins: Diversity matters. Cell Cycle 2017; 16:1568-1577. [PMID: 28749196 DOI: 10.1080/15384101.2017.1356511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.
Collapse
Affiliation(s)
- Filip Červenák
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Katarína Juríková
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Regina Sepšiová
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Martina Neboháčová
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - Jozef Nosek
- b Department of Biochemistry , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| | - L'ubomír Tomáška
- a Department of Genetics , Comenius University in Bratislava, Faculty of Natural Sciences , Bratislava , Slovakia
| |
Collapse
|
43
|
|
44
|
Jahn A, Rane G, Paszkowski-Rogacz M, Sayols S, Bluhm A, Han CT, Draškovič I, Londoño-Vallejo JA, Kumar AP, Buchholz F, Butter F, Kappei D. ZBTB48 is both a vertebrate telomere-binding protein and a transcriptional activator. EMBO Rep 2017; 18:929-946. [PMID: 28500257 PMCID: PMC5452029 DOI: 10.15252/embr.201744095] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
Telomeres constitute the ends of linear chromosomes and together with the shelterin complex form a structure essential for genome maintenance and stability. In addition to the constitutive binding of the shelterin complex, other direct, yet more transient interactions are mediated by the CST complex and HOT1/HMBOX1, while subtelomeric variant repeats are recognized by NR2C/F transcription factors. Recently, the Kruppel-like zinc finger protein ZBTB48/HKR3/TZAP has been described as a novel telomere-associated factor in the vertebrate lineage. Here, we show that ZBTB48 binds directly both to telomeric and to subtelomeric variant repeat sequences. ZBTB48 is found at telomeres of human cancer cells regardless of the mode of telomere maintenance and it acts as a negative regulator of telomere length. In addition to its telomeric function, we demonstrate through a combination of RNAseq, ChIPseq and expression proteomics experiments that ZBTB48 acts as a transcriptional activator on a small set of target genes, including mitochondrial fission process 1 (MTFP1). This discovery places ZBTB48 at the interface of telomere length regulation, transcriptional control and mitochondrial metabolism.
Collapse
Affiliation(s)
- Arne Jahn
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany.,Institute for Clinical Genetics, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Sergi Sayols
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Alina Bluhm
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Chung-Ting Han
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Irena Draškovič
- Telomeres & Cancer Laboratory, UMR3244, Institut Curie-CNRS-UPMC, Paris Cedex 05, France
| | | | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine National University of Singapore, Singapore City, Singapore.,Curtin Medical School, Faculty of Health Sciences Curtin University, Perth, Australia
| | - Frank Buchholz
- Medical Systems Biology, UCC, University Hospital and Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany .,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) Partner Site Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB) gGmbH, Mainz, Germany
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
45
|
Martínez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol 2017; 216:875-887. [PMID: 28254828 PMCID: PMC5379954 DOI: 10.1083/jcb.201610111] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/19/2023] Open
Abstract
Martínez and Blasco review the molecular mechanisms underlying diseases associated with telomere dysfunction, including telomeropathies, age-related disorders, and cancer. Current and future therapeutic strategies to treat and prevent these diseases, including preclinical development of telomere-targeted therapies using mouse models, are discussed. Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is proposed to be a primary molecular cause of aging. Short telomeres block the proliferative capacity of stem cells, affecting their potential to regenerate tissues, and trigger the development of age-associated diseases. Mutations in telomere maintenance genes are associated with pathologies referred to as telomere syndromes, including Hoyeraal-Hreidarsson syndrome, dyskeratosis congenita, pulmonary fibrosis, aplastic anemia, and liver fibrosis. Telomere shortening induces chromosomal instability that, in the absence of functional tumor suppressor genes, can contribute to tumorigenesis. In addition, mutations in telomere length maintenance genes and in shelterin components, the protein complex that protects telomeres, have been found to be associated with different types of cancer. These observations have encouraged the development of therapeutic strategies to treat and prevent telomere-associated diseases, namely aging-related diseases, including cancer. Here we review the molecular mechanisms underlying telomere-driven diseases and highlight recent advances in the preclinical development of telomere-targeted therapies using mouse models.
Collapse
Affiliation(s)
- Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre, Madrid E-28029, Spain
| |
Collapse
|
46
|
Li JSZ, Miralles Fusté J, Simavorian T, Bartocci C, Tsai J, Karlseder J, Lazzerini Denchi E. TZAP: A telomere-associated protein involved in telomere length control. Science 2017; 355:638-641. [PMID: 28082411 DOI: 10.1126/science.aah6752] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/20/2016] [Indexed: 12/14/2022]
Abstract
Telomeres are found at the end of chromosomes and are important for chromosome stability. Here we describe a specific telomere-associated protein: TZAP (telomeric zinc finger-associated protein). TZAP binds preferentially to long telomeres that have a low concentration of shelterin complex, competing with the telomeric-repeat binding factors TRF1 and TRF2. When localized at telomeres, TZAP triggers a process known as telomere trimming, which results in the rapid deletion of telomeric repeats. On the basis of these results, we propose a model for telomere length regulation in mammalian cells: The reduced concentration of the shelterin complex at long telomeres results in TZAP binding and initiation of telomere trimming. Binding of TZAP to long telomeres represents the switch that triggers telomere trimming, setting the upper limit of telomere length.
Collapse
Affiliation(s)
- Julia Su Zhou Li
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Javier Miralles Fusté
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.,Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tatevik Simavorian
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Cristina Bartocci
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jill Tsai
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jan Karlseder
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Eros Lazzerini Denchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
47
|
Liu L. Linking Telomere Regulation to Stem Cell Pluripotency. Trends Genet 2016; 33:16-33. [PMID: 27889084 DOI: 10.1016/j.tig.2016.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/18/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs), somatic cell nuclear transfer ESCs, and induced pluripotent stem cells (iPSCs) represent the most studied group of PSCs. Unlimited self-renewal without incurring chromosomal instability and pluripotency are essential for the potential use of PSCs in regenerative therapy. Telomere length maintenance is critical for the unlimited self-renewal, pluripotency, and chromosomal stability of PSCs. While telomerase has a primary role in telomere maintenance, alternative lengthening of telomere pathways involving recombination and epigenetic modifications are also required for telomere length regulation, notably in mouse PSCs. Telomere rejuvenation is part of epigenetic reprogramming to pluripotency. Insights into telomere reprogramming and maintenance in PSCs may have implications for understanding of aging and tumorigenesis. Here, I discuss the link between telomere elongation and homeostasis to the acquisition and maintenance of stem cell pluripotency, and their regulatory mechanisms by epigenetic modifications.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Collaborative Innovation Center for Biotherapy, Nankai University, Tianjin 300071, China.
| |
Collapse
|