1
|
Nishimura R, Kanchanawong P. Nanoscale mechano-adaption of integrin-based cell adhesions: New tools and techniques lead the way. Curr Opin Cell Biol 2025; 94:102509. [PMID: 40188780 DOI: 10.1016/j.ceb.2025.102509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 05/28/2025]
Abstract
Force generation and transmission in biological systems are driven by protein-based machinery organized at the nanoscale. Thus, technological advances that allow for the measurement or manipulation of molecular-scale features are key to new mechanobiological insights. Integrins, a superfamily of adhesion receptors, function by forming supramolecular complexes that mediate mechanobiological processes such as migration and matrix remodeling. This review highlights recent findings that harness advanced techniques in microscopy, nanotechnology, and biosensors to uncover nanoscale transformations that accompany integrin responses to mechanobiological stimuli. Recent discoveries are sharpening our understanding of the diverse functions and structural organization of different integrin heterodimers and their molecular partners, highlighting their critical roles in cellular processes.
Collapse
Affiliation(s)
- Ryosuke Nishimura
- Mechanobiology Institute, National University of Singapore, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Republic of Singapore; Department of Biomedical Engineering, National University of Singapore, Republic of Singapore.
| |
Collapse
|
2
|
Peña Ccoa WJ, Mukadum F, Ramon A, Stirnemann G, Hocky GM. A direct computational assessment of vinculin-actin unbinding kinetics reveals catch-bonding behavior. Proc Natl Acad Sci U S A 2025; 122:e2425982122. [PMID: 40397673 DOI: 10.1073/pnas.2425982122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025] Open
Abstract
Vinculin forms a catch bond with the cytoskeletal polymer actin, displaying an increased bond lifetime upon force application. Notably, this behavior depends on the direction of the applied force, which has significant implications for cellular mechanotransduction. In this work, we present a comprehensive molecular dynamics simulation study, employing enhanced sampling techniques to investigate the thermodynamic, kinetic, and mechanistic aspects of this phenomenon at physiologically relevant forces. We dissect a catch bond mechanism in which force shifts vinculin between either a weakly or strongly bound state. Our results demonstrate that models for these states have unbinding times consistent with those from single-molecule studies, and suggest that both have some intrinsic catch-bonding behavior. We provide atomistic insight into this behavior, and show how a directional pulling force can promote the strong or weak state. Crucially, our strategy can be extended to measure the difficult-to-capture effects of small mechanical forces on biomolecular systems in general, and those involved in mechanotransduction more specifically.
Collapse
Affiliation(s)
| | - Fatemah Mukadum
- Department of Chemistry, New York University, New York, NY 10003
| | - Aubin Ramon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Chimie Physique et Chimie pour le Vivant Laboratory, Department of Chemistry, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne University, CNRS, Paris 75005, France
| | - Guillaume Stirnemann
- Chimie Physique et Chimie pour le Vivant Laboratory, Department of Chemistry, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne University, CNRS, Paris 75005, France
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY 10003
- Simons Center For Computational Physical Chemistry, New York University, New York, NY 10003
| |
Collapse
|
3
|
Xu X, Liu W, Pang B, Wang Y, Zhen H, Jiang Q, Chen Y, Yang K, Shi J, Ma J, Liu H. Characterization of immune features and discovery of potential biomarkers for ankylosing spondylitis using deep plasma proteomics. J Adv Res 2025:S2090-1232(25)00373-X. [PMID: 40436140 DOI: 10.1016/j.jare.2025.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/19/2025] [Accepted: 05/25/2025] [Indexed: 06/01/2025] Open
Abstract
INTRODUCTION Ankylosing spondylitis (AS) is a systemic inflammatory disorder that predominantly involves the axial skeleton, often leading to irreversible structural damage and disability. Although several therapeutic measurements are available, limitations in efficacy and long-term outcomes remain significant. Therefore, identifying novel biomarkers and therapeutic targets is of critical importance for optimizing clinical management and prognostic evaluation in AS patients. OBJECTIVES This study aims to elucidate the immune features and discover potential biomarkers for AS by the integration of deep plasma proteomics and deep learning strategies. METHODS The deep quantitative proteomics was applied to analyze the plasma samples from 104 participants of AS patients with active and stable stages, along with healthy controls. The immune and functional features of AS patients in different stages were assessed. By integrating random forest (RF) with orthogonal partial least squares discriminant analysis (OPLS-DA), a machine learning model-based score matrix was constructed to identify biomarkers. ELISA experiments were performed on an independent cohort of 79 participants to confirm the potential biomarkers for AS. RESULTS Patients with AS exhibit significant dysregulation in the distributions and characteristics of immune cells. Several key proteins involved in integrin signaling pathway were significantly differentially expressed in patients with AS, highlighting the pathway's role in the pathogenesis of AS. Four proteins including SAA1, FERMT3, ILK, and TLN1, were identified as potential biomarkers for AS and further verified by ELISA experiments. CONCLUSIONS By integrating the machine learning-based method with deep proteomics analysis, we explored the pathological mechanism and identified biomarkers for AS. Our study provides insights into the distinct protein expression patterns and pathogenesis of AS and may contribute to diagnosis, long-term monitoring, and therapy for this disease.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Wanlin Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bo Pang
- Clinical Laboratory, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yu Wang
- Peking University First Hospital, Beijing 100034, China
| | - Hongying Zhen
- Department of Cell Biology, Basic Medical School, Peking University Health Science Center, Beijing 100191, China
| | - Quan Jiang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yuening Chen
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Kun Yang
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jinjie Shi
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Hongxiao Liu
- Department of Rheumatology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
4
|
Wang J, Xu M, Liu H, Wang D, Zhang H, Xu Z, Shi X, Liu X, Tan Z. Vascular grafts with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization in vivo. Acta Biomater 2025; 198:49-62. [PMID: 40169081 DOI: 10.1016/j.actbio.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Synthetic vascular substitutes are widely studied for small-caliber arteries replacement but their efficacy requires further improvement. Vascular tissue engineering holds great promise for preparing small-caliber vascular grafts with therapeutic effects, and previous work has demonstrated that the cellular layer at the luminal surface of vascular grafts has the potential to provide high functionality to vascular tissue. Improved endothelialization has been proven to be a key strategy for promoting the efficacy of vascular regeneration. However, there still remains a challenge of finding proper endothelialization methods or cell types to guarantee vascular grafts the long-term patency and functions. Herein, a biomimetic bilayer vascular graft was developed by 3D printing and electrospinning techniques. The electrospun PCL nanofiber was fabricated as the outer supporting layer while a biomimetic inner layer structure composed of cell extracellular matrix microenvironment was prepared by a decellularization process. This inner layer was designed to favor endothelial cell (EC) adhesion and enhance endothelialization on the surfaces of vascular grafts. Fibronectin, derived from adipocytes, provided a naturally occurring substrate for EC adhesion. The findings showed that by binding fibronectin, integrin α5β1 mediates EC adherence to the designed vascular graft. The bilayer graft with a mimetic microenvironment extracted from extracellular matrix of adipocytes can promote endothelialization and sustain good patency in vivo, which may represent a promising biomaterial for clinical vascular transplantation. STATEMENT OF SIGNIFICANCE: This study proposed a universal method for including any substrate type in vascular cell type-specific extracellular matrices (ECM) via regulating selective adhesion to promote vascular tissue regeneration. The reconstructed 3D ECM recapitulating a vascular-like microenvironment promoted the orderly regeneration and functional recovery of vascular tissues in vivo. The findings represent a proof of principle for vascular cell selectivity in cell type-specific ECM microenvironments, and provide a valuable perspective for further investigations on the controlled regeneration of heterogeneous tissues.
Collapse
Affiliation(s)
- Jian Wang
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Miaomiao Xu
- College of Biology, Hunan University, Changsha 410082, China
| | - Hui Liu
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China
| | - Danling Wang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Hengyuan Zhang
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Zilong Xu
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiuyuan Shi
- College of Biology, Hunan University, Changsha 410082, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Xiao Liu
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| | - Zhikai Tan
- College of Biology, Hunan University, Changsha 410082, China; Institute of Shenzhen, Hunan University, Shenzhen 518000, China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China.
| |
Collapse
|
5
|
Alibrandi S, Rinaldi C, Vinci SL, Conti A, Donato L, Scimone C, Sidoti A, D’Angelo R. Mechanotransduction in Development: A Focus on Angiogenesis. BIOLOGY 2025; 14:346. [PMID: 40282211 PMCID: PMC12024848 DOI: 10.3390/biology14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the nuclear envelope. These cell components are responsive to a wide spectrum of physical cues including stiffness, tensile force, hydrostatic pressure and shear stress. Among mechanotransducers, the Transient Receptor Potential (TRP) and the PIEZO family members are mechanosensitive ion channels, coupling force transduction with intracellular cation transport. Their activity contributes to embryo development, tissue remodeling and repair, and cell homeostasis. In particular, vessel development is driven by hemodynamic cues such as flow direction and shear stress. Perturbed mechanotransduction is involved in several pathological vascular phenotypes including hereditary hemorrhagic telangiectasia. This review is conceived to summarize the most recent findings of mechanotransduction in development. We first collected main features of mechanosensitive proteins. However, we focused on the role of mechanical cues during development. Mechanosensitive ion channels and their function in vascular development are also discussed, with a focus on brain vessel morphogenesis.
Collapse
Affiliation(s)
- Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Street Altura 3, 40123 Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
6
|
Sharma V, Adebowale K, Gong Z, Chaudhuri O, Shenoy VB. Glassy Adhesion Dynamics Govern Transitions Between Sub-Diffusive and Super-Diffusive Cell Migration on Viscoelastic Substrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642113. [PMID: 40161659 PMCID: PMC11952418 DOI: 10.1101/2025.03.11.642113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cell migration is pivotal in cancer metastasis, where cells navigate the extracellular matrix (ECM) and invade distant tissues. While the ECM is viscoelastic-exhibiting time-dependent stress relaxation-its influence on cell migration remains poorly understood. Here, we employ an integrated experimental and modeling approach to investigate filopodial cancer cell migration on viscoelastic substrates and uncover a striking transition from sub-diffusive to super-diffusive behavior driven by the substrate's viscous relaxation timescale. Conventional motor-clutch based migration models fail to capture these anomalous migration modes, as they overlook the complex adhesion dynamics shaped by broad distribution of adhesion lifetimes. To address this, we develop a glassy motor-clutch model that incorporates the rugged energy landscape of adhesion clusters, where multiple metastable states yield long-tailed adhesion timescales. Our model reveals that migration dynamics are governed by the interplay between cellular and substrate timescales: slow-relaxing substrates prolong trapping, leading to sub-diffusion, while fast-relaxing substrates promote larger steps limiting trapping, leading to super-diffusion. Additionally, we uncover the role of actin polymerization and contractility in modulating adhesion dynamics and driving anomalous migration. These findings establish a mechanistic framework linking substrate viscoelasticity to cell motility, with implications for metastasis and cancer progression.
Collapse
|
7
|
Zhang Y, Zhang Z, Sun H, Xue Z, Wang Y, Guo Z, Le S, Chen H. Anomalous Force-Dependent Transition Rates Unveil Dual Pathways in Folding and Unfolding Dynamics of Acyl-coenzyme A Binding Protein. J Phys Chem Lett 2025; 16:2479-2486. [PMID: 40018738 DOI: 10.1021/acs.jpclett.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
All-α proteins typically fold rapidly and are unable to withstand high forces. Acyl-coenzyme A binding protein (ACBP), a four-α-helix bundle protein, serves as a model protein for studying the folding dynamics of all-α proteins. In previous biochemistry and single molecule force spectroscopy experiments, a controversy exists for the folding pathway and the conformation of the transition state. In this article, we investigate the folding and unfolding dynamics of ACBP in a force range of 4-10 pN using magnetic tweezers, revealing anomalous force-dependent transition rates. The unfolding rate of ACBP remains nearly constant when force is below 6 pN, and it increases sharply when the force exceeds this threshold, while the logarithm of its folding rate is almost a linear function of force. Detailed analysis combined with molecular dynamics simulations indicates that ACBP has two transition pathways: one dominating at zero or low force and the other dominating at high force. Our results provide strong evidence that stretching force not only modulates the folding and unfolding rates but also switches the transition pathways, leading to complex force response behaviors.
Collapse
Affiliation(s)
- Yuhang Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhuwei Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Hao Sun
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhenyong Xue
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
8
|
Liu Z, Zhang X, Ben T, Li M, Jin Y, Wang T, Song Y. Focal adhesion in the tumour metastasis: from molecular mechanisms to therapeutic targets. Biomark Res 2025; 13:38. [PMID: 40045379 PMCID: PMC11884212 DOI: 10.1186/s40364-025-00745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
The tumour microenvironment is the "hotbed" of tumour cells, providing abundant extracellular support for growth and metastasis. However, the tumour microenvironment is not static and is constantly remodelled by a variety of cellular components, including tumour cells, through mechanical, biological and chemical means to promote metastasis. Focal adhesion plays an important role in cell-extracellular matrix adhesion. An in-depth exploration of the role of focal adhesion in tumour metastasis, especially their contribution at the biomechanical level, is an important direction of current research. In this review, we first summarize the assembly of focal adhesions and explore their kinetics in tumour cells. Then, we describe in detail the role of focal adhesion in various stages of tumour metastasis, especially its key functions in cell migration, invasion, and matrix remodelling. Finally, we describe the anti-tumour strategies targeting focal adhesion and the current progress in the development of some inhibitors against focal adhesion proteins. In this paper, we summarize for the first time that focal adhesion play a positive feedback role in pro-tumour metastatic matrix remodelling by summarizing the five processes of focal adhesion assembly in a multidimensional way. It is beneficial for researchers to have a deeper understanding of the role of focal adhesion in the biological behaviour of tumour metastasis and the potential of focal adhesion as a therapeutic target, providing new ideas for the prevention and treatment of metastases.
Collapse
Affiliation(s)
- Zonghao Liu
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Xiaofang Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Tianru Ben
- The First Clinical College, China Medical University, Shenyang, Liaoning Province, 110122, P. R. China
| | - Mo Li
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Yi Jin
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning Province, 110042, People's Republic of China.
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning Province, 116024, P. R. China.
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of China Medical University, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Dadong District, Shenyang, Liaoning Province, 110042, P. R. China.
| |
Collapse
|
9
|
Li J, Wang W, Lin Z, Liu Z, Zhang R, Li R, Zhang J, Zheng Y, Qin D, Wu Y, Liu Y. Vinculin: A new target for the diagnosis and treatment of disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:157-166. [PMID: 39863082 DOI: 10.1016/j.pbiomolbio.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Vinculin, a crucial adhesion plaque protein, plays a significant role in cell morphology and tissue development. Dysregulation of focal adhesion proteins has been linked to numerous diseases, including cardiovascular conditions, gastrointestinal disorders, and cancer. Recent studies increasingly highlight vinculin's involvement in the progression of these diseases; however, a comprehensive review remains lacking. Therefore, an in-depth and timely review is essential to consolidate the latest findings on vinculin's role in disease mechanisms. This study aims to examine how vinculin coordinates a complex network of signaling pathways across various pathological contexts.
Collapse
Affiliation(s)
- Jiqiang Li
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Weiming Wang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Zipeng Lin
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Zhenyu Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Ruilin Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Runwen Li
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Jie Zhang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China
| | - Youkun Zheng
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000, Luzhou, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, 646000, Luzhou, China
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000, Luzhou, China; Department of General Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, 646000, Luzhou, China; Department of General Surgery, The Affiliated Hospital of Southwest Medical University, 646000, Luzhou, China.
| |
Collapse
|
10
|
Su R, Ma C, Han B, Zhang H, Liu K. Proteins for Hyperelastic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406388. [PMID: 39910850 DOI: 10.1002/smll.202406388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Meticulous engineering and the yielded hyperelastic performance of structural proteins represent a new frontier in developing next-generation functional biomaterials. These materials exhibit outstanding and programmable mechanical properties, including elasticity, resilience, toughness, and active biological characteristics, such as degradability and tissue repairability, compared with their chemically synthetic counterparts. However, there are several critical issues regarding the preparation approaches of hyperelastic protein-based materials: limited natural sequence modules, non-hierarchical assembly, and imbalance between compressive and tensile elasticity, leading to unmet demands. Therefore, it is pivotal to develop an alternative strategy for biofabricating hyperelastic materials. Herein, the molecular design, engineering, and property regulation of hyperelastic structural proteins are overviewed. First, methodologies for deeper exploration of mechanical modules, including machine learning-aided de novo design, random mutations of natural sequences, and multiblock fusion techniques, are actively introduced. These methodologies facilitate the generation of elastomeric protein modules and demonstrate enhanced structural and functional versatility. Subsequently, assembly tactics of hyperelastic proteins (i.e., physical modulation, genetic adaptations, and chemical modifications) are reviewed, yielding hierarchically ordered structures. Finally, advances in biophysical techniques for more nuanced characterization of protein ensembles are discussed, unveiling the tuning mechanisms of protein elasticity across scales. Future developments in structural hyperelastic protein-based biomaterials are also envisioned.
Collapse
Affiliation(s)
- Rui Su
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Bing Han
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| |
Collapse
|
11
|
Biertümpfel C, Yamada Y, Vasquez-Montes V, Truong TV, Cada AK, Mizuno N. Biochemical and structural bases for talin ABSs-F-actin interactions. Proc Natl Acad Sci U S A 2025; 122:e2405922122. [PMID: 39903122 PMCID: PMC11831117 DOI: 10.1073/pnas.2405922122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Focal adhesions (FAs) are large intracellular macromolecular assemblies that play a critical role in cell polarization and migration. Talin serves as a direct connection between integrin receptor and actomyosin cytoskeleton within FAs. Talin contains three actin-binding sites (ABS1-3) that engage discreetly during the development of FAs, thus acting as a critical player in FA initiation and maturation. However, the molecular basis of the ABS-F-actin interactions remains unknown. Here, we explore interactions of ABSs with F-actin to understand the multivalent behavior of talin. Particularly, the cryo-EM structure of the F-actin-ABS3 complex at 2.9 Å shows ABS3 spanning through two actin monomers along the filament axis, each occupied by the R13 rod subdomain and the DD domain. The dimerization of ABS3 occurs through the DD domain where both protomers interact on the actin surface, and the dimerization of talin to the actin surface is necessary for the engagement to F-actin. The R13 helical bundle is distorted upon binding to F-actin and releases the H1 helix from the rest of the bundle. This phenomenon has also been observed with other tension-sensing proteins like vinculin and α-catenin, highlighting that unfolding is relevant for its force sensing activity. On the contrary, ABS2 (R4R8 subdomains), which is thought to be critical for the maintenance of mature FAs, had multiple F-actin-binding regions within ABS2 and the binding likely occurred by these subdomains running through the surface of F-actin, thus strengthening the interactions upon the maturation of FAs.
Collapse
Affiliation(s)
- Christian Biertümpfel
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Yurika Yamada
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Victor Vasquez-Montes
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Thien Van Truong
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - A. King Cada
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
| | - Naoko Mizuno
- Laboratory of Structural Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD20892
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| |
Collapse
|
12
|
Mikhajlov O, Adar RM, Tătulea-Codrean M, Macé AS, Manzi J, Tabarin F, Battistella A, di Federico F, Joanny JF, Tran van Nhieu G, Bassereau P. Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction. Nat Commun 2025; 16:1201. [PMID: 39885125 PMCID: PMC11782702 DOI: 10.1038/s41467-025-56343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading. Here, we demonstrate that cells spread on SLBs coated with Invasin, a high-affinity integrin ligand. Unlike SLBs functionalized with RGD peptides, integrin clusters on Invasin-SLBs grow in size and complexity comparable to those on glass. While actomyosin contraction dominates adhesion maturation on stiff substrates, we find that on fluid SLBs, integrin mechanotransduction and cell spreading rely on dynein pulling forces along microtubules perpendicular to the membranes and microtubules pushing on adhesive complexes, respectively. These forces, potentially present on non-deformable surfaces, are revealed in fluid substrate systems. Supported by a theoretical model, our findings demonstrate a mechanical role for microtubules in integrin clustering.
Collapse
Affiliation(s)
- Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
- Laboratory of Biophysics and Cell Biology of Signaling, Biochemistry department, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| | - Ram M Adar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Tătulea-Codrean
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Université PSL, CNRS, Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fanny Tabarin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fahima di Federico
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Jean-François Joanny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Guy Tran van Nhieu
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
| |
Collapse
|
13
|
Kundu S, Pal K, Pyne A, Wang X. Force-bearing phagocytic adhesion rings mediate the phagocytosis of surface-bound particles. Nat Commun 2025; 16:984. [PMID: 39856073 PMCID: PMC11759950 DOI: 10.1038/s41467-025-56404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β2 integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles. These circular adhesion structures that we named phagocytic adhesion rings (PARs) serve as strongholds to support local ring-shaped actin structures constricting into the particle-substrate cleavages, thereby pinching off the particles from the substrate. During this process, integrins in PARs sustain tensions due to the reaction force of actin polymerization against the particles. Such tensions are critical for phagocytic efficiency of surface-bound particles. PARs were formed in all tested macrophages (mouse, human and fish) and micron-sized particles (microbeads and E. coli), demonstrating their conserved role in the phagocytosis. This study reveals a mechanism of PAR-mediated phagocytosis, specialized for the detachment and internalization of surface-bound particles.
Collapse
Affiliation(s)
- Subhankar Kundu
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kaushik Pal
- Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu, India
| | - Arghajit Pyne
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Xuefeng Wang
- Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Yamagishi A, Tokuoka R, Imai K, Mizusawa M, Susaki M, Uchida K, Kijima ST, Nagasaki A, Takeshita D, Yoshikawa C, Uyeda TQP, Nakamura C. Nestin Forms a Flexible Cytoskeleton by Means of a Huge Tail Domain That Is Reversibly Stretched and Contracted by Weak Forces. Cells 2025; 14:138. [PMID: 39851565 PMCID: PMC11763517 DOI: 10.3390/cells14020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression. Further, we found that nestin itself stably binds to AFs via the NTD. We therefore hypothesized that the NTD may form a flexible cytoskeletal structure by extending with weak force. In vitro tensile tests using atomic force microscopy were performed to assess the mechanical properties of NTDs. The C-terminus of the NTD bound AFs by bringing the AFM tip modified with the NTD into contact with the AFs on the substrate. NTDs were elongated to approximately 80% of their maximum length at weak forces < 150 pN. Repeated tensile tests revealed that the NTD refolded quickly and behaved like a soft elastic material. We speculate that nestin stably binds AFs, and the NTD extends with weak force, contracting quickly upon load release. Thereby, nestin would absorb mechanical load and maintain cytoskeletal integrity.
Collapse
Affiliation(s)
- Ayana Yamagishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Rina Tokuoka
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Kazuki Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Mei Mizusawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Moe Susaki
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Koki Uchida
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| | - Saku T. Kijima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Daijiro Takeshita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6 1-1-1 Higashi, Tsukuba 305-8566, Ibaraki, Japan
| | - Chiaki Yoshikawa
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan
| | - Taro Q. P. Uyeda
- Department of Physics, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Chikashi Nakamura
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan; (A.Y.)
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan
| |
Collapse
|
15
|
Ao Y, Jiang D. Polydopamine-Induced BMP7-Poly (Lactic-Co-Glycolic Acid)-Nanoparticle Coating Facilitates Osteogenesis in Porous Tantalum Scaffolds. J Biomed Mater Res A 2025; 113:e37835. [PMID: 39835772 DOI: 10.1002/jbm.a.37835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025]
Abstract
Bone defects are difficult to treat clinically and most often require bone grafting for repair. However, the source of autograft bone is limited, and allograft bone carries the risk of disease transmission and immune rejection. As tissue engineering technology advances, bone replacement materials are playing an increasingly important role in the treatment of bone defects. Porous tantalum (PT) scaffolds have shown beneficial clinical effects in the repair of bone defects, surface modification of PT to induce osteogenic differentiation of mesenchymal stem cells (MSC) is the key to optimizing this material. Poly (lactic-co-glycolic acid) nanoparticle (PLGA NPs) encapsulating bone morphogenetic protein 7 (BMP7) (BPNPs) was prepared by a double emulsion (water/oil/water [W/O/W]) method and adhered on polydopamine (PDA)-coated PT (PPT) that was prepared by biomimetic method to prepare BPNPs-coated PPT (BPPT). The successful preparation of BPPT was monitored by scanning electron microscopy (SEM) and energy spectrum. Murine calvarial preosteoblasts (MC3T3-E1) cells were co-cultured with BPPT, vitro experiments showed that BPPT promoted cell proliferation and osteogenic differentiation. BPPT was further implanted into the bone defect of the distal femoral epiphysis of the rabbit. At 4 weeks postoperatively, in the BPPT group, high-resolution CT reconstruction indicated that bone volume/total volume (BV/TV) was near 50%, and the hard tissue section indicated that the depth of new bone ingrowth into the scaffolds was nearly 2 mm. The immunofluorescence staining of bone tissue around the bone defects indicated that the expression of osteogenic-related proteins was higher in the BPPT group than the other groups. Taken together, our results suggest that BPPT promoted early osteointegration, which may provide a novel approach for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Yu Ao
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Beck C, Kirby AM, Roberts S, Kunze A. Multimodal Characterization of Cortical Neuron Response to Permanent Magnetic Field Induced Nanomagnetic Force Maps. ACS NANO 2024; 18:34630-34645. [PMID: 39654337 PMCID: PMC11674720 DOI: 10.1021/acsnano.4c09542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
Nanomagnetic forces deliver precise mechanical cues to biological systems through the remote pulling of magnetic nanoparticles under a permanent magnetic field. Cortical neurons respond to nanomagnetic forces with cytosolic calcium influx and event rate shifts. However, the underlying consequences of nanomagnetic force modulation on cortical neurons remain to be elucidated. Here, we integrate electrophysiological and optical recording modalities with nanomagnetic forces to characterize the in vitro functional response to mechanical cues. Neurons exposed to chitosan functionalized magnetic nanoparticles for 24 h and then exposed to magnetic fields capable of generating forces of 2-160 pN present elevated cytosolic calcium in neurons and a time-dynamic electrophysiological spike rate and magnitude response. Extracellular recordings with microelectrode arrays revealed a 2-8 pN force-specific increase in electrophysiological spiking with a trend in reduced activity following 2 min of continuous force exposure. Nanomagnetic forces in the 16-160 pN range produced increased electrophysiological activity and remained excited for up to 4 h under continuous stimulation before silencing. Furthermore, the neuronal response to nanomagnetic forces at 16-160 pN can be electrophysiologically mediated without calcium influx by altering the magnetic nanoparticle-neuron interactions. These results demonstrate that low pN nanomagnetic forces mediate neuronal function and suggest that magnetic nanoparticle interactions and force magnitudes can be harnessed to provoke different responses in cortical neurons.
Collapse
Affiliation(s)
- Connor
L. Beck
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Andrew M. Kirby
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel Roberts
- Department
of Chemical Engineering, Montana State University, Bozeman, Montana 59717, United States
| | - Anja Kunze
- Department
of Electrical and Computer Engineering, Montana State University, Bozeman, Montana 59717, United States
- Montana
Nanotechnology Facility, Montana State University, Bozeman, Montana 59717, United States
- Optical
Technology Center, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
17
|
Zhou K, Chung M, Cheng J, Powell JT, Yan Q, Liu J, Xiong Y, Schwartz MA, Lin C. DNA nanodevice for analysis of force-activated protein extension and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620262. [PMID: 39554144 PMCID: PMC11565787 DOI: 10.1101/2024.10.25.620262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Force-induced changes in protein structure and function mediate cellular responses to mechanical stresses. Existing methods to study protein conformation under mechanical force are incompatible with biochemical and structural analysis. Taking advantage of DNA nanotechnology, including the well-defined geometry of DNA origami and programmable mechanics of DNA hairpins, we built a nanodevice to apply controlled forces to proteins. This device was used to study the R1-R2 segment of the talin1 rod domain as a model protein, which comprises two alpha-helical bundles that reversibly unfold under tension to expose binding sites for the cytoskeletal protein vinculin. Electron microscopy confirmed tension-dependent protein extension while biochemical analysis demonstrated enhanced vinculin binding under tension. The device could also be used in pull down assays with cell lysates, which identified filamins as novel tension-dependent talin binders. The DNA nanodevice is thus a valuable addition to the molecular toolbox for studying mechanosensitive proteins.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Minhwan Chung
- Department of Cell Biology, Yale School of Medicine, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, USA
| | - Jing Cheng
- Department of Biophysics and Biochemistry, Yale University, USA
| | - John T Powell
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Qi Yan
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
| | - Jun Liu
- Department of Cell Biology, Yale School of Medicine, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, USA
- Microbial Sciences Institute, Yale University, USA
| | - Yong Xiong
- Department of Biophysics and Biochemistry, Yale University, USA
| | - Martin A Schwartz
- Department of Cell Biology, Yale School of Medicine, USA
- Yale Cardiovascular Research Center, Yale School of Medicine, USA
- Department of Biomedical Engineering, Yale University, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale School of Medicine, USA
- Nanobiology Institute, Yale University, USA
- Department of Biomedical Engineering, Yale University, USA
| |
Collapse
|
18
|
del Rosario-Gilabert D, Valenzuela-Miralles A, Esquiva G. Advances in mechanotransduction and sonobiology: effects of audible acoustic waves and low-vibration stimulations on mammalian cells. Biophys Rev 2024; 16:783-812. [PMID: 39830129 PMCID: PMC11735818 DOI: 10.1007/s12551-024-01242-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/25/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, research on mechanotransduction has advanced considerably, focusing on the effects of audible acoustic waves (AAWs) and low-vibration stimulation (LVS), which has propelled the field of sonobiology forward. Taken together, the current evidence demonstrates the influence of these biosignals on key cellular processes, such as growth, differentiation and migration in mammalian cells, emphasizing the determining role of specific physical parameters during stimulation, such as frequency, sound pressure level/amplitude and exposure time. These mechanical waves interact with various cellular elements, including ion channels, primary cilia, cell-cell adhesion receptors, cell-matrix and extracellular matrix proteins, and focal adhesion complexes. These components connect with the cytoskeletal fibre network, enabling the transmission of mechanical stimuli towards the nucleus. The nucleus, in turn, linked to the cytoskeleton via the linkers of the nucleoskeleton and cytoskeleton complex, acts as a mechanosensitive centre, not only responding to changes in cytoskeletal stiffness and nuclear tension but also regulating gene expression through the transcriptional co-activator YAP/TAZ and interactions between chromatin and the nuclear envelope. This intricate chain of mechanisms highlights the potential of sonobiology in various fields, including dentistry, regenerative medicine, tissue engineering and cancer research. However, progress in these fields requires the establishment of standardized measurement methodologies and biocompatible experimental setups to ensure the reproducibility of results.
Collapse
Affiliation(s)
- D. del Rosario-Gilabert
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Department of Physics, Systems Engineering and Signal Theory, University of Alicante, San Vicente del Raspeig, Spain
- Department of Computer Technology, University of Alicante, San Vicente del Raspeig, Spain
- Institute for Advanced Neuroscience of Barcelona (INAB), Barcelona, Spain
| | - A. Valenzuela-Miralles
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
| | - G. Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| |
Collapse
|
19
|
Wang H, Said R, Nguyen-Vigouroux C, Henriot V, Gebhardt P, Pernier J, Grosse R, Le Clainche C. Talin and vinculin combine their activities to trigger actin assembly. Nat Commun 2024; 15:9497. [PMID: 39489770 PMCID: PMC11532549 DOI: 10.1038/s41467-024-53859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/24/2024] [Indexed: 11/05/2024] Open
Abstract
Focal adhesions (FAs) strengthen their link with the actin cytoskeleton to resist force. Talin-vinculin association could reinforce actin anchoring to FAs by controlling actin polymerization. However, the actin polymerization activity of the talin-vinculin complex is not known because it requires the reconstitution of the mechanical and biochemical activation steps that control the association of talin and vinculin. By combining kinetic and binding assays with single actin filament observations in TIRF microscopy, we show that the association of talin and vinculin mutants, mimicking mechanically stretched talin and activated vinculin, triggers a sequential mechanism in which filaments are nucleated, capped and released to elongate. In agreement with these observations, FRAP experiments in cells co-expressing the same constitutive mutants of talin and vinculin revealed accelerated growth of stress fibers. Our findings suggest a versatile mechanism for the regulation of actin assembly in FAs subjected to various combinations of biochemical and mechanical cues.
Collapse
Affiliation(s)
- Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany
| | - Rayan Said
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Clémence Nguyen-Vigouroux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Véronique Henriot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Peter Gebhardt
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies-CIBSS, University of Freiburg, Freiburg, Germany
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
20
|
Ellis C, Ward NL, Rice M, Ball NJ, Walle P, Najdek C, Kilinc D, Lambert JC, Chapuis J, Goult BT. The structure of an amyloid precursor protein/talin complex indicates a mechanical basis of Alzheimer's disease. Open Biol 2024; 14:240185. [PMID: 39591990 PMCID: PMC11597407 DOI: 10.1098/rsob.240185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/28/2024] Open
Abstract
Misprocessing of amyloid precursor protein (APP) is one of the major causes of Alzheimer's disease. APP comprises a large extracellular region, a single transmembrane helix and a short cytoplasmic tail containing an NPxY motif (normally referred to as the YENPTY motif). Talins are synaptic scaffold proteins that connect the cytoskeletal machinery to the plasma membrane via binding NPxY motifs in the cytoplasmic tail of integrins. Here, we report the crystal structure of an APP/talin1 complex identifying a new way to couple the cytoskeletal machinery to synaptic sites through APP. Proximity ligation assay (PLA) confirmed the close proximity of talin1 and APP in primary neurons, and talin1 depletion had a dramatic effect on APP processing in cells. Structural modelling reveals APP might form an extracellular meshwork that mechanically couples the cytoskeletons of the pre- and post-synaptic compartments. We propose APP processing represents a mechanical signalling pathway whereby under tension, the cleavage sites in APP have varying accessibility to cleavage by secretases. This leads us to propose a new hypothesis for Alzheimer's, where misregulated APP dynamics result in loss of the mechanical integrity of the synapse, corruption and loss of mechanical binary data, and excessive generation of toxic plaque-forming Aβ42 peptide.
Collapse
Affiliation(s)
- Charles Ellis
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Natasha L. Ward
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Matthew Rice
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Pauline Walle
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Chloé Najdek
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Devrim Kilinc
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Julien Chapuis
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, UK
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
21
|
Rangarajan ES, Bois JL, Hansen SB, Izard T. High-resolution snapshots of the talin auto-inhibitory states suggest roles in cell adhesion and signaling. Nat Commun 2024; 15:9270. [PMID: 39468080 PMCID: PMC11519669 DOI: 10.1038/s41467-024-52581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Talin regulates crucial cellular functions, including cell adhesion and motility, and affects human diseases. Triggered by mechanical forces, talin plays crucial roles in facilitating the formation of focal adhesions and recruiting essential focal adhesion regulatory elements such as vinculin. The structural flexibility allows talin to fine-tune its signaling responses. This study presents our 2.7 Å cryoEM structures of talin, which surprisingly uncovers several auto-inhibitory states. Contrary to previous suggestions, our structures reveal that (1) the first and last three domains are not involved in maintaining talin in its closed state and are mobile, (2) the talin F-actin and membrane binding domain are loosely attached and thus available for binding, and (3) the main force-sensing domain is oriented with its vinculin binding sites ready for release. These structural snapshots offer insights and advancements in understanding the dynamic talin activation mechanism, which is crucial for mediating cell adhesion.
Collapse
Affiliation(s)
- Erumbi S Rangarajan
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Julian L Bois
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
| | - Scott B Hansen
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA
| | - Tina Izard
- Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, USA.
- Department of Molecular Medicine, UF Scripps, Jupiter, FL, USA.
- The Skaggs Graduate School, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
22
|
Ntadambanya A, Pernier J, David V, Susumu K, Medintz IL, Collot M, Klymchenko A, Hildebrandt N, Le Potier I, Le Clainche C, Cardoso Dos Santos M. Quantum Dot-Based FRET Nanosensors for Talin-Membrane Assembly and Mechanosensing. Angew Chem Int Ed Engl 2024; 63:e202409852. [PMID: 39007225 DOI: 10.1002/anie.202409852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin-membrane distance of 2.5 nm. We demonstrate that QD-FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub-nanometer accuracy.
Collapse
Affiliation(s)
- Audrey Ntadambanya
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Julien Pernier
- Gustave Roussy Institute, Inserm U1279, Université Paris-Saclay, Villejuif, France
| | - Violaine David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kimihiro Susumu
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Andrey Klymchenko
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Niko Hildebrandt
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L7, Canada
| | - Isabelle Le Potier
- Centre de nanosciences et nanotechnologies (C2N), CNRS UMR9001, Université Paris-Saclay, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marcelina Cardoso Dos Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
23
|
Ren Y, Yang J, Fujita B, Zhang Y, Berro J. Cross-regulations of two connected domains form a mechanical circuit for steady force transmission during clathrin-mediated endocytosis. Cell Rep 2024; 43:114725. [PMID: 39276354 PMCID: PMC11476202 DOI: 10.1016/j.celrep.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/01/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Mechanical forces are transmitted from the actin cytoskeleton to the membrane during clathrin-mediated endocytosis (CME) in the fission yeast Schizosaccharomyces pombe. End4p directly transmits force in CME by binding to both the membrane (through the AP180 N-terminal homology [ANTH] domain) and F-actin (through the talin-HIP1/R/Sla2p actin-tethering C-terminal homology [THATCH] domain). We show that 7 pN force is required for stable binding between THATCH and F-actin. We also characterized a domain in End4p, Rend (rod domain in End4p), that resembles R12 of talin. Membrane localization of Rend primes the binding of THATCH to F-actin, and force-induced unfolding of Rend at 15 pN terminates the transmission of force. We show that the mechanical properties (mechanical stability, unfolding extension, hysteresis) of Rend and THATCH are tuned to form a circuit for the initiation, transmission, and termination of force between the actin cytoskeleton and membrane. The mechanical circuit by Rend and THATCH may be conserved and coopted evolutionarily in cell adhesion complexes.
Collapse
Affiliation(s)
- Yuan Ren
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA.
| | - Jie Yang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Barbara Fujita
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA
| | - Yongli Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Nanobiology Institute, Yale University, West Haven, CT 06516, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
24
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
25
|
Le S, Yu M, Fu C, Heier JA, Martin S, Hardin J, Yan J. Single-molecule force spectroscopy reveals intra- and intermolecular interactions of Caenorhabditis elegans HMP-1 during mechanotransduction. Proc Natl Acad Sci U S A 2024; 121:e2400654121. [PMID: 39236238 PMCID: PMC11406289 DOI: 10.1073/pnas.2400654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/15/2024] [Indexed: 09/07/2024] Open
Abstract
The Caenorhabditis elegans HMP-2/HMP-1 complex, akin to the mammalian [Formula: see text]-catenin-[Formula: see text]-catenin complex, serves as a critical mechanosensor at cell-cell adherens junctions, transducing tension between HMR-1 (also known as cadherin in mammals) and the actin cytoskeleton. Essential for embryonic development and tissue integrity in C. elegans, this complex experiences tension from both internal actomyosin contractility and external mechanical microenvironmental perturbations. While offering a valuable evolutionary comparison to its mammalian counterpart, the impact of tension on the mechanical stability of HMP-1 and HMP-2/HMP-1 interactions remains unexplored. In this study, we directly quantified the mechanical stability of full-length HMP-1 and its force-bearing modulation domains (M1-M3), as well as the HMP-2/HMP-1 interface. Notably, the M1 domain in HMP-1 exhibits significantly higher mechanical stability than its mammalian analog, attributable to interdomain interactions with M2-M3. Introducing salt bridge mutations in the M3 domain weakens the mechanical stability of the M1 domain. Moreover, the intermolecular HMP-2/HMP-1 interface surpasses its mammalian counterpart in mechanical stability, enabling it to support the mechanical activation of the autoinhibited M1 domain for mechanotransduction. Additionally, the phosphomimetic mutation Y69E in HMP-2 weakens the mechanical stability of the HMP-2/HMP-1 interface, compromising the force-transmission molecular linkage and its associated mechanosensing functions. Collectively, these findings provide mechanobiological insights into the C. elegans HMP-2/HMP-1 complex, highlighting the impact of salt bridges on mechanical stability in [Formula: see text]-catenin and demonstrating the evolutionary conservation of the mechanical switch mechanism activating the HMP-1 modulation domain for protein binding at the single-molecule level.
Collapse
Affiliation(s)
- Shimin Le
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, Xiamen University, Xiamen 361000, China
| | - Miao Yu
- Department of Biochemistry and Division of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Chaoyu Fu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jonathon A Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
| | - Sterling Martin
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jeff Hardin
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706
- Biophysics Program, University of Wisconsin-Madison, Madison, WI 53706
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
- Centre for Bioimaging Sciences, National University of Singapore, Singapore 117557, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
26
|
Wang X, Baster Z, Azizi L, Li L, Rajfur Z, Hytönen VP, Huang C. Talin2 binds to non-muscle myosin IIa and regulates cell attachment and fibronectin secretion. Sci Rep 2024; 14:20175. [PMID: 39215026 PMCID: PMC11364542 DOI: 10.1038/s41598-024-70866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Talin2 is localized to large focal adhesions and is indispensable for traction force generation, invadopodium formation, cell invasion as well as metastasis. Talin2 has a higher affinity toward β-integrin tails than talin1. Moreover, disruption of the talin2-β-integrin interaction inhibits traction force generation, invadopodium formation and cell invasion, indicating that a strong talin2-β-integrin interaction is required for talin2 to fulfill these functions. Nevertheless, the role of talin2 in mediation of these processes remains unknown. Here we show that talin2 binds to the N-terminus of non-muscle myosin IIA (NMIIA) through its F3 subdomain. Moreover, talin2 co-localizes with NMIIA at cell edges as well as at some cytoplasmic spots. Talin2 also co-localizes with cortactin, an invadopodium marker. Furthermore, overexpression of NMIIA promoted the talin2 head binding to the β1-integrin tail, whereas knockdown of NMIIA reduced fibronectin and matrix metalloproteinase secretion as well as inhibited cell attachment on fibronectin-coated substrates. These results suggest that talin2 binds to NMIIA to control the secretion of extracellular matrix proteins and this interaction modulates cell adhesion.
Collapse
Affiliation(s)
- Xiaochuan Wang
- The Second Hospital of Shandong University, Jinan, 250033, Shandong, China.
| | - Zbigniew Baster
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Liqing Li
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 30-348, Kraków, Poland
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Cai Huang
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA.
- Doer Biologics Inc, 2nd Floor, Building 3, Hexiang Science and Technology Center, Medicine Port Town, Qiantang District, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
28
|
Chanduri M, Kumar A, Weiss D, Emuna N, Barsukov I, Shi M, Tanaka K, Wang X, Datye A, Kanyo J, Collin F, Lam T, Schwarz UD, Bai S, Nottoli T, Goult BT, Humphrey JD, Schwartz MA. Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis. SCIENCE ADVANCES 2024; 10:eadi6286. [PMID: 39167642 PMCID: PMC11338229 DOI: 10.1126/sciadv.adi6286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Tissue mechanical properties are determined mainly by the extracellular matrix (ECM) and actively maintained by resident cells. Despite its broad importance to biology and medicine, tissue mechanical homeostasis remains poorly understood. To explore cell-mediated control of tissue stiffness, we developed mutations in the mechanosensitive protein talin 1 to alter cellular sensing of ECM. Mutation of a mechanosensitive site between talin 1 rod-domain helix bundles R1 and R2 increased cell spreading and tension exertion on compliant substrates. These mutations promote binding of the ARP2/3 complex subunit ARPC5L, which mediates the change in substrate stiffness sensing. Ascending aortas from mice bearing these mutations showed less fibrillar collagen, reduced axial stiffness, and lower rupture pressure. Together, these results demonstrate that cellular stiffness sensing contributes to ECM mechanics, directly supporting the mechanical homeostasis hypothesis and identifying a mechanosensitive interaction within talin that contributes to this mechanism.
Collapse
Affiliation(s)
- Manasa Chanduri
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Dar Weiss
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Nir Emuna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Igor Barsukov
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Miusi Shi
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Xinzhe Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Amit Datye
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Florine Collin
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - TuKiet Lam
- Keck MS & Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Udo D. Schwarz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06510, USA
| | - Suxia Bai
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Benjamin T Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
- School of Biosciences, University of Kent, Canterbury, UK
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
29
|
Xue R, Chen Y, Gong Z, Jiang H. Superposition of Substrate Deformation Fields Induced by Molecular Clutches Explains Cell Spatial Sensing of Ligands. ACS NANO 2024; 18:21144-21155. [PMID: 39088555 DOI: 10.1021/acsnano.4c03667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Cells can sense the physical properties of the extracellular matrices (ECMs), such as stiffness and ligand density, through cell adhesions to actively regulate their behaviors. Recent studies have shown that varying ligand spacing of ECMs can influence adhesion size, cell spreading, and even stem cell differentiation, indicating that cells have the spatial sensing ability of ECM ligands. However, the mechanism of the cells' spatial sensing remains unclear. In this study, we have developed a lattice-spring motor-clutch model by integrating cell membrane deformation, the talin unfolding mechanism, and the lattice spring for substrate ligand distribution to explore how the spatial distribution of integrin ligands and substrate stiffness influence cell spreading and adhesion dynamics. By applying the Gillespie algorithm, we found that large ligand spacing reduces the superposition effect of the substrate's displacement fields generated by pulling force from motor-clutch units, increasing the effective stiffness probed by the force-sensitive receptors; this finding explains a series of previous experiments. Furthermore, using the mean-field theory, we obtain the effective stiffness sensed by bound clutches analytically; our analysis shows that the bound clutch number and ligand spacing are the two key factors that affect the superposition effects of deformation fields and, hence, the effective stiffness. Overall, our study reveals the mechanism of cells' spatial sensing, i.e., ligand spacing changes the effective stiffness sensed by cells due to the superposition effect of deformation fields, which provides a physical clue for designing and developing biological materials that effectively control cell behavior and function.
Collapse
Affiliation(s)
- Ruihao Xue
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yonggang Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Ze Gong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, 15 Beisihuan West Road, Beijing 100190, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
30
|
Cocom-Chan B, Khakzad H, Konate M, Aguilar DI, Bello C, Valencia-Gallardo C, Zarrouk Y, Fattaccioli J, Mauviel A, Javelaud D, Tran Van Nhieu G. IpaA reveals distinct modes of vinculin activation during Shigella invasion and cell-matrix adhesion. Life Sci Alliance 2024; 7:e202302418. [PMID: 38834194 PMCID: PMC11150655 DOI: 10.26508/lsa.202302418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
Vinculin is a cytoskeletal linker strengthening cell adhesion. The Shigella IpaA invasion effector binds to vinculin to promote vinculin supra-activation associated with head-domain-mediated oligomerization. Our study investigates the impact of mutations of vinculin D1D2 subdomains' residues predicted to interact with IpaA VBS3. These mutations affected the rate of D1D2 trimer formation with distinct effects on monomer disappearance, consistent with structural modeling of a closed and open D1D2 conformer induced by IpaA. Notably, mutations targeting the closed D1D2 conformer significantly reduced Shigella invasion of host cells as opposed to mutations targeting the open D1D2 conformer and later stages of vinculin head-domain oligomerization. In contrast, all mutations affected the formation of focal adhesions (FAs), supporting the involvement of vinculin supra-activation in this process. Our findings suggest that IpaA-induced vinculin supra-activation primarily reinforces matrix adhesion in infected cells, rather than promoting bacterial invasion. Consistently, shear stress studies pointed to a key role for IpaA-induced vinculin supra-activation in accelerating and strengthening cell-matrix adhesion.
Collapse
Affiliation(s)
- Benjamin Cocom-Chan
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Hamed Khakzad
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
| | - Mahamadou Konate
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Daniel Isui Aguilar
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Chakir Bello
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Cesar Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Yosra Zarrouk
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
| | - Jacques Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, Paris, France
| | - Alain Mauviel
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, PSL Research University, INSERM U1021, CNRS UMR3347, Team "TGF-ß and Oncogenesis", Equipe Labellisée LIGUE 2016, Orsay, France
- Université Paris-Sud, Orsay, France
- Centre National de la Recherche Scientifique UMR 3347, Orsay, France
| | - Guy Tran Van Nhieu
- Team "Ca2+ Signaling and Microbial Infections", I2BC, Gif-sur-Yvette, France
- Institut National de la Santé et de la Recherche Médicale U1280, Gif-sur-Yvette, France
- Centre National de la Recherche Scientifique UMR9198, Gif-sur-Yvette, France
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France
- Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- Centre National de la Recherche Scientifique UMR7241, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| |
Collapse
|
31
|
Mykuliak VV, Rahikainen R, Ball NJ, Bussi G, Goult BT, Hytönen VP. Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force. PLoS Comput Biol 2024; 20:e1012341. [PMID: 39110765 PMCID: PMC11333002 DOI: 10.1371/journal.pcbi.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024] Open
Abstract
Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.
Collapse
Affiliation(s)
- Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, Trieste, Italy
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
32
|
Hu X, Jalal S, Yao M, Bakke O, Margadant F, Sheetz M. Differential Talin cleavage in transformed and non-transformed cells and its consequences. Front Cell Dev Biol 2024; 12:1430728. [PMID: 39086658 PMCID: PMC11289324 DOI: 10.3389/fcell.2024.1430728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 08/02/2024] Open
Abstract
This study investigates differences in focal adhesion (FA) morphology and Talin cleavage levels between transformed and non-transformed cell lines. Utilizing fluorescently tagged wild-type Talin and Talin mutants with calpain cleavage site mutations, FA structures were visualized. Mutations in different Talin cleavage sites showed varying impacts on FA morphology and distribution across melanoma cell lines (Meljuso, A375P, A2058) and a non-transformed cell line (HFF). Western blot analysis, ratiometric fluorescence intensity-based measurements, and FRAP experiments revealed higher Talin cleavage levels within FAs of transformed cell lines compared to non-transformed cells. Additionally, growth assays indicated that reducing calpain cleavage levels attenuated transformed cell growth. These findings suggest that Talin cleavage level is crucial for FA morphology and assembly, with higher levels observed in transformed cells, influencing their growth dynamics.
Collapse
Affiliation(s)
- Xian Hu
- Center for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Salma Jalal
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Felix Margadant
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Molecular Mechanomedicine Program, Biochemistry and Molecular Biology Department, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
33
|
Hu Y, Li H, Zhang C, Feng J, Wang W, Chen W, Yu M, Liu X, Zhang X, Liu Z. DNA-based ForceChrono probes for deciphering single-molecule force dynamics in living cells. Cell 2024; 187:3445-3459.e15. [PMID: 38838668 DOI: 10.1016/j.cell.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Understanding cellular force transmission dynamics is crucial in mechanobiology. We developed the DNA-based ForceChrono probe to measure force magnitude, duration, and loading rates at the single-molecule level within living cells. The ForceChrono probe circumvents the limitations of in vitro single-molecule force spectroscopy by enabling direct measurements within the dynamic cellular environment. Our findings reveal integrin force loading rates of 0.5-2 pN/s and durations ranging from tens of seconds in nascent adhesions to approximately 100 s in mature focal adhesions. The probe's robust and reversible design allows for continuous monitoring of these dynamic changes as cells undergo morphological transformations. Additionally, by analyzing how mutations, deletions, or pharmacological interventions affect these parameters, we can deduce the functional roles of specific proteins or domains in cellular mechanotransduction. The ForceChrono probe provides detailed insights into the dynamics of mechanical forces, advancing our understanding of cellular mechanics and the molecular mechanisms of mechanotransduction.
Collapse
Affiliation(s)
- Yuru Hu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Hongyun Li
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Chen Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Jingjing Feng
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wenxu Wang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Miao Yu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinping Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xinghua Zhang
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
34
|
Litschel T, Kelley CF, Cheng X, Babl L, Mizuno N, Case LB, Schwille P. Membrane-induced 2D phase separation of the focal adhesion protein talin. Nat Commun 2024; 15:4986. [PMID: 38862544 PMCID: PMC11166923 DOI: 10.1038/s41467-024-49222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Focal adhesions form liquid-like assemblies around activated integrin receptors at the plasma membrane. How they achieve their flexible properties is not well understood. Here, we use recombinant focal adhesion proteins to reconstitute the core structural machinery in vitro. We observe liquid-liquid phase separation of the core focal adhesion proteins talin and vinculin for a spectrum of conditions and interaction partners. Intriguingly, we show that binding to PI(4,5)P2-containing membranes triggers phase separation of these proteins on the membrane surface, which in turn induces the enrichment of integrin in the clusters. We suggest a mechanism by which 2-dimensional biomolecular condensates assemble on membranes from soluble proteins in the cytoplasm: lipid-binding triggers protein activation and thus, liquid-liquid phase separation of these membrane-bound proteins. This could explain how early focal adhesions maintain a structured and force-resistant organization into the cytoplasm, while still being highly dynamic and able to quickly assemble and disassemble.
Collapse
Affiliation(s)
- Thomas Litschel
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Charlotte F Kelley
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Xiaohang Cheng
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Leon Babl
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Naoko Mizuno
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Laboratory of Structural Cell Biology, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay B Case
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
35
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
36
|
Tapia-Rojo R, Mora M, Garcia-Manyes S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat Protoc 2024; 19:1779-1806. [PMID: 38467905 PMCID: PMC7616092 DOI: 10.1038/s41596-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 03/13/2024]
Abstract
The reversible unfolding and refolding of proteins is a regulatory mechanism of tissue elasticity and signalling used by cells to sense and adapt to extracellular and intracellular mechanical forces. However, most of these proteins exhibit low mechanical stability, posing technical challenges to the characterization of their conformational dynamics under force. Here, we detail step-by-step instructions for conducting single-protein nanomechanical experiments using ultra-stable magnetic tweezers, which enable the measurement of the equilibrium conformational dynamics of single proteins under physiologically relevant low forces applied over biologically relevant timescales. We report the basic principles determining the functioning of the magnetic tweezer instrument, review the protein design strategy and the fluid chamber preparation and detail the procedure to acquire and analyze the unfolding and refolding trajectories of individual proteins under force. This technique adds to the toolbox of single-molecule nanomechanical techniques and will be of particular interest to those interested in proteins involved in mechanosensing and mechanotransduction. The procedure takes 4 d to complete, plus an additional 6 d for protein cloning and production, requiring basic expertise in molecular biology, surface chemistry and data analysis.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
37
|
Wang W, Atherton P, Kreft M, te Molder L, van der Poel S, Hoekman L, Celie P, Joosten RP, Fässler R, Perrakis A, Sonnenberg A. Caskin2 is a novel talin- and Abi1-binding protein that promotes cell motility. J Cell Sci 2024; 137:jcs262116. [PMID: 38587458 PMCID: PMC11166458 DOI: 10.1242/jcs.262116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.
Collapse
Affiliation(s)
- Wei Wang
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Paul Atherton
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, The University of Liverpool, Liverpool L69 7BE, UK
| | - Maaike Kreft
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lisa te Molder
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Sabine van der Poel
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Patrick Celie
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Robbie P. Joosten
- Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| |
Collapse
|
38
|
Huang Y, Chen T, Chen X, Chen X, Zhang J, Liu S, Lu M, Chen C, Ding X, Yang C, Huang R, Song Y. Decoding Biomechanical Cues Based on DNA Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310330. [PMID: 38185740 DOI: 10.1002/smll.202310330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/18/2023] [Indexed: 01/09/2024]
Abstract
Biological systems perceive and respond to mechanical forces, generating mechanical cues to regulate life processes. Analyzing biomechanical forces has profound significance for understanding biological functions. Therefore, a series of molecular mechanical techniques have been developed, mainly including single-molecule force spectroscopy, traction force microscopy, and molecular tension sensor systems, which provide indispensable tools for advancing the field of mechanobiology. DNA molecules with a programmable structure and well-defined mechanical characteristics have attached much attention to molecular tension sensors as sensing elements, and are designed for the study of biomechanical forces to present biomechanical information with high sensitivity and resolution. In this work, a comprehensive overview of molecular mechanical technology is presented, with a particular focus on molecular tension sensor systems, specifically those based on DNA. Finally, the future development and challenges of DNA-based molecular tension sensor systems are looked upon.
Collapse
Affiliation(s)
- Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ting Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaodie Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ximing Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Menghao Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chong Chen
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiangyu Ding
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ruiyun Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
39
|
Ball NJ, Barnett SFH, Goult BT. Mechanically operated signalling scaffolds. Biochem Soc Trans 2024; 52:517-527. [PMID: 38572868 PMCID: PMC11088903 DOI: 10.1042/bst20221194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Cellular signalling is a complex process and involves cascades of enzymes that, in response to a specific signal, give rise to exact cellular responses. Signalling scaffold proteins organise components of these signalling pathways in space and time to co-ordinate signalling outputs. In this review we introduce a new class of mechanically operated signalling scaffolds that are built into the cytoskeletal architecture of the cell. These proteins contain force-dependent binary switch domains that integrate chemical and mechanical signals to introduce quantised positional changes to ligands and persistent alterations in cytoskeletal architecture providing mechanomemory capabilities. We focus on the concept of spatial organisation, and how the cell organises signalling molecules at the plasma membrane in response to specific signals to create order and distinct signalling outputs. The dynamic positioning of molecules using binary switches adds an additional layer of complexity to the idea of scaffolding. The switches can spatiotemporally organise enzymes and substrates dynamically, with the introduction of ∼50 nm quantised steps in distance between them as the switch patterns change. Together these different types of signalling scaffolds and the proteins engaging them, provide a way for an ordering of molecules that extends beyond current views of the cell.
Collapse
Affiliation(s)
- Neil J. Ball
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| | | | - Benjamin T. Goult
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K
| |
Collapse
|
40
|
Braeutigam A, Burnet AF, Gompper G, Sabass B. Clutch model for focal adhesions predicts reduced self-stabilization under oblique pulling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:295101. [PMID: 38574682 DOI: 10.1088/1361-648x/ad3ac1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.
Collapse
Affiliation(s)
- Andrea Braeutigam
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Anton F Burnet
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Benedikt Sabass
- Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
- Theoretical Physics of Living Matter, Institute for Biological Information Processes, Forschungszentrum Jülich, 52425 Jülich, Germany
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, 80752 Munich, Germany
| |
Collapse
|
41
|
Kliewe F, Siegerist F, Hammer E, Al-Hasani J, Amling TRJ, Hollemann JZE, Schindler M, Drenic V, Simm S, Amann K, Daniel C, Lindenmeyer M, Hecker M, Völker U, Endlich N. Zyxin is important for the stability and function of podocytes, especially during mechanical stretch. Commun Biol 2024; 7:446. [PMID: 38605154 PMCID: PMC11009394 DOI: 10.1038/s42003-024-06125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
Podocyte detachment due to mechanical stress is a common issue in hypertension-induced kidney disease. This study highlights the role of zyxin for podocyte stability and function. We have found that zyxin is significantly up-regulated in podocytes after mechanical stretch and relocalizes from focal adhesions to actin filaments. In zyxin knockout podocytes, we found that the loss of zyxin reduced the expression of vinculin and VASP as well as the expression of matrix proteins, such as fibronectin. This suggests that zyxin is a central player in the translation of mechanical forces in podocytes. In vivo, zyxin is highly up-regulated in patients suffering from diabetic nephropathy and in hypertensive DOCA-salt treated mice. Furthermore, zyxin loss in mice resulted in proteinuria and effacement of podocyte foot processes that was measured by super resolution microscopy. This highlights the essential role of zyxin for podocyte maintenance in vitro and in vivo, especially under mechanical stretch.
Collapse
Affiliation(s)
- Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | | | | | - Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Vedran Drenic
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology; Friedrich-Alexander University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
- NIPOKA GmbH, Center of High-End Imaging, Greifswald, Germany
| |
Collapse
|
42
|
Liu J, Si Z, Liu J, Zhang X, Xie C, Zhao W, Wang A, Xia Z. Machine learning identifies novel coagulation genes as diagnostic and immunological biomarkers in ischemic stroke. Aging (Albany NY) 2024; 16:6314-6333. [PMID: 38575196 PMCID: PMC11042924 DOI: 10.18632/aging.205706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Coagulation system is currently known associated with the development of ischemic stroke (IS). Thus, the current study is designed to identify diagnostic value of coagulation genes (CGs) in IS and to explore their role in the immune microenvironment of IS. METHODS Aberrant expressed CGs in IS were input into unsupervised consensus clustering to classify IS subtypes. Meanwhile, key CGs involved in IS were further selected by weighted gene co-expression network analysis (WGCNA) and machine learning methods, including random forest (RF), support vector machine (SVM), generalized linear model (GLM) and extreme-gradient boosting (XGB). The diagnostic performance of key CGs were evaluated by receiver operating characteristic (ROC) curves. At last, quantitative PCR (qPCR) was performed to validate the expressions of key CGs in IS. RESULTS IS patients were classified into two subtypes with different immune microenvironments by aberrant expressed CGs. Further WGCNA, machine learning methods and ROC curves identified ACTN1, F5, TLN1, JMJD1C and WAS as potential diagnostic biomarkers of IS. In addition, their expressions were significantly correlated with macrophages, neutrophils and/or T cells. GSEA also revealed that those biomarkers may regulate IS via immune and inflammation. Moreover, qPCR verified the expressions of ACTN1, F5 and JMJD1C in IS. CONCLUSIONS The current study identified ACTN1, F5 and JMJD1C as novel coagulation-related biomarkers associated with IS immune microenvironment, which enriches our knowledge of coagulation-mediated pathogenesis of IS and sheds light on next-step in vivo and in vitro experiments to elucidate the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Jinzhi Liu
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong Province, China
- Department of Gerontology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Department of Geriatric Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Zhihua Si
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, China
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Jinan, Shandong Province, China
| | - Xu Zhang
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Cong Xie
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Wei Zhao
- Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
| | - Aihua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong Province, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People’s Hospital and Liaocheng Clinical School of Shandong First Medical University, Liaocheng, Shandong Province, China
- Department of Neurology, Liaocheng People’s Hospital, Cheeloo College of Medicine, Liaocheng, Shandong Province, China
| |
Collapse
|
43
|
Guo Y, Yan J, Goult BT. Mechanotransduction through protein stretching. Curr Opin Cell Biol 2024; 87:102327. [PMID: 38301379 DOI: 10.1016/j.ceb.2024.102327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.
Collapse
Affiliation(s)
- Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore 117542, Singapore.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK; Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| |
Collapse
|
44
|
Cifuentes LP, Athamneh AIM, Efremov Y, Raman A, Kim T, Suter DM. A modified motor-clutch model reveals that neuronal growth cones respond faster to soft substrates. Mol Biol Cell 2024; 35:ar47. [PMID: 38354034 PMCID: PMC11064671 DOI: 10.1091/mbc.e23-09-0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Neuronal growth cones sense a variety of cues including chemical and mechanical ones to establish functional connections during nervous system development. Substrate-cytoskeletal coupling is an established model for adhesion-mediated growth cone advance; however, the detailed molecular and biophysical mechanisms underlying the mechanosensing and mechanotransduction process remain unclear. Here, we adapted a motor-clutch model to better understand the changes in clutch and cytoskeletal dynamics, traction forces, and substrate deformation when a growth cone interacts with adhesive substrates of different stiffnesses. Model parameters were optimized using experimental data from Aplysia growth cones probed with force-calibrated glass microneedles. We included a reinforcement mechanism at both motor and clutch level. Furthermore, we added a threshold for retrograde F-actin flow that indicates when the growth cone is strongly coupled to the substrate. Our modeling results are in strong agreement with experimental data with respect to the substrate deformation and the latency time after which substrate-cytoskeletal coupling is strong enough for the growth cone to advance. Our simulations show that it takes the shortest time to achieve strong coupling when substrate stiffness was low at 4 pN/nm. Taken together, these results suggest that Aplysia growth cones respond faster and more efficiently to soft than stiff substrates.
Collapse
Affiliation(s)
| | | | - Yuri Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907
| | - Daniel M. Suter
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
45
|
Camp D, Venkatesh B, Solianova V, Varela L, Goult BT, Tanentzapf G. The actin binding sites of talin have both distinct and complementary roles in cell-ECM adhesion. PLoS Genet 2024; 20:e1011224. [PMID: 38662776 PMCID: PMC11075885 DOI: 10.1371/journal.pgen.1011224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/07/2024] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bhavya Venkatesh
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorena Varela
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein. Proc Natl Acad Sci U S A 2024; 121:e2314947121. [PMID: 38513099 PMCID: PMC10990152 DOI: 10.1073/pnas.2314947121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| | - Yasumi Otani
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| |
Collapse
|
47
|
Jo MH, Meneses P, Yang O, Carcamo CC, Pangeni S, Ha T. Determination of single-molecule loading rate during mechanotransduction in cell adhesion. Science 2024; 383:1374-1379. [PMID: 38513010 PMCID: PMC10977658 DOI: 10.1126/science.adk6921] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024]
Abstract
Cells connect with their environment through surface receptors and use physical tension in receptor-ligand bonds for various cellular processes. Single-molecule techniques have revealed bond strength by measuring "rupture force," but it has long been recognized that rupture force is dependent on loading rate-how quickly force is ramped up. Thus, the physiological loading rate needs to be measured to reveal the mechanical strength of individual bonds in their functional context. We have developed an overstretching tension sensor (OTS) to allow more accurate force measurement in physiological conditions with single-molecule detection sensitivity even in mechanically active regions. We used serially connected OTSs to show that the integrin loading rate ranged from 0.5 to 4 piconewtons per second and was about three times higher in leukocytes than in epithelial cells.
Collapse
Affiliation(s)
- Myung Hyun Jo
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Paul Meneses
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Claudia C. Carcamo
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sushil Pangeni
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Taekjip Ha
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Liu J, Yan J. Unraveling the Dual-Stretch-Mode Impact on Tension Gauge Tethers' Mechanical Stability. J Am Chem Soc 2024; 146:7266-7273. [PMID: 38451494 PMCID: PMC10959107 DOI: 10.1021/jacs.3c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Tension gauge tethers (TGTs), short DNA segments serving as extracellular tension sensors, are instrumental in assessing the tension dynamics in mechanotransduction. These TGTs feature an initial shear-stretch region and an unzip-stretch region. Despite their utility, no theoretical model has been available to estimate their tension-dependent lifetimes [τ(f)], restricting insights from cellular mechanotransduction experiments. We have now formulated a concise expression for τ(f) of TGTs, accommodating contributions from both stretch regions. Our model uncovers a tension-dependent energy barrier shift occurring when tension surpasses a switching force of approximately 13 pN for the recently developed TGTs, greatly influencing τ(f) profiles. Experimental data from several TGTs validated our model. The calibrated expression can predict τ(f) of TGTs at 37 °C based on their sequences with minor fold changes, supporting future applications of TGTs.
Collapse
Affiliation(s)
- Jingzhun Liu
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Jie Yan
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Department
of Physics, National University of Singapore, Singapore 117542, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
49
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
50
|
Schmidt CJ, Stehbens SJ. Microtubule control of migration: Coordination in confinement. Curr Opin Cell Biol 2024; 86:102289. [PMID: 38041936 DOI: 10.1016/j.ceb.2023.102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/04/2023]
Abstract
The microtubule cytoskeleton has a well-established, instrumental role in coordinating cell migration. Decades of research has focused on understanding how microtubules couple intracellular trafficking with cortical targeting and spatial organization of signaling to facilitate locomotion. Movement in physically challenging environments requires coordination of forces generated by the actin cytoskeleton to drive cell shape changes, with microtubules acting to spatially regulate contractility. Recent work has demonstrated that the mechanical properties of microtubules are adaptive to stress, leading to a new understanding of their roles in cell migration. Herein we review new developments in how microtubules sense and adapt to changes in the physical properties of their environment during migration. We frame our discussion around our current understanding of how microtubules target cell-matrix adhesions, and their role in the spatiotemporal coordination of signaling to form mechano feedback loops. We expand on how these mechanisms may influence cell morphology in confined three-dimensional settings, and the importance of locally tuning the mechanical stability of polymers in response to mechanical cues. Finally, we discuss new roles for Golgi-derived microtubules in mechanosensing, and how preferential motor use may influence polymer stability to resist the physical constraints cells experience in confined environments.
Collapse
Affiliation(s)
- Christanny J Schmidt
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Samantha J Stehbens
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|