1
|
Cyriac R, Lee K. Glutaminase inhibition as potential cancer therapeutics: current status and future applications. J Enzyme Inhib Med Chem 2024; 39:2290911. [PMID: 38078371 DOI: 10.1080/14756366.2023.2290911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Alterations in normal metabolic processes are defining features of cancer. Glutamine, an abundant amino acid in the human blood, plays a critical role in regulating several biosynthetic and bioenergetic pathways that support tumour growth. Glutaminolysis is a metabolic pathway that converts glutamine into various metabolites involved in the tricarboxylic acid (TCA) cycle and generates antioxidants that are vital for tumour cell survival. As glutaminase catalyses the initial step of this metabolic pathway, it is of great significance in cancer metabolism and tumour progression. Inhibition of glutaminase and targeting of glutaminolysis have emerged as promising strategies for cancer therapy. This review explores the role of glutaminases in cancer metabolism and discusses various glutaminase inhibitors developed as potential therapies for tumour regression.
Collapse
Affiliation(s)
- Rajath Cyriac
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Medicinal Chemistry & Pharmacology, Korea National University of Science and Technology, Daejeon, South Korea
| | - Kwangho Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, South Korea
- Medicinal Chemistry & Pharmacology, Korea National University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
2
|
Yu T, Van der Jeught K, Zhu H, Zhou Z, Sharma S, Liu S, Eyvani H, So KM, Singh N, Wang J, Sandusky GE, Liu Y, Opyrchal M, Cao S, Wan J, Zhang C, Zhang X. Inhibition of Glutamate-to-Glutathione Flux Promotes Tumor Antigen Presentation in Colorectal Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2310308. [PMID: 39482885 DOI: 10.1002/advs.202310308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/10/2024] [Indexed: 11/03/2024]
Abstract
Colorectal cancer (CRC) cells display remarkable adaptability, orchestrating metabolic changes that confer growth advantages, pro-tumor microenvironment, and therapeutic resistance. One such metabolic change occurs in glutamine metabolism. Colorectal tumors with high glutaminase (GLS) expression exhibited reduced T cell infiltration and cytotoxicity, leading to poor clinical outcomes. However, depletion of GLS in CRC cells has minimal effect on tumor growth in immunocompromised mice. By contrast, remarkable inhibition of tumor growth is observed in immunocompetent mice when GLS is knocked down. It is found that GLS knockdown in CRC cells enhanced the cytotoxicity of tumor-specific T cells. Furthermore, the single-cell flux estimation analysis (scFEA) of glutamine metabolism revealed that glutamate-to-glutathione (Glu-GSH) flux, downstream of GLS, rather than Glu-to-2-oxoglutarate flux plays a key role in regulating the immune response of CRC cells in the tumor. Mechanistically, inhibition of the Glu-GSH flux activated reactive oxygen species (ROS)-related signaling pathways in tumor cells, thereby increasing the tumor immunogenicity by promoting the activity of the immunoproteasome. The combinatorial therapy of Glu-GSH flux inhibitor and anti-PD-1 antibody exhibited a superior tumor growth inhibitory effect compared to either monotherapy. Taken together, the study provides the first evidence pointing to Glu-GSH flux as a potential therapeutic target for CRC immunotherapy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Kevin Van der Jeught
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haiqi Zhu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Zhuolong Zhou
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samantha Sharma
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haniyeh Eyvani
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ka Man So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Naresh Singh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jia Wang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Mateusz Opyrchal
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sha Cao
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Biomedical Engineering and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Xinna Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
3
|
Dlamini S, Mohajeri S, Kuganesan N, Sindi SH, Karaj E, Rathnayake DS, McDaniel J, Taylor WR, Tillekeratne LMV. CETZOLE Analogs as Potent Ferroptosis Inducers and Their Target Identification Using Covalent/Affinity Probes. J Med Chem 2024; 67:16107-16127. [PMID: 39264826 DOI: 10.1021/acs.jmedchem.3c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Ferroptosis is a recently discovered cell death mechanism triggered by iron-dependent elevation of reactive oxygen species leading to lipid membrane peroxidation. We previously reported the development of a new class of ferroptosis inducers referred to as CETZOLEs with CC50 values in the low micromolar range. Structure-activity relationship study of these compounds led to the development of more potent analogs with CC50 values in the nanomolar range. Cells exposed to these compounds displayed the hallmarks of ferroptosis including cell death through ROS accumulation. Cancer cells were found to be more sensitive to these compounds than normal cells. Proteomic studies using covalent and affinity probes led to the identification of cystathionine β-synthase, peroxiredoxins, ADP/ATP carriers, and glucose dehydrogenase as enriched proteins. The binding of CETZOLEs to these proteins as well as GPX4 was validated by Western blotting. This group of proteins is known to be associated with cellular antioxidant pathways.
Collapse
Affiliation(s)
- Samkeliso Dlamini
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Shahrzad Mohajeri
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Nishanth Kuganesan
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Shaimaa H Sindi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Endri Karaj
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Dewmi S Rathnayake
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jade McDaniel
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - William R Taylor
- Department of Biological Sciences, College of Natural Sciences and Mathematics, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| | - L M Viranga Tillekeratne
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 2801, W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
4
|
Chen M, Tong X, Sun Y, Dong C, Li C, Wang C, Zhang M, Wen Y, Ye P, Li R, Wan J, Liang S, Shi S. A ferroptosis amplifier based on triple-enhanced lipid peroxides accumulation strategy for effective pancreatic cancer therapy. Biomaterials 2024; 309:122574. [PMID: 38670032 DOI: 10.1016/j.biomaterials.2024.122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
As an iron dependent regulatory cell death process driven by excessive lipid peroxides (LPO), ferroptosis is recognized as a powerful weapon for pancreatic cancer (PC) therapy. However, the tumor microenvironment (TME) with hypoxia and elevated glutathione (GSH) expression not only inhibits LPO production, but also induces glutathione peroxidase 4 (GPX4) mediated LPO clearance, which greatly compromise the therapeutic outcomes of ferroptosis. To address these issues, herein, a novel triple-enhanced ferroptosis amplifier (denoted as Zal@HM-PTBC) is rationally designed. After intravenous injection, the overexpressed H2O2/GSH in TME induces the collapse of Zal@HM-PTBC and triggers the production of oxygen and reactive oxygen species (ROS), which synergistically amplify the degree of lipid peroxidation (broaden sources). Concurrently, GSH consumption because of the degradation of the hollow manganese dioxide (HM) significantly weakens the activity of GPX4, resulting in a decrease in LPO clearance (reduce expenditure). Moreover, the loading and site-directed release of zalcitabine further promotes autophagy-dependent LPO accumulation (enhance effectiveness). Both in vitro and in vivo results validated that the ferroptosis amplifier demonstrated superior specificity and favorable therapeutic responses. Overall, this triple-enhanced LPO accumulation strategy demonstrates the ability to facilitate the efficacy of ferroptosis, injecting vigorous vitality into the treatment of PC.
Collapse
Affiliation(s)
- Mengyao Chen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Xiaohan Tong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yanting Sun
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunyan Dong
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chen Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Chunhui Wang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Minyi Zhang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Yixuan Wen
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Pinting Ye
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Ruihao Li
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jie Wan
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Shujing Liang
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| | - Shuo Shi
- School of Chemical Science and Engineering, Department of Oncology, East Hospital Affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
5
|
Allevato MM, Trinh S, Koshizuka K, Nachmanson D, Nguyen TTC, Yokoyama Y, Wu X, Andres A, Wang Z, Watrous J, Molinolo AA, Mali P, Harismendy O, Jain M, Wild R, Gutkind JS. A genome-wide CRISPR screen reveals that antagonism of glutamine metabolism sensitizes head and neck squamous cell carcinoma to ferroptotic cell death. Cancer Lett 2024; 598:217089. [PMID: 38964731 DOI: 10.1016/j.canlet.2024.217089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Glutamine is a conditionally essential amino acid for the growth and survival of rapidly proliferating cancer cells. Many cancers are addicted to glutamine, and as a result, targeting glutamine metabolism has been explored clinically as a therapeutic approach. Glutamine-catalyzing enzymes are highly expressed in primary and metastatic head and neck squamous cell carcinoma (HNSCC). However, the nature of the glutamine-associated pathways in this aggressive cancer type has not been elucidated. Here, we explored the therapeutic potential of a broad glutamine antagonist, DRP-104 (sirpiglenastat), in HNSCC tumors and aimed at shedding light on glutamine-dependent pathways in this disease. We observed a potent antitumoral effect of sirpiglenastat in HPV- and HPV + HNSCC xenografts. We conducted a whole-genome CRISPR screen and metabolomics analyses to identify mechanisms of sensitivity and resistance to glutamine metabolism blockade. These approaches revealed that glutamine metabolism blockade results in the rapid buildup of polyunsaturated fatty acids (PUFAs) via autophagy nutrient-sensing pathways. Finally, our analysis demonstrated that GPX4 mediates the protection of HNSCC cells from accumulating toxic lipid peroxides; hence, glutamine blockade sensitizes HNSCC cells to ferroptosis cell death upon GPX4 inhibition. These findings demonstrate the therapeutic potential of sirpiglenastat in HNSCC and establish a novel link between glutamine metabolism and ferroptosis, which may be uniquely translated into targeted glutamine-ferroptosis combination therapies.
Collapse
Affiliation(s)
- Michael M Allevato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Sally Trinh
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Thien-Tu C Nguyen
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Yumi Yokoyama
- Dracen Pharmaceuticals Inc., 9276 Scranton Rd. Suite 200, San Diego, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Allen Andres
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Jeramie Watrous
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Alfredo A Molinolo
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Olivier Harismendy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Mohit Jain
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Robert Wild
- Dracen Pharmaceuticals Inc., 9276 Scranton Rd. Suite 200, San Diego, CA, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Grobben Y. Targeting amino acid-metabolizing enzymes for cancer immunotherapy. Front Immunol 2024; 15:1440269. [PMID: 39211039 PMCID: PMC11359565 DOI: 10.3389/fimmu.2024.1440269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the immune system's role in the detection and eradication of abnormal cells, cancer cells often evade elimination by exploitation of various immune escape mechanisms. Among these mechanisms is the ability of cancer cells to upregulate amino acid-metabolizing enzymes, or to induce these enzymes in tumor-infiltrating immunosuppressive cells. Amino acids are fundamental cellular nutrients required for a variety of physiological processes, and their inadequacy can severely impact immune cell function. Amino acid-derived metabolites can additionally dampen the anti-tumor immune response by means of their immunosuppressive activities, whilst some can also promote tumor growth directly. Based on their evident role in tumor immune escape, the amino acid-metabolizing enzymes glutaminase 1 (GLS1), arginase 1 (ARG1), inducible nitric oxide synthase (iNOS), indoleamine 2,3-dioxygenase 1 (IDO1), tryptophan 2,3-dioxygenase (TDO) and interleukin 4 induced 1 (IL4I1) each serve as a promising target for immunotherapeutic intervention. This review summarizes and discusses the involvement of these enzymes in cancer, their effect on the anti-tumor immune response and the recent progress made in the preclinical and clinical evaluation of inhibitors targeting these enzymes.
Collapse
|
7
|
Kim M, Hwang S, Jeong SM. Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy. Mol Cells 2024; 47:100096. [PMID: 39038517 PMCID: PMC11342766 DOI: 10.1016/j.mocell.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Metabolic aberrations, notably deviations in glutamine metabolism, are crucial in the oncogenic process, offering vital resources for the unlimited proliferation and enhanced survival capabilities of cancer cells. The dependency of malignant cells on glutamine metabolism has led to the proposition of targeted therapeutic strategies. However, the capability of cancer cells to initiate adaptive responses undermines the efficacy of these therapeutic interventions. This review meticulously examines the multifaceted adaptive mechanisms that cancer cells deploy to sustain survival and growth following the disruption of glutamine metabolism. Emphasis is placed on the roles of transcription factors, alterations in metabolic pathways, the mechanistic target of rapamycin complex 1 signaling axis, autophagy, macropinocytosis, nucleotide biosynthesis, and the scavenging of ROS. Thus, the delineation and subsequent targeting of these adaptive responses in the context of therapies aimed at glutamine metabolism offer a promising avenue for circumventing drug resistance in cancer treatment.
Collapse
Affiliation(s)
- Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, South Korea.
| |
Collapse
|
8
|
Kinslow CJ, Ll MB, Cai Y, Yan J, Lorkiewicz PK, Al-Attar A, Tan J, Higashi RM, Lane AN, Fan TWM. Stable isotope-resolved metabolomics analyses of metabolic phenotypes reveal variable glutamine metabolism in different patient-derived models of non-small cell lung cancer from a single patient. Metabolomics 2024; 20:87. [PMID: 39068202 PMCID: PMC11317205 DOI: 10.1007/s11306-024-02126-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/02/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Stable isotope tracers have been increasingly used in preclinical cancer model systems, including cell culture and mouse xenografts, to probe the altered metabolism of a variety of cancers, such as accelerated glycolysis and glutaminolysis and generation of oncometabolites. Comparatively little has been reported on the fidelity of the different preclinical model systems in recapitulating the aberrant metabolism of tumors. OBJECTIVES We have been developing several different experimental model systems for systems biochemistry analyses of non-small cell lung cancer (NSCLC1) using patient-derived tissues to evaluate appropriate models for metabolic and phenotypic analyses. METHODS To address the issue of fidelity, we have carried out a detailed Stable Isotope-Resolved Metabolomics study of freshly resected tissue slices, mouse patient derived xenografts (PDXs), and cells derived from a single patient using both 13C6-glucose and 13C5,15N2-glutamine tracers. RESULTS Although we found similar glucose metabolism in the three models, glutamine utilization was markedly higher in the isolated cell culture and in cell culture-derived xenografts compared with the primary cancer tissue or direct tissue xenografts (PDX). CONCLUSIONS This suggests that caution is needed in interpreting cancer biochemistry using patient-derived cancer cells in vitro or in xenografts, even at very early passage, and that direct analysis of patient derived tissue slices provides the optimal model for ex vivo metabolomics. Further research is needed to determine the generality of these observations.
Collapse
Affiliation(s)
- Connor J Kinslow
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Department of Radiation Oncology, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian, 622 West 168th Street, BNH B-11, New York, NY, 10032, USA
| | - Michael Bousamra Ll
- Department of Cardiovascular and Thoracic Surgery, University of Louisville, Louisville, KY, 40202, USA
- AMG Cardiothoracic Surgical Associates SE MI, 22201 Moross Rd. #352, Detroit, MI, 48236, USA
| | - Yihua Cai
- Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, 20892, USA
| | - Jun Yan
- Immuno-Oncology Program, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- Division of Immunotherapy, The Hiram C. Polk, Jr., MD Department of Surgery, University of Louisville, Louisville, KY, 40202, USA
| | - Pawel K Lorkiewicz
- Department of Chemistry, University of Louisville, Louisville, KY, 40202, USA
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
- Dept. Pathology, U. Mass Memorial Medical Center, University of Massachusetts, Worcester, MA, 01605, USA
| | - Jinlian Tan
- The Department of Oral Immunology and Infection Disease, School of Dentistry, University of Louisville, 501 South Preston, St. Louisville, KY, 40202, USA
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, Department of Toxicology and Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
9
|
Hajihassani O, Zarei M, Roichman A, Loftus A, Boutros CS, Hue J, Naji P, Boyer J, Tahan S, Gallagher P, Beegan W, Choi J, Lei S, Kim C, Rathore M, Nakazzi F, Shah I, Lebo K, Cheng H, Mudigonda A, Alibeckoff S, Ji K, Graor H, Miyagi M, Vaziri-Gohar A, Brunengraber H, Wang R, Lund PJ, Rothermel LD, Rabinowitz JD, Winter JM. A Ketogenic Diet Sensitizes Pancreatic Cancer to Inhibition of Glutamine Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604377. [PMID: 39211182 PMCID: PMC11361133 DOI: 10.1101/2024.07.19.604377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer is the third leading cause of cancer death in the United States, and while conventional chemotherapy remains the standard treatment, responses are poor. Safe and alternative therapeutic strategies are urgently needed 1 . A ketogenic diet has been shown to have anti-tumor effects across diverse cancer types but will unlikely have a significant effect alone. However, the diet shifts metabolism in tumors to create new vulnerabilities that can be targeted (1). Modulators of glutamine metabolism have shown promise in pre-clinical models but have failed to have a marked impact against cancer in the clinic. We show that a ketogenic diet increases TCA and glutamine-associated metabolites in murine pancreatic cancer models and under metabolic conditions that simulate a ketogenic diet in vitro. The metabolic shift leads to increased reliance on glutamine-mediated anaplerosis to compensate for low glucose abundance associated with a ketogenic diet. As a result, glutamine metabolism inhibitors, such as DON and CB839 in combination with a ketogenic diet had robust anti-cancer effects. These findings provide rationale to study the use of a ketogenic diet with glutamine targeted therapies in a clinical context.
Collapse
|
10
|
Deiana C, Agostini M, Brandi G, Giovannetti E. The trend toward more target therapy in pancreatic ductal adenocarcinoma. Expert Rev Anticancer Ther 2024; 24:525-565. [PMID: 38768098 DOI: 10.1080/14737140.2024.2357802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Despite the considerable progress made in cancer treatment through the development of target therapies, pancreatic ductal adenocarcinoma (PDAC) continues to exhibit resistance to this category of drugs. As a result, chemotherapy combination regimens remain the primary treatment approach for this aggressive cancer. AREAS COVERED In this review, we provide an in-depth analysis of past and ongoing trials on both well-known and novel targets that are being explored in PDAC, including PARP, EGFR, HER2, KRAS, and its downstream and upstream pathways (such as RAF/MEK/ERK and PI3K/AKT/mTOR), JAK/STAT pathway, angiogenesis, metabolisms, epigenetic targets, claudin, and novel targets (such as P53 and plectin). We also provide a comprehensive overview of the significant trials for each target, allowing a thorough glimpse into the past and future of target therapy. EXPERT OPINION The path toward implementing a target therapy capable of improving the overall survival of PDAC is still long, and it is unlikely that a monotherapy target drug will fulfill a meaningful role in addressing the complexity of this cancer. Thus, we discuss the future direction of target therapies in PDAC, trying to identify the more promising target and combination treatments, with a special focus on the more eagerly awaited ongoing trials.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Agostini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, San Giuliano, Italy
| |
Collapse
|
11
|
De Santis MC, Bockorny B, Hirsch E, Cappello P, Martini M. Exploiting pancreatic cancer metabolism: challenges and opportunities. Trends Mol Med 2024; 30:592-604. [PMID: 38604929 DOI: 10.1016/j.molmed.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive form of pancreatic cancer, known for its challenging diagnosis and limited treatment options. The focus on metabolic reprogramming as a key factor in tumor initiation, progression, and therapy resistance has gained prominence. In this review we focus on the impact of metabolic changes on the interplay among stromal, immune, and tumor cells, as glutamine and branched-chain amino acids (BCAAs) emerge as pivotal players in modulating immune cell functions and tumor growth. We also discuss ongoing clinical trials that explore metabolic modulation for PDAC, targeting mitochondrial metabolism, asparagine and glutamine addiction, and autophagy inhibition. Overcoming challenges in understanding nutrient effects on immune-stromal-tumor interactions holds promise for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Maria Chiara De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy.
| | - Bruno Bockorny
- BIDMC Department of Medicine, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy.
| |
Collapse
|
12
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
13
|
Arora S, Singh T, Singh A. Photocatalytic C2-trifluoroethylation and perfluoroalkylation of 3-substituted indoles using fluoroalkyl halides. Org Biomol Chem 2024; 22:4278-4282. [PMID: 38747327 DOI: 10.1039/d4ob00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A photocatalytic reactivity platform for the C2-trifluoroethylation and perfluoroalkylation of 3-substituted indoles has been developed. A range of fluoroalkyl halides have been employed as radical precursors under mild, transition-metal-free conditions to access new (per)fluorinated chemical space featuring the indole substructure. This general protocol is also applicable to indole-containing peptides.
Collapse
Affiliation(s)
- Shivani Arora
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Tavinder Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, UP-208016, India.
- Department of Sustainable Energy Engineering, Kotak School of Sustainability, Indian Institute of Technology Kanpur, UP-208016, India
- Chandrakanta Kesavan Center for Energy Policy and Climate Solutions, Indian Institute of Technology Kanpur, UP-208016, India
| |
Collapse
|
14
|
Kimmelman AC, Sherman MH. The Role of Stroma in Cancer Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041540. [PMID: 37696660 PMCID: PMC10925555 DOI: 10.1101/cshperspect.a041540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The altered metabolism of tumor cells is a well-known hallmark of cancer and is driven by multiple factors such as mutations in oncogenes and tumor suppressor genes, the origin of the tissue where the tumor arises, and the microenvironment of the tumor. These metabolic changes support the growth of cancer cells by providing energy and the necessary building blocks to sustain proliferation. Targeting these metabolic alterations therapeutically is a potential strategy to treat cancer, but it is challenging due to the metabolic plasticity of tumors. Cancer cells have developed ways to scavenge nutrients through autophagy and macropinocytosis and can also form metabolic networks with stromal cells in the tumor microenvironment. Understanding the role of the tumor microenvironment in tumor metabolism is crucial for effective therapeutic targeting. This review will discuss tumor metabolism and the contribution of the stroma in supporting tumor growth through metabolic interactions.
Collapse
Affiliation(s)
- Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York 10016, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - Mara H Sherman
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
15
|
Ren J, Ren B, Liu X, Cui M, Fang Y, Wang X, Zhou F, Gu M, Xiao R, Bai J, You L, Zhao Y. Crosstalk between metabolic remodeling and epigenetic reprogramming: A new perspective on pancreatic cancer. Cancer Lett 2024; 587:216649. [PMID: 38311052 DOI: 10.1016/j.canlet.2024.216649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 01/13/2024] [Indexed: 02/06/2024]
Abstract
Pancreatic cancer is a highly malignant solid tumor with a poor prognosis and a high mortality rate. Thus, exploring the mechanisms underlying the development and progression of pancreatic cancer is critical for identifying targets for diagnosis and treatment. Two important hallmarks of cancer-metabolic remodeling and epigenetic reprogramming-are interconnected and closely linked to regulate one another, creating a complex interaction landscape that is implicated in tumorigenesis, invasive metastasis, and immune escape. For example, metabolites can be involved in the regulation of epigenetic enzymes as substrates or cofactors, and alterations in epigenetic modifications can in turn regulate the expression of metabolic enzymes. The crosstalk between metabolic remodeling and epigenetic reprogramming in pancreatic cancer has gained considerable attention. Here, we review the emerging data with a focus on the reciprocal regulation of metabolic remodeling and epigenetic reprogramming. We aim to highlight how these mechanisms could be applied to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Jie Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Bo Ren
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Xiaohong Liu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Yuan Fang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Xing Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Feihan Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Minzhi Gu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Jialu Bai
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
16
|
Coffey NJ, Simon MC. Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nat Rev Nephrol 2024; 20:233-250. [PMID: 38253811 PMCID: PMC11165401 DOI: 10.1038/s41581-023-00800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Kidney cancer is the seventh leading cause of cancer in the world, and its incidence is on the rise. Renal cell carcinoma (RCC) is the most common form and is a heterogeneous disease comprising three major subtypes that vary in their histology, clinical course and driver mutations. These subtypes include clear cell RCC, papillary RCC and chromophobe RCC. Molecular analyses of hereditary and sporadic forms of RCC have revealed that this complex and deadly disease is characterized by metabolic pathway alterations in cancer cells that lead to deregulated oxygen and nutrient sensing, as well as impaired tricarboxylic acid cycle activity. These metabolic changes facilitate tumour growth and survival. Specifically, studies of the metabolic features of RCC have led to the discovery of oncometabolites - fumarate and succinate - that can promote tumorigenesis, moonlighting functions of enzymes, and substrate auxotrophy owing to the disruption of pathways that enable the production of arginine and cholesterol. These metabolic alterations within RCC can be exploited to identify new therapeutic targets and interventions, in combination with novel approaches that minimize the systemic toxicity of metabolic inhibitors and reduce the risk of drug resistance owing to metabolic plasticity.
Collapse
Affiliation(s)
- Nathan J Coffey
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Teng T, Shi H, Fan Y, Guo P, Zhang J, Qiu X, Feng J, Huang H. Metabolic responses to the occurrence and chemotherapy of pancreatic cancer: biomarker identification and prognosis prediction. Sci Rep 2024; 14:6938. [PMID: 38521793 PMCID: PMC10960848 DOI: 10.1038/s41598-024-56737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
As the most malignant tumor, the prognosis of pancreatic cancer is not ideal even in the small number of patients who can undergo radical surgery. As a highly heterogeneous tumor, chemotherapy resistance is a major factor leading to decreased efficacy and postoperative recurrence of pancreatic cancer. In this study, nuclear magnetic resonance (NMR)-based metabolomics was applied to identify serum metabolic characteristics of pancreatic ductal adenocarcinoma (PDAC) and screen the potential biomarkers for its diagnosis. Metabolic changes of patients with different CA19-9 levels during postoperative chemotherapy were also monitored and compared to identify the differential metabolites that may affect the efficacy of chemotherapy. Finally, 19 potential serum biomarkers were screened to serve the diagnosis of PDAC, and significant metabolic differences between the two CA19-9 stratifications of PDAC were involved in energy metabolism, lipid metabolism, amino acid metabolism, and citric acid metabolism. Enrichment analysis of metabolic pathways revealed six shared pathways by PDAC and chemotherapy such as alanine, aspartate and glutamate metabolism, arginine biosynthesis, glutamine and glutamate metabolism, citrate cycle, pyruvate metabolism, and glycogolysis/gluconeogeneis. The similarity between the metabolic characteristics of PDAC and the metabolic responses to chemotherapy provided a reference for clinical prediction of benefits of postoperative chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Han Shi
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yanying Fan
- Fuzhou Children Hospital of Fujian Province, Fuzhou, Fujian, China
| | - Pengfei Guo
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jin Zhang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xinyu Qiu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jianghua Feng
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China.
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
18
|
Fan Y, Xue H, Li Z, Huo M, Gao H, Guan X. Exploiting the Achilles' heel of cancer: disrupting glutamine metabolism for effective cancer treatment. Front Pharmacol 2024; 15:1345522. [PMID: 38510646 PMCID: PMC10952006 DOI: 10.3389/fphar.2024.1345522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Cancer cells have adapted to rapid tumor growth and evade immune attack by reprogramming their metabolic pathways. Glutamine is an important nitrogen resource for synthesizing amino acids and nucleotides and an important carbon source in the tricarboxylic acid (TCA) cycle and lipid biosynthesis pathway. In this review, we summarize the significant role of glutamine metabolism in tumor development and highlight the vulnerabilities of targeting glutamine metabolism for effective therapy. In particular, we review the reported drugs targeting glutaminase and glutamine uptake for efficient cancer treatment. Moreover, we discuss the current clinical test about targeting glutamine metabolism and the prospective direction of drug development.
Collapse
Affiliation(s)
- Yuxin Fan
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Han Xue
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Zhimin Li
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Mingge Huo
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| | - Hongxia Gao
- Department of Clinical Laboratory Diagnostics, School of Medical Technology, Beihua University, Jilin City, China
| | - Xingang Guan
- Department of Basic Medicine, Medical School, Taizhou University, Taizhou, Zhejiang Province, China
| |
Collapse
|
19
|
Muranaka H, Akinsola R, Billet S, Pandol SJ, Hendifar AE, Bhowmick NA, Gong J. Glutamine Supplementation as an Anticancer Strategy: A Potential Therapeutic Alternative to the Convention. Cancers (Basel) 2024; 16:1057. [PMID: 38473414 PMCID: PMC10930819 DOI: 10.3390/cancers16051057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Glutamine, a multifaceted nonessential/conditionally essential amino acid integral to cellular metabolism and immune function, holds pivotal importance in the landscape of cancer therapy. This review delves into the intricate dynamics surrounding both glutamine antagonism strategies and glutamine supplementation within the context of cancer treatment, emphasizing the critical role of glutamine metabolism in cancer progression and therapy. Glutamine antagonism, aiming to disrupt tumor growth by targeting critical metabolic pathways, is challenged by the adaptive nature of cancer cells and the complex metabolic microenvironment, potentially compromising its therapeutic efficacy. In contrast, glutamine supplementation supports immune function, improves gut integrity, alleviates treatment-related toxicities, and improves patient well-being. Moreover, recent studies highlighted its contributions to epigenetic regulation within cancer cells and its potential to bolster anti-cancer immune functions. However, glutamine implementation necessitates careful consideration of potential interactions with ongoing treatment regimens and the delicate equilibrium between supporting normal cellular function and promoting tumorigenesis. By critically assessing the implications of both glutamine antagonism strategies and glutamine supplementation, this review aims to offer comprehensive insights into potential therapeutic strategies targeting glutamine metabolism for effective cancer management.
Collapse
Affiliation(s)
- Hayato Muranaka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rasaq Akinsola
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew E. Hendifar
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Jun Gong
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (H.M.); (R.A.); (S.B.); (S.J.P.); (A.E.H.); (N.A.B.)
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
20
|
Uddin MH, Zhang D, Muqbil I, El-Rayes BF, Chen H, Philip PA, Azmi AS. Deciphering cellular plasticity in pancreatic cancer for effective treatments. Cancer Metastasis Rev 2024; 43:393-408. [PMID: 38194153 DOI: 10.1007/s10555-023-10164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/19/2023] [Indexed: 01/10/2024]
Abstract
Cellular plasticity and therapy resistance are critical features of pancreatic cancer, a highly aggressive and fatal disease. The pancreas, a vital organ that produces digestive enzymes and hormones, is often affected by two main types of cancer: the pre-dominant ductal adenocarcinoma and the less common neuroendocrine tumors. These cancers are difficult to treat due to their complex biology characterized by cellular plasticity leading to therapy resistance. Cellular plasticity refers to the capability of cancer cells to change and adapt to different microenvironments within the body which includes acinar-ductal metaplasia, epithelial to mesenchymal/epigenetic/metabolic plasticity, as well as stemness. This plasticity allows heterogeneity of cancer cells, metastasis, and evasion of host's immune system and develops resistance to radiation, chemotherapy, and targeted therapy. To overcome this resistance, extensive research is ongoing exploring the intrinsic and extrinsic factors through cellular reprogramming, chemosensitization, targeting metabolic, key survival pathways, etc. In this review, we discussed the mechanisms of cellular plasticity involving cellular adaptation and tumor microenvironment and provided a comprehensive understanding of its role in therapy resistance and ways to overcome it.
Collapse
Affiliation(s)
- Md Hafiz Uddin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| | - Dingqiang Zhang
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Irfana Muqbil
- Department of Natural Sciences, Lawrence Technological University, 21000 W 10 Mile Rd, Southfield, MI, 48075, USA
| | - Bassel F El-Rayes
- Division of Hematology and Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, 35233, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Philip A Philip
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA
- Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R, HWCRC 740, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Zhu L, Hong Y, Zhu Z, Huang J, Wang J, Li G, Wu X, Chen Y, Xu Y, Zheng L, Huang Y, Kong W, Xue W, Zhang J. Fumarate induces LncRNA-MIR4435-2HG to regulate glutamine metabolism remodeling and promote the development of FH-deficient renal cell carcinoma. Cell Death Dis 2024; 15:151. [PMID: 38374146 PMCID: PMC10876950 DOI: 10.1038/s41419-024-06510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
Fumarate hydratase (FH) deficient renal cell carcinoma (RCC) is a type of tumor with definite metabolic disorder, but the mechanism of metabolic remodeling is still unclear. LncRNA was reported to closely correlate with cancer metabolism, however the biological role of LncRNA in the development of progression of FH-deficent RCC was not well studied either. FH-deficient RCC samples were collected in my hospital and used for RNA-sequencing and Mass spectrometry analysis. FH-deficient RCC cell line UOK262 and control pFH cells were used for in vitro experiments, including proliferation assay, transwell assay, western-blot, mass spectrometry and so on. PDX mouse model was used for further drug inhibition experiments in vivo. In this study, we analyzed the profiles of LncRNA and mRNA in FH-deficienct RCC samples, and we found that the LncRNA-MIR4435-2GH was specifically highly expressed in FH-deficient RCC compared with ccRCC. In vitro experiments demonstrated that MIR4435-2HG was regulated by Fumarate through histone demethylation, and the deletion of this gene could inhibit glutamine metabolism. RNA-pulldown experiments showed that MIR4435-2HG specifically binds to STAT1, which can transcriptionally activate GLS1. GLS1 inhibitor CB-839 could significantly suppress tumor growth in PDX tumor models. This study analyzed the molecular mechanism of MIR4435-2HG in regulating metabolic remodeling of FH-deficient RCC in clinical samples, cells and animal models by combining transcriptional and metabolic methods. We found that that GLS1 was a therapeutic target for this tumor, and MIR4435-2HG can be used as a drug sensitivity marker.
Collapse
Affiliation(s)
- Liangsong Zhu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yilun Hong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ziran Zhu
- Department of Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jianfeng Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ge Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaoyu Wu
- Department of Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghui Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yunze Xu
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liang Zheng
- Department of Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wen Kong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Wei Xue
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Jin Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
22
|
Francescone R, Crawford HC, Vendramini-Costa DB. Rethinking the Roles of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol 2024; 17:737-743. [PMID: 38316215 PMCID: PMC10966284 DOI: 10.1016/j.jcmgh.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Bearing a dismal 5-year survival rate, pancreatic ductal adenocarcinoma (PDAC) is a challenging disease that features a unique fibroinflammatory tumor microenvironment. As major components of the PDAC tumor microenvironment, cancer-associated fibroblasts are still poorly understood and their contribution to the several hallmarks of PDAC, such as resistance to therapies, immunosuppression, and high incidence of metastasis, is likely underestimated. There have been encouraging advances in the understanding of these fascinating cells, but many controversies remain, leaving the field still actively exploring the full scope of their contributions in PDAC progression. Here we pose several important considerations regarding PDAC cancer-associated fibroblast functions. We posit that transcriptomic analyses be interpreted with caution, when aiming to uncover the functional contributions of these cells. Moreover, we propose that normalizing these functions, rather than eliminating them, will provide the opportunity to enhance therapeutic response. Finally, we propose that cancer-associated fibroblasts should not be studied in isolation, but in conjunction with its extracellular matrix, because their respective functions are coordinated and concordant.
Collapse
Affiliation(s)
- Ralph Francescone
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Howard C Crawford
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan
| | - Debora Barbosa Vendramini-Costa
- Department of Surgery, Henry Ford Health, Detroit, Michigan; Henry Ford Pancreatic Cancer Center, Henry Ford Health, Detroit, Michigan.
| |
Collapse
|
23
|
Qin L, Cheng X, Wang S, Gong G, Su H, Huang H, Chen T, Damdinjav D, Dorjsuren B, Li Z, Qiu Z, Bian J. Discovery of Novel Aminobutanoic Acid-Based ASCT2 Inhibitors for the Treatment of Non-Small-Cell Lung Cancer. J Med Chem 2024; 67:988-1007. [PMID: 38217503 DOI: 10.1021/acs.jmedchem.3c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Alanine-serine-cysteine transporter 2 (ASCT2) is up-regulated in lung cancers, and inhibiting it could potentially lead to nutrient deprivation, making it a viable strategy for cancer treatment. In this study, we present a series of ASCT2 inhibitors based on aminobutanoic acids, which exhibit potent inhibitory activity. Two compounds, 20k and 25e, were identified as novel and potent ASCT2 inhibitors, with IC50 values at the micromolar level in both A549 and HEK293 cells, effectively blocking glutamine (Gln) uptake. Additionally, these compounds regulated amino acid metabolism, suppressed mTOR signaling, inhibited non-small-cell lung cancer (NSCLC) growth, and induced apoptosis. In vivo, experiments showed that 20k and 25e suppressed tumor growth in an A549 xenograft model, with tumor growth inhibition (TGI) values of 65 and 70% at 25 mg/kg, respectively, while V9302 only achieved a TGI value of 29%. Furthermore, both compounds demonstrated promising therapeutic potential in patient-derived organoids. Therefore, these ASCT2 inhibitors based on aminobutanoic acids are promising therapeutic agents for treating NSCLC by targeting cancer Gln metabolism.
Collapse
Affiliation(s)
- Lian Qin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Xinying Cheng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Shijiao Wang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Guangyue Gong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Huiyan Su
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Huidan Huang
- School of Pharmacy, Wannan Medical College, Wuhu 241002, P. R. China
| | - Tian Chen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Science, Ulaanbaatar 14210, Mongolia
| | - Buyankhishig Dorjsuren
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Zhixia Qiu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211100, P. R. China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211100, P. R. China
| |
Collapse
|
24
|
Li X, Peng X, Li Y, Wei S, He G, Liu J, Li X, Yang S, Li D, Lin W, Fang J, Yang L, Li H. Glutamine addiction in tumor cell: oncogene regulation and clinical treatment. Cell Commun Signal 2024; 22:12. [PMID: 38172980 PMCID: PMC10763057 DOI: 10.1186/s12964-023-01449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
After undergoing metabolic reprogramming, tumor cells consume additional glutamine to produce amino acids, nucleotides, fatty acids, and other substances to facilitate their unlimited proliferation. As such, the metabolism of glutamine is intricately linked to the survival and progression of cancer cells. Consequently, targeting the glutamine metabolism presents a promising strategy to inhibit growth of tumor cell and cancer development. This review describes glutamine uptake, metabolism, and transport in tumor cells and its pivotal role in biosynthesis of amino acids, fatty acids, nucleotides, and more. Furthermore, we have also summarized the impact of oncogenes like C-MYC, KRAS, HIF, and p53 on the regulation of glutamine metabolism and the mechanisms through which glutamine triggers mTORC1 activation. In addition, role of different anti-cancer agents in targeting glutamine metabolism has been described and their prospective applications are assessed.
Collapse
Affiliation(s)
- Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
25
|
Kalaany NY. Glutamine analogs for pancreatic cancer therapy. NATURE CANCER 2024; 5:2-4. [PMID: 38291252 DOI: 10.1038/s43018-023-00678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Affiliation(s)
- Nada Y Kalaany
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
26
|
Encarnación-Rosado J, Sohn ASW, Biancur DE, Lin EY, Osorio-Vasquez V, Rodrick T, González-Baerga D, Zhao E, Yokoyama Y, Simeone DM, Jones DR, Parker SJ, Wild R, Kimmelman AC. Targeting pancreatic cancer metabolic dependencies through glutamine antagonism. NATURE CANCER 2024; 5:85-99. [PMID: 37814010 PMCID: PMC10824664 DOI: 10.1038/s43018-023-00647-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) cells use glutamine (Gln) to support proliferation and redox balance. Early attempts to inhibit Gln metabolism using glutaminase inhibitors resulted in rapid metabolic reprogramming and therapeutic resistance. Here, we demonstrated that treating PDAC cells with a Gln antagonist, 6-diazo-5-oxo-L-norleucine (DON), led to a metabolic crisis in vitro. In addition, we observed a profound decrease in tumor growth in several in vivo models using sirpiglenastat (DRP-104), a pro-drug version of DON that was designed to circumvent DON-associated toxicity. We found that extracellular signal-regulated kinase (ERK) signaling is increased as a compensatory mechanism. Combinatorial treatment with DRP-104 and trametinib led to a significant increase in survival in a syngeneic model of PDAC. These proof-of-concept studies suggested that broadly targeting Gln metabolism could provide a therapeutic avenue for PDAC. The combination with an ERK signaling pathway inhibitor could further improve the therapeutic outcome.
Collapse
Affiliation(s)
- Joel Encarnación-Rosado
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Douglas E Biancur
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Victoria Osorio-Vasquez
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Tori Rodrick
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Diana González-Baerga
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ende Zhao
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Diane M Simeone
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Seth J Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wild
- Dracen Pharmaceuticals, Inc., San Diego, CA, USA
| | - Alec C Kimmelman
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
Recouvreux MV, Grenier SF, Zhang Y, Esparza E, Lambies G, Galapate CM, Maganti S, Duong-Polk K, Bhullar D, Naeem R, Scott DA, Lowy AM, Tiriac H, Commisso C. Glutamine mimicry suppresses tumor progression through asparagine metabolism in pancreatic ductal adenocarcinoma. NATURE CANCER 2024; 5:100-113. [PMID: 37814011 PMCID: PMC10956382 DOI: 10.1038/s43018-023-00649-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/06/2023] [Indexed: 10/11/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), glutamine is a critical nutrient that drives a wide array of metabolic and biosynthetic processes that support tumor growth. Here, we elucidate how 6-diazo-5-oxo-L-norleucine (DON), a glutamine antagonist that broadly inhibits glutamine metabolism, blocks PDAC tumor growth and metastasis. We find that DON significantly reduces asparagine production by inhibiting asparagine synthetase (ASNS), and that the effects of DON are rescued by asparagine. As a metabolic adaptation, PDAC cells upregulate ASNS expression in response to DON, and we show that ASNS levels are inversely correlated with DON efficacy. We also show that L-asparaginase (ASNase) synergizes with DON to affect the viability of PDAC cells, and that DON and ASNase combination therapy has a significant impact on metastasis. These results shed light on the mechanisms that drive the effects of glutamine mimicry and point to the utility of cotargeting adaptive responses to control PDAC progression.
Collapse
Affiliation(s)
- Maria Victoria Recouvreux
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shea F Grenier
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Yijuan Zhang
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Edgar Esparza
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Guillem Lambies
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Cheska Marie Galapate
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Swetha Maganti
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Karen Duong-Polk
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepika Bhullar
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Razia Naeem
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - David A Scott
- Cancer Metabolism Core Resource, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Andrew M Lowy
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Hervé Tiriac
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Division of Surgical Sciences, Department of Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cosimo Commisso
- Cancer Metabolism and Microenvironment Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
28
|
Zeb F, Mehreen A, Naqeeb H, Ullah M, Waleed A, Awan UA, Haider A, Naeem M. Nutrition and Dietary Intervention in Cancer: Gaps, Challenges, and Future Perspectives. Cancer Treat Res 2024; 191:281-307. [PMID: 39133412 DOI: 10.1007/978-3-031-55622-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The term "cancer" refers to the state in which cells in the body develop mutations and lose control over their replication. Malignant cancerous cells invade in various other tissue sites of the body. Chemotherapy, radiation, and surgery are the first-line modalities for the majority of solid cancers. These treatments work by mitigating the DNA damage of cancerous cells, but they can also cause harm to healthy cells. These side effects might be immediate or delayed, and they can cause a high rate of morbidity and mortality. Dietary interventions have a profound impact on whole-body metabolism, including immunometabolism and oncometabolism which have been shown to reduce cancer growth, progression, and metastasis in many different solid tumor models with promising outcomes in early phase clinical studies. Dietary interventions can improve oncologic or quality-of-life outcomes for patients that are undergoing chemotherapy or radiotherapy. In this chapter, we will focus on the impact of nutritional deficiencies, several dietary interventions and their proposed mechanisms which are used as a novel therapy in controlling and managing cancers.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aqsa Mehreen
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Huma Naqeeb
- Department of Clinical Nutrition, Shaukat Khanum Memorial Cancer Hospital, and Research Center, Peshawar, Pakistan
| | - Muneeb Ullah
- College of Pharmacy, Pusan National University, Busan, South Korea
| | - Afraa Waleed
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Uzma Azeem Awan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| |
Collapse
|
29
|
Muranaka H, Billet S, Cruz-Hernández C, Ten Hoeve J, Gonzales G, Elmadbouh O, Zhang L, Smith B, Tighiouart M, You S, Edderkaoui M, Hendifar A, Pandol S, Gong J, Bhowmick N. Supraphysiological glutamine as a means of depleting intracellular amino acids to enhance pancreatic cancer chemosensitivity. RESEARCH SQUARE 2023:rs.3.rs-3647514. [PMID: 38076821 PMCID: PMC10705710 DOI: 10.21203/rs.3.rs-3647514/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.
Collapse
|
30
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
31
|
Venkateswaran G, McDonald PC, Chafe SC, Brown WS, Gerbec ZJ, Awrey SJ, Parker SJ, Dedhar S. A Carbonic Anhydrase IX/SLC1A5 Axis Regulates Glutamine Metabolism Dependent Ferroptosis in Hypoxic Tumor Cells. Mol Cancer Ther 2023; 22:1228-1242. [PMID: 37348875 PMCID: PMC10543979 DOI: 10.1158/1535-7163.mct-23-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
The ability of tumor cells to alter their metabolism to support survival and growth presents a challenge to effectively treat cancers. Carbonic anhydrase IX (CAIX) is a hypoxia-induced, metabolic enzyme that plays a crucial role in pH regulation in tumor cells. Recently, through a synthetic lethal screen, we identified CAIX to play an important role in redox homeostasis. In this study, we show that CAIX interacts with the glutamine (Gln) transporter, solute carrier family 1 member 5 (SLC1A5), and coordinately functions to maintain redox homeostasis through the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis. Inhibition of CAIX increases Gln uptake by SLC1A5 and concomitantly increases GSH levels. The combined inhibition of CAIX activity and Gln metabolism or the GSH/GPX4 axis results in an increase in lipid peroxidation and induces ferroptosis, both in vitro and in vivo. Thus, this study demonstrates cotargeting of CAIX and Gln metabolism as a potential strategy to induce ferroptosis in tumor cells.
Collapse
Affiliation(s)
- Geetha Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shawn C. Chafe
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Wells S. Brown
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Zachary J. Gerbec
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shannon J. Awrey
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Seth J. Parker
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
32
|
Xu W, Xiao Y, Zhao M, Zhu J, Wang Y, Wang W, Wang P, Meng H. Effective Treatment of Knee Osteoarthritis Using a Nano-Enabled Drug Acupuncture Technology in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302586. [PMID: 37555294 PMCID: PMC10558644 DOI: 10.1002/advs.202302586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/20/2023] [Indexed: 08/10/2023]
Abstract
A nano-enabled drug delivery acupuncture technology (nd-Acu) is developed that is based on traditional acupuncture needles where the stainless-steel surface is designed to deliver various payload molecules. To create the nd-Acu platform, an electrochemistry procedure is used to attach methyl salicylate-modified cyclodextrin in which the sugar rings allow the encapsulation of structurally defined single or multiple payload molecules via an inclusion complexation process. Drug loading and release profile are first studied using fluorescent dyes abiotically and at intact animal level. nd-Acu allows more efficient dye loading and time-dependent release compared to pristine needles without cyclodextrin modification. Subsequently, a proof-of-principle efficacy study is conducted using the platform to load a local anesthetic, lidocaine, for the treatment of knee osteoarthritis (KOA) in mice. It is demonstrated that lidocaine-laden nd-Acu can effectively alleviate pain, reduce inflammation, and slow down KOA development biochemically and histologically. Hypothesis-driven and proteomic approaches are utilized to investigate the working mechanisms of lidocaine nd-Acu, indicating that the therapeutic outcome is attributed to the in vivo modulation of the HMGB1/TLR4 signaling pathway. The study also obtained preliminary evidence suggesting the involvement of mitochondria as well as small GTPase such as cdc42 during the treatment by lidocaine nd-Acu.
Collapse
Affiliation(s)
- Wenjie Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing100010China
| | - Yu Xiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Minzhi Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
| | - Jiahui Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Chongqing University of TechnologyChongqing400054China
| | - Yu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- Chongqing University of TechnologyChongqing400054China
| | - Wenbin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Peng Wang
- Beijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing100010China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
33
|
Choudhury M, Schaefbauer KJ, Kottom TJ, Yi ES, Tschumperlin DJ, Limper AH. Targeting Pulmonary Fibrosis by SLC1A5-Dependent Glutamine Transport Blockade. Am J Respir Cell Mol Biol 2023; 69:441-455. [PMID: 37459644 PMCID: PMC10557918 DOI: 10.1165/rcmb.2022-0339oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/17/2023] [Indexed: 09/30/2023] Open
Abstract
The neutral amino acid glutamine plays a central role in TGF-β (transforming growth factor-β)-induced myofibroblast activation and differentiation. Cells take up glutamine mainly through a transporter expressed on the cell surface known as solute carrier SLC1A5 (solute carrier transporter 1A5). In the present work, we demonstrated that profibrotic actions of TGF-β are mediated, at least in part, through a metabolic maladaptation of SLC1A5 and that targeting SLC1A5 abrogates multiple facets of fibroblast activation. This approach could thus represent a novel therapeutic strategy to treat patients with fibroproliferative diseases. We found that SLC1A5 was highly expressed in fibrotic lung fibroblasts and fibroblasts isolated from idiopathic pulmonary fibrosis lungs. The expression of profibrotic targets, cell migration, and anchorage-independent growth by TGF-β required the activity of SLC1A5. Loss or inhibition of SLC1A5 function enhanced fibroblast susceptibility to autophagy; suppressed mTOR, HIF (hypoxia-inducible factor), and Myc signaling; and impaired mitochondrial function, ATP production, and glycolysis. Pharmacological inhibition of SLC1A5 by the small-molecule inhibitor V-9302 shifted fibroblast transcriptional profiles from profibrotic to fibrosis resolving and attenuated fibrosis in a bleomycin-treated mouse model of lung fibrosis. This is the first study, to our knowledge, to demonstrate the utility of a pharmacological inhibitor of glutamine transport in fibrosis, providing a framework for new paradigm-shifting therapies targeting cellular metabolism for this devastating disease.
Collapse
Affiliation(s)
- Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, and
| | - Kyle J. Schaefbauer
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, and
| | - Theodore J. Kottom
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, and
| | - Eunhee S. Yi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, College of Medicine and Science, and
| | - Andrew H. Limper
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, and
| |
Collapse
|
34
|
Xu T, Xu X, Liu D, Chang D, Li S, Sun Y, Xie J, Ju S. Visual Investigation of Tumor-Promoting Fibronectin Potentiated by Obesity in Pancreatic Ductal Adenocarcinoma Using an MR/NIRF Dual-Modality Dendrimer Nanoprobe. Adv Healthc Mater 2023; 12:e2300787. [PMID: 37057680 DOI: 10.1002/adhm.202300787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 04/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease characterized by dense stroma. Obesity is an important metabolic factor that greatly increases PDAC risk and mortality, worsens progression and leads to poor chemotherapeutic outcomes. With omics analysis, magnetic resonance and near-infrared fluorescence (MR/NIRF) dual-modality imaging and molecular functional verification, obesity as an important risk factor is proved to modulate the extracellular matrix (ECM) components and enhance Fibronectin (FN) infiltration in the PDAC stroma, that promotes tumor progression and worsens response to chemotherapy by reducing drug delivery. In the study, to visually evaluate FN in vivo and guide PDAC therapy, an FN-targeted nanoprobe, NP-CREKA, is synthesized by conjugating gadolinium chelates, NIR797 and fluorescein isothiocyanate to a polyamidoamine dendrimer functionalized with targeting peptides. A dual-modality strategy combining MR and NIRF imaging is applied, allowing effective visualization of FN in orthotopic PDAC with high spatial resolution, ideal sensitivity and excellent penetrability, especially in obese mice. In conclusion, the findings provide new insights into the potential of FN as an ideal target for therapeutic evaluation and improving treatment efficacy in PDAC, hopefully improving the specific management of PDAC in lean and obese hosts.
Collapse
Affiliation(s)
- Tingting Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Dongfang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Di Chang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Siqi Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Yeyao Sun
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jinbing Xie
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
35
|
Ammar N, Hildebrandt M, Geismann C, Röder C, Gemoll T, Sebens S, Trauzold A, Schäfer H. Monocarboxylate Transporter-1 (MCT1)-Mediated Lactate Uptake Protects Pancreatic Adenocarcinoma Cells from Oxidative Stress during Glutamine Scarcity Thereby Promoting Resistance against Inhibitors of Glutamine Metabolism. Antioxidants (Basel) 2023; 12:1818. [PMID: 37891897 PMCID: PMC10604597 DOI: 10.3390/antiox12101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Metabolic compartmentalization of stroma-rich tumors, like pancreatic ductal adenocarcinoma (PDAC), greatly contributes to malignancy. This involves cancer cells importing lactate from the microenvironment (reverse Warburg cells) through monocarboxylate transporter-1 (MCT1) along with substantial phenotype alterations. Here, we report that the reverse Warburg phenotype of PDAC cells compensated for the shortage of glutamine as an essential metabolite for redox homeostasis. Thus, oxidative stress caused by glutamine depletion led to an Nrf2-dependent induction of MCT1 expression in pancreatic T3M4 and A818-6 cells. Moreover, greater MCT1 expression was detected in glutamine-scarce regions within tumor tissues from PDAC patients. MCT1-driven lactate uptake supported the neutralization of reactive oxygen species excessively produced under glutamine shortage and the resulting drop in glutathione levels that were restored by the imported lactate. Consequently, PDAC cells showed greater survival and growth under glutamine depletion when utilizing lactate through MCT1. Likewise, the glutamine uptake inhibitor V9302 and glutaminase-1 inhibitor CB839 induced oxidative stress in PDAC cells, along with cell death and cell cycle arrest that were again compensated by MCT1 upregulation and forced lactate uptake. Our findings show a novel mechanism by which PDAC cells adapt their metabolism to glutamine scarcity and by which they develop resistance against anticancer treatments based on glutamine uptake/metabolism inhibition.
Collapse
Affiliation(s)
- Nourhane Ammar
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Maya Hildebrandt
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Claudia Geismann
- Department of Internal Medicine and Gastroenterology, Carl-von-Ossietzky University Oldenburg, Philosophenweg 36, 26121 Oldenburg, Germany;
| | - Christian Röder
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany;
| | - Susanne Sebens
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
- TriBanK, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany;
| | - Ania Trauzold
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| | - Heiner Schäfer
- Institute of Experimental Cancer Research University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Bldg. U30, 24105 Kiel, Germany; (N.A.); (M.H.); (S.S.); (A.T.)
| |
Collapse
|
36
|
Abbott KL, Ali A, Casalena D, Do BT, Ferreira R, Cheah JH, Soule CK, Deik A, Kunchok T, Schmidt DR, Renner S, Honeder SE, Wu M, Chan SH, Tseyang T, Stoltzfus AT, Michel SLJ, Greaves D, Hsu PP, Ng CW, Zhang CJ, Farsidjani A, Kent JR, Madariaga MLL, Gramatikov IMT, Matheson NJ, Lewis CA, Clish CB, Rees MG, Roth JA, Griner LM, Muir A, Auld DS, Vander Heiden MG. Screening in serum-derived medium reveals differential response to compounds targeting metabolism. Cell Chem Biol 2023; 30:1156-1168.e7. [PMID: 37689063 PMCID: PMC10581593 DOI: 10.1016/j.chembiol.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 09/11/2023]
Abstract
A challenge for screening new anticancer drugs is that efficacy in cell culture models is not always predictive of efficacy in patients. One limitation of standard cell culture is a reliance on non-physiological nutrient levels, which can influence cell metabolism and drug sensitivity. A general assessment of how physiological nutrients affect cancer cell response to small molecule therapies is lacking. To address this, we developed a serum-derived culture medium that supports the proliferation of diverse cancer cell lines and is amenable to high-throughput screening. We screened several small molecule libraries and found that compounds targeting metabolic enzymes were differentially effective in standard compared to serum-derived medium. We exploited the differences in nutrient levels between each medium to understand why medium conditions affected the response of cells to some compounds, illustrating how this approach can be used to screen potential therapeutics and understand how their efficacy is modified by available nutrients.
Collapse
Affiliation(s)
- Keene L Abbott
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dominick Casalena
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Raphael Ferreira
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Daniel R Schmidt
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Steffen Renner
- Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Sophie E Honeder
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michelle Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Tenzin Tseyang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Daniel Greaves
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peggy P Hsu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02113, USA
| | - Christopher W Ng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chelsea J Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Farsidjani
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Johnathan R Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL 60637, USA
| | | | - Iva Monique T Gramatikov
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA 02139, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Douglas S Auld
- Novartis Institute for BioMedical Research, Cambridge, MA 02139, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
38
|
Kim M, Hwang S, Kim B, Shin S, Yang S, Gwak J, Jeong SM. YAP governs cellular adaptation to perturbation of glutamine metabolism by regulating ATF4-mediated stress response. Oncogene 2023; 42:2828-2840. [PMID: 37591953 DOI: 10.1038/s41388-023-02811-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Proliferating cells have metabolic dependence on glutamine to fuel anabolic pathways and to refill the mitochondrial carbon pool. The Hippo pathway is essential for coordinating cell survival and growth with nutrient availability, but no molecular connection to glutamine deprivation has been reported. Here, we identify a non-canonical role of YAP, a key effector of the Hippo pathway, in cellular adaptation to perturbation of glutamine metabolism. Whereas YAP is inhibited by nutrient scarcity, enabling cells to restrain proliferation and to maintain energy homeostasis, glutamine shortage induces a rapid YAP dephosphorylation and activation. Upon glutaminolysis inhibition, an increased reactive oxygen species production inhibits LATS kinase via RhoA, leading to YAP dephosphorylation. Activated YAP promotes transcriptional induction of ATF4 to induce the expression of genes involved in amino acid homeostasis, including Sestrin2. We found that YAP-mediated Sestrin2 induction is crucial for cell viability during glutamine deprivation by suppressing mTORC1. Thus, a critical relationship between YAP, ATF4, and mTORC1 is uncovered by our findings. Finally, our data indicate that targeting the Hippo-YAP pathway in combination with glutaminolysis inhibition may provide potential therapeutic approaches to treat tumors.
Collapse
Affiliation(s)
- Minjoong Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sunsook Hwang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Byungjoo Kim
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seungmin Shin
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seungyeon Yang
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jihye Gwak
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Seung Min Jeong
- Department of Biochemistry, Institute for Aging and Metabolic Diseases, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
39
|
Hoskin AJ, Holt AK, Legge DN, Collard TJ, Williams AC, Vincent EE. Aspirin and the metabolic hallmark of cancer: novel therapeutic opportunities for colorectal cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:600-615. [PMID: 37720350 PMCID: PMC10501897 DOI: 10.37349/etat.2023.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 09/19/2023] Open
Abstract
Aspirin is a well-known nonsteroidal anti-inflammatory drug (NSAID) that has a recognized role in cancer prevention as well as evidence to support its use as an adjuvant for cancer treatment. Importantly there has been an increasing number of studies contributing to the mechanistic understanding of aspirins' anti-tumour effects and these studies continue to inform the potential clinical use of aspirin for both the prevention and treatment of cancer. This review focuses on the emerging role of aspirin as a regulator of metabolic reprogramming, an essential "hallmark of cancer" required to support the increased demand for biosynthetic intermediates needed for sustained proliferation. Cancer cells frequently undergo metabolic rewiring driven by oncogenic pathways such as hypoxia-inducible factor (HIF), wingless-related integration site (Wnt), mammalian target of rapamycin (mTOR), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), which supports the increased proliferative rate as tumours develop and progress. Reviewed here, cellular metabolic reprogramming has been identified as a key mechanism of action of aspirin and include the regulation of key metabolic drivers, the regulation of enzymes involved in glycolysis and glutaminolysis, and altered nutrient utilisation upon aspirin exposure. Importantly, as aspirin treatment exposes metabolic vulnerabilities in tumour cells, there is an opportunity for the use of aspirin in combination with specific metabolic inhibitors in particular, glutaminase (GLS) inhibitors currently in clinical trials such as telaglenastat (CB-839) and IACS-6274 for the treatment of colorectal and potentially other cancers. The increasing evidence that aspirin impacts metabolism in cancer cells suggests that aspirin could provide a simple, relatively safe, and cost-effective way to target this important hallmark of cancer. Excitingly, this review highlights a potential new role for aspirin in improving the efficacy of a new generation of metabolic inhibitors currently undergoing clinical investigation.
Collapse
Affiliation(s)
- Ashley J. Hoskin
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Amy K. Holt
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Danny N. Legge
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
| | - Tracey J. Collard
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Ann C. Williams
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, University of Bristol, BS8 1TW Bristol, UK
| | - Emma E. Vincent
- Department of Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, BS1 3NY Bristol, UK
- MRC Integrative Epidemiology Unit, Oakfield House, University of Bristol, BS8 2BN Bristol, UK
| |
Collapse
|
40
|
Kerk SA, Garcia-Bermudez J, Birsoy K, Sherman MH, Shah YM, Lyssiotis CA. Spotlight on GOT2 in Cancer Metabolism. Onco Targets Ther 2023; 16:695-702. [PMID: 37635751 PMCID: PMC10460182 DOI: 10.2147/ott.s382161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/29/2023] [Indexed: 08/29/2023] Open
Abstract
GOT2 is at the nexus of several critical metabolic pathways in homeostatic cellular and dysregulated cancer metabolism. Despite this, recent work has emphasized the remarkable plasticity of cancer cells to employ compensatory pathways when GOT2 is inhibited. Here, we review the metabolic roles of GOT2, highlighting findings in both normal and cancer cells. We emphasize how cancer cells repurpose cell intrinsic metabolism and their flexibility when GOT2 is inhibited. We close by using this framework to discuss key considerations for future investigations into cancer metabolism.
Collapse
Affiliation(s)
- Samuel A Kerk
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Javier Garcia-Bermudez
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kivanc Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mara H Sherman
- Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Ye Y, Yu B, Wang H, Yi F. Glutamine metabolic reprogramming in hepatocellular carcinoma. Front Mol Biosci 2023; 10:1242059. [PMID: 37635935 PMCID: PMC10452011 DOI: 10.3389/fmolb.2023.1242059] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal disease with limited management strategies and poor prognosis. Metabolism alternations have been frequently unveiled in HCC, including glutamine metabolic reprogramming. The components of glutamine metabolism, such as glutamine synthetase, glutamate dehydrogenase, glutaminase, metabolites, and metabolite transporters, are validated to be potential biomarkers of HCC. Increased glutamine consumption is confirmed in HCC, which fuels proliferation by elevated glutamate dehydrogenase or upstream signals. Glutamine metabolism also serves as a nitrogen source for amino acid or nucleotide anabolism. In addition, more glutamine converts to glutathione as an antioxidant in HCC to protect HCC cells from oxidative stress. Moreover, glutamine metabolic reprogramming activates the mTORC signaling pathway to support tumor cell proliferation. Glutamine metabolism targeting therapy includes glutamine deprivation, related enzyme inhibitors, and transporters inhibitors. Together, glutamine metabolic reprogramming plays a pivotal role in HCC identification, proliferation, and progression.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bodong Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hua Wang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| | - Fengming Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, China
| |
Collapse
|
42
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
43
|
Vaziri-Gohar A, Hue JJ, Abbas A, Graor HJ, Hajihassani O, Zarei M, Titomihelakis G, Feczko J, Rathore M, Chelstowska S, Loftus AW, Wang R, Zarei M, Goudarzi M, Zhang R, Willard B, Zhang L, Kresak A, Willis JE, Wang GM, Tatsuoka C, Salvino JM, Bederman I, Brunengraber H, Lyssiotis CA, Brody JR, Winter JM. Increased glucose availability sensitizes pancreatic cancer to chemotherapy. Nat Commun 2023; 14:3823. [PMID: 37380658 PMCID: PMC10307839 DOI: 10.1038/s41467-023-38921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is highly resistant to chemotherapy. Effective alternative therapies have yet to emerge, as chemotherapy remains the best available systemic treatment. However, the discovery of safe and available adjuncts to enhance chemotherapeutic efficacy can still improve survival outcomes. We show that a hyperglycemic state substantially enhances the efficacy of conventional single- and multi-agent chemotherapy regimens against PDAC. Molecular analyses of tumors exposed to high glucose levels reveal that the expression of GCLC (glutamate-cysteine ligase catalytic subunit), a key component of glutathione biosynthesis, is diminished, which in turn augments oxidative anti-tumor damage by chemotherapy. Inhibition of GCLC phenocopies the suppressive effect of forced hyperglycemia in mouse models of PDAC, while rescuing this pathway mitigates anti-tumor effects observed with chemotherapy and high glucose.
Collapse
Affiliation(s)
- Ali Vaziri-Gohar
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
| | - Jonathan J Hue
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Ata Abbas
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Hallie J Graor
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Omid Hajihassani
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mehrdad Zarei
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - George Titomihelakis
- Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - John Feczko
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Moeez Rathore
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Sylwia Chelstowska
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Alexander W Loftus
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA
| | - Rui Wang
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Maryam Goudarzi
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Belinda Willard
- Proteomics and Metabolomics Core, Cleveland Clinic, Cleveland, OH, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Adam Kresak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Joseph E Willis
- Department of Pathology, Case Western Reserve University and Department of Pathology Cleveland Medical Center, Cleveland, OH, USA
| | - Gi-Ming Wang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M Salvino
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Henri Brunengraber
- Department of Nutrition and Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jonathan R Brody
- Brenden Colson Center for Pancreatic Care; Departments of Surgery and Cell, Developmental & Cancer Biology; Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jordan M Winter
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Surgery, Division of Surgical Oncology, University Hospitals, Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
44
|
Malachowska B, Yang WL, Qualman A, Muro I, Boe DM, Lampe JN, Kovacs EJ, Idrovo JP. Transcriptomics, metabolomics, and in-silico drug predictions for liver damage in young and aged burn victims. Commun Biol 2023; 6:597. [PMID: 37268765 DOI: 10.1038/s42003-023-04964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Burn induces a systemic response affecting multiple organs, including the liver. Since the liver plays a critical role in metabolic, inflammatory, and immune events, a patient with impaired liver often exhibits poor outcomes. The mortality rate after burns in the elderly population is higher than in any other age group, and studies show that the liver of aged animals is more susceptible to injury after burns. Understanding the aged-specific liver response to burns is fundamental to improving health care. Furthermore, no liver-specific therapy exists to treat burn-induced liver damage highlighting a critical gap in burn injury therapeutics. In this study, we analyzed transcriptomics and metabolomics data from the liver of young and aged mice to identify mechanistic pathways and in-silico predict therapeutic targets to prevent or reverse burn-induced liver damage. Our study highlights pathway interactions and master regulators that underlie the differential liver response to burn injury in young and aged animals.
Collapse
Affiliation(s)
- Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Weng-Lang Yang
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Andrea Qualman
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Israel Muro
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
| | - Devin M Boe
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA
- Graduate Program in Immunology, University of Colorado, Aurora, CO, 80045, USA
- Molecular Biology Program, University of Colorado, Aurora, CO, 80045, USA
| | - Juan-Pablo Idrovo
- Department of Surgery; Division of G.I., Trauma, and Endocrine Surgery, University of Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
45
|
Gong J, Osipov A, Lorber J, Tighiouart M, Kwan AK, Muranaka H, Akinsola R, Billet S, Levi A, Abbas A, Davelaar J, Bhowmick N, Hendifar AE. Combination L-Glutamine with Gemcitabine and Nab-Paclitaxel in Treatment-Naïve Advanced Pancreatic Cancer: The Phase I GlutaPanc Study Protocol. Biomedicines 2023; 11:1392. [PMID: 37239063 PMCID: PMC10216251 DOI: 10.3390/biomedicines11051392] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Advanced pancreatic cancer is underscored by progressive therapeutic resistance and a dismal 5-year survival rate of 3%. Preclinical data demonstrated glutamine supplementation, not deprivation, elicited antitumor effects against pancreatic ductal adenocarcinoma (PDAC) alone and in combination with gemcitabine in a dose-dependent manner. The GlutaPanc phase I trial is a single-arm, open-label clinical trial investigating the safety of combination L-glutamine, gemcitabine, and nab-paclitaxel in subjects (n = 16) with untreated, locally advanced unresectable or metastatic pancreatic cancer. Following a 7-day lead-in phase with L-glutamine, the dose-finding phase via Bayesian design begins with treatment cycles lasting 28 days until disease progression, intolerance, or withdrawal. The primary objective is to establish the recommended phase II dose (RP2D) of combination L-glutamine, gemcitabine, and nab-paclitaxel. Secondary objectives include safety of the combination across all dose levels and preliminary evidence of antitumor activity. Exploratory objectives include evaluating changes in plasma metabolites across multiple time points and changes in the stool microbiome pre and post L-glutamine supplementation. If this phase I clinical trial demonstrates the feasibility of L-glutamine in combination with nab-paclitaxel and gemcitabine, we would advance the development of this combination as a first-line systemic option in subjects with metastatic pancreatic cancer, a high-risk subgroup desperately in need of additional therapies.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Arsen Osipov
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jeremy Lorber
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mourad Tighiouart
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Albert K. Kwan
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hayato Muranaka
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rasaq Akinsola
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sandrine Billet
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Abrahm Levi
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anser Abbas
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John Davelaar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Neil Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew E. Hendifar
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
46
|
Castro DC, Smith KW, Norsworthy MD, Rubakhin SS, Weisbrod CR, Hendrickson CL, Sweedler JV. Single-Cell and Subcellular Analysis Using Ultrahigh Resolution 21 T MALDI FTICR Mass Spectrometry. Anal Chem 2023; 95:6980-6988. [PMID: 37070980 PMCID: PMC10190686 DOI: 10.1021/acs.analchem.3c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The mammalian brain contains ∼20,000 distinct lipid species that contribute to its structural organization and function. The lipid profiles of cells change in response to a variety of cellular signals and environmental conditions that result in modulation of cell function through alteration of phenotype. The limited sample material combined with the vast chemical diversity of lipids makes comprehensive lipid profiling of individual cells challenging. Here, we leverage the resolving power of a 21 T Fourier-transform ion cyclotron resonance (FTICR) mass spectrometer for chemical characterization of individual hippocampal cells at ultrahigh mass resolution. The accuracy of the acquired data allowed differentiation of freshly isolated and cultured hippocampal cell populations, as well as finding differences in lipids between the soma and neuronal processes of the same cell. Differences in lipids include TG 42:2 observed solely in the cell bodies and SM 34:1;O2 found only in the cellular processes. The work represents the first mammalian single cells analyzed at ultrahigh resolution and is an advance in the performance of mass spectrometry (MS) for single-cell research.
Collapse
Affiliation(s)
- Daniel C. Castro
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
| | - Karl W. Smith
- National High Magnetic Field Laboratory, Florida State University, 1801 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Miles D. Norsworthy
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801 United States
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana IL 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
| | - Chad R. Weisbrod
- National High Magnetic Field Laboratory, Florida State University, 1801 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Christopher L. Hendrickson
- National High Magnetic Field Laboratory, Florida State University, 1801 East Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Jonathan V. Sweedler
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Mathews Avenue, Urbana IL 61801, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, IL 61801, United States
| |
Collapse
|
47
|
Zhang Y, Wang Y, Zhao G, Orsulic S, Matei D. Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther 2023; 245:108413. [PMID: 37059310 DOI: 10.1016/j.pharmthera.2023.108413] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Cancer cells undergo metabolic adaptations to maintain tumorigenicity and survive under the attack of immune cells and chemotherapy in the tumor microenvironment. Metabolic alterations in ovarian cancer in part overlap with findings from other solid tumors and in part reflect unique traits. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, acquire resistance to chemotherapy, maintain cancer stem cell phenotype and escape the effects of anti-tumor immune defense. In this review, we comprehensively review the metabolic signatures of ovarian cancer and their impact on cancer initiation, progression, and resistance to treatment. We highlight novel therapeutic strategies targeting metabolic pathways under development.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
48
|
Lu J, Su Z, Li W, Ling Z, Cheng B, Yang X, Tao X. ASCT2-mediated glutamine uptake of epithelial cells facilitates CCL5-induced T cell infiltration via ROS-STAT3 pathway in oral lichen planus. Int Immunopharmacol 2023; 119:110216. [PMID: 37116342 DOI: 10.1016/j.intimp.2023.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Oral lichen planus (OLP) is a chronic inflammatory disease characterized by T cell infiltration at lesion sites. T cell migration is greatly facilitated by chemokines produced by epithelial cells. Studies have noted the potential role of glutamine uptake in OLP and other inflammatory diseases. Here, we investigated the effect of altered glutamine uptake of epithelial cells on T cell infiltration and its underlying mechanisms in OLP. METHODS Immunohistochemistry was used to identify the expressions of glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) and C-C motif chemokine ligand 5 (CCL5) in oral tissues of OLP and healthy controls. Human gingival epithelial cells (HGECs) were treated with glutamine deprivation and ASCT2 inhibiter GPNA respectively to detect the expressions of CCL5 and its related signaling molecules. Additionally, we had determined the impact of epithelial cell-derived CCL5 on T-cell migration using a co-culture system in vitro. RESULTS ASCT2 and CCL5 expressions in OLP were significantly higher than healthy controls and positively correlated with the density of inflammatory infiltrations. Glutamine supplement significantly increased CCL5 production in HGECs, which was effectively inhibited by GPNA. Besides, glutamine could inhibit reactive oxygen species (ROS) production to activate the signal transducer and activator of transcription 3 (STAT3) causing higher expression level of CCL5 in HGECs. Simultaneously, T cell migration could be blocked by anti-CCL5 neutralizing antibody and STAT3 inhibitor stattic in the co-culture system. CONCLUSION The upregulated ASCT2-mediated glutamine uptake in epithelial cells promotes CCL5 production via ROS-STAT3 signaling, which boosts the T-cell infiltration in OLP lesion.
Collapse
Affiliation(s)
- Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| | - Xi Yang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong, PR China.
| |
Collapse
|
49
|
Halbrook CJ, Lyssiotis CA, Pasca di Magliano M, Maitra A. Pancreatic cancer: Advances and challenges. Cell 2023; 186:1729-1754. [PMID: 37059070 PMCID: PMC10182830 DOI: 10.1016/j.cell.2023.02.014] [Citation(s) in RCA: 286] [Impact Index Per Article: 286.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers. Significant efforts have largely defined major genetic factors driving PDAC pathogenesis and progression. Pancreatic tumors are characterized by a complex microenvironment that orchestrates metabolic alterations and supports a milieu of interactions among various cell types within this niche. In this review, we highlight the foundational studies that have driven our understanding of these processes. We further discuss the recent technological advances that continue to expand our understanding of PDAC complexity. We posit that the clinical translation of these research endeavors will enhance the currently dismal survival rate of this recalcitrant disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA; Institute for Immunology, University of California, Irvine, Irvine, CA 92697, USA; Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92868, USA.
| | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Marina Pasca di Magliano
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Jin J, Byun JK, Choi YK, Park KG. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med 2023; 55:706-715. [PMID: 37009798 PMCID: PMC10167356 DOI: 10.1038/s12276-023-00971-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 04/04/2023] Open
Abstract
Proliferating cancer cells rely largely on glutamine for survival and proliferation. Glutamine serves as a carbon source for the synthesis of lipids and metabolites via the TCA cycle, as well as a source of nitrogen for amino acid and nucleotide synthesis. To date, many studies have explored the role of glutamine metabolism in cancer, thereby providing a scientific rationale for targeting glutamine metabolism for cancer treatment. In this review, we summarize the mechanism(s) involved at each step of glutamine metabolism, from glutamine transporters to redox homeostasis, and highlight areas that can be exploited for clinical cancer treatment. Furthermore, we discuss the mechanisms underlying cancer cell resistance to agents that target glutamine metabolism, as well as strategies for overcoming these mechanisms. Finally, we discuss the effects of glutamine blockade on the tumor microenvironment and explore strategies to maximize the utility of glutamine blockers as a cancer treatment.
Collapse
Affiliation(s)
- Jonghwa Jin
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea
| | - Jun-Kyu Byun
- BK21 FOUR Community-based Intelligent Novel Drug Discovery Education Unit, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, 41566, Korea
| | - Yeon-Kyung Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, 41404, Korea.
| | - Keun-Gyu Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, South Korea.
| |
Collapse
|