1
|
Wang S, Hübner R, Karring H, Batista VF, Wu C. A Supramolecular Approach to Engineering Living Cells with Enzymes for Adaptive and Recyclable Cascade Synthesis. Angew Chem Int Ed Engl 2025; 64:e202416556. [PMID: 39621003 DOI: 10.1002/anie.202416556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Biocatalytic transformation in nature is inherently dynamic, spontaneous, and adaptive, enabling complex chemical synthesis and metabolism. These processes often involve supramolecular recognition among cells, enzymes, and biomacromolecules, far surpassing the capabilities of isolated cells and enzymes used in industrial synthesis. Inspired by nature, here we design a supramolecular approach to equip living cells with these capacities, enabling recyclable, efficient cascade reactions. Our two-step "plug-and-play" methodology begins by coating Escherichia coli cells with guest-containing polymers (SupraBAC) via supramolecular charge interactions, followed by the introduction of β-cyclodextrin-functionalized host enzymes through host-guest chemistry, creating a robust cell-enzyme complex. This supramolecular coating not only protects cells from various stresses, such as UV radiation, heat, and organic solvents, but also facilitates the overexpression of intracellular enzymes and the attachment of extracellular enzymes within and on SupraBAC. This combination results in efficient multienzyme cascade synthesis, enabling two- and three-step reactions in one pot. Importantly, the multienzyme system can be recycled up to five times without significant loss of activity. Our findings introduce a versatile, adaptive supramolecular coating for whole-cell catalysts, offering a sustainable and efficient solution for complex synthesis in both chemistry and industrial biotechnology.
Collapse
Affiliation(s)
- Shan Wang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Vasco F Batista
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
2
|
Sauvageau D, Stein LY, Arenas E, Das S, Iacobelli M, Lawley M, Lazic M, Rondón FL, Weiblen C. Industrializing methanotrophs and other methylotrophic bacteria: from bioengineering to product recovery. Curr Opin Biotechnol 2024; 88:103167. [PMID: 38901110 DOI: 10.1016/j.copbio.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Microbes that use the single-carbon substrates methanol and methane offer great promise to bioindustry along with substantial environmental benefits. Methanotrophs and other methylotrophs can be engineered and optimized to produce a wide range of products, from biopolymers to biofuels and beyond. While significant limitations remain, including delivery of single-carbon feedstock to bioreactors, efficient growth, and scale-up, these challenges are being addressed and notable improvements have been rapid. Development of expression chassis, use of genome-scale and regulatory models based on omics data, improvements in bioreactor design and operation, and development of green product recovery schemes are enabling the rapid development of single-carbon bioconversion in the industrial space.
Collapse
Affiliation(s)
- Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Lisa Y Stein
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Elizabeth Arenas
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Shibashis Das
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Maryssa Iacobelli
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mark Lawley
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Marina Lazic
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Fabián L Rondón
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Cerrise Weiblen
- Department of Biological Sciences, CW 405 Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
3
|
Li A, Cao X, Fu R, Guo S, Fei Q. Biocatalysis of CO 2 and CH 4: Key enzymes and challenges. Biotechnol Adv 2024; 72:108347. [PMID: 38527656 DOI: 10.1016/j.biotechadv.2024.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO2 and CH4 as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO2 and CH4. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO2 and CH4.
Collapse
Affiliation(s)
- Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
4
|
Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, Zhou Z. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Appl Biochem Biotechnol 2024; 196:1669-1684. [PMID: 37378720 DOI: 10.1007/s12010-023-04607-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China
| | - Fangfang Wang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Hui Gao
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Xiaoling Han
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Tong Zhang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Yanlin Yuan
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
| | - Zhiguo Zhou
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China.
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China.
| |
Collapse
|
5
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Sharma Y, Shankar V. Technologies for the fabrication of crosslinked polysaccharide-based hydrogels and its role in microbial three-dimensional bioprinting - A review. Int J Biol Macromol 2023; 250:126194. [PMID: 37562476 DOI: 10.1016/j.ijbiomac.2023.126194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Three-Dimensional bioprinting has recently gained more attraction among researchers for its wide variety of applicability. This technology involving in developing structures that mimic the natural anatomy, and also aims in developing novel biomaterials, bioinks which have a better printable ability. Different hydrogels (cross-linked polysaccharides) can be used and optimized for good adhesion and cell proliferation. Manufacturing hydrogels with adjustable characteristics allows for fine-tuning of the cellular microenvironment. Different printing technologies can be used to create hydrogels on a micro-scale which will allow regular, patterned integration of cells into hydrogels. Controlling tissue constructions' structural architecture is the important key to ensuring its function as it is designed. The designed tiny hydrogels will be useful in investigating the cellular behaviour within the environments. Three-Dimensional designs can be constructed by modifying their shape and behaviour analogous concerning pressure, heat, electricity, ultraviolet radiation or other environmental elements. Yet, its application in in vitro infection models needs more research and practical study. Microbial bioprinting has become an advancing field with promising potential to develop various biomedical as well as environmental applications. This review elucidates the properties and usage of different hydrogels for Three-Dimensional bioprinting.
Collapse
Affiliation(s)
- Yamini Sharma
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore - 14, India
| | - Vijayalakshmi Shankar
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore - 14, India.
| |
Collapse
|
7
|
Patel SKS, Gupta RK, Kim IW, Lee JK. Encapsulation of Methanotrophs within a Polymeric Matrix Containing Copper- and Iron-Based Nanoparticles to Enhance Methanol Production from a Simulated Biogas. Polymers (Basel) 2023; 15:3667. [PMID: 37765522 PMCID: PMC10537138 DOI: 10.3390/polym15183667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
The production of renewable energy or biochemicals is gaining more attention to minimize the emissions of greenhouse gases such as methane (CH4) and carbon dioxide for sustainable development. In the present study, the influence of copper (Cu)- and iron (Fe)-based nanoparticles (NPs), such as Cu, Fe3O4, and CuFe2O4, was evaluated during the growth of methanotrophs for inoculum preparation and on the development of a polymeric-matrix-based encapsulation system to enhance methanol production from simulated biogas (CH4 and CO2). The use of simulated biogas feed and the presence of NP-derived inoculums produce a remarkable enhancement in methanol production up to 149% and 167% for Methyloferula stellata and Methylocystis bryophila free-cells-based bioconversion, respectively, compared with the use of pure CH4 as a control feed during the growth stage. Furthermore, these methanotrophs encapsulated within a polymeric matrix and NPs-based systems exhibited high methanol production of up to 156%, with a maximum methanol accumulation of 12.8 mmol/L over free cells. Furthermore, after encapsulation, the methanotrophs improved the stability of residual methanol production and retained up to 62.5-fold higher production potential than free cells under repeated batch reusability of 10 cycles. In the presence of CH4 vectors, methanol production by M. bryophila improved up to 16.4 mmol/L and retained 20% higher recycling stability for methanol production in paraffin oil. These findings suggest that Cu and Fe NPs can be beneficially employed with a polymeric matrix to encapsulate methanotrophs and improve methanol production.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Huang E, Liu P. Theoretical Perspective of Promoting Direct Methane-to-Methanol Conversion at Complex Metal Oxide-Metal Interfaces. J Phys Chem Lett 2023; 14:6556-6563. [PMID: 37458591 DOI: 10.1021/acs.jpclett.3c01525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Direct methane conversion to methanol has been considered as an effective and economic way to address greenhouse effects and the current high demand for methanol in industry. However, the process has long been challenging due to lack of viable catalysts to compromise the activation of methane that typically occurs at high temperatures and retaining of produced methanol that requires mild conditions. This Perspective demonstrates an effective strategy to promote direct methane to methanol conversion by engineering the active sites and chemical environments at complex metal oxide - copper oxide - copper interfaces. Such effort strongly depends on extensive theoretical studies by combining density functional theory (DFT) calculations and kinetic Monte Carlo (KMC) simulations to provide in-depth understanding of reaction mechanism and active sites, which build a strong basis to enable the identification of design principles and advance the catalyst optimization for selective CH4-to-CH3OH conversion.
Collapse
Affiliation(s)
- Erwei Huang
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
9
|
Sha F, Xie H, Son FA, Kim KS, Gong W, Su S, Ma K, Wang X, Wang X, Farha OK. Rationally Tailored Mesoporous Hosts for Optimal Protein Encapsulation. J Am Chem Soc 2023. [PMID: 37463331 DOI: 10.1021/jacs.3c01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal-organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin-MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host-guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties.
Collapse
Affiliation(s)
- Fanrui Sha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Florencia A Son
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kevin S Kim
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Wei Gong
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shengyi Su
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kaikai Ma
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoliang Wang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K Farha
- International Institute for Nanotechnology and Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Doganay MT, Chelliah CJ, Tozluyurt A, Hujer AM, Obaro SK, Gurkan U, Patel R, Bonomo RA, Draz M. 3D Printed Materials for Combating Antimicrobial Resistance. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 67:371-398. [PMID: 37790286 PMCID: PMC10545363 DOI: 10.1016/j.mattod.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Three-dimensional (3D) printing is a rapidly growing technology with a significant capacity for translational applications in both biology and medicine. 3D-printed living and non-living materials are being widely tested as a potential replacement for conventional solutions for testing and combating antimicrobial resistance (AMR). The precise control of cells and their microenvironment, while simulating the complexity and dynamics of an in vivo environment, provides an excellent opportunity to advance the modeling and treatment of challenging infections and other health conditions. 3D-printing models the complicated niches of microbes and host-pathogen interactions, and most importantly, how microbes develop resistance to antibiotics. In addition, 3D-printed materials can be applied to testing and delivering antibiotics. Here, we provide an overview of 3D printed materials and biosystems and their biomedical applications, focusing on ever increasing AMR. Recent applications of 3D printing to alleviate the impact of AMR, including developed bioprinted systems, targeted bacterial infections, and tested antibiotics are presented.
Collapse
Affiliation(s)
- Mert Tunca Doganay
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Cyril John Chelliah
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Abdullah Tozluyurt
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | | | - Umut Gurkan
- Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology and Division of Public Health, Infectious Diseases, and Occupational medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - Mohamed Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Andrade LS, Lima HH, Silva CT, Amorim WL, Poço JG, López-Castillo A, Kirillova MV, Carvalho WA, Kirillov AM, Mandelli D. Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Claveau EE, Sader S, Jackson BA, Khan SN, Miliordos E. Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? Phys Chem Chem Phys 2023; 25:5313-5326. [PMID: 36723253 DOI: 10.1039/d2cp05480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transition metal oxides have been extensively used in the literature for the conversion of methane to methanol. Despite the progress made over the past decades, no method with satisfactory performance or economic viability has been detected. The main bottleneck is that the produced methanol oxidizes further due to its weaker C-H bond than that of methane. Every improvement in the efficiency of a catalyst to activate methane leads to reduction of the selectivity towards methanol. Is it therefore prudent to keep studying (both theoretically and experimentally) metal oxides as catalysts for the quantitative conversion of methane to methanol? This perspective focuses on molecular metal oxide complexes and suggests strategies to bypass the current bottlenecks with higher weight on the computational chemistry side. We first discuss the electronic structure of metal oxides, followed by assessing the role of the ligands in the reactivity of the catalysts. For better selectivity, we propose that metal oxide anionic complexes should be explored further, while hydrophylic cavities in the vicinity of the metal oxide can perturb the transition-state structure for methanol increasing appreciably the activation barrier for methanol. We also emphasize that computational studies should target the activation reaction of methanol (and not only methane), the study of complete catalytic cycles (including the recombination and oxidation steps), and the use of molecular oxygen as an oxidant. The titled chemical conversion is an excellent challenge for theory and we believe that computational studies should lead the field in the future. It is finally shown that bottom-up approaches offer a systematic way for exploration of the chemical space and should still be applied in parallel with the recently popular machine learning techniques. To answer the question of the title, we believe that metal oxides should still be considered provided that we change our focus and perform more systematic investigations on the activation of methanol.
Collapse
Affiliation(s)
- Emily E Claveau
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Safaa Sader
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Benjamin A Jackson
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Shahriar N Khan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | - Evangelos Miliordos
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|
13
|
Patel SKS, Gupta RK, Kalia VC, Lee JK. Synthetic design of methanotroph co-cultures and their immobilization within polymers containing magnetic nanoparticles to enhance methanol production from wheat straw-based biogas. BIORESOURCE TECHNOLOGY 2022; 364:128032. [PMID: 36167174 DOI: 10.1016/j.biortech.2022.128032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this study, various methanotroph co-cultures were designed to enhance methanol production from biogas produced through the anaerobic digestion of wheat straw (WS). Furthermore, whole-cell immobilization was performed using magnetic nanoparticle (MNP)-loaded polymers to develop an efficient bioprocess. The anaerobic digestion of WS by cattle dung yielded 219 L/kg of total solids reduced. Methanol produced was 5.08 and 6.39 mmol/L by pure- and co-cultures from biogas, respectively. The optimization of process parameters enhanced methanol production to 6.82 mmol/L by co-culturing Mithylosinus sporium and Methylocella tundrae. The immobilized co-culture within the MNP-doped polymers exhibited much higher cumulative methanol of up to 70.74 mmol/L than the production of 22.34 mmol/L by free cells after ten cycles of reuse. This study suggests that MNP-doped polymer-based immobilization of methanotrophs is a unique approach for producing renewable fuels from biomass-derived biogas, a greenhouse gas.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
14
|
One-step direct conversion of methane to methanol with water in non-thermal plasma. Commun Chem 2022; 5:124. [PMID: 36698023 PMCID: PMC9814404 DOI: 10.1038/s42004-022-00735-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2022] [Indexed: 01/28/2023] Open
Abstract
Achieving methane-to-methanol is challenging under mild conditions. In this study, methanol is synthesized by one-step direction conversion of CH4 with H2O at room temperature under atmospheric pressure in non-thermal plasma (NTP). This route is characterized by the use of methane and liquid water as the reactants, which enables the transfer of the methanol product to the liquid phase in time to inhibit its further decomposition and conversion. Therefore, the obtained product is free of carbon dioxide. The reaction products include gas and liquid-phase hydrocarbons, CO, CH3OH, and C2H5OH. The combination of plasma and semiconductor materials increases the production rate of methanol. In addition, the addition of Ar or He considerably increases the production rate and selectivity of methanol. The highest production rate of methanol and selectivity in liquid phase can reach 56.7 mmol gcat-1 h-1 and 93%, respectively. Compared with the absence of a catalyst and added gas, a more than 5-fold increase in the methanol production rate is achieved.
Collapse
|
15
|
Wang Y, Hekimi S. The CoQ biosynthetic di-iron carboxylate hydroxylase COQ7 is inhibited by in vivo metalation with manganese but remains functional by metalation with cobalt. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000635. [PMID: 36176269 PMCID: PMC9513594 DOI: 10.17912/micropub.biology.000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Coenzyme Q (CoQ; ubiquinone) is an obligate component of the mitochondrial electron transport chain. COQ7 is a mitochondrial hydroxylase that is required for CoQ biosynthesis. COQ7 belongs to di-iron carboxylate enzymes, a rare type of enzyme that carries out a wide range of reactions. We found that manganese exposure of mouse cells leads to decreased COQ7 activity, but that pre-treatment with cobalt interferes with the inhibition by manganese. Our findings suggest that cobalt has greater affinity for the active site of COQ7 than both iron and manganese and that replacement of iron by cobalt at the active site preserves catalytic activity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Siegfried Hekimi
- Department of Biology, McGill University, Montreal, Quebec, Canada
,
Correspondence to: Siegfried Hekimi (
)
| |
Collapse
|
16
|
Numerical Study of the Thermal and Fluid Behavior of Three-Dimensional Microstructures for Efficient Catalytic Converters. ENERGIES 2022. [DOI: 10.3390/en15124200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Global regulations for emission reduction are continually becoming stricter, and conventional catalytic converters may be efficient in the future because of their low conversion efficiencies at cold-start. In this study, to overcome the performance limitations of conventional catalytic converters, a three-dimensional (3D) microstructured catalytic substrate was designed, and simulations of the fluid flow, heat transfer, and chemical reaction for the proposed catalytic substrates were performed using computational fluid dynamics (CFD) analysis. The effect of the pressure drop on the catalytic conversion efficiency of various 3D microarchitectures was investigated. Due to the three-dimensional microstructure, the fluid flow changed and fluid pressure increased, which led to energy loss. It was confirmed that the abrupt change in flow increased the heat transfer. The findings showed that the fluid flow changed due to the existence of a complex periodic microlattice structure instead of the existing monolithic structure, which promoted the conversion of harmful substances. Based on the CFD analysis of the thermal and fluid properties, it was confirmed that 3D microarchitectures can provide alternatives to conventional catalytic supports structures for efficient catalytic converters.
Collapse
|
17
|
Low Heat Capacity 3D Hollow Microarchitected Reactors for Thermal and Fluid Applications. ENERGIES 2022. [DOI: 10.3390/en15114073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lightweight reactor materials that simultaneously possess low heat capacity and large surface area are desirable for various applications such as catalytic supports, heat exchangers, and biological scaffolds. However, they are challenging to satisfy this criterion originating from their structural property in most porous cellular solids. Microlattices have great potential to resolve this issue in directing transport phenomena because of their hierarchically ordered design and controllable geometrical features such as porosity, specific surface, and tortuosity. In this study, we report hollow ceramic microlattices comprising a 10 μm thick hollow nickel oxide beam in an octet-truss architecture with low heat capacity and high specific surface area. Our microarchitected reactors exhibited a low heat capacity for a rapid thermal response with a small Biot number (Bi << 1) and large intertwined surface area for homogeneous flow mixing and chemical reactions, which made them ideal candidates for various energy applications. The hollow ceramic microlattice was fabricated by digital light three-dimensional (3D) printing, composite electroless plating, polymer removal, and subsequent thermal annealing. The transient thermal response and fluidic properties of the 3D-printed microstructures were experimentally investigated using a small-scale thermal and fluid test system, and analytically interpreted using simplified models. Our findings indicate that hollow microarchitected reactors provide a promising platform for developing multifunctional materials for thermal and fluid applications.
Collapse
|
18
|
Pose-Boirazian T, Martínez-Costas J, Eibes G. 3D Printing: An Emerging Technology for Biocatalyst Immobilization. Macromol Biosci 2022; 22:e2200110. [PMID: 35579179 DOI: 10.1002/mabi.202200110] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Employment of enzymes as biocatalysts offers immense benefits across diverse sectors in the context of green chemistry, biodegradability, and sustainability. When compared to free enzymes in solution, enzyme immobilization proposes an effective means of improving functional efficiency and operational stability. The advance of printable and functional materials utilized in additive manufacturing, coupled with the capability to produce bespoke geometries, has sparked great interest towards the 3D printing of immobilized enzymes. Printable biocatalysts represent a new generation of enzyme immobilization in a more customizable and adaptable manner, unleashing their potential functionalities for countless applications in industrial biotechnology. This review provides an overview of enzyme immobilization techniques and 3D printing technologies, followed by illustrations of the latest 3D printed enzyme-immobilized industrial and clinical applications. The unique advantages of harnessing 3D printing as an enzyme immobilization technique will be presented, alongside a discussion on its potential limitations. Finally, the future perspectives of integrating 3D printing with enzyme immobilization will be considered, highlighting the endless possibilities that are achievable in both research and industry. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Gemma Eibes
- CRETUS, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| |
Collapse
|
19
|
Krujatz F, Dani S, Windisch J, Emmermacher J, Hahn F, Mosshammer M, Murthy S, Steingroewer J, Walther T, Kühl M, Gelinsky M, Lode A. Think outside the box: 3D bioprinting concepts for biotechnological applications – recent developments and future perspectives. Biotechnol Adv 2022; 58:107930. [DOI: 10.1016/j.biotechadv.2022.107930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
20
|
Pei R, Jiang W, Fu X, Tian L, Zhou SF. 3D-Printed Aldo-keto reductase within biocompatible polymers as catalyst for chiral drug intermediate. CHEMICAL ENGINEERING JOURNAL 2022; 429:132293. [DOI: 10.1016/j.cej.2021.132293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
|
21
|
Kabernick DC, Gostick JT, Ward VCA. Kinetic characterization and modelling of sequentially entrapped enzymes in 3D-printed PMMA microfluidic reactors for the synthesis of amorphadiene via the isopentenol utilization pathway. Biotechnol Bioeng 2022; 119:1239-1251. [PMID: 35099806 DOI: 10.1002/bit.28046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 01/16/2022] [Indexed: 11/06/2022]
Abstract
The development of cascade cell-free systems reduces the requirement for extensive metabolic engineering and optimization to increase in vivo pathway flux. For continuous operation and increased stability, direct enzyme entrapment during reactor fabrication by 3D-printing allows for simple immobilization procedures without enzyme-specific optimization. In this work, the isopentenol utilization pathway (IUP) was selected for the synthesis of amorphadiene, an anti-malaria drug precursor, using a 3D-printed, sequentially immobilized, microfluidic reactor. As an initial proof-of-concept, alkaline phosphatase (ALP) was entrapped in a poly(methyl methacrylate) (PMMA)-based matrix during stereolithographic 3D-printing and was kinetically characterized. No significant shift of the kinetically modelled substrate binding affinity was observed during immobilization and continuous operation of an entrapped ALP microfluidic reactor displayed high stability. The IUP enzymes retained moderate activity during entrapment (6.6-9.6 %) relative to the free enzyme solutions, however the sequentially immobilized IUP microfluidic reactor was severely limited by low pathway flux due to the use of stereolithographic 3D-printing which significantly diluted enzyme concentrations for printing. Although this study demonstrated the use of additive manufacturing for the synthesis of amorphadiene using a complex five-enzyme cascade microfluidic reactor, stereolithographic enzyme entrapment remains limited in scope and dependent on advancements to additive manufacturing technologies. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Derek C Kabernick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Jeff T Gostick
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| | - Valerie C A Ward
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1
| |
Collapse
|
22
|
Xu X, Pose-Boirazian T, Eibes G, McCoubrey LE, Martínez-Costas J, Gaisford S, Goyanes A, Basit AW. A customizable 3D printed device for enzymatic removal of drugs in water. WATER RESEARCH 2022; 208:117861. [PMID: 34837812 DOI: 10.1016/j.watres.2021.117861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 11/09/2021] [Indexed: 05/19/2023]
Abstract
The infiltration of drugs into water is a key global issue, with pharmaceuticals being detected in all nearly aqueous systems at often alarming concentrations. Pharmaceutical contamination of environmental water supplies has been shown to negatively impact ecological equilibrium and pose a risk to human health. In this study, we design and develop a novel system for the removal of drugs from water, termed as Printzyme. The device, fabricated with stereolithography (SLA) 3D printing, immobilises laccase sourced from Trametes Versicolor within a poly(ethylene glycol) diacrylate hydrogel. We show that SLA printing is a sustainable method for enzyme entrapment under mild conditions, and measure the stability of the system when exposed to extremes of pH and temperature in comparison to free laccase. When tested for its drug removal capacity, the 3D printed device substantially degraded two dissolved drugs on the European water pollution watch list. When configured in the shape of a torus, the device effectively removed 95% of diclofenac and ethinylestradiol from aqueous solution within 24 and 2 h, respectively, more efficiently than free enzyme. Being customizable and reusable, these 3D printed devices could help to efficiently tackle the world's water pollution crisis, in a flexible, easily scalable, and cost-efficient manner.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Tomás Pose-Boirazian
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gemma Eibes
- CRETUS Institute, Dept. of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jose Martínez-Costas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Alvaro Goyanes
- FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
23
|
Jackson RB, Abernethy S, Canadell JG, Cargnello M, Davis SJ, Féron S, Fuss S, Heyer AJ, Hong C, Jones CD, Damon Matthews H, O'Connor FM, Pisciotta M, Rhoda HM, de Richter R, Solomon EI, Wilcox JL, Zickfeld K. Atmospheric methane removal: a research agenda. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200454. [PMID: 34565221 PMCID: PMC8473948 DOI: 10.1098/rsta.2020.0454] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
Collapse
Affiliation(s)
- Robert B. Jackson
- Department of Earth System Science, Stanford University, Stanford, CA 94305-2210, USA
- Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305-2210, USA
| | - Sam Abernethy
- Department of Earth System Science, Stanford University, Stanford, CA 94305-2210, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Josep G. Canadell
- Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australian Capital Territory 2601, Australia
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA, USA
| | - Steven J. Davis
- Department of Earth System Science, University of California at Irvine, Irvine, CA 92697, USA
| | - Sarah Féron
- Department of Earth System Science, Stanford University, Stanford, CA 94305-2210, USA
| | - Sabine Fuss
- Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany
- Geographisches Institut, Humboldt Universität zu, Berlin, Germany
| | | | - Chaopeng Hong
- Department of Earth System Science, University of California at Irvine, Irvine, CA 92697, USA
| | - Chris D. Jones
- Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK
| | - H. Damon Matthews
- Department of Geography Planning and Environment, Concordia University, Montreal, Quebec, Canada
| | | | - Maxwell Pisciotta
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Pennsylvania, PA, USA
| | - Hannah M. Rhoda
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Renaud de Richter
- Ecole Nationale Supérieure de Chimie de Montpellier, Montpellier, Languedoc-Roussillon FR, USA
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA
| | - Jennifer L. Wilcox
- Chemical and Biomolecular Engineering Department, University of Pennsylvania, Pennsylvania, PA, USA
| | - Kirsten Zickfeld
- Department of Geography, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
24
|
Qin N, Qian ZG, Zhou C, Xia XX, Tao TH. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist. Nat Commun 2021; 12:5133. [PMID: 34446721 PMCID: PMC8390743 DOI: 10.1038/s41467-021-25470-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Electron beam lithography (EBL) is renowned to provide fabrication resolution in the deep nanometer scale. One major limitation of current EBL techniques is their incapability of arbitrary 3d nanofabrication. Resolution, structure integrity and functionalization are among the most important factors. Here we report all-aqueous-based, high-fidelity manufacturing of functional, arbitrary 3d nanostructures at a resolution of sub-15 nm using our developed voltage-regulated 3d EBL. Creating arbitrary 3d structures of high resolution and high strength at nanoscale is enabled by genetically engineering recombinant spider silk proteins as the resist. The ability to quantitatively define structural transitions with energetic electrons at different depths within the 3d protein matrix enables polymorphic spider silk proteins to be shaped approaching the molecular level. Furthermore, genetic or mesoscopic modification of spider silk proteins provides the opportunity to embed and stabilize physiochemical and/or biological functions within as-fabricated 3d nanostructures. Our approach empowers the rapid and flexible fabrication of heterogeneously functionalized and hierarchically structured 3d nanocomponents and nanodevices, offering opportunities in biomimetics, therapeutic devices and nanoscale robotics.
Collapse
Affiliation(s)
- Nan Qin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Gang Qian
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengzhe Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xia Xia
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
- School of Graduate Study, University of Chinese Academy of Sciences, Beijing, China.
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Lim HJ, Kim DM. Cell-free synthesis of industrial chemicals and biofuels from carbon feedstocks. Curr Opin Biotechnol 2021; 73:158-163. [PMID: 34450473 DOI: 10.1016/j.copbio.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
The power of biological systems can be harnessed with higher efficiency when biosynthetic reactions are decoupled from cellular physiology. This can be achieved by cell-free synthesis, which relies on the in vitro use of cellular machinery under optimized reaction conditions. As exemplified by the recent development of mRNA vaccines and therapeutics, the cell-free synthesis of biomolecules is fast, efficient and flexible. Cell-free synthesis of industrial chemicals and biofuels is drawing considerable attention as a promising alternative to microbial fermentation processes, which currently show low conversion yields and toxicity to host cells. Here, we provide a brief overview of the history of cell-free synthesis systems and the state-of-the-art cell-free technologies used to produce diverse chemicals and biofuels. We also discuss the future directions of cell-free synthesis that can fully harness the synthetic power of biological systems.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
26
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
27
|
Ruth JC, Spormann AM. Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John C. Ruth
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alfred M. Spormann
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
28
|
Bartosiewicz M, Rzepka P, Lehmann MF. Tapping Freshwaters for Methane and Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4183-4189. [PMID: 33666422 DOI: 10.1021/acs.est.0c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Energy supply limits development through fuel constraints and climatic effects. Production of renewable energy is a central pillar of sustainability but will need to play an increasingly important role in energy generation in order to mitigate fossil-fuel based greenhouse-gas emissions. Global freshwaters represent a vast reservoir of biomass and biogenic CH4. Here we demonstrate the great potential for the optimized use of this nonfossil carbon as a source of energy that is replenishable within a human lifetime. The feasibility of up-scaled adsorption-driven technologies to capture and refine aqueous CH4 still awaits verification, yet recent estimates of global freshwater CH4 production imply that the worldwide energy demand could be satisfied by using the "biofuel" building up in lakes and wetlands. Biogenic CH4 is mostly generated from biomass produced through atmospheric CO2 uptake. Its exploitation in freshwaters can thus secure large amounts of carbon-neutral energy, helping to sustain the planetary equilibrium.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Przemyslaw Rzepka
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
29
|
Patel SKS, Gupta RK, Kalia VC, Lee JK. Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. BIORESOURCE TECHNOLOGY 2021; 323:124550. [PMID: 33360718 DOI: 10.1016/j.biortech.2020.124550] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
In the present study, potato peels were subjected to anaerobic digestion (AD) to produce biogas (methane [CH4] and carbon dioxide), which was subsequently used as a substrate for methanol production by methanotrophs. AD resulted in high yields of up to 170 L CH4/kg total solids (TS) from 250 mL substrate (2% TS, w/v). Under optimized conditions, maximum methanol production of 4.97 and 3.36 mmol/L from raw biogas was observed in Methylocella tundrae and Methyloferula stellata, respectively. Immobilization of methanotrophs on banana leaves showed loading of up to 156 mg dry cell mass/g support. M. tundrae immobilized on banana leaves retained 31.6-fold higher methanol production stability, compared to non-immobilized cells. To the best of our knowledge, this is the first study on immobilization of methanotrophs on banana leaves for producing methanol from potato peels AD-derived biogas. Such integrative approaches may be improved through process up-scaling to achieve sustainable development.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rahul K Gupta
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
30
|
Rollin JA, Bomble YJ, St. John PC, Stark AK. Biochemical Production with Purified Cell-Free Systems. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Naramittanakul A, Buttranon S, Petchsuk A, Chaiyen P, Weeranoppanant N. Development of a continuous-flow system with immobilized biocatalysts towards sustainable bioprocessing. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00189b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implementing immobilized biocatalysts in continuous-flow systems can enable a sustainable process through enhanced enzyme stability, better transport and process continuity as well as simplified recycle and downstream processing.
Collapse
Affiliation(s)
- Apisit Naramittanakul
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Supacha Buttranon
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center (MTEC), Pathum Thani 12120, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
32
|
Humenik M, Winkler A, Scheibel T. Patterning of protein-based materials. Biopolymers 2020; 112:e23412. [PMID: 33283876 DOI: 10.1002/bip.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Micro- and nanopatterning of proteins on surfaces allows to develop for example high-throughput biosensors in biomedical diagnostics and in general advances the understanding of cell-material interactions in tissue engineering. Today, many techniques are available to generate protein pattern, ranging from technically simple ones, such as micro-contact printing, to highly tunable optical lithography or even technically sophisticated scanning probe lithography. Here, one focus is on the progress made in the development of protein-based materials as positive or negative photoresists allowing micro- to nanostructured scaffolds for biocompatible photonic, electronic and tissue engineering applications. The second one is on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces. The third one is on progress in photolithography-based methods, which allow to control the formation of protein-repellant/adhesive polymer brushes.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Anika Winkler
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Bayreuth, Germany.,Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
33
|
|
34
|
Chen AY, Lan EI. Chemical Production from Methanol Using Natural and Synthetic Methylotrophs. Biotechnol J 2020; 15:e1900356. [DOI: 10.1002/biot.201900356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/03/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Arvin Y. Chen
- Institute of Molecular Medicine and BioengineeringNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ethan I. Lan
- Department of Biological Science and TechnologyNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
35
|
Li X, Cao X, Xiong J, Ge J. Enzyme-Metal Hybrid Catalysts for Chemoenzymatic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902751. [PMID: 31468669 DOI: 10.1002/smll.201902751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/10/2019] [Indexed: 05/21/2023]
Abstract
Enzyme-metal hybrid catalysts (EMHCs), which combine enzymatic and metal catalysis, provide tremendous possibilities for new chemoenzymatic cascade reactions. Here, an overview of the representative achievements in the design of EMHCs and their applications in chemoenzymatic cascade reactions are presented. The preparation of hybrid catalysts is classified into two categories: coimmobilized enzyme-metal heterogeneous catalysts and carrier-free enzyme-metal bioconjugates. Examples of one-pot chemoenzymatic cascade processes catalyzed by the hybrid catalysts are then provided as potential applications. Finally, the limitations and future perspectives of EMHCs are discussed.
Collapse
Affiliation(s)
- Xiaoyang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xun Cao
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiarong Xiong
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
36
|
Humenik M, Preiß T, Gödrich S, Papastavrou G, Scheibel T. Functionalized DNA-spider silk nanohydrogels for controlled protein binding and release. Mater Today Bio 2020; 6:100045. [PMID: 32259099 PMCID: PMC7096766 DOI: 10.1016/j.mtbio.2020.100045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrogels are excellent scaffolds to accommodate sensitive enzymes in a protective environment. However, the lack of suitable immobilization techniques on substrates and the lack of selectivity to anchor a biocatalyst are major drawbacks preventing the use of hydrogels in bioanalytical devices. Here, nanofilm coatings on surfaces were made of a recombinant spider silk protein (rssp) to induce rssp self-assembly and thus the formation of fibril-based nanohydrogels. To functionalize spider silk nanohydrogels for bioselective binding of proteins, two different antithrombin aptamers were chemically conjugated with the rssp, thereby integrating the target-binding function into the nanohydrogel network. Human thrombin was selected as a sensitive model target, in which the structural integrity determines its activity. The chosen aptamers, which bind various exosites of thrombin, enabled selective and cooperative embedding of the protein into the nanohydrogels. The change of the aptamer secondary structure using complementary DNA sequences led to the release of active thrombin and confirmed the addressable functionalization of spider silk nanohydrogels.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Tamara Preiß
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
| | - Sebastian Gödrich
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Georg Papastavrou
- Department of Physical Chemistry II, Faculty of Biology, Chemistry & Earth Sciences, Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Prof.-Rüdiger-Bormann.Str. 1, 95447 Bayreuth, Germany
- Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute (BPI), Universität Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| |
Collapse
|
37
|
Abstract
Methane activation chemistry, despite being widely reported in literature, remains to date a subject of debate. The challenges in this reaction are not limited to methane activation but extend to stabilization of the intermediate species. The low C-H dissociation energy of intermediates vs. reactants leads to CO2 formation. For selective oxidation, nature presents methane monooxygenase as a benchmark. This enzyme selectively consumes methane by breaking it down into methanol. To assemble an active site similar to monooxygenase, the literature reports Cu-ZSM-5, Fe-ZSM-5, and Cu-MOR, using zeolites and systems like CeO2/Cu2O/Cu. However, the trade-off between methane activation and methanol selectivity remains a challenge. Density functional theory (DFT) calculations and spectroscopic studies indicate catalyst reducibility, oxygen mobility, and water as co-feed as primary factors that can assist in enabling higher selectivity. The use of chemical looping can further improve selectivity. However, in all systems, improvements in productivity per cycle are required in order to meet the economical/industrial standards.
Collapse
|
38
|
Zhu Y, Chen Q, Shao L, Jia Y, Zhang X. Microfluidic immobilized enzyme reactors for continuous biocatalysis. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00217k] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review investigates strategies for employing μ-IMERs for continuous biocatalysis via a top-down approach.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Qingming Chen
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - Liyang Shao
- Department of Electrical and Electronic Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed Signal VLSI
- Institute of Microelectronics
- University of Macau
- Macau
- China
| | - Xuming Zhang
- Department of Applied Physics
- The Hong Kong Polytechnic University
- Hong Kong
- China
- The Hong Kong Polytechnic University Shenzhen Research Institute
| |
Collapse
|
39
|
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Patel SKS, Jeon MS, Gupta RK, Jeon Y, Kalia VC, Kim SC, Cho BK, Kim DR, Lee JK. Hierarchical Macroporous Particles for Efficient Whole-Cell Immobilization: Application in Bioconversion of Greenhouse Gases to Methanol. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18968-18977. [PMID: 31046215 DOI: 10.1021/acsami.9b03420] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A viable approach for methanol production under ambient physiological conditions is to use greenhouse gases, methane (CH4) and carbon dioxide (CO2), as feed for immobilized methanotrophs. In the present study, unique macroporous carbon particles with pore sizes in the range of ∼1-6 μm were synthesized and used as support for the immobilization of Methylocella tundrae. Immobilization was accomplished covalently on hierarchical macroporous carbon particles. Maximal cell loading of covalently immobilized M. tundrae was 205 mgDCM g-1 of particles. Among these particles, the cells immobilized on 3.6 μm pore size particles showed the highest reusability with the least leaching and were chosen for further study. After immobilization, M. tundrae showed up to 2.4-fold higher methanol production stability at various pH and temperature values because of higher stability and metabolic activity than free cells. After eight cycles of reuse, the immobilized cells retained 18.1-fold higher relative production stability compared to free cells. Free and immobilized cells exhibited cumulative methanol production of 5.2 and 9.5 μmol mgDCM-1 under repeated batch conditions using simulated biogas [CH4 and CO2, 4:1 (v/v)] as feed, respectively. The appropriate pore size of macroporous particles favors the efficient M. tundrae immobilization to retain better biocatalytic properties. This is the first report concerning the covalent immobilization of methanotrophs on the newly synthesized macroporous carbon particles and its subsequent application in repeated methanol production using simulated biogas as a feed.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering , Konkuk University , 1 Hwayang-Dong , Gwangjin-Gu, Seoul 05029 , Republic of Korea
| | | | - Rahul K Gupta
- Department of Chemical Engineering , Konkuk University , 1 Hwayang-Dong , Gwangjin-Gu, Seoul 05029 , Republic of Korea
| | | | - Vipin Chandra Kalia
- Department of Chemical Engineering , Konkuk University , 1 Hwayang-Dong , Gwangjin-Gu, Seoul 05029 , Republic of Korea
| | - Sun Chang Kim
- Intelligent Synthetic Biology Center , Daejeon 34141 , Republic of Korea
| | - Byung Kwan Cho
- Intelligent Synthetic Biology Center , Daejeon 34141 , Republic of Korea
| | | | - Jung-Kul Lee
- Department of Chemical Engineering , Konkuk University , 1 Hwayang-Dong , Gwangjin-Gu, Seoul 05029 , Republic of Korea
| |
Collapse
|
41
|
Jiang Y, Tan P, Qi S, Liu X, Yan J, Fan F, Sun L. Metal–Organic Frameworks with Target‐Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO
2
Capture. Angew Chem Int Ed Engl 2019; 58:6600-6604. [DOI: 10.1002/anie.201900141] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Jiang
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Shi‐Chao Qi
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Jia‐Hui Yan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Fan Fan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| |
Collapse
|
42
|
Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, Mayo SL, Rosenzweig AC, Hoffman BM. Particulate methane monooxygenase contains only mononuclear copper centers. Science 2019; 364:566-570. [PMID: 31073062 PMCID: PMC6664434 DOI: 10.1126/science.aav2572] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/15/2019] [Indexed: 12/23/2022]
Abstract
Bacteria that oxidize methane to methanol are central to mitigating emissions of methane, a potent greenhouse gas. The nature of the copper active site in the primary metabolic enzyme of these bacteria, particulate methane monooxygenase (pMMO), has been controversial owing to seemingly contradictory biochemical, spectroscopic, and crystallographic results. We present biochemical and electron paramagnetic resonance spectroscopic characterization most consistent with two monocopper sites within pMMO: one in the soluble PmoB subunit at the previously assigned active site (CuB) and one ~2 nanometers away in the membrane-bound PmoC subunit (CuC). On the basis of these results, we propose that a monocopper site is able to catalyze methane oxidation in pMMO.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Fraser MacMillan
- Henry Wellcome Unit for Biological Electron Paramagnetic Resonance Spectroscopy, School of Chemistry, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jingzhou Wang
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Alex Nisthal
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Thomas J Lawton
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Barry D Olafson
- Protabit, 1010 E. Union Street, Suite 110, Pasadena, CA 91106, USA
| | - Stephen L Mayo
- Division of Biology, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, MC 114-96, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Brian M Hoffman
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
43
|
Kim HJ, Huh J, Kwon YW, Park D, Yu Y, Jang YE, Lee BR, Jo E, Lee EJ, Heo Y, Lee W, Lee J. Biological conversion of methane to methanol through genetic reassembly of native catalytic domains. Nat Catal 2019. [DOI: 10.1038/s41929-019-0255-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Sun MT, Yang ZM, Fan XL, Wang F, Guo RB, Xu DY. Improved methane elimination by methane-oxidizing bacteria immobilized on modified oil shale semicoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:915-923. [PMID: 30481718 DOI: 10.1016/j.scitotenv.2018.11.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Methane is a greenhouse gas with significant global warming potential. The methane-oxidizing bacteria (MOB) immobilized on biocarrier could perform effectively and environmentally in methane elimination. To further improve the efficiencies of MOB immobilization and methane elimination, the surface biocompatibility of biocarrier needs to be improved. In this work, the oil shale semicoke (SC) was chemically modified by sodium p-styrenesulfonate hydrate (SS) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (DMC) to promote surface hydrophilicity and positive charge, respectively. Results revealed that, under methane concentrations of ~10% (v/v) and ~0.5% (v/v), the MOB immobilized on semicoke modified with 1.0 mol L-1 of SS permitted improved methane elimination capacities (ECs), which were 15.02% and 11.11% higher than that on SC, respectively. Additionally, under methane concentrations of ~10% (v/v) and ~0.5% (v/v), the MOB immobilized on semicoke modified with 0.4 mol L-1 of DMC held superior ECs, which were 17.88% and 11.29% higher than that on SC, respectively. The qPCR analysis indicated that the MOB abundance on modified semicoke were higher than that on SC. In consequence, the surface biocompatibility of semicoke could be promoted by SS and DMC modifications, which potentially provided methods for other biocarriers to improve surface biocompatibility.
Collapse
Affiliation(s)
- Meng-Ting Sun
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhi-Man Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101, PR China
| | - Xiao-Lei Fan
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101, PR China
| | - Fei Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101, PR China.
| | - Rong-Bo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, Shandong 266101, PR China; Faculty of Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China; Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, PR China.
| | - Dong-Yan Xu
- Faculty of Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| |
Collapse
|
45
|
Jiang Y, Tan P, Qi S, Liu X, Yan J, Fan F, Sun L. Metal–Organic Frameworks with Target‐Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO
2
Capture. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yao Jiang
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Shi‐Chao Qi
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Xiao‐Qin Liu
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Jia‐Hui Yan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Fan Fan
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| | - Lin‐Bing Sun
- State Key Laboratory of Materials-Oriented Chemical EngineeringJiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)College of Chemical EngineeringNanjing Tech University Nanjing 211816 China
| |
Collapse
|
46
|
Yang C, Huang Y, Cheng H, Jiang L, Qu L. Rollable, Stretchable, and Reconfigurable Graphene Hygroelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805705. [PMID: 30444018 DOI: 10.1002/adma.201805705] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/04/2018] [Indexed: 06/09/2023]
Abstract
Moisture-triggered electricity generation has attracted much attention because of the effective utilization of the water-molecule diffusion process widely existing in atmosphere. However, the monotonous and rigid structures of previously developed generators have heavily restricted their applications in complex and highly deformable working conditions. Herein, by a rational configuration design with a versatile laser processing strategy, graphene-based hygroelectric generators (GHEGs) of sophisticated architectures with diversified functions such as rollable, stretchable, and even multidimensional transformation are achieved for the first time. More importantly, a wide range of 3D deformable generators that can automatically assemble and transform from planar geometries into spacial architectures are also successfully fabricated, including cubic boxes, pyramids, Miura-ori, and footballs. These GHEGs demonstrate excellent electricity-generation performance in curling and elongating states. The generated voltages are easily up to 1.5 V under humidity variation in atmosphere, powering a variety of commercial electronic components. These deformable GHEGs can be applied on complicated surfaces, human bodies, and many more beyond those demonstrated in this work.
Collapse
Affiliation(s)
- Ce Yang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaxin Huang
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Huhu Cheng
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Liangti Qu
- Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
47
|
Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee JK. Methanol production from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. BIORESOURCE TECHNOLOGY 2018; 263:25-32. [PMID: 29729538 DOI: 10.1016/j.biortech.2018.04.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
In the present study, co-cultures of the methanotrophs Methylocella tundrae, Methyloferula stellata, and Methylomonas methanica were evaluated for improving methanol production with their application. Among the different combinations, the co-culture of M. tundrae and M. methanica increased methanol production to 4.87 mM using methane (CH4) as feed. When simulated biogas mixtures were used as feed, the maximum methanol production was improved to 8.66, 8.45, and 9.65 mM by free and encapsulated co-cultures in 2% alginate and silica-gel, respectively. Under repeated batch conditions, free and immobilized co-cultures using alginate and silica-gel resulted in high cumulative production, up to 24.43, 35.95, and 47.35 mM, using simulated biohythane (CH4 and hydrogen), respectively. This is the first report of methanol production from defined free and immobilized co-cultures using simulated biogas mixtures as feed.
Collapse
Affiliation(s)
- Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Virendra Kumar
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Primata Mardina
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinglin Li
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Rowina Lestari
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
48
|
|
49
|
Yeh C, Yu SS, Chan SI, Jiang J. Quantum Chemical Studies of Methane Oxidation to Methanol on a Biomimetic Tricopper Complex: Mechanistic Insights. ChemistrySelect 2018. [DOI: 10.1002/slct.201800550] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen‐Hao Yeh
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Steve S.‐F. Yu
- Institute of ChemistryAcademia Sinica Nankang Taipei 11529 Taiwan
| | - Sunney I. Chan
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei 10607 Taiwan
- Institute of ChemistryAcademia Sinica Nankang Taipei 11529 Taiwan
| | - Jyh‐Chiang Jiang
- Department of Chemical EngineeringNational Taiwan University of Science and Technology Taipei 10607 Taiwan
| |
Collapse
|
50
|
Ro SY, Ross MO, Deng YW, Batelu S, Lawton TJ, Hurley JD, Stemmler TL, Hoffman BM, Rosenzweig AC. From micelles to bicelles: Effect of the membrane on particulate methane monooxygenase activity. J Biol Chem 2018; 293:10457-10465. [PMID: 29739854 DOI: 10.1074/jbc.ra118.003348] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/06/2018] [Indexed: 11/06/2022] Open
Abstract
Particulate methane monooxygenase (pMMO) is a copper-dependent integral membrane metalloenzyme that converts methane to methanol in methanotrophic bacteria. Studies of isolated pMMO have been hindered by loss of enzymatic activity upon its removal from the native membrane. To characterize pMMO in a membrane-like environment, we reconstituted pMMOs from Methylococcus (Mcc.) capsulatus (Bath) and Methylomicrobium (Mm.) alcaliphilum 20Z into bicelles. Reconstitution into bicelles recovers methane oxidation activity lost upon detergent solubilization and purification without substantial alterations to copper content or copper electronic structure, as observed by electron paramagnetic resonance (EPR) spectroscopy. These findings suggest that loss of pMMO activity upon isolation is due to removal from the membranes rather than caused by loss of the catalytic copper ions. A 2.7 Å resolution crystal structure of pMMO from Mm. alcaliphilum 20Z reveals a mononuclear copper center in the PmoB subunit and indicates that the transmembrane PmoC subunit may be conformationally flexible. Finally, results from extended X-ray absorption fine structure (EXAFS) analysis of pMMO from Mm. alcaliphilum 20Z were consistent with the observed monocopper center in the PmoB subunit. These results underscore the importance of studying membrane proteins in a membrane-like environment and provide valuable insight into pMMO function.
Collapse
Affiliation(s)
- Soo Y Ro
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Matthew O Ross
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Yue Wen Deng
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Sharon Batelu
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Thomas J Lawton
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Joseph D Hurley
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Timothy L Stemmler
- the Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48201
| | - Brian M Hoffman
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| | - Amy C Rosenzweig
- From the Departments of Molecular Biosciences and Chemistry, Northwestern University, Evanston, Illinois 60208 and
| |
Collapse
|