1
|
Pukhovaya EM, Ramalho JJ, Weijers D. Polar targeting of proteins - a green perspective. J Cell Sci 2024; 137:jcs262068. [PMID: 39330548 DOI: 10.1242/jcs.262068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Cell polarity - the asymmetric distribution of molecules and cell structures within the cell - is a feature that almost all cells possess. Even though the cytoskeleton and other intracellular organelles can have a direction and guide protein distribution, the plasma membrane is, in many cases, essential for the asymmetric localization of proteins because it helps to concentrate proteins and restrict their localization. Indeed, many proteins that exhibit asymmetric or polarized localization are either embedded in the PM or located close to it in the cellular cortex. Such proteins, which we refer to here as 'polar proteins', use various mechanisms of membrane targeting, including vesicle trafficking, direct phospholipid binding, or membrane anchoring mediated by post-translational modifications or binding to other proteins. These mechanisms are often shared with non-polar proteins, yet the unique combinations of several mechanisms or protein-specific factors assure the asymmetric distribution of polar proteins. Although there is a relatively detailed understanding of polar protein membrane targeting mechanisms in animal and yeast models, knowledge in plants is more fragmented and focused on a limited number of known polar proteins in different contexts. In this Review, we combine the current knowledge of membrane targeting mechanisms and factors for known plant transmembrane and cortical proteins and compare these with the mechanisms elucidated in non-plant systems. We classify the known factors as general or polarity specific, and we highlight areas where more knowledge is needed to construct an understanding of general polar targeting mechanisms in plants or to resolve controversies.
Collapse
Affiliation(s)
- Evgeniya M Pukhovaya
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - João Jacob Ramalho
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| |
Collapse
|
2
|
Zeng P, Shu LZ, Zhou YH, Huang HL, Wei SH, Liu WJ, Deng H. Stem Cell Division and Its Critical Role in Mammary Gland Development and Tumorigenesis: Current Progress and Remaining Challenges. Stem Cells Dev 2024; 33:449-467. [PMID: 38943275 DOI: 10.1089/scd.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024] Open
Abstract
The origin of breast cancer (BC) has traditionally been a focus of medical research. It is widely acknowledged that BC originates from immortal mammary stem cells and that these stem cells participate in two division modes: symmetric cell division (SCD) and asymmetrical cell division (ACD). Although both of these modes are key to the process of breast development and their imbalance is closely associated with the onset of BC, the molecular mechanisms underlying these phenomena deserve in-depth exploration. In this review, we first outline the molecular mechanisms governing ACD/SCD and analyze the role of ACD/SCD in various stages of breast development. We describe that the changes in telomerase activity, the role of polar proteins, and the stimulation of ovarian hormones subsequently lead to two distinct consequences: breast development or carcinogenesis. Finally, gene mutations, abnormalities in polar proteins, modulation of signal-transduction pathways, and alterations in the microenvironment disrupt the balance of BC stem cell division modes and cause BC. Important regulatory factors such as mammalian Inscuteable mInsc, Numb, Eya1, PKCα, PKCθ, p53, and IL-6 also play significant roles in regulating pathways of ACD/SCD and may constitute key targets for future research on stem cell division, breast development, and tumor therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Breast Neoplasms/genetics
- Animals
- Mammary Glands, Human/growth & development
- Mammary Glands, Human/pathology
- Mammary Glands, Human/cytology
- Mammary Glands, Human/metabolism
- Carcinogenesis/pathology
- Carcinogenesis/metabolism
- Carcinogenesis/genetics
- Stem Cells/metabolism
- Stem Cells/cytology
- Cell Division
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/metabolism
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Peng Zeng
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Lin-Zhen Shu
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu-Hong Zhou
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Hai-Lin Huang
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Shu-Hua Wei
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Wen-Jian Liu
- Department of Breast Surgery, Jiangxi Armed Police Corps Hospital, Nanchang, China
| | - Huan Deng
- Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The Fourth Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Tumor Immunology Institute, Nanchang University, Nanchang, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Ray T, Shi D, Harris TJC. Confinement promotes nematic alignment of spindle-shaped cells during Drosophila embryogenesis. Development 2024; 151:dev202577. [PMID: 38864272 PMCID: PMC11234378 DOI: 10.1242/dev.202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.
Collapse
Affiliation(s)
- Tirthankar Ray
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Damo Shi
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
4
|
Zhang J, Shi Y, Ding K, Yu W, He J, Sun B. DCAF1 interacts with PARD3 to promote hepatocellular carcinoma progression and metastasis by activating the Akt signaling pathway. J Exp Clin Cancer Res 2024; 43:136. [PMID: 38711082 PMCID: PMC11071249 DOI: 10.1186/s13046-024-03055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a fatal malignancy with poor prognosis due to lack of effective clinical interference. DCAF1 plays a vital role in regulating cell growth and proliferation, and is involved in the progression of various malignancies. However, the function of DCAF1 in HCC development and the underlying mechanism are still unknown. This study aimed to explore the effect of DCAF1 in HCC and the corresponding molecular mechanism. METHODS Quantitative real-time PCR, Western blot and immunostaining were used to determine DCAF1 expression in tumor tissues and cell lines. Subsequently, in vitro and in vivo experiments were conducted to explore the function of DCAF1 in tumor growth and metastasis in HCC. Coimmunoprecipitation, mass spectrometry and RNA sequencing were performed to identify the underlying molecular mechanisms. RESULTS In this study, we found that DCAF1 was observably upregulated and associated with poor prognosis in HCC. Knockdown of DCAF1 inhibited tumor proliferation and metastasis and promoted tumor apoptosis, whereas overexpressing DCAF1 yielded opposite effects. Mechanistically, DCAF1 could activate the Akt signaling pathway by binding to PARD3 and enhancing its expression. We also found that the combined application of DCAF1 knockdown and Akt inhibitor could significantly suppress subcutaneous xenograft tumor growth. CONCLUSIONS Our study illustrates that DCAF1 plays a crucial role in HCC development and the DCAF1/PARD3/Akt axis presents a potentially effective therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jinyao Zhang
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, Jiangsu Province, 210008, China
| | - Yuze Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Ke Ding
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, 210008, China
| | - Weiwei Yu
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Jianbo He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Peking Union Medical College Graduate School, Nanjing, Jiangsu Province, 210008, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
5
|
Hashemzadeh M, Haseefa F, Peyton L, Shadmehr M, Niyas AM, Patel A, Krdi G, Movahed MR. A comprehensive review of the ten main platelet receptors involved in platelet activity and cardiovascular disease. AMERICAN JOURNAL OF BLOOD RESEARCH 2023; 13:168-188. [PMID: 38223314 PMCID: PMC10784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 01/16/2024]
Abstract
Cardiovascular disease (CVD) is a major cause of death worldwide. Although there are many variables that contribute to the development of this disease, it is predominantly the activity of platelets that provides the mechanisms by which this disease prevails. While there are numerous platelet receptors expressed on the surface of platelets, it is largely the consensus that there are 10 main platelet receptors that contribute to a majority of platelet function. Understanding these key platelet receptors is vitally important for patients suffering from myocardial infarction, CVD, and many other diseases that arise due to overactivation or mutations of these receptors. The goal of this manuscript is to review the main platelet receptors that contribute most to platelet activity.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | | | | | - Aamir Patel
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Ghena Krdi
- University of Arizona College of MedicinePhoenix, AZ, USA
| | - Mohammad Reza Movahed
- University of Arizona College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|
6
|
Gou H, Wong CC, Chen H, Shang H, Su H, Zhai J, Liu W, Liu W, Sun D, Wang X, Yu J. TRIP6 disrupts tight junctions to promote metastasis and drug resistance and is a therapeutic target in colorectal cancer. Cancer Lett 2023; 578:216438. [PMID: 37827326 DOI: 10.1016/j.canlet.2023.216438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Metastasis is the primary cause of death in colorectal cancer (CRC). Thyroid hormone receptor interacting protein 6 (TRIP6) is an adaptor protein that regulates cell motility. Here, we aim to elucidate the role of TRIP6 in driving CRC tumorigenesis and metastasis and evaluate its potential as a therapeutic target. TRIP6 mRNA is up-regulated in CRC compared to adjacent normal tissues in three independent cohorts (all P < 0.0001), especially in liver metastases (P < 0.001). High TRIP6 expression predicts poor prognosis of CRC patients in our cohort (P = 0.01) and TCGA cohort (P = 0.02). Colon-specific TRIP6 overexpression (Trip6KIVillin-Cre) in mice accelerated azoxymethane (AOM)-induced CRC (P < 0.05) and submucosal invasion (P < 0.0001). In contrast, TRIP6 knockout (Trip6+/- mice) slowed tumorigenesis (P < 0.05). Consistently, TRIP6 overexpression in CRC cells promoted epithelial-mesenchymal transition (EMT), cell migration/invasion in vitro, and metastases in vivo (all P < 0.05), whereas knockdown of TRIP6 exerted opposite phenotypes. Mechanistically, TRIP6 interacted PDZ domain-containing proteins such as PARD3 to impair tight junctions, evidenced by decreased tight junction markers and gut permeability dysfunction, inhibit PTEN, and activate oncogenic Akt signaling. TRIP6-induced pro-metastatic phenotypes and Akt activation depends on PARD3. Targeting TRIP6 by VNP-encapsulated TRIP6-siRNA synergized with Oxaliplatin and 5-Fluorouracil to suppress CRC liver metastases. In conclusion, TRIP6 promotes CRC metastasis by directly interacting with PARD3 to disrupt tight junctions and activating Akt signaling. Targeting of TRIP6 in combination with chemotherapy is a promising strategy for the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiyun Shang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenxiu Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Donglei Sun
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Pathology, The First Hospital of Hebei Medical University, Hebei, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Xinyu W, Qian W, Yanjun W, Jingwen K, Keying X, Jiazheng J, Haibing Z, Kai W, Xiao X, Lixing Z. Polarity protein AF6 functions as a modulator of necroptosis by regulating ubiquitination of RIPK1 in liver diseases. Cell Death Dis 2023; 14:673. [PMID: 37828052 PMCID: PMC10570300 DOI: 10.1038/s41419-023-06170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023]
Abstract
AF6, a known polarity protein, contributes to the maintenance of homeostasis while ensuring tissue architecture, repair, and integrity. Mice that lack AF6 display embryonic lethality owing to cell-cell junction disruption. However, we show AF6 promotes necroptosis via regulating the ubiquitination of RIPK1 by directly interact with the intermediate domain of RIPK1, which was mediated by the deubiquitylase enzyme USP21. Consistently, while injection of mice with an adenovirus providing AF6 overexpression resulted in accelerated TNFα-induced necroptosis-mediated mortality in vivo, we observed that mice with hepatocyte-specific deletion of AF6 prevented hepatocytes from necroptosis and the subsequent inflammatory response in various liver diseases model, including non-alcoholic steatohepatitis (NASH) and the systemic inflammatory response syndrome (SIRS).Together, these data suggest that AF6 represents a novel regulator of RIPK1-RIPK3 dependent necroptotic pathway. Thus, the AF6-RIPK1-USP21 axis are potential therapeutic targets for treatment of various liver injuries and metabolic diseases.
Collapse
Affiliation(s)
- Wang Xinyu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen Qian
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wu Yanjun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kong Jingwen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xu Keying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiao Jiazheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhang Haibing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Wang Kai
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xu Xiao
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Zhan Lixing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
8
|
Pfannenstein A, Macara IG. A junction-dependent mechanism drives murine mammary cell intercalation for ductal elongation. Dev Cell 2023; 58:1126-1138.e4. [PMID: 37141887 PMCID: PMC10524519 DOI: 10.1016/j.devcel.2023.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The luminal epithelium of the mammary gland is organized into monolayers; however, it originates from multilayered terminal end buds (TEBs) during development. Although apoptosis provides a plausible mechanism for cavitation of the ductal lumen, it doesn't account for ductal elongation behind TEBs. Spatial calculations in mice suggest that most TEB cells integrate into the outermost luminal layer to generate elongation. We developed a quantitative cell culture assay that models intercalation into epithelial monolayers. We found that tight junction proteins play a key role in this process. ZO-1 puncta form at the new cellular interface and resolve into a new boundary as intercalation proceeds. Deleting ZO-1 suppresses intercalation both in culture and in cells transplanted into mammary glands via intraductal injection. Cytoskeletal rearrangements at the interface are critical for intercalation. These data identify luminal cell rearrangements necessary for mammary development and suggest a mechanism for integration of cells into an existing monolayer.
Collapse
Affiliation(s)
- Alexander Pfannenstein
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
9
|
Logue MJE, Farquhar RE, Eckhoff-Björngard Y, Cheung TT, Devor DC, McDonald FJ, Hamilton KL. The exocyst complex is required for the trafficking and delivery of KCa3.1 to the basolateral membrane of polarized epithelia. Am J Physiol Cell Physiol 2023; 324:C1249-C1262. [PMID: 37125772 PMCID: PMC10243536 DOI: 10.1152/ajpcell.00374.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
Control of the movement of ions and water across epithelia is essential for homeostasis. Changing the number or activity of ion channels at the plasma membrane is a significant regulator of epithelial transport. In polarized epithelia, the intermediate-conductance calcium-activated potassium channel, KCa3.1 is delivered to the basolateral membrane where it generates and maintains the electrochemical gradients required for epithelial transport. The mechanisms that control the delivery of KCa3.1 to the basolateral membrane are still emerging. Herein, we investigated the role of the highly conserved tethering complex exocyst. In epithelia, exocyst is involved in the tethering of post-Golgi secretory vesicles with the basolateral membrane, which is required before membrane fusion. In our Fisher rat thyroid cell line that stably expresses KCa3.1, siRNA knockdown of either of the exocyst subunits Sec3, Sec6, or Sec8 significantly decreased KCa3.1-specific current. In addition, knockdown of exocyst complex subunits significantly reduced the basolateral membrane protein level of KCa3.1. Finally, co-immunoprecipitation experiments suggest associations between Sec6 and KCa3.1, but not between Sec8 and KCa3.1. Collectively, based on these data and our previous studies, we suggest that components of exocyst complex are crucially important in the tethering of KCa3.1 to the basolateral membrane. After which, Soluble N-ethylmaleimide-sensitive factor (SNF) Attachment Receptors (SNARE) proteins aid in the insertion of KCa3.1-containing vesicles into the basolateral membrane of polarized epithelia.NEW & NOTEWORTHY Our Ussing chamber and immunoblot experiments demonstrate that when subunits of the exocyst complex were transiently knocked down, this significantly reduced the basolateral population and functional expression of KCa3.1. These data suggest, combined with our protein association experiments, that the exocyst complex regulates the tethering of KCa3.1-containing vesicles to the basolateral membrane prior to the SNARE-dependent insertion of channels into the basolateral membrane of epithelial cells.
Collapse
Affiliation(s)
- Matthew J E Logue
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachel E Farquhar
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Yoakim Eckhoff-Björngard
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya T Cheung
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Daniel C Devor
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kirk L Hamilton
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
11
|
Listeria monocytogenes Co-Opts the Host Exocyst Complex To Promote Internalin A-Mediated Entry. Infect Immun 2022; 90:e0032622. [PMID: 36255255 PMCID: PMC9753705 DOI: 10.1128/iai.00326-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogen Listeria monocytogenes induces its internalization (entry) into intestinal epithelial cells through interaction of its surface protein, internalin A (InlA), with the human cell-cell adhesion molecule, E-cadherin. While InlA-mediated entry requires bacterial stimulation of actin polymerization, it remains unknown whether additional host processes are manipulated to promote internalization. Here, we show that interaction of InlA with E-cadherin induces the host membrane-trafficking process of polarized exocytosis, which augments uptake of Listeria. Imaging studies revealed that exocytosis is stimulated at sites of InlA-dependent internalization. Experiments inhibiting human N-ethylmaleimide-sensitive factor (NSF) demonstrated that exocytosis is needed for efficient InlA-mediated entry. Polarized exocytosis is mediated by the exocyst complex, which comprises eight proteins, including Sec6, Exo70, and Exo84. We found that Exo70 was recruited to sites of InlA-mediated entry. In addition, depletion of Exo70, Exo84, or Sec6 by RNA interference impaired entry without affecting surface levels of E-cadherin. Similar to binding of InlA to E-cadherin, homophilic interaction of E-cadherin molecules mobilized the exocyst and stimulated exocytosis. Collectively, these results demonstrate that ligation of E-cadherin induces exocytosis that promotes Listeria entry, and they raise the possibility that the exocyst might also control the normal function of E-cadherin in cell-cell adhesion.
Collapse
|
12
|
An SJ, Anneken A, Xi Z, Choi C, Schlessinger J, Toomre D. Regulation of EGF-stimulated activation of the PI-3K/AKT pathway by exocyst-mediated exocytosis. Proc Natl Acad Sci U S A 2022; 119:e2208947119. [PMID: 36417441 PMCID: PMC9860279 DOI: 10.1073/pnas.2208947119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phosphoinositide-3 kinase (PI-3K)/AKT cell survival pathway is an important pathway activated by EGFR signaling. Here we show, that in addition to previously described critical components of this pathway, i.e., the docking protein Gab1, the PI-3K/AKT pathway in epithelial cells is regulated by the exocyst complex, which is a vesicle tether that is essential for exocytosis. Using live-cell imaging, we demonstrate that PI(3,4,5)P3 levels fluctuate at the membrane on a minutes time scale and that these fluctuations are associated with local PI(3,4,5)P3 increases at sites where recycling vesicles undergo exocytic fusion. Supporting a role for exocytosis in PI(3,4,5)P3 generation, acute promotion of exocytosis by optogenetically driving exocyst-mediated vesicle tethering up-regulates PI(3,4,5)P3 production and AKT activation. Conversely, acute inhibition of exocytosis using Endosidin2, a small-molecule inhibitor of the exocyst subunit Exo70 (also designated EXOC7), or inhibition of exocyst function by siRNA-mediated knockdown of the exocyst subunit Sec15 (EXOC6), impairs PI(3,4,5)P3 production and AKT activation induced by EGF stimulation of epithelial cells. Moreover, prolonged inhibition of EGF signaling by EGFR tyrosine kinase inhibitors results in spontaneous reactivation of AKT without a concomitant relief of EGFR inhibition. However, this reactivation can be negated by acutely inhibiting the exocyst. These experiments demonstrate that exocyst-mediated exocytosis-by regulating PI(3,4,5)P3 levels at the plasma membrane-subserves activation of the PI-3K/AKT pathway by EGFR in epithelial cells.
Collapse
Affiliation(s)
- Seong J. An
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| | - Alexander Anneken
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Zhiqun Xi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Changseon Choi
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
| | - Joseph Schlessinger
- bDepartment of Pharmacology, Yale University School of Medicine, New Haven, CT06510
| | - Derek Toomre
- aDepartment of Cell Biology, Yale University School of Medicine, New Haven, CT06510
- 2To whom correspondence may be addressed. or
| |
Collapse
|
13
|
Apical-basal polarity and the control of epithelial form and function. Nat Rev Mol Cell Biol 2022; 23:559-577. [PMID: 35440694 DOI: 10.1038/s41580-022-00465-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Epithelial cells are the most common cell type in all animals, forming the sheets and tubes that compose most organs and tissues. Apical-basal polarity is essential for epithelial cell form and function, as it determines the localization of the adhesion molecules that hold the cells together laterally and the occluding junctions that act as barriers to paracellular diffusion. Polarity must also target the secretion of specific cargoes to the apical, lateral or basal membranes and organize the cytoskeleton and internal architecture of the cell. Apical-basal polarity in many cells is established by conserved polarity factors that define the apical (Crumbs, Stardust/PALS1, aPKC, PAR-6 and CDC42), junctional (PAR-3) and lateral (Scribble, DLG, LGL, Yurt and RhoGAP19D) domains, although recent evidence indicates that not all epithelia polarize by the same mechanism. Research has begun to reveal the dynamic interactions between polarity factors and how they contribute to polarity establishment and maintenance. Elucidating these mechanisms is essential to better understand the roles of apical-basal polarity in morphogenesis and how defects in polarity contribute to diseases such as cancer.
Collapse
|
14
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
15
|
Tanasic D, Berns N, Riechmann V. Myosin V facilitates polarised E-cadherin secretion. Traffic 2022; 23:374-390. [PMID: 35575181 DOI: 10.1111/tra.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
E-cadherin has a fundamental role in epithelial tissues by providing cell-cell adhesion. Polarised E-cadherin exocytosis to the lateral plasma membrane is central for cell polarity and epithelial homeostasis. Loss of E-cadherin secretion compromises tissue integrity and is a prerequisite for metastasis. Despite this pivotal role of E-cadherin secretion, the transport mechanism is still unknown. Here we identify Myosin V as the motor for E-cadherin secretion. Our data reveal that Myosin V and F-actin are required for the formation of a continuous apicolateral E-cadherin belt, the zonula adherens. We show by live imaging how Myosin V transports E-cadherin vesicles to the plasma membrane, and distinguish two distinct transport tracks: an apical actin network leading to the zonula adherens and parallel actin bundles leading to the basal-most region of the lateral membrane. E-cadherin secretion starts in endosomes, where Rab11 and Sec15 recruit Myosin V for transport to the zonula adherens. We also shed light on the endosomal sorting of E-cadherin by showing how Rab7 and Snx16 cooperate in moving E-cadherin into the Rab11 compartment. Thus, our data help to understand how polarised E-cadherin secretion maintains epithelial architecture and prevents metastasis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dajana Tanasic
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Nicola Berns
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| | - Veit Riechmann
- Department of Cell and Molecular Biology and Division of Signaling and Functional Genomics at the German Cancer Research Center (DKFZ), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Strasse 13-17, Mannheim, Germany
| |
Collapse
|
16
|
A mechanism for exocyst-mediated tethering via Arf6 and PIP5K1C-driven phosphoinositide conversion. Curr Biol 2022; 32:2821-2833.e6. [PMID: 35609603 PMCID: PMC9382030 DOI: 10.1016/j.cub.2022.04.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/22/2022]
Abstract
Polarized trafficking is necessary for the development of eukaryotes and is regulated by a conserved molecular machinery. Late steps of cargo delivery are mediated by the exocyst complex, which integrates lipid and protein components to tether vesicles for plasma membrane fusion. However, the molecular mechanisms of this process are poorly defined. Here, we reconstitute functional octameric human exocyst, demonstrating the basis for holocomplex coalescence and biochemically stable subcomplexes. We determine that each subcomplex independently binds to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is minimally sufficient for membrane tethering. Through reconstitution and epithelial cell biology experiments, we show that Arf6-mediated recruitment of the lipid kinase PIP5K1C rapidly converts phosphatidylinositol 4-phosphate (PI(4)P) to PI(4,5)P2, driving exocyst recruitment and membrane tethering. These results provide a molecular mechanism of exocyst-mediated tethering and a unique functional requirement for phosphoinositide signaling on late-stage vesicles in the vicinity of the plasma membrane. Complete reconstitution and subunit connectivity of the human exocyst complex Binding to PI(4,5)P2 in trans by each subcomplex enables membrane tethering PI(4)P to PI(4,5)P2 conversion is sufficient for exocyst recruitment and tethering Arf6 controls phosphoinositide conversion by PIP5K1C in cells and in vitro
Collapse
|
17
|
Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epithelial characteristics. Nat Commun 2022; 13:2347. [PMID: 35534464 PMCID: PMC9085759 DOI: 10.1038/s41467-022-30061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells provide cell-cell adhesion that is essential to maintain the integrity of multicellular organisms. Epithelial cell-characterizing proteins, such as epithelial junctional proteins and transcription factors are well defined. However, the role of lipids in epithelial characterization remains poorly understood. Here we show that the phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is enriched in the plasma membrane (PM) of epithelial cells. Epithelial cells lose their characteristics upon depletion of PM PI(4,5)P2, and synthesis of PI(4,5)P2 in the PM results in the development of epithelial-like morphology in osteosarcoma cells. PM localization of PARD3 is impaired by depletion of PM PI(4,5)P2 in epithelial cells, whereas expression of the PM-targeting exocyst-docking region of PARD3 induces osteosarcoma cells to show epithelial-like morphological changes, suggesting that PI(4,5)P2 regulates epithelial characteristics by recruiting PARD3 to the PM. These results indicate that a high level of PM PI(4,5)P2 plays a crucial role in the maintenance of epithelial characteristics. Epithelial cells provide cell-cell adhesion to maintain the integrity of multicellular organisms. Here the authors show that phospholipid phosphatidylinositol (4,5)-bisphosphate is critical for the maintenance of epithelial characteristics.
Collapse
|
18
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
19
|
Chan EHY, Zhou Y, Aerne BL, Holder MV, Weston A, Barry DJ, Collinson L, Tapon N. RASSF8-mediated transport of Echinoid via the exocyst promotes Drosophila wing elongation and epithelial ordering. Development 2021; 148:dev199731. [PMID: 34532737 PMCID: PMC8572004 DOI: 10.1242/dev.199731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.
Collapse
Affiliation(s)
- Eunice H. Y. Chan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Birgit L. Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J. Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
20
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
21
|
An SJ, Rivera-Molina F, Anneken A, Xi Z, McNellis B, Polejaev VI, Toomre D. An active tethering mechanism controls the fate of vesicles. Nat Commun 2021; 12:5434. [PMID: 34521845 PMCID: PMC8440521 DOI: 10.1038/s41467-021-25465-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Vesicle tethers are thought to underpin the efficiency of intracellular fusion by bridging vesicles to their target membranes. However, the interplay between tethering and fusion has remained enigmatic. Here, through optogenetic control of either a natural tether-the exocyst complex-or an artificial tether, we report that tethering regulates the mode of fusion. We find that vesicles mainly undergo kiss-and-run instead of full fusion in the absence of functional exocyst. Full fusion is rescued by optogenetically restoring exocyst function, in a manner likely dependent on the stoichiometry of tether engagement with the plasma membrane. In contrast, a passive artificial tether produces mostly kissing events, suggesting that kiss-and-run is the default mode of vesicle fusion. Optogenetic control of tethering further shows that fusion mode has physiological relevance since only full fusion could trigger lamellipodial expansion. These findings demonstrate that active coupling between tethering and fusion is critical for robust membrane merger.
Collapse
Affiliation(s)
- Seong J An
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Alexander Anneken
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhiqun Xi
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Brian McNellis
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Vladimir I Polejaev
- International Science and Technology Center, Yale University School of Medicine, New Haven, CT, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
22
|
Pushpa K, Dagar S, Kumar H, Pathak D, Mylavarapu SVS. The exocyst complex regulates C. elegans germline stem cell proliferation by controlling membrane Notch levels. Development 2021; 148:271155. [PMID: 34338279 DOI: 10.1242/dev.196345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
The conserved exocyst complex regulates plasma membrane-directed vesicle fusion in eukaryotes. However, its role in stem cell proliferation has not been reported. Germline stem cell (GSC) proliferation in the nematode Caenorhabditis elegans is regulated by conserved Notch signaling. Here, we reveal that the exocyst complex regulates C. elegans GSC proliferation by modulating Notch signaling cell autonomously. Notch membrane density is asymmetrically maintained on GSCs. Knockdown of exocyst complex subunits or of the exocyst-interacting GTPases Rab5 and Rab11 leads to Notch redistribution from the GSC-niche interface to the cytoplasm, suggesting defects in plasma membrane Notch deposition. The anterior polarity (aPar) protein Par6 is required for GSC proliferation, and for maintaining niche-facing membrane levels of Notch and the exocyst complex. The exocyst complex biochemically interacts with the aPar regulator Par5 (14-3-3ζ) and Notch in C. elegans and human cells. Exocyst components are required for Notch plasma membrane localization and signaling in mammalian cells. Our study uncovers a possibly conserved requirement of the exocyst complex in regulating GSC proliferation and in maintaining optimal membrane Notch levels.
Collapse
Affiliation(s)
- Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Diksha Pathak
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
23
|
Zhang Y, Du X, Chen X, Tang H, Zhou Q, He J, Ding Y, Wang Y, Liu X, Geng Y. Rictor/mTORC2 is involved in endometrial receptivity by regulating epithelial remodeling. FASEB J 2021; 35:e21731. [PMID: 34131963 DOI: 10.1096/fj.202100529rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/11/2022]
Abstract
Successful embryo implantation requires well-functioning endometrial luminal epithelial cells to establish uterine receptivity. Inadequate uterine receptivity is responsible for approximately two thirds of implantation failures in humans. However, the regulatory mechanism governing this functional process remains largely unexplored. A previous study revealed that the expression of Rictor, the main member of mTORC2, in mouse epithelial cells is increased on the fourth day of gestation (D4). Here, we provide the first report of the involvement of Rictor in the regulation of endometrial receptivity. Rictor was conditionally ablated in the mouse endometrium using a progesterone receptor cre (PRcre ) mouse model. Loss of Rictor altered polarity remodeling and the Na+ channel protein of endometrial cells by mediating Rac-1/PAK1(pPAK1)/ERM(pERM) and Sgk1/pSgk1 signaling, respectively, ultimately resulting in impaired fertility. In the endometrium of women with infertility, the expression of Rictor was changed, along with the morphological transformation and Na+ channel protein of epithelial cells. Our findings demonstrate that Rictor is crucial for the establishment of uterine receptivity in both mice and humans. The present study may help improve the molecular regulatory network of endometrial receptivity and provide new diagnostic and treatment strategies for infertility.
Collapse
Affiliation(s)
- Yue Zhang
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Xinman Du
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Xuemei Chen
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Hongyu Tang
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Qin Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Junlin He
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yubin Ding
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yingxiong Wang
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
- College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
| | - Xueqing Liu
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
| | - Yanqing Geng
- Joint International Research Laboratory of Reproduction & Development, School of Public Health and Management, Chongqing Medical University, Chongqing, P.R. China
- College of Basic Medicine, Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
24
|
The polarity protein PARD3 and cancer. Oncogene 2021; 40:4245-4262. [PMID: 34099863 DOI: 10.1038/s41388-021-01813-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Tissue disorganisation is one of the main hallmarks of cancer. Polarity proteins are responsible for the arrangement of cells within epithelial tissues through the asymmetric organisation of cellular components. Partition defective 3 (PARD3) is a master regulator of the Par polarity complex primarily due to its ability to form large complexes via its self-homologous binding domain. In addition to its role in polarity, PARD3 is a scaffolding protein that binds to intracellular signalling molecules, many of which are frequently deregulated in cancer. The role of PARD3 has been implicated in multiple solid cancers as either a tumour suppressor or promoter. This dual functionality is both physiologically and cell context dependent. In this review, we will discuss PARD3's role in tumourigenesis in both laboratory and clinical settings. We will also review several of the mechanisms underpinning PARD3's function including its association with intracellular signalling pathways and its role in the regulation of asymmetric cell division.
Collapse
|
25
|
Wang S, Cai J, Zhang S, Dong M, Zhang L, Xu Y, Shen B, Chen S. Loss of polarity protein Par3, via transcription factor Snail, promotes bladder cancer metastasis. Cancer Sci 2021; 112:2625-2641. [PMID: 33931921 PMCID: PMC8253273 DOI: 10.1111/cas.14920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer (BLCA) remains the leading cause of cancer‐related mortality among genitourinary malignancies worldwide. BLCA metastasis represents the primary reason for its poor prognosis. In this study, we report that decreased expression of partitioning defective 3 (Par3), a polarity protein (encoded by PARD3), is associated with tumor aggressive phenotypes and poor prognosis in BLCA patients. Consistently, ablation of Par3 promotes the metastasis and invasion of BLCA cells in vitro and in vivo. Further studies reveal that zinc finger protein Snail represses the expression of Par3 by binding to E2‐box (CAGGTG) of PARD3 promoter‐proximal. Inhibition of GSK‐3β promotes the expression and nuclear localization of Snail and then reduces the expression of Par3, resulting in the metastasis and invasion of BLCA cells. Moreover, we detected the interaction between Par3 (936‐1356 aa) and ZO‐1 (1372‐1748 aa), which is involved in the maintenance of tight junction. Together, our results demonstrate that the GSK‐3β/Snail/Par3/ZO‐1 axis regulates BLCA metastasis, and Snail is a major regulator for Par3 protein expression in BLCA.
Collapse
Affiliation(s)
- Shenyi Wang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingwei Dong
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Li Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Van Bergen NJ, Ahmed SM, Collins F, Cowley M, Vetro A, Dale RC, Hock DH, de Caestecker C, Menezes M, Massey S, Ho G, Pisano T, Glover S, Gusman J, Stroud DA, Dinger M, Guerrini R, Macara IG, Christodoulou J. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J Exp Med 2021; 217:151928. [PMID: 32639540 PMCID: PMC7537385 DOI: 10.1084/jem.20192040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/03/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
The exocyst, an octameric protein complex, is an essential component of the membrane transport machinery required for tethering and fusion of vesicles at the plasma membrane. We report pathogenic variants in an exocyst subunit, EXOC2 (Sec5). Affected individuals have severe developmental delay, dysmorphism, and brain abnormalities; variability associated with epilepsy; and poor motor skills. Family 1 had two offspring with a homozygous truncating variant in EXOC2 that leads to nonsense-mediated decay of EXOC2 transcript, a severe reduction in exocytosis and vesicle fusion, and undetectable levels of EXOC2 protein. The patient from Family 2 had a milder clinical phenotype and reduced exocytosis. Cells from both patients showed defective Arl13b localization to the primary cilium. The discovery of mutations that partially disable exocyst function provides valuable insight into this essential protein complex in neural development. Since EXOC2 and other exocyst complex subunits are critical to neuronal function, our findings suggest that EXOC2 variants are the cause of the patients’ neurological disorders.
Collapse
Affiliation(s)
- Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Felicity Collins
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Medical Genomics Department, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mark Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St Vincent's Clinical School, University of New South Wales Sydney, Sydney, New South Wales, Australia.,Children's Cancer Institute, Kensington, New South Wales, Australia
| | - Annalisa Vetro
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniella H Hock
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Christian de Caestecker
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - Minal Menezes
- Kids Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Seana Glover
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Jovanka Gusman
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Marcel Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington Campus, Sydney, New South Wales, Australia
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.,Victorian Clinical Genetics Services, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
27
|
Abrams J, Nance J. A polarity pathway for exocyst-dependent intracellular tube extension. eLife 2021; 10:65169. [PMID: 33687331 PMCID: PMC8021397 DOI: 10.7554/elife.65169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within the Caenorhabditis elegans excretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.
Collapse
Affiliation(s)
- Joshua Abrams
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States.,Department of Cell Biology, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
28
|
Thompson BJ. Par-3 family proteins in cell polarity & adhesion. FEBS J 2021; 289:596-613. [PMID: 33565714 PMCID: PMC9290619 DOI: 10.1111/febs.15754] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 12/27/2022]
Abstract
The Par‐3/Baz family of polarity determinants is highly conserved across metazoans and includes C. elegans PAR‐3, Drosophila Bazooka (Baz), human Par‐3 (PARD3), and human Par‐3‐like (PARD3B). The C. elegans PAR‐3 protein localises to the anterior pole of asymmetrically dividing zygotes with cell division cycle 42 (CDC42), atypical protein kinase C (aPKC), and PAR‐6. The same C. elegans ‘PAR complex’ can also localise in an apical ring in epithelial cells. Drosophila Baz localises to the apical pole of asymmetrically dividing neuroblasts with Cdc42‐aPKC‐Par6, while in epithelial cells localises both in an apical ring with Cdc42‐aPKC‐Par6 and with E‐cadherin at adherens junctions. These apical and junctional localisations have become separated in human PARD3, which is strictly apical in many epithelia, and human PARD3B, which is strictly junctional in many epithelia. We discuss the molecular basis for this fundamental difference in localisation, as well as the possible functions of Par‐3/Baz family proteins as oligomeric clustering agents at the apical domain or at adherens junctions in epithelial stem cells. The evolution of Par‐3 family proteins into distinct apical PARD3 and junctional PARD3B orthologs coincides with the emergence of stratified squamous epithelia in vertebrates, where PARD3B, but not PARD3, is strongly expressed in basal layer stem cells – which lack a typical apical domain. We speculate that PARD3B may contribute to clustering of E‐cadherin, signalling from adherens junctions via Src family kinases or mitotic spindle orientation by adherens junctions in response to mechanical forces.
Collapse
Affiliation(s)
- Barry J Thompson
- ACRF Department of Cancer Biology & Therapeutics, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
29
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
30
|
Koinuma S, Negishi R, Nomura R, Sato K, Kojima T, Segi-Nishida E, Goitsuka R, Iwakura Y, Wada N, Koriyama Y, Kiryu-Seo S, Kiyama H, Nakamura T. TC10, a Rho family GTPase, is required for efficient axon regeneration in a neuron-autonomous manner. J Neurochem 2020; 157:1196-1206. [PMID: 33156548 DOI: 10.1111/jnc.15235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Intracellular signaling pathways that promote axon regeneration are closely linked to the mechanism of neurite outgrowth. TC10, a signaling molecule that acts on neurite outgrowth through membrane transport, is a member of the Rho family G proteins. Axon injury increases the TC10 levels in motor neurons, suggesting that TC10 may be involved in axon regeneration. In this study, we tried to understand the roles of TC10 in the nervous system using TC10 knock-out mice. In cultured hippocampal neurons, TC10 ablation significantly reduced axon elongation without affecting ordinary polarization. We determined a role of TC10 in microtubule stabilization at the growth cone neck; therefore, we assume that TC10 limits axon retraction and promotes in vitro axon outgrowth. In addition, there were no notable differences in the size and structure of brains during prenatal and postnatal development between wild-type and TC10 knock-out mice. In motor neurons, axon regeneration after injury was strongly suppressed in mice lacking TC10 (both in conventional and injured nerve specific deletion). In retinal ganglion cells, TC10 ablation suppressed the axon regeneration stimulated by intraocular inflammation and cAMP after optic nerve crush. These results show that TC10 plays an important role in axon regeneration in both the peripheral and central nervous systems, and the role of TC10 in peripheral axon regeneration is neuron-intrinsic.
Collapse
Affiliation(s)
- Shingo Koinuma
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Ryota Negishi
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Riko Nomura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Sato
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takuya Kojima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryo Goitsuka
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Yoshiki Koriyama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeshi Nakamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
31
|
Glutamatergic Receptor Trafficking and Delivery: Role of the Exocyst Complex. Cells 2020; 9:cells9112402. [PMID: 33153008 PMCID: PMC7693776 DOI: 10.3390/cells9112402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/29/2022] Open
Abstract
Cells comprise several intracellular membrane compartments that allow them to function properly. One of these functions is cargo movement, typically proteins and membranes within cells. These cargoes ride microtubules through vesicles from Golgi and recycling endosomes to the plasma membrane in order to be delivered and exocytosed. In neurons, synaptic functions employ this cargo trafficking to maintain inter-neuronal communication optimally. One of the complexes that oversee vesicle trafficking and tethering is the exocyst. The exocyst is a protein complex containing eight subunits first identified in yeast and then characterized in multicellular organisms. This complex is related to several cellular processes, including cellular growth, division, migration, and morphogenesis, among others. It has been associated with glutamatergic receptor trafficking and tethering into the synapse, providing the molecular machinery to deliver receptor-containing vesicles into the plasma membrane in a constitutive manner. In this review, we discuss the evidence so far published regarding receptor trafficking and the exocyst complex in both basal and stimulated levels, comparing constitutive trafficking and long-term potentiation-related trafficking.
Collapse
|
32
|
Boon N, Wijnholds J, Pellissier LP. Research Models and Gene Augmentation Therapy for CRB1 Retinal Dystrophies. Front Neurosci 2020; 14:860. [PMID: 32922261 PMCID: PMC7456964 DOI: 10.3389/fnins.2020.00860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA) are inherited degenerative retinal dystrophies with vision loss that ultimately lead to blindness. Several genes have been shown to be involved in early onset retinal dystrophies, including CRB1 and RPE65. Gene therapy recently became available for young RP patients with variations in the RPE65 gene. Current research programs test adeno-associated viral gene augmentation or editing therapy vectors on various disease models mimicking the disease in patients. These include several animal and emerging human-derived models, such as human-induced pluripotent stem cell (hiPSC)-derived retinal organoids or hiPSC-derived retinal pigment epithelium (RPE), and human donor retinal explants. Variations in the CRB1 gene are a major cause for early onset autosomal recessive RP with patients suffering from visual impairment before their adolescence and for LCA with newborns experiencing severe visual impairment within the first months of life. These patients cannot benefit yet from an available gene therapy treatment. In this review, we will discuss the recent advances, advantages and disadvantages of different CRB1 human and animal retinal degeneration models. In addition, we will describe novel therapeutic tools that have been developed, which could potentially be used for retinal gene augmentation therapy for RP patients with variations in the CRB1 gene.
Collapse
Affiliation(s)
- Nanda Boon
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands.,The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Lucie P Pellissier
- Biology and Bioinformatics of Signalling Systems, Physiologie de la Reproduction et des Comportements INRAE UMR 0085, CNRS UMR 7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
33
|
Jossin Y. Molecular mechanisms of cell polarity in a range of model systems and in migrating neurons. Mol Cell Neurosci 2020; 106:103503. [PMID: 32485296 DOI: 10.1016/j.mcn.2020.103503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/23/2020] [Indexed: 01/09/2023] Open
Abstract
Cell polarity is defined as the asymmetric distribution of cellular components along an axis. Most cells, from the simplest single-cell organisms to highly specialized mammalian cells, are polarized and use similar mechanisms to generate and maintain polarity. Cell polarity is important for cells to migrate, form tissues, and coordinate activities. During development of the mammalian cerebral cortex, cell polarity is essential for neurogenesis and for the migration of newborn but as-yet undifferentiated neurons. These oriented migrations include both the radial migration of excitatory projection neurons and the tangential migration of inhibitory interneurons. In this review, I will first describe the development of the cerebral cortex, as revealed at the cellular level. I will then define the core molecular mechanisms - the Par/Crb/Scrib polarity complexes, small GTPases, the actin and microtubule cytoskeletons, and phosphoinositides/PI3K signaling - that are required for asymmetric cell division, apico-basal and front-rear polarity in model systems, including C elegans zygote, Drosophila embryos and cultured mammalian cells. As I go through each core mechanism I will explain what is known about its importance in radial and tangential migration in the developing mammalian cerebral cortex.
Collapse
Affiliation(s)
- Yves Jossin
- Laboratory of Mammalian Development & Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
34
|
Krahn MP. Phospholipids of the Plasma Membrane - Regulators or Consequence of Cell Polarity? Front Cell Dev Biol 2020; 8:277. [PMID: 32411703 PMCID: PMC7198698 DOI: 10.3389/fcell.2020.00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022] Open
Abstract
Cell polarity is a key feature of many eukaryotic cells, including neurons, epithelia, endothelia and asymmetrically dividing stem cells. Apart from the specific localization of proteins to distinct domains of the plasma membrane, most of these cells exhibit an asymmetric distribution of phospholipids within the plasma membrane too. Notably, research over the last years has revealed that many known conserved regulators of apical-basal polarity in epithelial cells are capable of binding to phospholipids, which in turn regulate the localization and to some extent the function of these proteins. Conversely, phospholipid-modifying enzymes are recruited and controlled by polarity regulators, demonstrating an elaborated balance between asymmetrically localized proteins and phospholipids, which are enriched in certain (micro)domains of the plasma membrane. In this review, we will focus on our current understanding of apical-basal polarity and the implication of phospholipids within the plasma membrane during the cell polarization of epithelia and migrating cells.
Collapse
Affiliation(s)
- Michael P. Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Münster, Germany
| |
Collapse
|
35
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
36
|
Vaidžiulytė K, Coppey M, Schauer K. Intracellular organization in cell polarity - placing organelles into the polarity loop. J Cell Sci 2019; 132:132/24/jcs230995. [PMID: 31836687 DOI: 10.1242/jcs.230995] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have investigated the processes that support polarity establishment and maintenance in cells. On the one hand, polarity complexes at the cell cortex and their downstream signaling pathways have been assigned as major regulators of polarity. On the other hand, intracellular organelles and their polarized trafficking routes have emerged as important components of polarity. In this Review, we argue that rather than trying to identify the prime 'culprit', now it is time to consider all these players as a collective. We highlight that understanding the intimate coordination between the polarized cell cortex and the intracellular compass that is defined by organelle positioning is essential to capture the concept of polarity. After briefly reviewing how polarity emerges from a dynamic maintenance of cellular asymmetries, we highlight how intracellular organelles and their associated trafficking routes provide diverse feedback for dynamic cell polarity maintenance. We argue that the asymmetric organelle compass is an indispensable element of the polarity network.
Collapse
Affiliation(s)
- Kotryna Vaidžiulytė
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France.,Faculty of Science and Engineering, Sorbonne Université, Paris 75005, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| | - Kristine Schauer
- Cell Biology and Cancer Unit, Institut Curie, PSL Research University, Sorbonne Université, CNRS, Paris 75005, France
| |
Collapse
|
37
|
Gao R, Pratt CP, Yoon S, Martin-de-Saavedra MD, Forrest MP, Penzes P. CNTNAP2 is targeted to endosomes by the polarity protein PAR3. Eur J Neurosci 2019; 51:1074-1086. [PMID: 31730244 DOI: 10.1111/ejn.14620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/01/2023]
Abstract
A decade of genetic studies has established contactin-associated protein-like 2 (CNTNAP2) as a prominent susceptibility gene associated with multiple neurodevelopmental disorders. The development and characterization of Cntnap2 knockout models in multiple species have bolstered this claim by establishing clear connections with certain endophenotypes. Despite these remarkable in vivo findings, CNTNAP2's molecular functions are relatively unexplored, highlighting the need to identify novel protein partners. Here, we characterized an interaction between CNTNAP2 and partitioning-defective 3 (PAR3)-a polarity molecule isolated in a yeast two-hybrid screen with CNTNAP2's C-terminus. We provide evidence that the two proteins interact via PDZ domain-mediated binding, that CNTNAP2+ /PAR3+ complexes are largely associated with clathrin-coated endocytic vesicles in heterologous cells and that PAR3 causes an enlargement of CNTNAP2 puncta size. Live imaging and fluorescence recovery after photobleaching (FRAP) reveals that PAR3 limits the mobility of CNTNAP2. Finally, overexpression of PAR3 but not a PAR3 mutant lacking all PDZ domains (PAR3∆PDZall) can cluster endogenous CNTNAP2 in primary neurons. Collectively, we conclude that PAR3 regulates CNTNAP2 spatial localization.
Collapse
Affiliation(s)
- Ruoqi Gao
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher P Pratt
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sehyoun Yoon
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Marc P Forrest
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, USA
| |
Collapse
|
38
|
Otani T, Nguyen TP, Tokuda S, Sugihara K, Sugawara T, Furuse K, Miura T, Ebnet K, Furuse M. Claudins and JAM-A coordinately regulate tight junction formation and epithelial polarity. J Cell Biol 2019; 218:3372-3396. [PMID: 31467165 PMCID: PMC6781433 DOI: 10.1083/jcb.201812157] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/14/2019] [Accepted: 07/24/2019] [Indexed: 01/03/2023] Open
Abstract
Tight junctions (TJs) establish the epithelial barrier and are thought to form a membrane fence to regulate epithelial polarity, although the roles of TJs in epithelial polarity remain controversial. Claudins constitute TJ strands in conjunction with the cytoplasmic scaffolds ZO-1 and ZO-2 and play pivotal roles in epithelial barrier formation. However, how claudins and other TJ membrane proteins cooperate to organize TJs remains unclear. Here, we systematically knocked out TJ components by genome editing and show that while ZO-1/ZO-2-deficient cells lacked TJ structures and epithelial barriers, claudin-deficient cells lacked TJ strands and an electrolyte permeability barrier but formed membrane appositions and a macromolecule permeability barrier. Moreover, epithelial polarity was disorganized in ZO-1/ZO-2-deficient cells, but not in claudin-deficient cells. Simultaneous deletion of claudins and a TJ membrane protein JAM-A resulted in a loss of membrane appositions and a macromolecule permeability barrier and in sporadic epithelial polarity defects. These results demonstrate that claudins and JAM-A coordinately regulate TJ formation and epithelial polarity.
Collapse
Affiliation(s)
- Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Shinsaku Tokuda
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kei Sugihara
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Sugawara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Kyoko Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Takashi Miura
- Department of Anatomy and Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity," Institute of Medical Biochemistry, Zentrum für Molekularbiologie der Entzündung, University of Münster, Münster, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
39
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
40
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
41
|
Sáez JJ, Diaz J, Ibañez J, Bozo JP, Cabrera Reyes F, Alamo M, Gobert FX, Obino D, Bono MR, Lennon-Duménil AM, Yeaman C, Yuseff MI. The exocyst controls lysosome secretion and antigen extraction at the immune synapse of B cells. J Cell Biol 2019; 218:2247-2264. [PMID: 31197029 PMCID: PMC6605794 DOI: 10.1083/jcb.201811131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BCR engagement enhances microtubule stability, which triggers the mobilization of Exo70 from the centrosome to the immune synapse. BCR engagement activates GEF-H1, which promotes exocyst assembly required for the docking and secretion of lysosomes, facilitating the extraction of surface-tethered antigens. B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.
Collapse
Affiliation(s)
- Juan José Sáez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Jheimmy Diaz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Ibañez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Bozo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martina Alamo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - François-Xavier Gobert
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - María Rosa Bono
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Pichaud F, Walther RF, Nunes de Almeida F. Regulation of Cdc42 and its effectors in epithelial morphogenesis. J Cell Sci 2019; 132:132/10/jcs217869. [PMID: 31113848 DOI: 10.1242/jcs.217869] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 - a member of the small Rho GTPase family - regulates cell polarity across organisms from yeast to humans. It is an essential regulator of polarized morphogenesis in epithelial cells, through coordination of apical membrane morphogenesis, lumen formation and junction maturation. In parallel, work in yeast and Caenorhabditis elegans has provided important clues as to how this molecular switch can generate and regulate polarity through localized activation or inhibition, and cytoskeleton regulation. Recent studies have revealed how important and complex these regulations can be during epithelial morphogenesis. This complexity is mirrored by the fact that Cdc42 can exert its function through many effector proteins. In epithelial cells, these include atypical PKC (aPKC, also known as PKC-3), the P21-activated kinase (PAK) family, myotonic dystrophy-related Cdc42 binding kinase beta (MRCKβ, also known as CDC42BPB) and neural Wiskott-Aldrich syndrome protein (N-WASp, also known as WASL). Here, we review how the spatial regulation of Cdc42 promotes polarity and polarized morphogenesis of the plasma membrane, with a focus on the epithelial cell type.
Collapse
Affiliation(s)
- Franck Pichaud
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Rhian F Walther
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
43
|
Xu W, Gulvady AC, Goreczny GJ, Olson EC, Turner CE. Paxillin-dependent regulation of apical-basal polarity in mammary gland morphogenesis. Development 2019; 146:dev.174367. [PMID: 30967426 DOI: 10.1242/dev.174367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/03/2019] [Indexed: 01/31/2023]
Abstract
Establishing apical-basal epithelial cell polarity is fundamental for mammary gland duct morphogenesis during mammalian development. While the focal adhesion adapter protein paxillin is a well-characterized regulator of mesenchymal cell adhesion signaling, F-actin cytoskeleton remodeling and single cell migration, its role in epithelial tissue organization and mammary gland morphogenesis in vivo has not been investigated. Here, using a newly developed paxillin conditional knockout mouse model with targeted ablation in the mammary epithelium, in combination with ex vivo three-dimensional organoid and acini cultures, we identify new roles for paxillin in the establishment of apical-basal epithelial cell polarity and lumen formation, as well as mammary gland duct diameter and branching. Paxillin is shown to be required for the integrity and apical positioning of the Golgi network, Par complex and the Rab11/MyoVb trafficking machinery. Paxillin depletion also resulted in reduced levels of apical acetylated microtubules, and rescue experiments with the HDAC6 inhibitor tubacin highlight the central role for paxillin-dependent regulation of HDAC6 activity and associated microtubule acetylation in controlling epithelial cell apical-basal polarity and tissue branching morphogenesis.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Anushree C Gulvady
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, 505 Irving Ave, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
44
|
Jouette J, Guichet A, Claret SB. Dynein-mediated transport and membrane trafficking control PAR3 polarised distribution. eLife 2019; 8:40212. [PMID: 30672465 PMCID: PMC6358217 DOI: 10.7554/elife.40212] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
The scaffold protein PAR3 and the kinase PAR1 are essential proteins that control cell polarity. Their precise opposite localisations define plasma membrane domains with specific functions. PAR3 and PAR1 are mutually inhibited by direct or indirect phosphorylations, but their fates once phosphorylated are poorly known. Through precise spatiotemporal quantification of PAR3 localisation in the Drosophila oocyte, we identify several mechanisms responsible for its anterior cortex accumulation and its posterior exclusion. We show that PAR3 posterior plasma membrane exclusion depends on PAR1 and an endocytic mechanism relying on RAB5 and PI(4,5)P2. In a second phase, microtubules and the dynein motor, in connection with vesicular trafficking involving RAB11 and IKK-related kinase, IKKε, are required for PAR3 transport towards the anterior cortex. Altogether, our results point to a connection between membrane trafficking and dynein-mediated transport to sustain PAR3 asymmetry.
Collapse
Affiliation(s)
- Julie Jouette
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Antoine Guichet
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| | - Sandra B Claret
- Institut Jacques Monod, CNRS, UMR 7592, Paris Diderot University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
45
|
Ahmed SM, Nishida-Fukuda H, Li Y, McDonald WH, Gradinaru CC, Macara IG. Exocyst dynamics during vesicle tethering and fusion. Nat Commun 2018; 9:5140. [PMID: 30510181 PMCID: PMC6277416 DOI: 10.1038/s41467-018-07467-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/01/2018] [Indexed: 11/15/2022] Open
Abstract
The exocyst is a conserved octameric complex that tethers exocytic vesicles to the plasma membrane prior to fusion. Exocyst assembly and delivery mechanisms remain unclear, especially in mammalian cells. Here we tagged multiple endogenous exocyst subunits with sfGFP or Halo using Cas9 gene-editing, to create single and double knock-in lines of mammary epithelial cells, and interrogated exocyst dynamics by high-speed imaging and correlation spectroscopy. We discovered that mammalian exocyst is comprised of tetrameric subcomplexes that can associate independently with vesicles and plasma membrane and are in dynamic equilibrium with octamer and monomers. Membrane arrival times are similar for subunits and vesicles, but with a small delay (~80msec) between subcomplexes. Departure of SEC3 occurs prior to fusion, whereas other subunits depart just after fusion. About 9 exocyst complexes are associated per vesicle. These data reveal the mammalian exocyst as a remarkably dynamic two-part complex and provide important insights into assembly/disassembly mechanisms. Exocyst complex tethers vesicles to plasma membranes, but assembly mechanisms remain unclear. Here, the authors use Cas9 gene editing to tag exocyst components in epithelial cells, and find that exocyst subcomplexes are recruited to membranes independently, but are both needed for vesicle fusion.
Collapse
Affiliation(s)
- Syed Mukhtar Ahmed
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| | - Hisayo Nishida-Fukuda
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.,Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan.,Department of Hepato-Biliary-Pancreatic and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Ehime, 7910295, Japan.,Department of Genome Editing, Institute of Biomedical Sciences, Kansai Medical University, Hirakata, 5731010, Japan
| | - Yuchong Li
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.,Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.,Department of Chemical & Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37240, USA.
| |
Collapse
|
46
|
Abstract
The cytoskeleton is crucially important for the assembly of cell-cell junctions and the homeostatic regulation of their functions. Junctional proteins act, in turn, as anchors for cytoskeletal filaments, and as regulators of cytoskeletal dynamics and signalling proteins. The cross-talk between junctions and the cytoskeleton is critical for the morphogenesis and physiology of epithelial and other tissues, but is not completely understood. Microtubules are implicated in the delivery of junctional proteins to cell-cell contact sites, in the differentiation and spatial organization of the cytoplasm, and in the stabilization of the barrier and adhesive functions of junctions. Here we focus on the relationships between microtubules and junctions of vertebrate epithelial cells. We highlight recent discoveries on the molecular underpinnings of microtubule-junction interactions, and report new data about the interaction of cingulin and paracingulin with microtubules. We also propose a possible new role of junctions as “molecular sinks” for microtubule-associated signalling proteins.
Collapse
Affiliation(s)
- Ekaterina Vasileva
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| | - Sandra Citi
- a Department of Cell Biology, Faculty of Sciences and Institute for Genetics and Genomics in Geneva (iGE3) , University of Geneva , Geneva , Switzerland
| |
Collapse
|
47
|
Chuykin I, Ossipova O, Sokol SY. Par3 interacts with Prickle3 to generate apical PCP complexes in the vertebrate neural plate. eLife 2018; 7:37881. [PMID: 30256191 PMCID: PMC6175575 DOI: 10.7554/elife.37881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Vertebrate neural tube formation depends on the coordinated orientation of cells in the tissue known as planar cell polarity (PCP). In the Xenopus neural plate, PCP is marked by the enrichment of the conserved proteins Prickle3 and Vangl2 at anterior cell boundaries. Here we show that the apical determinant Par3 is also planar polarized in the neuroepithelium, suggesting a role for Par3 in PCP. Consistent with this hypothesis, interference with Par3 activity inhibited asymmetric distribution of PCP junctional complexes and caused neural tube defects. Importantly, Par3 physically associated with Prickle3 and promoted its apical localization, whereas overexpression of a Prickle3-binding Par3 fragment disrupted PCP in the neural plate. We also adapted proximity biotinylation assay for use in Xenopus embryos and show that Par3 functions by enhancing the formation of the anterior apical PCP complex. These findings describe a mechanistic link between the apical localization of PCP components and morphogenetic movements underlying neurulation.
Collapse
Affiliation(s)
- Ilya Chuykin
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Olga Ossipova
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sergei Y Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
48
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
49
|
Del Valle Batalla F, Lennon-Dumenil AM, Yuseff MI. Tuning B cell responses to antigens by cell polarity and membrane trafficking. Mol Immunol 2018; 101:140-145. [PMID: 29935436 DOI: 10.1016/j.molimm.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/01/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023]
Abstract
The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated.
Collapse
Affiliation(s)
- Felipe Del Valle Batalla
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | | | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile.
| |
Collapse
|
50
|
López Tobón A, Suresh M, Jin J, Vitriolo A, Pietralla T, Tedford K, Bossenz M, Mahnken K, Kiefer F, Testa G, Fischer KD, Püschel AW. The guanine nucleotide exchange factor Arhgef7/βPix promotes axon formation upstream of TC10. Sci Rep 2018; 8:8811. [PMID: 29891904 PMCID: PMC5995858 DOI: 10.1038/s41598-018-27081-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/29/2018] [Indexed: 11/10/2022] Open
Abstract
The characteristic six layers of the mammalian neocortex develop sequentially as neurons are generated by neural progenitors and subsequently migrate past older neurons to their final position in the cortical plate. One of the earliest steps of neuronal differentiation is the formation of an axon. Small GTPases play essential roles during this process by regulating cytoskeletal dynamics and intracellular trafficking. While the function of GTPases has been studied extensively in cultured neurons and in vivo much less is known about their upstream regulators. Here we show that Arhgef7 (also called βPix or Cool1) is essential for axon formation during cortical development. The loss of Arhgef7 results in an extensive loss of axons in cultured neurons and in the developing cortex. Arhgef7 is a guanine-nucleotide exchange factor (GEF) for Cdc42, a GTPase that has a central role in directing the formation of axons during brain development. However, active Cdc42 was not able to rescue the knockdown of Arhgef7. We show that Arhgef7 interacts with the GTPase TC10 that is closely related to Cdc42. Expression of active TC10 can restore the ability to extend axons in Arhgef7-deficient neurons. Our results identify an essential role of Arhgef7 during neuronal development that promotes axon formation upstream of TC10.
Collapse
Affiliation(s)
- Alejandro López Tobón
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Megalakshmi Suresh
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Jing Jin
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany.,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Thorben Pietralla
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Kerry Tedford
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Michael Bossenz
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Kristina Mahnken
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany
| | - Friedemann Kiefer
- Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.,Max-Planck-Institute for Molecular Biomedicine, Mammalian cell signaling laboratory, Röntgenstr. 20, D-48149, Münster, Germany.,European Institute for Molecular Imaging, Westfälische Wilhelms-Universität, Waldeyerstr. 15, D-48149, Münster, Germany
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy.,European Institute of Oncology, Via Adamello 16, 20139, Milan, Italy
| | - Klaus-Dieter Fischer
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-University, Medical Faculty, Leipziger Str. 44, 39120, Magdeburg, 39120, Germany
| | - Andreas W Püschel
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms-Universität, Schloßplatz 5, D-48149, Münster, Germany. .,Cells-in-Motion Cluster of Excellence, University of Münster, D-48149, Münster, Germany.
| |
Collapse
|