1
|
Chen M, Liu H, He X, Li M, Tang CS, Sun M, Koirala KP, Bowden ME, Li Y, Liu X, Zhou D, Sun S, Breese MBH, Cai C, Wang L, Du Y, Wee ATS, Yin X. Uncovering an Interfacial Band Resulting from Orbital Hybridization in Nickelate Heterostructures. ACS NANO 2024; 18:27707-27717. [PMID: 39327231 DOI: 10.1021/acsnano.4c09921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO3 synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO3 on SrTiO3 (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level. Our comprehensive investigation, which incorporated a wide array of experimental techniques and density functional theory calculations, revealed that the emergence of the interfacial band structure is primarily driven by orbital hybridization between the Ti 3d orbitals of the STO substrate and the O 2p orbitals of the NNO thin film. Furthermore, exciton peaks have been detected in the optical spectra of the NNO/STO film, attributable to the pronounced electron-electron (e-e) and electron-hole (e-h) interactions propagating from the STO substrate into the NNO film. These findings underscore the substantial influence of interfacial orbital hybridization on the electronic structure of oxide thin films, thereby offering key insights into tuning their interfacial properties.
Collapse
Affiliation(s)
- Mingyao Chen
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Huimin Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Xu He
- Theoretical Materials Physics, Q-MAT, CESAM, Université de Liège, Liège B-4000, Belgium
| | - Minjuan Li
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
| | - Mengxia Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Krishna Prasad Koirala
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mark E Bowden
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yangyang Li
- School of Physics, Shandong University, Jinan, Shandong 250100, China
| | - Xiongfang Liu
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Difan Zhou
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Shuo Sun
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Mark B H Breese
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, Singapore 117603, Singapore
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Chuanbing Cai
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yingge Du
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- Centre for Advanced 2D Materials and Graphene Research, National University of Singapore, Singapore 117546, Singapore
| | - Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Men E, Li D, Zhang H, Chen J, Qiao Z, Wei L, Wang Z, Xi C, Song D, Li Y, Jeen H, Chen K, Zhu H, Hao L. An atomically controlled insulator-to-metal transition in iridate/manganite heterostructures. Nat Commun 2024; 15:8427. [PMID: 39341802 PMCID: PMC11439077 DOI: 10.1038/s41467-024-52616-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
All-insulator heterostructures with an emerging metallicity are at the forefront of material science, which typically contain at least one band insulator while it is not necessary to be. Here we show emergent phenomena in a series of all-correlated-insulator heterostructures that composed of insulating CaIrO3 and insulating La0.67Sr0.33MnO3. We observed an intriguing insulator-to-metal transition, that depends delicately on the thickness of the iridate component. The simultaneous enhancements of magnetization, electric conductivity, and magnetoresistance effect indicate a percolation-type nature of the insulator-to-metal transition, with the percolation threshold can be reached at an exceptionally low volume fraction of the iridate. Such a drastic transition is induced by an interfacial charge transfer, which interestingly alters the electronic and crystalline structures of the bulk region rather than the limited ultrathin interface. We further showcased the central role of effective correlation in modulating the insulator-to-metal transition, by demonstrating that the critical thickness of iridate for triggering the metallic state can be systematically reduced down to a single unit-cell layer.
Collapse
Affiliation(s)
- Enyang Men
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Deyang Li
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Haiyang Zhang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Jingxin Chen
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Zhihan Qiao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
| | - Long Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Zhaosheng Wang
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Chuanying Xi
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Dongsheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yuhan Li
- Department of Physics, Beijing Normal University, Beijing, China
| | - Hyoungjeen Jeen
- Department of Physics, Pusan National University, Busan, South Korea
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China.
| | - Hong Zhu
- Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Lin Hao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
3
|
Zheng J, Shi W, Li Z, Zhang J, Yang CY, Zhu Z, Wang M, Zhang J, Han F, Zhang H, Chen Y, Hu F, Shen B, Chen Y, Sun J. Charge-Transfer-Induced Interfacial Ferromagnetism in Ferromagnet-Free Oxide Heterostructures. ACS NANO 2024; 18:9232-9241. [PMID: 38466082 DOI: 10.1021/acsnano.4c01910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Due to the strong interlayer coupling between multiple degrees of freedom, oxide heterostructures have demonstrated exotic properties that are not shown by their bulk counterparts. One of the most interesting properties is ferromagnetism at the interface formed between "nonferromagnetic" compounds. Here we report on the interfacial ferromagnetic phase induced in the superlattices consisting of the two paramagnetic oxides CaRuO3 (CRO) and LaNiO3 (LNO). By varying the sublayer thickness in the superlattice period, we demonstrate that the ferromagnetic order has been established in both CaRuO3 and LaNiO3 sublayers, exhibiting an identical Curie temperature of ∼75 K. The X-ray absorption spectra suggest a strong charge transfer from Ru to Ni at the interface, triggering superexchange interactions between Ru/Ni ions and giving rise to the emergent ferromagnetic phase. Moreover, the X-ray linear dichroism spectra reveal the preferential occupancy of the d3z2-r2 orbital for the Ru ions and the dx2-y2 orbital for the Ni ions in the heterostructure. This leads to different magnetic anisotropy of the superlattices when they are dominated by CRO or LNO sublayers. This work clearly demonstrates a charge-transfer-induced interfacial ferromagnetic phase in the whole ferromagnet-free oxide heterostructures, offering a feasible way to tailor oxide materials for desired functionalities.
Collapse
Affiliation(s)
- Jie Zheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenxiao Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhe Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Chao-Yao Yang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhaozhao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengqin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jine Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Furong Han
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Hui Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, People's Republic of China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
4
|
He L, Nong H, Tan J, Wu Q, Zheng R, Zhao S, Yu Q, Wang J, Liu B. Growth of 2D Cr 2 O 3 -CrN Mosaic Heterostructures with Tunable Room-Temperature Ferromagnetism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304946. [PMID: 37482950 DOI: 10.1002/adma.202304946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Indexed: 07/25/2023]
Abstract
2D magnets have generated much attention due to their potential for spintronic devices. Heterostructures of 2D magnets are interesting platforms for exploring physical phenomena and applications. However, the controlled growth of 2D room-temperature ferromagnetic heterostructures is challenging. Here, one-pot chemical vapor deposition growth of stable 2D Cr2 O3 -CrN mosaic heterostructures (MHs) is reported with a controlled ratio of components that possess robust room-temperature ferromagnetism. The 2D MHs consist of Cr2 O3 flakes with embedded CrN subdomains and the CrN:Cr2 O3 ratio can be tuned from 0% to 100% during growth. By changing the CrN:Cr2 O3 ratio, the ferromagnetism of the MHs (e.g., saturation magnetization, coercive field), which originates from the interfacial coupling between Cr2 O3 and CrN, can be controlled. Importantly, the obtained Cr2 O3 -CrN MHs are stable in air at elevated temperatures and have robust ferromagnetism with Curie temperature >400 K. This work presents a facile method for fabricating 2D MHs with tunable magnetism which will benefit high-temperature spintronics.
Collapse
Affiliation(s)
- Liqiong He
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Huiyu Nong
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Junyang Tan
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qinke Wu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Rongxu Zheng
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Shilong Zhao
- School of Electronic Information Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Qiangmin Yu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingwei Wang
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Shi W, Zheng J, Li Z, Wang M, Zhu Z, Zhang J, Zhang H, Chen Y, Hu F, Shen B, Chen Y, Sun J. Enhancing Interfacial Ferromagnetism and Magnetic Anisotropy of CaRuO 3 /SrTiO 3 Superlattices via Substrate Orientation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308172. [PMID: 38037707 DOI: 10.1002/smll.202308172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. One of the most interesting phenomena is the interfacial magnetism formed between two non-magnetic compounds. Here, a robust ferromagnetic phase emerged at the (111)-oriented heterointerface between paramagnetic CaRuO3 and diamagnetic SrTiO3 is reported. The Curie temperature is as high as ≈155 K and the saturation magnetization is as large as ≈1.3 µB per formula unit for the (111)-CaRuO3 /SrTiO3 superlattices, which are obviously superior to those of the (001)-oriented counterparts and are comparable to the typical itinerant ferromagnet SrRuO3 . A strong in-plane magnetic anisotropy with six-fold symmetry is further revealed by the anisotropic magnetoresistance measurements, presenting a large in-plane anisotropic field of 3.0-3.6 T. More importantly, the magnetic easy axis of the (111)-oriented superlattices can be effectively tuned from 〈11 2 ¯ $11\overline{2}$ 1〉 to 〈1 1 ¯ 0 $1 \bar{1}0$ 〉 directions by increasing the layer thickness of SrTiO3 . The findings demonstrate a feasible approach to enhance the interface coupling effect by varying the stacking orientation of oxide heterostructures. The tunable magnetic anisotropy also shows potential applications in low-power-consumption or exchange spring devices.
Collapse
Affiliation(s)
- Wenxiao Shi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhe Li
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengqin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jine Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Hui Zhang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yunzhong Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fengxia Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
| | - Yuansha Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Sun
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Spintronics Institute, University of Jinan, Jinan, Shandong, 250022, China
| |
Collapse
|
6
|
Hao L, Yi D, Wang M, Liu J, Yu P. Emergent quantum phenomena in atomically engineered iridate heterostructures. FUNDAMENTAL RESEARCH 2023; 3:313-321. [PMID: 38933764 PMCID: PMC11197666 DOI: 10.1016/j.fmre.2022.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last few years, researches in iridates have developed into an exciting field with the discovery of numerous emergent phenomena, interesting physics, and intriguing functionalities. Among the studies, iridate-based artificial structures play a crucial role owing to their extreme flexibility and tunability in lattice symmetry, chemical composition, and crystal dimensionality. In this article, we present an overview of the recent progress regarding iridate-based artificial structures. We first explicitly introduce several essential concepts in iridates. Then, we illustrate important findings on representative SrIrO3/SrTiO3 superlattices, heterostructures comprised of SrIrO3 and magnetic oxides, and their response to external electric-field stimuli. Finally, we comment on existing problems and promising future directions in this exciting field.
Collapse
Affiliation(s)
- Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Di Yi
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Meng Wang
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Pu Yu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
7
|
MacManus-Driscoll JL, Wu R, Li W. Interface-related phenomena in epitaxial complex oxide ferroics across different thin film platforms: opportunities and challenges. MATERIALS HORIZONS 2023; 10:1060-1086. [PMID: 36815609 PMCID: PMC10068909 DOI: 10.1039/d2mh01527g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Interfaces in complex oxides give rise to fascinating new physical phenomena arising from the interconnected spin, lattice, charge and orbital degrees of freedom. Most commonly, interfaces are engineered in epitaxial superlattice films. Of growing interest also are epitaxial vertically aligned nanocomposite films where interfaces form by self-assembly. These two thin film forms offer different capabilities for materials tuning and have been explored largely separately from one another. Ferroics (ferroelectric, ferromagnetic, multiferroic) are among the most fascinating phenomena to be manipulated using interface effects. Hence, in this review we compare and contrast the ferroic properties that arise in these two different film forms, highlighting exemplary materials combinations which demonstrate novel, enhanced and/or emergent ferroic functionalities. We discuss the origins of the observed functionalities and propose where knowledge can be translated from one materials form to another, to potentially produce new functionalities. Finally, for the two different film forms we present a perspective on underexplored/emerging research directions.
Collapse
Affiliation(s)
| | - Rui Wu
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- Spin-X Institute, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| | - Weiwei Li
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
8
|
Wang ZA, Xue W, Yan F, Zhu W, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, Wang K. Selectively Controlled Ferromagnets by Electric Fields in van der Waals Ferromagnetic Heterojunctions. NANO LETTERS 2023; 23:710-717. [PMID: 36626837 DOI: 10.1021/acs.nanolett.2c04796] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Charge transfer plays a key role at the interfaces of heterostructures, which can affect electronic structures and ultimately the physical properties of the materials. However, charge transfer is difficult to manipulate externally once the interface is formed. The recently discovered van der Waals ferromagnets with atomically sharp interfaces provided a perfect platform for the electrical control of interfacial charge transfer. Here, we report magnetoresistance experiments revealing electrically tunable charge transfer in Fe3GeTe2/Cr2Ge2Te6/Fe3GeTe2 all-magnetic van der Waals heterostructures, which can be exploited to selectively modify the switching fields of the top or bottom Fe3GeTe2 electrodes. The directional charge transfer from metallic Fe3GeTe2 to semiconducting Cr2Ge2Te6 is revealed by first-principles calculations, which remarkably modifies the magnetic anisotropy energy of Fe3GeTe2, leading to the dramatically suppressed coercivity. The electrically selective control of magnetism demonstrated in this study could stimulate the development of spintronic devices based on van der Waals magnets.
Collapse
Affiliation(s)
- Zi-Ao Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weishan Xue
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Faguang Yan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Wenkai Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Yi Liu
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Xinhui Zhang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Chang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Yuan
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Kaiyou Wang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Gogoi L, Gao W, Ajayan PM, Deb P. Quantum magnetic phenomena in engineered heterointerface of low-dimensional van der Waals and non-van der Waals materials. Phys Chem Chem Phys 2023; 25:1430-1456. [PMID: 36601788 DOI: 10.1039/d2cp05228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Investigating magnetic phenomena at the microscopic level has emerged as an indispensable research domain in the field of low-dimensional magnetic materials. Understanding quantum phenomena that mediate the magnetic interactions in dimensionally confined materials is crucial from the perspective of designing cheaper, compact, and energy-efficient next-generation spintronic devices. The infrequent occurrence of intrinsic long-range magnetic order in dimensionally confined materials hinders the advancement of this domain. Hence, introducing and controlling the ferromagnetic character in two-dimensional materials is important for further prospective studies. The interface in a heterostructure significantly contributes to modulating its collective magnetic properties. Quantum phenomena occurring at the interface of engineered heterostructures can enhance or suppress magnetization of the system and introduce magnetic character to a native non-magnetic system. Considering most 2D magnetic materials are used as stacks with other materials in nanoscale devices, the methods to control the magnetism in a heterostructure and understanding the corresponding mechanism are crucial for promising spintronic and other functional applications. This review highlights the effect of electric polarization of the adjacent layer, changed structural configuration at the vicinity of the interface, natural strain induced by lattice mismatch, and exchange interaction in the interfacial region in modulating the magnetism of heterostructures of van der Waals and non-van der Waals materials. Further, prospects of interface-engineered magnetism in spin-dependent device applications are also discussed.
Collapse
Affiliation(s)
- Liyenda Gogoi
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Pulickel M Ajayan
- Benjamin M. and Mary Greenwood Anderson Professor of Engineering, Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | - Pritam Deb
- Advanced Functional Materials Laboratory, Department of Physics, Tezpur University (Central University), Tezpur, 784028, India.
| |
Collapse
|
10
|
Liu J, Zhang X, Ji Y, Gao X, Wu J, Zhang M, Li L, Liu X, Yan W, Yao T, Yin Y, Wang L, Guo H, Cheng G, Wang Z, Gao P, Wang Y, Chen K, Liao Z. Controllable Itinerant Ferromagnetism in Weakly Correlated 5d SrIrO 3. J Phys Chem Lett 2022; 13:11946-11954. [PMID: 36534070 DOI: 10.1021/acs.jpclett.2c03313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The weakly correlated nature of 5d oxide SrIrO3 determines its rare ferromagnetism, and the control of its magnetic order is even less studied. Tailoring structure distortion is currently a main route to tune the magnetic order of 5d iridates, but only for the spatially confined insulating counterparts. Here, we have realized ferromagnetic order in metallic SrIrO3 by construction of SrIrO3/ferromagnetic-insulator (LaCoO3) superlattices, which reveal a giant coercivity of ∼10 T and saturation field of ∼25 T with strong perpendicular magnetic anisotropy. The Curie temperature of SrIrO3 can be controlled by engineering interface charge transfer, which is confirmed by Hall effect measurements collaborating with EELS and XAS. Besides, the noncoplanar spin texture is captured, which is caused by interfacial Dzyaloshinskii-Moriya interactions as well. These results indicate controllable itinerant ferromagnetism and an emergent topological magnetic state in strong spin-orbit coupled semimetal SrIrO3, showing great potential to develop efficient spintronic devices.
Collapse
Affiliation(s)
- Junhua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Xinxin Zhang
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Yaoyao Ji
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Xiaofei Gao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Jiating Wu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei230031, China
| | - Minjie Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei230031, China
| | - Lin Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Yuewei Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
- Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei230026, China
| | - Lingfei Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Hangwen Guo
- State Key Laboratory of Surface Physics and Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai200433, China
| | - Guanglei Cheng
- CAS Key Laboratory of Microscale Magnetic Resonance and Department of Modern Physics, University of Science and Technology of China, Hefei230026, China
| | - Zhaosheng Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei230031, China
| | - Peng Gao
- International Center for Quantum Materials and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing100871, China
| | - Yilin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| | - Zhaoliang Liao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
11
|
Hua E, Si L, Dai K, Wang Q, Ye H, Liu K, Zhang J, Lu J, Chen K, Jin F, Wang L, Wu W. Ru-Doping-Induced Spin Frustration and Enhancement of the Room-Temperature Anomalous Hall Effect in La 2/3 Sr 1/3 MnO 3 Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206685. [PMID: 36120849 DOI: 10.1002/adma.202206685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, Ru-doping-enhanced AHE in La2/3 Sr1/3 Mn1-x Rux O3 epitaxial films is exploited. As the B-site Ru doping level increases up to 20%, the anomalous Hall resistivity at room temperature can be enhanced from nΩ cm to µΩ cm scale. Ru doping leads to strong competition between the ferromagnetic double-exchange interaction and the antiferromagnetic superexchange interaction. The resultant spin frustration and spin-glass state facilitate a strong skew-scattering process, thus significantly enhancing the extrinsic AHE. The findings can pave a feasible approach for boosting the controllability and reliability of oxide-based spintronic devices.
Collapse
Affiliation(s)
- Enda Hua
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Si
- School of Physics, Northwest University, Xi'an, 710127, China
- Institute of Solid State Physics, TU Wien, Vienna, 1040, Austria
| | - Kunjie Dai
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Qing Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Huan Ye
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kuan Liu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jinfeng Zhang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Jingdi Lu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Kai Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Jin
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Lingfei Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Wenbin Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
12
|
Chen S, Zhang Q, Li X, Zhao J, Lin S, Jin Q, Hong H, Huon A, Charlton T, Li Q, Yan W, Wang J, Ge C, Wang C, Wang B, Fitzsimmons MR, Guo H, Gu L, Yin W, Jin KJ, Guo EJ. Atomically engineered cobaltite layers for robust ferromagnetism. SCIENCE ADVANCES 2022; 8:eabq3981. [PMID: 36306366 PMCID: PMC9616489 DOI: 10.1126/sciadv.abq3981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emergent phenomena at heterointerfaces are directly associated with the bonding geometry of adjacent layers. Effective control of accessible parameters, such as the bond length and bonding angles, offers an elegant method to tailor competing energies of the electronic and magnetic ground states. In this study, we construct unit-thick syntactic layers of cobaltites within a strongly tilted octahedral matrix via atomically precise synthesis. The octahedral tilt patterns of adjacent layers propagate into cobaltites, leading to a continuation of octahedral tilting while maintaining substantial misfit tensile strain. These effects induce severe rumpling within an atomic plane of neighboring layers, further triggering the electronic reconstruction between the splitting orbitals. First-principles calculations reveal that the cobalt ions transit to a higher spin state level upon octahedral tilting, resulting in robust ferromagnetism in ultrathin cobaltites. This work demonstrates a design methodology for fine-tuning the lattice and spin degrees of freedom in correlated quantum heterostructures by exploiting epitaxial geometric engineering.
Collapse
Affiliation(s)
- Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xujing Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shan Lin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Hong
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Amanda Huon
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Mathematics, Physics, and Statistics, University of the Sciences, Philadelphia, PA 19104, USA
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Qian Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Jiaou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Baotian Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Michael R. Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wen Yin
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Corresponding author. (W.Y.); (K.-j.J.); (E.J.G.)
| | - Kui-juan Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Corresponding author. (W.Y.); (K.-j.J.); (E.J.G.)
| | - Er Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Corresponding author. (W.Y.); (K.-j.J.); (E.J.G.)
| |
Collapse
|
13
|
Lauter V, Wang K, Mewes T, Glavic A, Toperverg B, Ahmadi M, Assaf B, Hu B, Li M, Liu X, Liu Y, Moodera J, Rokhinson L, Singh D, Sun N. M-STAR: Magnetism second target advanced reflectometer at the Spallation Neutron Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:103903. [PMID: 36319315 DOI: 10.1063/5.0093622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
M-STAR is a next generation polarized neutron reflectometer with advanced capabilities. A new focusing guide concept is optimized for samples with dimensions down to a millimeter range. A proposed hybrid pulse-skipping chopper will enable experiments at constant geometry at one incident angle in a broad range of wavevector transfer Q up to 0.3 A-1 for specular, off-specular, and GISANS measurements. M-STAR will empower nanoscience and spintronics studies routinely on small samples (∼2 × 2 mm2) and of atomic-scale thickness using versatile experimental conditions of magnetic and/or electric fields, light, and temperature applied in situ to novel complex device-like nanosystems with multiple buried interfaces. M-STAR will enable improved grazing incidence diffraction measurements, as a surface-sensitive depth-resolved probe of, e.g., the out-of-plane component of atomic magnetic moments in ferromagnetic, antiferromagnetic, and more complex structures as well as in-plane atomic-scale structures inaccessible with contemporary diffractometry and reflectometry. New horizons will be opened by the development of an option to probe near-surface dynamics with inelastic grazing incidence scattering in the time-of-flight mode. These novel options in combination with ideally matched parameters of the second target station will place M-STAR in the world's leading position for high resolution polarized reflectometry.
Collapse
Affiliation(s)
- Valeria Lauter
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - Kang Wang
- Department of Electrical and Computer Engineering, Department of Physics, Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
| | - Tim Mewes
- Magnetics Laboratory, Department of Physics and Astronomy, The University of Alabama, 1008 Bevill Bldg., Tuscaloosa, Alabama 3548, USA
| | - Artur Glavic
- Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Boris Toperverg
- Department of Solid State Physics, Experimental Physics, Ruhr-University Bochum, Universitetsstrasse 150, Bochum D-44781, Germany
| | - Mahshid Ahmadi
- Department of Materials Science and Engineering, Institute for Advanced Materials and Manufacturing, University of Tennessee, 2641 Osprey Vista Way, Knoxville, Tennessee 37920, USA
| | - Badih Assaf
- 225 Nieuwland Science Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bin Hu
- Department of Materials Science and Engineering, Institute for Advanced Materials and Manufacturing, University of Tennessee, 2641 Osprey Vista Way, Knoxville, Tennessee 37920, USA
| | - Mingda Li
- Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg. 24-209, Cambridge, Massachusetts 02139, USA
| | - Xinyu Liu
- 225 Nieuwland Science Center, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yaohua Liu
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, USA
| | - Jagadeesh Moodera
- Massachusetts Institute of Technology, 77 Massachusetts Ave., Bldg. 24-209, Cambridge, Massachusetts 02139, USA
| | - Leonid Rokhinson
- Department of Physics, Purdue University, West Lafayette, Indiana 47906, USA
| | - Deepak Singh
- 223 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, USA
| | - Nian Sun
- Electrical and Computer Engineering Department, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Ren Z, Lao B, Zheng X, Liao L, Lu Z, Li S, Yang Y, Cao B, Wen L, Zhao K, Wang L, Bai X, Hao X, Liao Z, Wang Z, Li RW. Emergence of Insulating Ferrimagnetism and Perpendicular Magnetic Anisotropy in 3d-5d Perovskite Oxide Composite Films for Insulator Spintronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15407-15414. [PMID: 35324157 DOI: 10.1021/acsami.2c01849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic insulators with strong perpendicular magnetic anisotropy (PMA) play a key role in exploring pure spin current phenomena and developing ultralow-dissipation spintronic devices, rendering them highly desirable to develop new material platforms. Here, we report the epitaxial growth of La2/3Sr1/3MnO3 (LSMO)-SrIrO3 (SIO) composite oxide films (LSMIO) with different crystalline orientations fabricated by a sequential two-target ablation process by pulsed laser deposition. The LSMIO films exhibit high crystalline quality with a homogeneous mixture of LSMO and SIO at an atomic level. Ferrimagnetic and insulating transport characteristics are observed, with the temperature-dependent electric resistivity well fitted by the Mott variable-range-hopping model. Moreover, the LSMIO films show strong PMA. By further constructing all-perovskite-oxide heterostructures of the ferrimagnetic insulator LSMIO and a strong spin-orbital-coupled SIO layer, pronounced spin Hall magnetoresistance (SMR) and spin Hall-like anomalous Hall effect (SH-AHE) were observed. These results illustrate the potential application of the ferrimagnetic insulator LSMIO in developing all-oxide ultralow-dissipation spintronic devices.
Collapse
Affiliation(s)
- Zeliang Ren
- Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Bin Lao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xuan Zheng
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Lei Liao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zengxing Lu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Sheng Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yongjie Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Bingshan Cao
- Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, Anhui, China
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lijie Wen
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Kenan Zhao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lifen Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Hao
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhaoliang Liao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhiming Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Jaiswal AK, Wang D, Wollersen V, Schneider R, Tacon ML, Fuchs D. Direct Observation of Strong Anomalous Hall Effect and Proximity-Induced Ferromagnetic State in SrIrO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109163. [PMID: 35080789 DOI: 10.1002/adma.202109163] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/20/2022] [Indexed: 05/08/2023]
Abstract
The 5d iridium-based transition metal oxides have gained broad interest because of their strong spin-orbit coupling, which favors new or exotic quantum electronic states. On the other hand, they rarely exhibit more mainstream orders like ferromagnetism due to generally weak electron-electron correlation strength. Here, a proximity-induced ferromagnetic (FM) state with TC ≈ 100 K and strong magnetocrystalline anisotropy is shown in a SrIrO3 (SIO) heterostructure via interfacial charge transfer by using a ferromagnetic insulator in contact with SIO. Electrical transport allows to selectively probe the FM state of the SIO layer and the direct observation of a strong, intrinsic, and positive anomalous Hall effect (AHE). For T ≤ 20 K, the AHE displays unusually large coercive and saturation field, a fingerprint of a strong pseudospin-lattice coupling. A Hall angle, σxy AHE /σxx , larger by an order of magnitude than in typical 3d metals and an FM net moment of about 0.1 μB /Ir, is reported. This emphasizes how efficiently the nontrivial topological band properties of SIO can be manipulated by structural modifications and the exchange interaction with 3d TMOs.
Collapse
Affiliation(s)
- Arun Kumar Jaiswal
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Di Wang
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, 76021, Karlsruhe, Germany
| | - Vanessa Wollersen
- Karlsruhe Institute of Technology, Institute of Nanotechnology and Karlsruhe Nano Micro Facility, 76021, Karlsruhe, Germany
| | - Rudolf Schneider
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Matthieu Le Tacon
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| | - Dirk Fuchs
- Karlsruhe Institute of Technology, Institute for Quantum Materials and Technologies, 76021, Karlsruhe, Germany
| |
Collapse
|
16
|
Jin Q, Wang Z, Zhang Q, Yu Y, Lin S, Chen S, Qi M, Bai H, Huon A, Li Q, Wang L, Yin X, Tang CS, Wee ATS, Meng F, Zhao J, Wang JO, Guo H, Ge C, Wang C, Yan W, Zhu T, Gu L, Chambers SA, Das S, Charlton T, Fitzsimmons MR, Liu GQ, Wang S, Jin KJ, Yang H, Guo EJ. Room-Temperature Ferromagnetism at an Oxide-Nitride Interface. PHYSICAL REVIEW LETTERS 2022; 128:017202. [PMID: 35061447 DOI: 10.1103/physrevlett.128.017202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 05/28/2023]
Abstract
Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.
Collapse
Affiliation(s)
- Qiao Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yonghong Yu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengru Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingqun Qi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - He Bai
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Amanda Huon
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Qian Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Le Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Xinmao Yin
- Physics Department, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiali Zhao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Ou Wang
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhong Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Tao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Scott A Chambers
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Sujit Das
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau 91767, France
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Michael R Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Gang-Qin Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shanmin Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kui-Juan Jin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hongxin Yang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Er-Jia Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
17
|
Datt G, Kotnana G, Maddu R, Vallin Ö, Joshi DC, Peddis D, Barucca G, Kamalakar MV, Sarkar T. Combined Bottom-Up and Top-Down Approach for Highly Ordered One-Dimensional Composite Nanostructures for Spin Insulatronics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37500-37509. [PMID: 34325507 PMCID: PMC8397244 DOI: 10.1021/acsami.1c09582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Engineering magnetic proximity effects-based devices requires developing efficient magnetic insulators. In particular, insulators, where magnetic phases show dramatic changes in texture on the nanometric level, could allow us to tune the proximity-induced exchange splitting at such distances. In this paper, we report the fabrication and characterization of highly ordered two-dimensional arrays of LaFeO3 (LFO)-CoFe2O4 (CFO) biphasic magnetic nanowires, grown on silicon substrates using a unique combination of bottom-up and top-down synthesis approaches. The regularity of the patterns was confirmed using atomic force microscopy and scanning electron microscopy techniques, whereas magnetic force microscopy images established the magnetic homogeneity of the patterned nanowires and absence of any magnetic debris between the wires. Transmission electron microscopy shows a close spatial correlation between the LFO and CFO phases, indicating strong grain-to-grain interfacial coupling, intrinsically different from the usual core-shell structures. Magnetic hysteresis loops reveal the ferrimagnetic nature of the composites up to room temperature and the presence of a strong magnetic coupling between the two phases, and electrical transport measurements demonstrate the strong insulating behavior of the LFO-CFO composite, which is found to be governed by Mott-variable range hopping conduction mechanisms. A shift in the Raman modes in the composite sample compared to those of pure CFO suggests the existence of strain-mediated elastic coupling between the two phases in the composite sample. Our work offers ordered composite nanowires with strong interfacial coupling between the two phases that can be directly integrated for developing multiphase spin insulatronic devices and emergent magnetic interfaces.
Collapse
Affiliation(s)
- Gopal Datt
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ganesh Kotnana
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Ramu Maddu
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Örjan Vallin
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Deep Chandra Joshi
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| | - Davide Peddis
- Dipartimento
di Chimica e Chimica Industriale, Università
di Genova, Via Dodecaneso
31, Genova I-16146, Italy
- Institute
of Structure of Matter, Italian National
Research Council (CNR), Monterotondo
Scalo, 00015 Rome, Italy
| | - Gianni Barucca
- Department
SIMAU, Università Politecnica delle
Marche, Via Brecce Bianche
12, Ancona 60131, Italy
| | - M. Venkata Kamalakar
- Department
of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Tapati Sarkar
- Department
of Materials Science and Engineering, Uppsala
University, Box 35, Uppsala SE-751
03, Sweden
| |
Collapse
|
18
|
Yoo MW, Tornos J, Sander A, Lin LF, Mohanta N, Peralta A, Sanchez-Manzano D, Gallego F, Haskel D, Freeland JW, Keavney DJ, Choi Y, Strempfer J, Wang X, Cabero M, Vasili HB, Valvidares M, Sanchez-Santolino G, Gonzalez-Calbet JM, Rivera A, Leon C, Rosenkranz S, Bibes M, Barthelemy A, Anane A, Dagotto E, Okamoto S, te Velthuis SGE, Santamaria J, Villegas JE. Large intrinsic anomalous Hall effect in SrIrO 3 induced by magnetic proximity effect. Nat Commun 2021; 12:3283. [PMID: 34078889 PMCID: PMC8172877 DOI: 10.1038/s41467-021-23489-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 04/25/2021] [Indexed: 02/04/2023] Open
Abstract
The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.
Collapse
Affiliation(s)
- Myoung-Woo Yoo
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - J. Tornos
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - A. Sander
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Ling-Fang Lin
- grid.411461.70000 0001 2315 1184Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA ,grid.263826.b0000 0004 1761 0489School of Physics, Southeast University, Nanjing, China
| | - Narayan Mohanta
- grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - A. Peralta
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - D. Sanchez-Manzano
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - F. Gallego
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - D. Haskel
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - J. W. Freeland
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - D. J. Keavney
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - Y. Choi
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - J. Strempfer
- grid.187073.a0000 0001 1939 4845Advanced Photon Source Argonne National Laboratory, Lemont, IL USA
| | - X. Wang
- grid.253355.70000 0001 2192 5641Department of Physics, Bryn Mawr College, Bryn Mawr, PA USA
| | - M. Cabero
- grid.5515.40000000119578126IMDEA Nanoscience Campus Universidad Autonoma, Cantoblanco, Spain ,grid.4795.f0000 0001 2157 7667Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain
| | - Hari Babu Vasili
- grid.423639.9CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain
| | - Manuel Valvidares
- grid.423639.9CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain
| | - G. Sanchez-Santolino
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - J. M. Gonzalez-Calbet
- grid.4795.f0000 0001 2157 7667Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain ,grid.4795.f0000 0001 2157 7667Department Quimica Inorganica, Facultad de Quimica, Universidad Complutense, Madrid, Spain
| | - A. Rivera
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - C. Leon
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - S. Rosenkranz
- grid.187073.a0000 0001 1939 4845Materials Science Division, Argonne National Laboratory, Lemont, IL USA
| | - M. Bibes
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - A. Barthelemy
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - A. Anane
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Elbio Dagotto
- grid.411461.70000 0001 2315 1184Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA ,grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - S. Okamoto
- grid.135519.a0000 0004 0446 2659Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - S. G. E. te Velthuis
- grid.187073.a0000 0001 1939 4845Materials Science Division, Argonne National Laboratory, Lemont, IL USA
| | - J. Santamaria
- grid.4795.f0000 0001 2157 7667GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain
| | - Javier E. Villegas
- grid.460789.40000 0004 4910 6535Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
19
|
Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica VA, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph DC, Ramesh R. Novel Spin-Orbit Torque Generation at Room Temperature in an All-Oxide Epitaxial La 0.7 Sr 0.3 MnO 3 /SrIrO 3 System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008269. [PMID: 33960025 DOI: 10.1002/adma.202008269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Spin-orbit torques (SOTs) that arise from materials with large spin-orbit coupling offer a new pathway for energy-efficient and fast magnetic information storage. SOTs in conventional heavy metals and topological insulators are explored extensively, while 5d transition metal oxides, which also host ions with strong spin-orbit coupling, are a relatively new territory in the field of spintronics. An all-oxide, SrTiO3 (STO)//La0.7 Sr0.3 MnO3 (LSMO)/SrIrO3 (SIO) heterostructure with lattice-matched crystal structure is synthesized, exhibiting an epitaxial and atomically sharp interface between the ferromagnetic LSMO and the high spin-orbit-coupled metal SIO. Spin-torque ferromagnetic resonance (ST-FMR) is used to probe the effective magnetization and the SOT efficiency in LSMO/SIO heterostructures grown on STO substrates. Remarkably, epitaxial LSMO/SIO exhibits a large SOT efficiency, ξ|| = 1, while retaining a reasonably low shunting factor and increasing the effective magnetization of LSMO by ≈50%. The findings highlight the significance of epitaxy as a powerful tool to achieve a high SOT efficiency, explore the rich physics at the epitaxial interface, and open up a new pathway for designing next-generation energy-efficient spintronic devices.
Collapse
Affiliation(s)
- Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shehrin Sayed
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
| | | | - Sandhya Susarla
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Saba Karimeddiny
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Vladimir A Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tanay Gosavi
- Components Research, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Farzad Mahfouzi
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Qilong Sun
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nicholas Kioussis
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Sayeef Salahuddin
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
| | - Daniel C Ralph
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
20
|
Lim ZS, Li C, Huang Z, Chi X, Zhou J, Zeng S, Omar GJ, Feng YP, Rusydi A, Pennycook SJ, Venkatesan T, Ariando A. Emergent Topological Hall Effect at a Charge-Transfer Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004683. [PMID: 33191619 DOI: 10.1002/smll.202004683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Exploring exotic interface magnetism due to charge transfer and strong spin-orbit coupling has profound application in the future development of spintronic memory. Here, the emergence and tuning of topological Hall effect (THE) from a CaMnO3 /CaIrO3 /CaMnO3 trilayer structure are studied in detail, which suggests the presence of magnetic Skyrmion-like bubbles. First, by tilting the magnetic field direction, the evolution of the Hall signal suggests a transformation of Skyrmions into topologically-trivial stripe domains, consistent with behaviors predicted by micromagnetic simulations. Second, by varying the thickness of CaMnO3 , the optimal thicknesses for the THE signal emergence are found, which allow identification of the source of Dzyaloshinskii-Moriya interaction (DMI) and its competition with antiferromagnetic superexchange. Employing high-resolution transmission electron microscopy, randomly distributed stacking faults are identified only at the bottom interface and may avoid mutual cancellation of DMI. Last, a spin-transfer torque experiment also reveals a low threshold current density of ≈109 A m-2 for initiating the bubbles' motion. This discovery sheds light on a possible strategy for integrating Skyrmions with antiferromagnetic spintronics.
Collapse
Affiliation(s)
- Zhi Shiuh Lim
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Changjian Li
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Zhen Huang
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Jun Zhou
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shengwei Zeng
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Ganesh Ji Omar
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Yuan Ping Feng
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Andrivo Rusydi
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Singapore Synchrotron Light Source (SSLS), National University of Singapore, 5 Research Link, Singapore, 117603, Singapore
| | - Stephen John Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Thirumalai Venkatesan
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Ariando Ariando
- NUSNNI-NanoCore, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| |
Collapse
|
21
|
Groenendijk DJ, Manca N, de Bruijckere J, Monteiro AMRVL, Gaudenzi R, van der Zant HSJ, Caviglia AD. Anisotropic magnetoresistance in spin-orbit semimetal SrIrO 3. EUROPEAN PHYSICAL JOURNAL PLUS 2020; 135:627. [PMID: 32832318 PMCID: PMC7411514 DOI: 10.1140/epjp/s13360-020-00613-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
SrIrO 3 , the three-dimensional member of the Ruddlesden-Popper iridates, is a paramagnetic semimetal characterised by a the delicate interplay between spin-orbit coupling and Coulomb repulsion. In this work, we study the anisotropic magnetoresistance (AMR) of SrIrO 3 thin films, which is closely linked to spin-orbit coupling and probes correlations between electronic transport, magnetic order and orbital states. We show that the low-temperature negative magnetoresistance is anisotropic with respect to the magnetic field orientation, and its angular dependence reveals the appearance of a fourfold symmetric component above a critical magnetic field. We show that this AMR component is of magnetocrystalline origin, and attribute the observed transition to a field-induced magnetic state in SrIrO 3 .
Collapse
Affiliation(s)
- Dirk J. Groenendijk
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Nicola Manca
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Joeri de Bruijckere
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | | | - Rocco Gaudenzi
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Herre S. J. van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Andrea D. Caviglia
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
22
|
Skoropata E, Nichols J, Ok JM, Chopdekar RV, Choi ES, Rastogi A, Sohn C, Gao X, Yoon S, Farmer T, Desautels RD, Choi Y, Haskel D, Freeland JW, Okamoto S, Brahlek M, Lee HN. Interfacial tuning of chiral magnetic interactions for large topological Hall effects in LaMnO 3/SrIrO 3 heterostructures. SCIENCE ADVANCES 2020; 6:eaaz3902. [PMID: 32923583 PMCID: PMC7455502 DOI: 10.1126/sciadv.aaz3902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/22/2020] [Indexed: 05/23/2023]
Abstract
Chiral interactions in magnetic systems can give rise to rich physics manifested, for example, as nontrivial spin textures. The foremost interaction responsible for chiral magnetism is the Dzyaloshinskii-Moriya interaction (DMI), resulting from inversion symmetry breaking in the presence of strong spin-orbit coupling. However, the atomistic origin of DMIs and their relationship to emergent electrodynamic phenomena, such as topological Hall effect (THE), remain unclear. Here, we investigate the role of interfacial DMIs in 3d-5d transition metal-oxide-based LaMnO3/SrIrO3 superlattices on THE from a chiral spin texture. By additively engineering the interfacial inversion symmetry with atomic-scale precision, we directly link the competition between interfacial collinear ferromagnetic interactions and DMIs to an enhanced THE. The ability to control the DMI and resulting THE points to a pathway for harnessing interfacial structures to maximize the density of chiral spin textures useful for developing high-density information storage and quantum magnets for quantum information science.
Collapse
Affiliation(s)
- Elizabeth Skoropata
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John Nichols
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jong Mok Ok
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rajesh V. Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eun Sang Choi
- National High Field Magnet Laboratory, Florida State University, Tallahassee, FL 32310, USA
| | - Ankur Rastogi
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiang Gao
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Sangmoon Yoon
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Thomas Farmer
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ryan D. Desautels
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Daniel Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - John W. Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew Brahlek
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
23
|
Wysocki L, Schöpf J, Ziese M, Yang L, Kovács A, Jin L, Versteeg RB, Bliesener A, Gunkel F, Kornblum L, Dittmann R, van Loosdrecht PHM, Lindfors-Vrejoiu I. Electronic Inhomogeneity Influence on the Anomalous Hall Resistivity Loops of SrRuO 3 Epitaxially Interfaced with 5d Perovskites. ACS OMEGA 2020; 5:5824-5833. [PMID: 32226862 PMCID: PMC7097901 DOI: 10.1021/acsomega.9b03996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
SrRuO3, a 4d ferromagnet with multiple Weyl nodes at the Fermi level, offers a rich playground to design epitaxial heterostructures and superlattices with fascinating magnetic and magnetotransport properties. Interfacing ultrathin SrRuO3 layers with large spin-orbit coupling 5d transition-metal oxides, such as SrIrO3, results in pronounced peaklike anomalies in the magnetic field dependence of the Hall resistivity. Such anomalies have been attributed either to the formation of Néel-type skyrmions or to modifications of the Berry curvature of the topologically nontrivial conduction bands near the Fermi level of SrRuO3. Here, epitaxial multilayers based on SrRuO3 interfaced with 5d perovskite oxides, such as SrIrO3 and SrHfO3, were studied. This work focuses on the magnetotransport properties of the multilayers, aiming to unravel the role played by the interfaces with 5d perovskites in the peaklike anomalies of the Hall resistance loops of SrRuO3 layers. Interfacing with large band gap insulating SrHfO3 layers did not influence the anomalous Hall resistance loops, while interfacing with the nominally paramagnetic semimetal SrIrO3 resulted in pronounced peaklike anomalies, which have been lately attributed to a topological Hall effect contribution as a result of skyrmions. This interpretation is, however, under strong debate and lately alternative causes, such as inhomogeneity of the thickness and the electronic properties of the SrRuO3 layers, have been considered. Aligned with these latter proposals, our findings reveal the central role played in the anomalies of the Hall resistivity loops by electronic inhomogeneity of SrRuO3 layers due to the interfacing with semimetallic 5d5 SrIrO3.
Collapse
Affiliation(s)
- Lena Wysocki
- Institute
of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Jörg Schöpf
- Institute
of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Michael Ziese
- Felix
Bloch Institute for Solid State Physics, University of Leipzig, 04109 Leipzig, Germany
| | - Lin Yang
- Institute
of Physics II, University of Cologne, 50937 Cologne, Germany
| | - András Kovács
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Lei Jin
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Rolf B. Versteeg
- Institute
of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Andrea Bliesener
- Institute
of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Felix Gunkel
- PGI-7, Forschungszentrum
Jülich, 52428 Jülich, Germany
- Institute
of Electronic Materials (IWE2), RWTH Aachen
University, 52062 Aachen, Germany
| | - Lior Kornblum
- Andrew &
Erna Viterbi Department of Electrical Engineering, Technion—Israel Institute of Technology, 3200003 Haifa, Israel
| | | | | | | |
Collapse
|
24
|
Yu T, Deng B, Zhou L, Chen P, Liu Q, Wang C, Ning X, Zhou J, Bian Z, Luo Z, Qiu C, Shi XQ, He H. Polarity and Spin-Orbit Coupling Induced Strong Interfacial Exchange Coupling: An Asymmetric Charge Transfer in Iridate-Manganite Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44837-44843. [PMID: 31680512 DOI: 10.1021/acsami.9b14641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Charge transfer is of particular importance in manipulating the interface physics in transition-metal oxide heterostructures. In this work, we have fabricated epitaxial bilayers composed of polar 3d LaMnO3 and nonpolar 5d SrIrO3. Systematic magnetic measurements reveal an unexpectedly large exchange bias effect in the bilayer, together with a dramatic enhancement of the coercivity of LaMnO3. Based on first-principle calculations and X-ray absorption spectroscopy measurements, such a strong interfacial magnetic coupling is found closely associated with the polar nature of LaMnO3 and the strong spin-orbit interaction in SrIrO3, which collectively drive an asymmetric interfacial charge transfer and lead to the emergence of an interfacial reentrant spin/superspin glass state. Our study provides a new insight into the charge transfer in transition-metal oxide heterostructures and offers a novel means to tune the interfacial exchange coupling for a variety of device applications.
Collapse
Affiliation(s)
- Tao Yu
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Bei Deng
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Liang Zhou
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Pingbo Chen
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Qiying Liu
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Cailin Wang
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xingkun Ning
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology , Hebei University , Baoding 071002 , China
| | - Jingtian Zhou
- National Synchrotron Radiation Laboratory and CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhiping Bian
- National Synchrotron Radiation Laboratory and CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhenlin Luo
- National Synchrotron Radiation Laboratory and CAS Key Laboratory of Materials for Energy Conversion , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Chunyin Qiu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology , Wuhan University , Wuhan 430072 , China
| | - Xing-Qiang Shi
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Hongtao He
- Department of Physics , Southern University of Science and Technology , Shenzhen 518055 , China
| |
Collapse
|
25
|
Interfacial charge-transfer Mott state in iridate-nickelate superlattices. Proc Natl Acad Sci U S A 2019; 116:19863-19868. [PMID: 31527227 DOI: 10.1073/pnas.1907043116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate [Formula: see text]/[Formula: see text] superlattices in which we observe a full electron transfer at the interface from Ir to Ni, triggering a massive structural and electronic reconstruction. Through experimental characterization and first-principles calculations, we determine that a large crystal field splitting from the distorted interfacial [Formula: see text] octahedra surprisingly dominates over the spin-orbit coupling and together with the Hund's coupling results in the high-spin (S = 1) configurations on both the Ir and Ni sites. This demonstrates the power of interfacial charge transfer in coupling lattice, charge, orbital, and spin degrees of freedom, opening fresh avenues of investigation of quantum states in oxide superlattices.
Collapse
|
26
|
Li Y, Zhang L, Zhang Q, Li C, Yang T, Deng Y, Gu L, Wu D. Emergent Topological Hall Effect in La 0.7Sr 0.3MnO 3/SrIrO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21268-21274. [PMID: 31117466 DOI: 10.1021/acsami.9b05562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, perovskite oxide heterostructures have drawn great attention because multiple and complex coupling at the heterointerface may produce novel magnetic and electric phenomena that are not expected in homogeneous materials either in the bulk or in films. In this work, we report for the first time that an emergent giant topological Hall effect (THE), associated with a noncoplanar (NC) spin texture, can be induced in ferromagnetic (FM) La0.7Sr0.3MnO3 thin films in a wide temperature range of up to 200 K by constructing La0.7Sr0.3MnO3/SrIrO3 epitaxial heterostructures on (001) SrTiO3 substrates. This THE is not observed in La0.7Sr0.3MnO3 single-layer films or La0.7Sr0.3MnO3/SrTiO3/SrIrO3 trilayer heterostructures, indicating the relevance of the La0.7Sr0.3MnO3/SrIrO3 interface, where the Dzyaloshinskii-Moriya interaction due to strong spin-orbital coupling in SrIrO3 may play a crucial role. The fictitious field associated with THE is independent of temperature in La0.7Sr0.3MnO3/SrIrO3 heterostructures, suggesting that the NC spin texture may be magnetic skyrmions. This work demonstrates the feasibility of using SrIrO3 to generate novel magnetic and transport characteristics by interfacing with other correlated oxides, which might be useful to novel spintronic applications.
Collapse
Affiliation(s)
| | - Lunyong Zhang
- Max Plank POSTECH Center for Complex Phase Materials , Max Planck POSTECH/Korea Research Initiative , Pohang 790-784 , Korea
- Max Planck Institute for Chemical Physics of Solids , Dresden 01187 , Germany
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | | | - Tieying Yang
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
| | | | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China
- School of Physical Sciences , University of Chinese Academy of Sciences , Beijing 100190 , China
| | | |
Collapse
|
27
|
Kharkwal KC, Chaurasia R, Pramanik AK. Unusual exchange bias in Sr 2FeIrO 6/La 0.67Sr 0.33MnO 3 multilayer. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:13LT02. [PMID: 30658343 DOI: 10.1088/1361-648x/ab000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we study interface induced magnetic properties in a 3d-5d based multilayer made of La0.67Sr0.33MnO3 and double perovskite Sr2FeIrO6, respectively. Bulk La0.67Sr0.33MnO3 is metallic and shows ferromagnetic (FM) ordering above room temperature. In contrast, bulk Sr2FeIrO6, is an antiferromagnet (AFM) with a Néel temperature around 45 K ([Formula: see text]) and exhibits an insulating behavior. Two set of multilayers have been grown on SrTiO3 (1 0 0) crystal with varying thickness of FM layer. A multilayer with equal thickness of La0.67Sr0.33MnO3 and Sr2FeIrO6 (∼10 nm) shows exchange bias (EB) effect both in conventionally field cooled (FC) as well as in zero field cooled (ZFC) magnetic hysteresis measurements which is rather unusual. The ZFC EB effect is weakened both with increasing maximum field during initial magnetization process at low temperature and with increasing temperature. Interestingly, a multilayer with reduced thickness of La0.67Sr0.33MnO3 (∼5 nm) does not exhibit ZFC EB phenomenon, however, the FC EB effect is strengthened showing much higher value. We believe that an AFM type exchange coupling at the interface and its evolution during initial application of magnetic field causes this unusual EB in present multilayers.
Collapse
Affiliation(s)
- K C Kharkwal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
28
|
Nuclear resonant scattering from 193Ir as a probe of the electronic and magnetic properties of iridates. Sci Rep 2019; 9:5097. [PMID: 30911115 PMCID: PMC6433947 DOI: 10.1038/s41598-019-41130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/08/2019] [Indexed: 11/08/2022] Open
Abstract
The high brilliance of modern synchrotron radiation sources facilitates experiments with high-energy x-rays across a range of disciplines, including the study of the electronic and magnetic correlations using elastic and inelastic scattering techniques. Here we report on Nuclear Resonance Scattering at the 73 keV nuclear level in 193Ir. The transitions between the hyperfine split levels show an untypically high E2/M1 multi-polarity mixing ratio combined with an increased sensitivity to certain changes in the hyperfine field direction compared to non-mixing transitions. The method opens a new way for probing local magnetic and electronic properties of correlated materials containing iridium and provides novel insights into anisotropic magnetism in iridates. In particular, unexpected out-of-plane components of magnetic hyperfine fields and non-zero electric field gradients in Sr2IrO4 have been detected and attributed to the strong spin-orbit interaction in this iridate. Due to the high, 62% natural abundance of the 193Ir isotope, no isotopic enrichment of the samples is required, qualifying the method for a broad range of applications.
Collapse
|
29
|
Lan D, Chen B, Qu L, Jin F, Guo Z, Xu L, Zhang K, Gao G, Chen F, Jin S, Wang L, Wu W. Interfacial Engineering of Ferromagnetism in Epitaxial Manganite/Ruthenate Superlattices via Interlayer Chemical Doping. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10399-10408. [PMID: 30775907 DOI: 10.1021/acsami.8b22055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfacial charge transfer and structural proximity effects are the two essential routes to trigger and tune numerous functionalities of perovskite oxide heterostructures. However, the cooperation and competition of these two interfacial effects in one epitaxial system have not been fully understood. Herein, we fabricate a series of La0.67Ca0.33MnO3/CaRuO3 superlattices and introduce various chemical doping in the nonmagnetic CaRuO3 interlayers. We found that Ti, Sr, and La doping in the CaRuO3 layer can effectively tune the interfacial charge transfer and octahedral rotation, thus modulating the ferromagnetism of the superlattices. Specifically, the B-site Ti doping depletes the Ru 4d band and suppresses the interfacial charge transfer, leading to a decay of ferromagnetic Curie temperature ( TC). In contrast, the A-site Sr doping maintains a sizable charge transfer and meanwhile suppresses the octahedral rotation, which facilitates ferromagnetism and significantly enhances the TC up to 291 K. The La doping turns out to localize the itinerant electrons in the CaRuO3 layer, which suppresses both the interfacial charge transfer and ferromagnetism. The observed intriguing interfacial engineering of magnetism would pave a new way to understand the collective effects of interfacial charge transfer and structural proximity on the physical properties of oxide heterostructures.
Collapse
Affiliation(s)
- Da Lan
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Binbin Chen
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - LiLi Qu
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Feng Jin
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and Hefei Science Center , Chinese Academy of Sciences , Hefei 230031 , China
| | - Zhuang Guo
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Liqiang Xu
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Kexuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Guanyin Gao
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Feng Chen
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and Hefei Science Center , Chinese Academy of Sciences , Hefei 230031 , China
| | - Shaowei Jin
- Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , China
| | - Lingfei Wang
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
| | - Wenbin Wu
- Hefei National Laboratory for Physical Sciences at Microscale , University of Science and Technology of China , Hefei 230026 , China
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory and Hefei Science Center , Chinese Academy of Sciences , Hefei 230031 , China
- Institute of Physical Science and Information Technology , Anhui University , Hefei 230601 , China
| |
Collapse
|
30
|
Biswas A, Talha M, Kashir A, Jeong YH. A thin film perspective on quantum functional oxides. CURRENT APPLIED PHYSICS 2019; 19:207-214. [DOI: 10.1016/j.cap.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Liao Z, Skoropata E, Freeland JW, Guo EJ, Desautels R, Gao X, Sohn C, Rastogi A, Ward TZ, Zou T, Charlton T, Fitzsimmons MR, Lee HN. Large orbital polarization in nickelate-cuprate heterostructures by dimensional control of oxygen coordination. Nat Commun 2019; 10:589. [PMID: 30718483 PMCID: PMC6362240 DOI: 10.1038/s41467-019-08472-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 01/08/2019] [Indexed: 12/04/2022] Open
Abstract
Artificial heterostructures composed of dissimilar transition metal oxides provide unprecedented opportunities to create remarkable physical phenomena. Here, we report a means to deliberately control the orbital polarization in LaNiO3 (LNO) through interfacing with SrCuO2 (SCO), which has an infinite-layer structure for CuO2. Dimensional control of SCO results in a planar-type (P–SCO) to chain-type (C–SCO) structure transition depending on the SCO thickness. This transition is exploited to induce either a NiO5 pyramidal or a NiO6 octahedral structure at the SCO/LNO interface. Consequently, a large change in the Ni d orbital occupation up to ~30% is achieved in P–SCO/LNO superlattices, whereas the Ni eg orbital splitting is negligible in C–SCO/LNO superlattices. The engineered oxygen coordination triggers a metal-to-insulator transition in SCO/LNO superlattices. Our results demonstrate that interfacial oxygen coordination engineering provides an effective means to manipulate the orbital configuration and associated physical properties, paving a pathway towards the advancement of oxide electronics. In correlated materials, physical properties depend on orbital occupancy and polarization. Here, a way to control the oxygen coordination via dimensionality of superlattices is presented that results in the change of orbital occupancy by 30%, which is larger than what has been achieved by other methods.
Collapse
Affiliation(s)
- Zhaoliang Liao
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Elizabeth Skoropata
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - J W Freeland
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, United States
| | - Er-Jia Guo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Ryan Desautels
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xiang Gao
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Ankur Rastogi
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - T Zac Ward
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Tao Zou
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Michael R Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, United States
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States.
| |
Collapse
|
32
|
Li Y, Zhou J, Wu D. Metal-Insulator Transition of LaNiO 3 Films in LaNiO 3/SrIrO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3565-3570. [PMID: 30586994 DOI: 10.1021/acsami.8b18135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LaNiO3/SrIrO3 (LNO/SIO) heterostructures were deposited epitaxially on (001) SrTiO3 substrates. Transport characteristics of these LNO/SIO heterostructures were investigated as functions of LNO and SIO thickness. It has been observed that interfacing with SIO induces a metal-insulator transition at about 20 K in a 10 unit cell thick LNO film, which is otherwise metallic down to 2 K. In addition, this metal-insulator transition is irrelevant to the thickness of SIO, indicative of an interfacial effect. X-ray absorption measurements reveal an electron transfer from LNO to SIO across the interface. Meanwhile, the observation of a spin-glass-like state manifests the importance of spin-dependent scattering. The metal-insulator transition is discussed in terms of Kondo effect by random scattering from impurity spins associated with the interfacial electron transfer and the Dzyaloshinskii-Moriya interaction due to strong spin-orbit coupling inherent in 5d perovskite SIO.
Collapse
|
33
|
Chen A, Su Q, Han H, Enriquez E, Jia Q. Metal Oxide Nanocomposites: A Perspective from Strain, Defect, and Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803241. [PMID: 30368932 DOI: 10.1002/adma.201803241] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Vertically aligned nanocomposite thin films with ordered two phases, grown epitaxially on substrates, have attracted tremendous interest in the past decade. These unique nanostructured composite thin films with large vertical interfacial area, controllable vertical lattice strain, and defects provide an intriguing playground, allowing for the manipulation of a variety of functional properties of the materials via the interplay among strain, defect, and interface. This field has evolved from basic growth and characterization to functionality tuning as well as potential applications in energy conversion and information technology. Here, the remarkable progress achieved in vertically aligned nanocomposite thin films from a perspective of tuning functionalities through control of strain, defect, and interface is summarized.
Collapse
Affiliation(s)
- Aiping Chen
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Qing Su
- Nebraska Center for Energy Sciences Research, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Hyungkyu Han
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Erik Enriquez
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University at Buffalo-The State University of New York, Buffalo, NY, 14260, USA
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul, 143-701, South Korea
| |
Collapse
|
34
|
Gariglio S, Caviglia AD, Triscone JM, Gabay M. A spin-orbit playground: surfaces and interfaces of transition metal oxides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:012501. [PMID: 30058557 DOI: 10.1088/1361-6633/aad6ab] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Within the last twenty years, the status of the spin-orbit interaction has evolved from that of a simple atomic contribution to a key effect that modifies the electronic band structure of materials. It is regarded as one of the basic ingredients for spintronics, locking together charge and spin degrees of freedom and recently it is instrumental in promoting a new class of compounds, the topological insulators. In this review, we present the current status of the research on the spin-orbit coupling in transition metal oxides, discussing the case of two semiconducting compounds, [Formula: see text] and [Formula: see text], and the properties of surface and interfaces based on these. We conclude with the investigation of topological effects predicted to occur in different complex oxides.
Collapse
Affiliation(s)
- S Gariglio
- DQMP, University of Geneva, 24 Quai E.-Ansermet 1211, Geneva, Switzerland
| | | | | | | |
Collapse
|
35
|
Matsuno J, Fujioka J, Okuda T, Ueno K, Mizokawa T, Katsufuji T. Strongly correlated oxides for energy harvesting. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:899-908. [PMID: 31001365 PMCID: PMC6454405 DOI: 10.1080/14686996.2018.1529524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
We review recent advances in strongly correlated oxides as thermoelectric materials in pursuit of energy harvesting. We discuss two topics: one is the enhancement of the ordinary thermoelectric properties by controlling orbital degrees of freedom and orbital fluctuation not only in bulk but also at the interface of correlated oxides. The other topic is the use of new phenomena driven by spin-orbit coupling (SOC) of materials. In 5d electron oxides, we show some SOC-related transport phenomena, which potentially contribute to energy harvesting. We outline the current status and a future perspective of oxides as thermoelectric materials.
Collapse
Affiliation(s)
- Jobu Matsuno
- Department of Physics, Osaka University, Osaka, Japan
- Center for Emergent Matter Science (CEMS), RIKEN, Saitama, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Jun Fujioka
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Applied Physics, University of Tokyo, Tokyo, Japan
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Japan
| | - Tetsuji Okuda
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kazunori Ueno
- Department of Basic Science, University of Tokyo, Tokyo, Japan
| | | | - Takuro Katsufuji
- Department of Physics, Waseda University, Tokyo, Japan
- Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Tokyo, Japan
| |
Collapse
|
36
|
Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures. Nat Commun 2018; 9:1923. [PMID: 29765023 PMCID: PMC5953968 DOI: 10.1038/s41467-018-04304-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La2/3Sr1/3MnO3 and brownmillerite LaCoO2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO6 octahedra and CoO4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand. Complex oxide heterostructures exhibit multifunctional behaviour that could be used in a range of device applications. Here, the authors observe that reconstruction at oxide perovskite/brownmillerite interfaces leads to perpendicular magnetic spin orientation, with potential use in spintronic devices.
Collapse
|
37
|
Wu L, Li C, Chen M, Zhang Y, Han K, Zeng S, Liu X, Ma J, Liu C, Chen J, Zhang J, Venkatesan TV, Pennycook SJ, Coey JMD, Shen L, Ma J, Wang XR, Nan CW. Interface-Induced Enhancement of Ferromagnetism in Insulating LaMnO 3 Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44931-44937. [PMID: 29236463 DOI: 10.1021/acsami.7b15364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Engineering ferromagnetism, by modulating its magnitude or anisotropy, is an important topic in the field of magnetism and spintronics. Among different types of magnetic materials, ferromagnetic insulators, in which magnetic moment unusually coexists with localized electrons, are of particular interest. Here, we report a remarkable interfacial enhancement of the ferromagnetism by adding one unit-cell LaAlO3 adjacent to an insulating LaMnO3 ultrathin film. The enhancement of ferromagnetism is explained in terms of charge transfer at the interface, as evidenced by X-ray absorption spectroscopy and ab initio calculations. This study demonstrates an effective and dramatic approach to modulate the functionality of ferromagnetic insulators, contributing to the arsenal of engineering techniques for future spintronics.
Collapse
Affiliation(s)
- Liang Wu
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | | | - Mingfeng Chen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - Yujun Zhang
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - Kun Han
- NUSNNI-NanoCore, National University of Singapore , Singapore 117411, Singapore
- Department of Physics, National University of Singapore , Singapore 117542, Singapore
| | - Shengwei Zeng
- NUSNNI-NanoCore, National University of Singapore , Singapore 117411, Singapore
- Department of Physics, National University of Singapore , Singapore 117542, Singapore
| | - Xin Liu
- Department of Physics, Beijing Normal University , Beijing 100875, China
| | - Ji Ma
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - Chen Liu
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - Jiahui Chen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University , Beijing 100875, China
| | - T Venky Venkatesan
- NUSNNI-NanoCore, National University of Singapore , Singapore 117411, Singapore
- Department of Physics, National University of Singapore , Singapore 117542, Singapore
| | | | - J M D Coey
- School of Physics, Trinity College , Dublin 2, Ireland
- Faculty of Materials Science and Engineering, Beihang University , Beijing 100191, China
| | | | - Jing Ma
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| | - X Renshaw Wang
- School of Physical and Mathematical Sciences & School of Electrical and Electronic Engineering, Nanyang Technological University , Singapore 637371, Singapore
| | - Ce-Wen Nan
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University , Beijing 100084, China
| |
Collapse
|
38
|
Yi D, Lu N, Chen X, Shen S, Yu P. Engineering magnetism at functional oxides interfaces: manganites and beyond. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:443004. [PMID: 28745614 DOI: 10.1088/1361-648x/aa824d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The family of transition metal oxides (TMOs) is a large class of magnetic materials that has been intensively studied due to the rich physics involved as well as the promising potential applications in next generation electronic devices. In TMOs, the spin, charge, orbital and lattice are strongly coupled, and significant advances have been achieved to engineer the magnetism by different routes that manipulate these degrees of freedom. The family of manganites is a model system of strongly correlated magnetic TMOs. In this review, using manganites thin films and the heterostructures in conjunction with other TMOs as model systems, we review the recent progress of engineering magnetism in TMOs. We first discuss the role of the lattice that includes the epitaxial strain and the interface structural coupling. Then we look into the role of charge, focusing on the interface charge modulation. Having demonstrated the static effects, we continue to review the research on dynamical control of magnetism by electric field. Next, we review recent advances in heterostructures comprised of high T c cuprate superconductors and manganites. Following that, we discuss the emergent magnetic phenomena at interfaces between 3d TMOs and 5d TMOs with strong spin-orbit coupling. Finally, we provide our outlook for prospective future directions.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials and Applied Physics Department, Stanford University, Stanford, CA 94305, United States of America
| | | | | | | | | |
Collapse
|
39
|
Yi D, Flint CL, Balakrishnan PP, Mahalingam K, Urwin B, Vailionis A, N'Diaye AT, Shafer P, Arenholz E, Choi Y, Stone KH, Chu JH, Howe BM, Liu J, Fisher IR, Suzuki Y. Tuning Perpendicular Magnetic Anisotropy by Oxygen Octahedral Rotations in (La_{1-x}Sr_{x}MnO_{3})/(SrIrO_{3}) Superlattices. PHYSICAL REVIEW LETTERS 2017; 119:077201. [PMID: 28949659 DOI: 10.1103/physrevlett.119.077201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Perpendicular magnetic anisotropy (PMA) plays a critical role in the development of spintronics, thereby demanding new strategies to control PMA. Here we demonstrate a conceptually new type of interface induced PMA that is controlled by oxygen octahedral rotation. In superlattices comprised of La_{1-x}Sr_{x}MnO_{3} and SrIrO_{3}, we find that all superlattices (0≤x≤1) exhibit ferromagnetism despite the fact that La_{1-x}Sr_{x}MnO_{3} is antiferromagnetic for x>0.5. PMA as high as 4×10^{6} erg/cm^{3} is observed by increasing x and attributed to a decrease of oxygen octahedral rotation at interfaces. We also demonstrate that oxygen octahedral deformation cannot explain the trend in PMA. These results reveal a new degree of freedom to control PMA, enabling discovery of emergent magnetic textures and topological phenomena.
Collapse
Affiliation(s)
- Di Yi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Charles L Flint
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of MSE, Stanford University, Stanford, California 94305, USA
| | - Purnima P Balakrishnan
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Krishnamurthy Mahalingam
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Brittany Urwin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Arturas Vailionis
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
| | - Alpha T N'Diaye
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Kevin H Stone
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jiun-Haw Chu
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Brandon M Howe
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ian R Fisher
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Yuri Suzuki
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
40
|
Guo EJ, Charlton T, Ambaye H, Desautels RD, Lee HN, Fitzsimmons MR. Orientation Control of Interfacial Magnetism at La 0.67Sr 0.33MnO 3/SrTiO 3 Interfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19307-19312. [PMID: 28509529 DOI: 10.1021/acsami.7b03252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Understanding the magnetism at the interface between a ferromagnet and an insulator is essential because the commonly posited magnetic "dead" layer close to an interface can be problematic in magnetic tunnel junctions. Previously, degradation of the magnetic interface was attributed to charge discontinuity across the interface. Here, the interfacial magnetism was investigated using three identically prepared La0.67Sr0.33MnO3 (LSMO) thin films grown on different oriented SrTiO3 (STO) substrates by polarized neutron reflectometry. In all cases the magnetization at the LSMO/STO interface is larger than the film bulk. We show that the interfacial magnetization is largest across the LSMO/STO interfaces with (001) and (111) orientations, which have the largest net charge discontinuities across the interfaces. In contrast, the magnetization of LSMO/STO across the (110) interface, the orientation with no net charge discontinuity, is the smallest of the three orientations. We show that a magnetically degraded interface is not intrinsic to LSMO/STO heterostructures. The approach to use different crystallographic orientations provides a means to investigate the influence of charge discontinuity on the interfacial magnetization.
Collapse
Affiliation(s)
- Er-Jia Guo
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Timothy Charlton
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Haile Ambaye
- Instruments and Source Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Ryan D Desautels
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Michael R Fitzsimmons
- Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
- Department of Physics and Astronomy, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
41
|
Okamoto S, Nichols J, Sohn C, Kim SY, Noh TW, Lee HN. Charge Transfer in Iridate-Manganite Superlattices. NANO LETTERS 2017; 17:2126-2130. [PMID: 28256840 DOI: 10.1021/acs.nanolett.6b04107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Charge transfer in superlattices consisting of SrIrO3 and SrMnO3 is investigated using density functional theory. Despite the nearly identical work function and nonpolar interfaces between SrIrO3 and SrMnO3, rather large charge transfer was experimentally reported at the interface between them. Here, we report a microscopic model that captures the mechanism behind this phenomenon, providing a qualitative understanding of the experimental observation. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment with soft X-ray and optical spectroscopy. Our work thus demonstrates a new route to control electronic states in nonpolar oxide heterostructures.
Collapse
Affiliation(s)
- Satoshi Okamoto
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - John Nichols
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Changhee Sohn
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - So Yeun Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- Department of Physics & Astronomy, Seoul National University , Seoul 08826, Republic of Korea
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS) , Seoul 08826, Republic of Korea
- Department of Physics & Astronomy, Seoul National University , Seoul 08826, Republic of Korea
| | - Ho Nyung Lee
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|