1
|
Farnworth MS, Loupasaki T, Couto A, Montgomery SH. Mosaic evolution of a learning and memory circuit in Heliconiini butterflies. Curr Biol 2024:S0960-9822(24)01337-X. [PMID: 39426379 DOI: 10.1016/j.cub.2024.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
How do neural circuits accommodate changes that produce cognitive variation? We explore this question by analyzing the evolutionary dynamics of an insect learning and memory circuit centered within the mushroom body. Mushroom bodies are composed of a conserved wiring logic, mainly consisting of Kenyon cells, dopaminergic neurons, and mushroom body output neurons. Despite this conserved makeup, there is huge diversity in mushroom body size and shape across insects. However, empirical data on how evolution modifies the function and architecture of this circuit are largely lacking. To address this, we leverage the recent radiation of a Neotropical tribe of butterflies, the Heliconiini (Nymphalidae), which show extensive variation in mushroom body size over comparatively short phylogenetic timescales, linked to specific changes in foraging ecology, life history, and cognition. To understand how such an extensive increase in size is accommodated through changes in lobe circuit architecture, we combined immunostainings of structural markers, neurotransmitters, and neural injections to generate new, quantitative anatomies of the Nymphalid mushroom body lobe. Our comparative analyses across Heliconiini demonstrate that some Kenyon cell sub-populations expanded at higher rates than others in Heliconius and identify an additional increase in GABA-ergic feedback neurons, which are essential for non-elemental learning and sparse coding. Taken together, our results demonstrate mosaic evolution of functionally related neural systems and cell types and identify that evolutionary malleability in an architecturally conserved parallel circuit guides adaptation in cognitive ability.
Collapse
Affiliation(s)
- Max S Farnworth
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Theodora Loupasaki
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Antoine Couto
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK; Evolution, Genomes, Behaviour and Ecology (UMR 9191), IDEEV, Université Paris-Saclay, CNRS, IRD, 12 Route 128, Gif-sur-Yvette, 91190, France
| | - Stephen H Montgomery
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
2
|
Axelrod CJ, Urquhart EM, Mahabir PN, Carlson BA, Gordon SP. Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish. Integr Comp Biol 2024; 64:506-519. [PMID: 38886128 DOI: 10.1093/icb/icae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Swanne P Gordon
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
3
|
Maddern XJ, Ursich LT, Bailey G, Pearl A, Anversa RG, Lawrence AJ, Walker LC. Sex Differences in Alcohol Use: Is It All About Hormones? Endocrinology 2024; 165:bqae088. [PMID: 39018449 DOI: 10.1210/endocr/bqae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024]
Abstract
Risky alcohol use and alcohol use disorders (AUD) are a rising problem in women, yet a major disparity in our understanding of what drives alcohol consumption in women remains. Historically biomedical research has focused on male subjects; however, recent increases in reporting of females, have highlighted major differences between the sexes. Here we review the current literature of the effect of gonadal steroid hormones (estrogens, androgens, and progestins), neurosteriods, and neurobiological factors on alcohol use in clinical and preclinical studies of both sexes. Further, we briefly discuss how fundamental sex differences in genetics, metabolism, neuroimmune, and stress responses may influence sex differences in alcohol intake. Comparing the sexes could aid in the discovery of novel therapeutics to treat AUD, and implementation of current treatment options in women.
Collapse
Affiliation(s)
- Xavier J Maddern
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lauren T Ursich
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Grace Bailey
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Amy Pearl
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roberta G Anversa
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
4
|
Ferreira VHB, Lansade L, Calandreau L, Cunha F, Jensen P. Are domesticated animals dumber than their wild relatives? A comprehensive review on the domestication effects on animal cognitive performance. Neurosci Biobehav Rev 2023; 154:105407. [PMID: 37769929 DOI: 10.1016/j.neubiorev.2023.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Animal domestication leads to diverse behavioral, physiological, and neurocognitive changes in domesticated species compared to their wild relatives. However, the widely held belief that domesticated species are inherently less "intelligent" (i.e., have lower cognitive performance) than their wild counterparts requires further investigation. To investigate potential cognitive disparities, we undertook a thorough review of 88 studies comparing the cognitive performance of domesticated and wild animals. Approximately 30% of these studies showed superior cognitive abilities in wild animals, while another 30% highlighted superior cognitive abilities in domesticated animals. The remaining 40% of studies found similar cognitive performance between the two groups. Therefore, the question regarding the presumed intelligence of wild animals and the diminished cognitive ability of domesticated animals remains unresolved. We discuss important factors/limitations for interpreting past and future research, including environmental influences, diverse objectives of domestication (such as breed development), developmental windows, and methodological issues impacting cognitive comparisons. Rather than perceiving these limitations as constraints, future researchers should embrace them as opportunities to expand our understanding of the complex relationship between domestication and animal cognition.
Collapse
Affiliation(s)
- Vitor Hugo Bessa Ferreira
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - Léa Lansade
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Ludovic Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - Felipe Cunha
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden
| | - Per Jensen
- IFM Biology, AVIAN Behavioural Genomics and Physiology group, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
5
|
Kim MJ, Kulkarni V, Goode MA, Sivesind TE. Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis. J Mol Graph Model 2023; 124:108539. [PMID: 37331258 PMCID: PMC10529808 DOI: 10.1016/j.jmgm.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARβ). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | | | - Micah A Goode
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Montillot C, Skutunova E, Ayushma, Dubied M, Lahmar A, Nguyen S, Peerally B, Prin F, Duffourd Y, Thauvin-Robinet C, Duplomb L, Wang H, Ansar M, Faivre L, Navarro N, Minocha S, Collins SC, Yalcin B. Characterization of Vps13b-mutant mice reveals neuroanatomical and behavioral phenotypes with females less affected. Neurobiol Dis 2023; 185:106259. [PMID: 37573958 DOI: 10.1016/j.nbd.2023.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
The vacuolar protein sorting-associated protein 13B (VPS13B) is a large and highly conserved protein. Disruption of VPS13B causes the autosomal recessive Cohen syndrome, a rare disorder characterized by microcephaly and intellectual disability among other features, including developmental delay, hypotonia, and friendly-personality. However, the underlying mechanisms by which VPS13B disruption leads to brain dysfunction still remain unexplained. To gain insights into the neuropathogenesis of Cohen syndrome, we systematically characterized brain changes in Vps13b-mutant mice and compared murine findings to 235 previously published and 17 new patients diagnosed with VPS13B-related Cohen syndrome. We showed that Vps13b is differentially expressed across brain regions with the highest expression in the cerebellum, the hippocampus and the cortex with postnatal peak. Half of the Vps13b-/- mice die during the first week of life. The remaining mice have a normal lifespan and display the core phenotypes of the human disease, including microcephaly, growth delay, hypotonia, altered memory, and enhanced sociability. Systematic 2D and 3D brain histo-morphological analyses reveal specific structural changes in the brain starting after birth. The dentate gyrus is the brain region with the most prominent reduction in size, while the motor cortex is specifically thinner in layer VI. The fornix, the fasciculus retroflexus, and the cingulate cortex remain unaffected. Interestingly, these neuroanatomical changes implicate an increase of neuronal death during infantile stages with no progression in adulthood suggesting that VPS13B promotes neuronal survival early in life. Importantly, whilst both sexes were affected, some neuroanatomical and behavioral phenotypes were less pronounced or even absent in females. We evaluate sex differences in Cohen patients and conclude that females are less affected both in mice and patients. Our findings provide new insights about the neurobiology of VPS13B and highlight previously unreported brain phenotypes while defining Cohen syndrome as a likely new entity of non-progressive infantile neurodegeneration.
Collapse
Affiliation(s)
- Charlotte Montillot
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Emilia Skutunova
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Ayushma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IITD), Hauz Khas, New Delhi 110016, India
| | - Morgane Dubied
- Biogéosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, 21000 Dijon, France
| | - Adam Lahmar
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Sylvie Nguyen
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Benazir Peerally
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Fabrice Prin
- Crick Advanced Light Microscopy Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Yannis Duffourd
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, 21000 Dijon, France
| | - Christel Thauvin-Robinet
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, Dijon University Hospital, 21000 Dijon, France; Reference Center for Rare Diseases "Déficiences intellectuelles de causes rares", Dijon University Hospital, 21000 Dijon, France
| | - Laurence Duplomb
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Muhammad Ansar
- Jules Gonin Eye Hospital, University of Lausanne, CH-1015 Lausanne, Switzerland; Advanced Molecular Genetics and Genomics Disease Research and Treatment Centre, Dow University of Health Sciences, Karachi, Pakistan
| | - Laurence Faivre
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France; Reference Center for Rare Diseases "Anomalies du Développement et syndromes malformatifs", Dijon University Hospital, 21000 Dijon, France
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, EPHE, Université de Bourgogne, 21000 Dijon, France; EPHE, PSL University, Paris 75014, France
| | - Shilpi Minocha
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IITD), Hauz Khas, New Delhi 110016, India
| | - Stephan C Collins
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France
| | - Binnaz Yalcin
- Université de Bourgogne, 21000 Dijon, France; Inserm Unit 1231, 21000 Dijon, France.
| |
Collapse
|
7
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
8
|
Ivanovic D, Zamorano F, Soto-Icaza P, Rojas T, Larraín C, Silva C, Almagià A, Bustamante C, Arancibia V, Villagrán F, Valenzuela R, Barrera C, Billeke P. Brain structural parameters correlate with University Selection Test outcomes in Chilean high school graduates. Sci Rep 2022; 12:20562. [PMID: 36446926 PMCID: PMC9709063 DOI: 10.1038/s41598-022-24958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
How well students learn and perform in academic contexts is a focus of interest for the students, their families, and the entire educational system. Although evidence has shown that several neurobiological factors are involved in scholastic achievement (SA), specific brain measures associated with academic outcomes and whether such associations are independent of other factors remain unclear. This study attempts to identify the relationship between brain structural parameters, and the Chilean national University Selection Test (PSU) results in high school graduates within a multidimensional approach that considers socio-economic, intellectual, nutritional, and demographic variables. To this end, the brain morphology of a sample of 102 students who took the PSU test was estimated using Magnetic Resonance Imaging. Anthropometric parameters, intellectual ability (IA), and socioeconomic status (SES) were also measured. The results revealed that, independently of sex, IA, gray matter volume, right inferior frontal gyrus thickness, and SES were significantly associated with SA. These findings highlight the role of nutrition, health, and socioeconomic variables in academic success.
Collapse
Affiliation(s)
- Daniza Ivanovic
- Laboratory of Nutrition and Neurological Sciences, Human Nutrition Area, Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros (INTA), University of Chile, Santiago, Chile.
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| | - Francisco Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Patricia Soto-Icaza
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Tatiana Rojas
- Laboratory of Nutrition and Neurological Sciences, Human Nutrition Area, Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros (INTA), University of Chile, Santiago, Chile
| | - Cristián Larraín
- Radiology Department, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Claudio Silva
- Radiology Department, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Atilio Almagià
- Laboratory of Physical Anthropology and Human Anatomy, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Bustamante
- Laboratory of Nutrition and Neurological Sciences, Human Nutrition Area, Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros (INTA), University of Chile, Santiago, Chile
| | - Violeta Arancibia
- Department of Global Partnership for Education (GPE) World Bank, Washington, USA
| | - Francisca Villagrán
- Laboratory of Nutrition and Neurological Sciences, Human Nutrition Area, Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros (INTA), University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Pablo Billeke
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
9
|
Reyes AS, Bittar A, Ávila LC, Botia C, Esmeral NP, Bloch NI. Divergence in brain size and brain region volumes across wild guppy populations. Proc Biol Sci 2022; 289:20212784. [PMID: 36000235 PMCID: PMC9399710 DOI: 10.1098/rspb.2021.2784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complex evolutionary dynamics have produced extensive variation in brain anatomy in the animal world. In guppies, Poecilia reticulata, brain size and anatomy have been extensively studied in the laboratory contributing to our understanding of brain evolution and the cognitive advantages that arise with brain anatomical variation. However, it is unclear whether these laboratory results can be translated to natural populations. Here, we study brain neuroanatomy and its relationship with sexual traits across 18 wild guppy populations in diverse environments. We found extensive variation in female and male relative brain size and brain region volumes across populations in different environment types and with varying degrees of predation risk. In contrast with laboratory studies, we found differences in allometric scaling of brain regions, leading to variation in brain region proportions across populations. Finally, we found an association between sexual traits, mainly the area of black patches and tail length, and brain size. Our results suggest differences in ecological conditions and sexual traits are associated with differences in brain size and brain regions volumes in the wild, as well as sexual dimorphisms in the brain's neuroanatomy.
Collapse
Affiliation(s)
- Angie S. Reyes
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Amaury Bittar
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Laura C. Ávila
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Catalina Botia
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natalia P. Esmeral
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| | - Natasha I. Bloch
- Department of Biomedical Engineering, University of Los Andes, Bogota, Colombia
| |
Collapse
|
10
|
Belyk M, Eichert N, McGettigan C. A dual larynx motor networks hypothesis. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200392. [PMID: 34719252 PMCID: PMC8558777 DOI: 10.1098/rstb.2020.0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2021] [Indexed: 01/14/2023] Open
Abstract
Humans are vocal modulators par excellence. This ability is supported in part by the dual representation of the laryngeal muscles in the motor cortex. Movement, however, is not the product of motor cortex alone but of a broader motor network. This network consists of brain regions that contain somatotopic maps that parallel the organization in motor cortex. We therefore present a novel hypothesis that the dual laryngeal representation is repeated throughout the broader motor network. In support of the hypothesis, we review existing literature that demonstrates the existence of network-wide somatotopy and present initial evidence for the hypothesis' plausibility. Understanding how this uniquely human phenotype in motor cortex interacts with broader brain networks is an important step toward understanding how humans evolved the ability to speak. We further suggest that this system may provide a means to study how individual components of the nervous system evolved within the context of neuronal networks. This article is part of the theme issue 'Voice modulation: from origin and mechanism to social impact (Part I)'.
Collapse
Affiliation(s)
- Michel Belyk
- Department of Speech Hearing and Phonetic Sciences, University College London, London WC1N 1PJ, UK
- Department of Psychology, Edge Hill University, Ormskirk, L39 4QP, UK
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Carolyn McGettigan
- Department of Speech Hearing and Phonetic Sciences, University College London, London WC1N 1PJ, UK
| |
Collapse
|
11
|
Fong S, Rogell B, Amcoff M, Kotrschal A, van der Bijl W, Buechel SD, Kolm N. Rapid mosaic brain evolution under artificial selection for relative telencephalon size in the guppy ( Poecilia reticulata). SCIENCE ADVANCES 2021; 7:eabj4314. [PMID: 34757792 PMCID: PMC8580313 DOI: 10.1126/sciadv.abj4314] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mosaic brain evolution hypothesis, stating that brain regions can evolve relatively independently during cognitive evolution, is an important idea to understand how brains evolve with potential implications even for human brain evolution. Here, we provide the first experimental evidence for this hypothesis through an artificial selection experiment in the guppy (Poecilia reticulata). After four generations of selection on relative telencephalon volume (relative to brain size), we found substantial changes in telencephalon size but no changes in other regions. Further comparisons revealed that up-selected lines had larger telencephalon, while down-selected lines had smaller telencephalon than wild Trinidadian populations. Our results support that independent evolutionary changes in specific brain regions through mosaic brain evolution can be important facilitators of cognitive evolution.
Collapse
Affiliation(s)
- Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Corresponding author. (S.F.); (N.K.)
| | - Björn Rogell
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Behavioural Ecology, Wageningen University, Wageningen, Netherlands
| | - Wouter van der Bijl
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | | | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Corresponding author. (S.F.); (N.K.)
| |
Collapse
|
12
|
Liu M, Liu Y, Wang X, Wang H. Brain morphological adaptations of
Gambusia affinis
along climatic gradients in China. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mengyu Liu
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Yanqiu Liu
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - Xiaoqin Wang
- College of Animal Science and Technology Northwest A&F University Yangling China
| | - He Wang
- College of Animal Science and Technology Northwest A&F University Yangling China
| |
Collapse
|
13
|
Watanabe A, Balanoff AM, Gignac PM, Gold MEL, Norell MA. Novel neuroanatomical integration and scaling define avian brain shape evolution and development. eLife 2021; 10:68809. [PMID: 34227464 PMCID: PMC8260227 DOI: 10.7554/elife.68809] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
How do large and unique brains evolve? Historically, comparative neuroanatomical studies have attributed the evolutionary genesis of highly encephalized brains to deviations along, as well as from, conserved scaling relationships among brain regions. However, the relative contributions of these concerted (integrated) and mosaic (modular) processes as drivers of brain evolution remain unclear, especially in non-mammalian groups. While proportional brain sizes have been the predominant metric used to characterize brain morphology to date, we perform a high-density geometric morphometric analysis on the encephalized brains of crown birds (Neornithes or Aves) compared to their stem taxa—the non-avialan coelurosaurian dinosaurs and Archaeopteryx. When analyzed together with developmental neuroanatomical data of model archosaurs (Gallus, Alligator), crown birds exhibit a distinct allometric relationship that dictates their brain evolution and development. Furthermore, analyses by neuroanatomical regions reveal that the acquisition of this derived shape-to-size scaling relationship occurred in a mosaic pattern, where the avian-grade optic lobe and cerebellum evolved first among non-avialan dinosaurs, followed by major changes to the evolutionary and developmental dynamics of cerebrum shape after the origin of Avialae. Notably, the brain of crown birds is a more integrated structure than non-avialan archosaurs, implying that diversification of brain morphologies within Neornithes proceeded in a more coordinated manner, perhaps due to spatial constraints and abbreviated growth period. Collectively, these patterns demonstrate a plurality in evolutionary processes that generate encephalized brains in archosaurs and across vertebrates.
Collapse
Affiliation(s)
- Akinobu Watanabe
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, United States.,Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Life Sciences Vertebrates Division, Natural History Museum, London, United Kingdom
| | - Amy M Balanoff
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, United States
| | - Paul M Gignac
- Division of Paleontology, American Museum of Natural History, New York, United States.,Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, Tulsa, United States
| | - M Eugenia L Gold
- Division of Paleontology, American Museum of Natural History, New York, United States.,Biology Department, Suffolk University, Boston, United States
| | - Mark A Norell
- Division of Paleontology, American Museum of Natural History, New York, United States
| |
Collapse
|
14
|
Mehlhorn J, Caspers S. The Effects of Domestication on the Brain and Behavior of the Chicken in the Light of Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:287-301. [PMID: 34044402 DOI: 10.1159/000516787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
The avian class is characterized by particularly strong variability in their domesticated species. With more than 250 breeds and highly efficient commercial lines, domestic chickens represent the outcome of a really long period of artificial selection. One characteristic of domestication is the alterations in brain size and brain composition. The influence of domestication on brain morphology has been reviewed in the past, but mostly with a focus on mammals. Studies on avian species have seldom been taken into account. In this review, we would like to give an overview about the changes and variations in (brain) morphology and behavior in the domestic chicken, taking into consideration the constraints of evolutionary theory and the sense or nonsense of excessive artificial selection.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| |
Collapse
|
15
|
Avin S, Currie A, Montgomery SH. An agent-based model clarifies the importance of functional and developmental integration in shaping brain evolution. BMC Biol 2021; 19:97. [PMID: 33971877 PMCID: PMC8111752 DOI: 10.1186/s12915-021-01024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/13/2021] [Indexed: 01/01/2023] Open
Abstract
Background Vertebrate brain structure is characterised not only by relative consistency in scaling between components, but also by many examples of divergence from these general trends.. Alternative hypotheses explain these patterns by emphasising either ‘external’ processes, such as coordinated or divergent selection, or ‘internal’ processes, like developmental coupling among brain regions. Although these hypotheses are not mutually exclusive, there is little agreement over their relative importance across time or how that importance may vary across evolutionary contexts. Results We introduce an agent-based model to simulate brain evolution in a ‘bare-bones’ system and examine dependencies between variables shaping brain evolution. We show that ‘concerted’ patterns of brain evolution do not, in themselves, provide evidence for developmental coupling, despite these terms often being treated as synonymous in the literature. Instead, concerted evolution can reflect either functional or developmental integration. Our model further allows us to clarify conditions under which such developmental coupling, or uncoupling, is potentially adaptive, revealing support for the maintenance of both mechanisms in neural evolution. Critically, we illustrate how the probability of deviation from concerted evolution depends on the cost/benefit ratio of neural tissue, which increases when overall brain size is itself under constraint. Conclusions We conclude that both developmentally coupled and uncoupled brain architectures can provide adaptive mechanisms, depending on the distribution of selection across brain structures, life history and costs of neural tissue. However, when constraints also act on overall brain size, heterogeneity in selection across brain structures will favour region specific, or mosaic, evolution. Regardless, the respective advantages of developmentally coupled and uncoupled brain architectures mean that both may persist in fluctuating environments. This implies that developmental coupling is unlikely to be a persistent constraint, but could evolve as an adaptive outcome to selection to maintain functional integration.
Collapse
Affiliation(s)
- Shahar Avin
- Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
| | - Adrian Currie
- Department of Sociology, Philosophy and Anthropology, University of Exeter, Exeter, UK
| | | |
Collapse
|
16
|
Sex Differences in the Brain Transcriptome Related to Alcohol Effects and Alcohol Use Disorder. Biol Psychiatry 2021; 91:43-52. [PMID: 34274109 PMCID: PMC8558111 DOI: 10.1016/j.biopsych.2021.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/05/2021] [Accepted: 04/26/2021] [Indexed: 01/03/2023]
Abstract
There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.
Collapse
|
17
|
Ashbrook DG, Arends D, Prins P, Mulligan MK, Roy S, Williams EG, Lutz CM, Valenzuela A, Bohl CJ, Ingels JF, McCarty MS, Centeno AG, Hager R, Auwerx J, Lu L, Williams RW. A platform for experimental precision medicine: The extended BXD mouse family. Cell Syst 2021; 12:235-247.e9. [PMID: 33472028 PMCID: PMC7979527 DOI: 10.1016/j.cels.2020.12.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The challenge of precision medicine is to model complex interactions among DNA variants, phenotypes, development, environments, and treatments. We address this challenge by expanding the BXD family of mice to 140 fully isogenic strains, creating a uniquely powerful model for precision medicine. This family segregates for 6 million common DNA variants-a level that exceeds many human populations. Because each member can be replicated, heritable traits can be mapped with high power and precision. Current BXD phenomes are unsurpassed in coverage and include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross to as many as 19,460 isogenic F1 progeny, and this extended BXD family is an effective platform for testing causal modeling and for predictive validation. BXDs are a unique core resource for the field of experimental precision medicine.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Danny Arends
- Lebenswissenschaftliche Fakultät, Albrecht Daniel Thaer-Institut, Humboldt-Universität zu Berlin, Invalidenstraße 42, 10115 Berlin, Germany
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Suheeta Roy
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Evan G Williams
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Cathleen M Lutz
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Alicia Valenzuela
- Mouse Repository and the Rare and Orphan Disease Center, the Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Casey J Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jesse F Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Melinda S McCarty
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Arthur G Centeno
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Reinmar Hager
- Division of Evolution & Genomic Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
18
|
Anderson KR, Harris JA, Ng L, Prins P, Memar S, Ljungquist B, Fürth D, Williams RW, Ascoli GA, Dumitriu D. Highlights from the Era of Open Source Web-Based Tools. J Neurosci 2021; 41:927-936. [PMID: 33472826 PMCID: PMC7880282 DOI: 10.1523/jneurosci.1657-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/22/2020] [Accepted: 11/29/2020] [Indexed: 12/20/2022] Open
Abstract
High digital connectivity and a focus on reproducibility are contributing to an open science revolution in neuroscience. Repositories and platforms have emerged across the whole spectrum of subdisciplines, paving the way for a paradigm shift in the way we share, analyze, and reuse vast amounts of data collected across many laboratories. Here, we describe how open access web-based tools are changing the landscape and culture of neuroscience, highlighting six free resources that span subdisciplines from behavior to whole-brain mapping, circuits, neurons, and gene variants.
Collapse
Affiliation(s)
- Kristin R Anderson
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington 98109
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Sara Memar
- Robarts Research Institute, BrainsCAN, Schulich School of Medicine & Dentistry, Western University, London, Ontario N6A 3K7, Canada
| | - Bengt Ljungquist
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Giorgio A Ascoli
- Center for Neural Informatics, Structures, and Plasticity, Krasnow Institute for Advanced Study; and Department of Bioengineering, Volgenau School of Engineering, George Mason University, Fairfax, Virginia 22030
| | - Dani Dumitriu
- Departments of Pediatrics and Psychiatry, Columbia University, New York, New York 10032
- Division of Developmental Psychobiology, New York State Psychiatric Institute, New York, New York 10032
- The Sackler Institute for Developmental Psychobiology, Columbia University, New York, New York 10032
- Columbia Population Research Center, Columbia University, New York, New York 10027
- Zuckerman Institute, Columbia University, New York, New York 10027
| |
Collapse
|
19
|
Axelrod CJ, Laberge F, Robinson BW. Interspecific and intraspecific comparisons reveal the importance of evolutionary context in sunfish brain form divergence. J Evol Biol 2021; 34:639-652. [PMID: 33484022 DOI: 10.1111/jeb.13763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 01/03/2023]
Abstract
Habitats can select for specialized phenotypic characteristics in animals. However, the consistency of evolutionary responses to particular environmental conditions remains difficult to predict. One trait of great ecological importance is brain form, which is expected to vary between habitats that differ in their cognitive requirements. Here, we compared divergence in brain form and oral jaw size across a common littoral-pelagic ecological axis in two sunfishes at both the intraspecific and interspecific levels. Brain form differed between habitats at every level of comparison; however, divergence was inconsistent, despite consistent differences in oral jaw size. Pumpkinseed and bluegill species differed in cerebellum, optic tectum and olfactory bulb size. These differences are consistent with a historical ecological divergence because they did not manifest between littoral and pelagic ecotypes within either species, suggesting constraints on changes to these regions over short evolutionary time scales. There were also differences in brain form between conspecific ecotypes, but they were inconsistent between species. Littoral pumpkinseed had larger brains than their pelagic counterpart, and littoral bluegill had smaller telencephalons than their pelagic counterpart. Inconsistent brain form divergence between conspecific ecotypes of pumpkinseed and bluegill sharing a common littoral-pelagic habitat axis suggests that contemporary ecological conditions and historic evolutionary context interact to influence evolutionary changes in brain form in fishes.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Beren W Robinson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
20
|
Muratore IB, Traniello JFA. Fungus-Growing Ants: Models for the Integrative Analysis of Cognition and Brain Evolution. Front Behav Neurosci 2020; 14:599234. [PMID: 33424560 PMCID: PMC7793780 DOI: 10.3389/fnbeh.2020.599234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - James F. A. Traniello
- Department of Biology, Boston University, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
21
|
Wang N, Anderson RJ, Ashbrook DG, Gopalakrishnan V, Park Y, Priebe CE, Qi Y, Laoprasert R, Vogelstein JT, Williams RW, Johnson GA. Variability and heritability of mouse brain structure: Microscopic MRI atlases and connectomes for diverse strains. Neuroimage 2020; 222:117274. [PMID: 32818613 PMCID: PMC8442986 DOI: 10.1016/j.neuroimage.2020.117274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies have demonstrated significant links between human brain structure and common DNA variants. Similar studies with rodents have been challenging because of smaller brain volumes. Using high field MRI (9.4 T) and compressed sensing, we have achieved microscopic resolution and sufficiently high throughput for rodent population studies. We generated whole brain structural MRI and diffusion connectomes for four diverse isogenic lines of mice (C57BL/6J, DBA/2J, CAST/EiJ, and BTBR) at spatial resolution 20,000 times higher than human connectomes. We measured narrow sense heritability (h2) I.e. the fraction of variance explained by strains in a simple ANOVA model for volumes and scalar diffusion metrics, and estimates of residual technical error for 166 regions in each hemisphere and connectivity between the regions. Volumes of discrete brain regions had the highest mean heritability (0.71 ± 0.23 SD, n = 332), followed by fractional anisotropy (0.54 ± 0.26), radial diffusivity (0.34 ± 0.022), and axial diffusivity (0.28 ± 0.19). Connection profiles were statistically different in 280 of 322 nodes across all four strains. Nearly 150 of the connection profiles were statistically different between the C57BL/6J, DBA/2J, and CAST/EiJ lines. Microscopic whole brain MRI/DTI has allowed us to identify significant heritable phenotypes in brain volume, scalar DTI metrics, and quantitative connectomes.
Collapse
Affiliation(s)
- Nian Wang
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Duke University Medical Center Box 3302, Durham, NC 27710, USA
| | - Robert J Anderson
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Duke University Medical Center Box 3302, Durham, NC 27710, USA
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Vivek Gopalakrishnan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Youngser Park
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Carey E Priebe
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21287, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Yi Qi
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Duke University Medical Center Box 3302, Durham, NC 27710, USA
| | - Rick Laoprasert
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Duke University Medical Center Box 3302, Durham, NC 27710, USA
| | - Joshua T Vogelstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21287, USA; Center for Imaging Science, Johns Hopkins University, Baltimore, MD 21287, USA; Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - G Allan Johnson
- Duke Center for In Vivo Microscopy, Department of Radiology, Duke University, Duke University Medical Center Box 3302, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Peris Tamayo A, Devineau O, Præbel K, Kahilainen KK, Østbye K. A brain and a head for a different habitat: Size variation in four morphs of Arctic charr ( Salvelinus alpinus (L.)) in a deep oligotrophic lake. Ecol Evol 2020; 10:11335-11351. [PMID: 33144968 PMCID: PMC7593136 DOI: 10.1002/ece3.6771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023] Open
Abstract
Adaptive radiation is the diversification of species to different ecological niches and has repeatedly occurred in different salmonid fish of postglacial lakes. In Lake Tinnsjøen, one of the largest and deepest lakes in Norway, the salmonid fish, Arctic charr (Salvelinus alpinus (L.)), has likely radiated within 9,700 years after deglaciation into ecologically and genetically segregated Piscivore, Planktivore, Dwarf, and Abyssal morphs in the pelagial, littoral, shallow-moderate profundal, and deep-profundal habitats. We compared trait variation in the size of the head, the eye and olfactory organs, as well as the volumes of five brain regions of these four Arctic charr morphs. We hypothesised that specific habitat characteristics have promoted divergent body, head, and brain sizes related to utilized depth differing in environmental constraints (e.g., light, oxygen, pressure, temperature, and food quality). The most important ecomorphological variables differentiating morphs were eye area, habitat, and number of lamellae. The Abyssal morph living in the deepest areas of the lake had the smallest brain region volumes, head, and eye size. Comparing the olfactory bulb with the optic tectum in size, it was larger in the Abyssal morph than in the Piscivore morph. The Piscivore and Planktivore morphs that use more illuminated habitats have the largest optic tectum volume, followed by the Dwarf. The observed differences in body size and sensory capacities in terms of vision and olfaction in shallow and deepwater morphs likely relates to foraging and mating habitats in Lake Tinnsjøen. Further seasonal and experimental studies of brain volume in polymorphic species are needed to test the role of plasticity and adaptive evolution behind the observed differences.
Collapse
Affiliation(s)
- Ana‐Maria Peris Tamayo
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and EconomicsUiT—The Arctic University of NorwayTromsøNorway
| | - Olivier Devineau
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
| | - Kim Præbel
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and EconomicsUiT—The Arctic University of NorwayTromsøNorway
| | | | - Kjartan Østbye
- Faculty of Applied Ecology, Agricultural Sciences and BiotechnologyInland Norway University of Applied SciencesKoppangNorway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
23
|
Hogan AVC, Watanabe A, Balanoff AM, Bever GS. Comparative growth in the olfactory system of the developing chick with considerations for evolutionary studies. J Anat 2020; 237:225-240. [PMID: 32314400 PMCID: PMC7369194 DOI: 10.1111/joa.13197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/17/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the long-held assumption that olfaction plays a relatively minor role in the behavioral ecology of birds, crown-group avians exhibit marked phylogenetic variation in the size and form of the olfactory apparatus. As part of a larger effort to better understand the role of olfaction and olfactory tissues in the evolution and development of the avian skull, we present the first quantitative analysis of ontogenetic scaling between olfactory features [olfactory bulbs (OBs) and olfactory turbinates] and neighboring structures (cerebrum, total brain, respiratory turbinates) based on the model organism Gallus gallus. The OB develops under the predictions of a concerted evolutionary model with rapid early growth that is quickly overcome by the longer, sustained growth of the larger cerebrum. A similar pattern is found in the nasal cavity where the morphologically simple (non-scrolled) olfactory turbinates appear and mature early, with extended growth characterizing the larger and scrolled respiratory turbinates. Pairwise regressions largely recover allometric relationships among the examined structures, with a notable exception being the isometric trajectory of the OB and olfactory turbinate. Their parallel growth suggests a unique regulatory pathway that is likely driven by the morphogenesis of the olfactory nerve, which serves as a structural bridge between the two features. Still, isometry was not necessarily expected given that the olfactory epithelium covers more than just the turbinate. These data illuminate a number of evolutionary hypotheses that, moving forward, should inform tradeoffs and constraints between the olfactory and neighboring systems in the avian head.
Collapse
Affiliation(s)
- Aneila V. C. Hogan
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Akinobu Watanabe
- Department of AnatomyNew York Institute of Technology College of Osteopathic MedicineNew YorkNYUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Life Sciences DepartmentVertebrates DivisionNatural History MuseumLondonUK
| | - Amy M. Balanoff
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
- Department of Psychological and Brain SciencesJohns Hopkins UniversityBaltimoreMDUSA
| | - Gabriel S. Bever
- Center for Functional Anatomy and EvolutionJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNYUSA
| |
Collapse
|
24
|
The genetic regulation of size variation in the transcriptome of the cerebrum in the chicken and its role in domestication and brain size evolution. BMC Genomics 2020; 21:518. [PMID: 32727510 PMCID: PMC7392834 DOI: 10.1186/s12864-020-06908-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/13/2020] [Indexed: 12/03/2022] Open
Abstract
Background Large difference in cerebrum size exist between avian species and populations of the same species and is believed to reflect differences in processing power, i.e. in the speed and efficiency of processing information in this brain region. During domestication chickens developed a larger cerebrum compared to their wild progenitor, the Red jungle fowl. The underlying mechanisms that control cerebrum size and the extent to which genetic regulation is similar across brain regions is not well understood. In this study, we combine measurement of cerebrum size with genome-wide genetical genomics analysis to identify the genetic architecture of the cerebrum, as well as compare the regulation of gene expression in this brain region with gene expression in other regions of the brain (the hypothalamus) and somatic tissue (liver). Results We identify one candidate gene that putatively regulates cerebrum size (MTF2) as well as a large number of eQTL that regulate the transcriptome in cerebrum tissue, with the majority of these eQTL being trans-acting. The overall regulation of gene expression variation in the cerebrum was markedly different to the hypothalamus, with relatively few eQTL in common. In comparison, the cerebrum tissue shared more eQTL with a distant tissue (liver) than with a neighboring tissue (hypothalamus). Conclusion The candidate gene for cerebrum size (MTF2) has previously been linked to brain development making it a good candidate for further investigation as a regulator of inter-population variation in cerebrum size. The lack of shared eQTL between the two brain regions implies that genetic regulation of gene expression appears to be relatively independent between the two brain regions and suggest that coevolution between these two brain regions might be more functionally driven than developmental. These findings have relevance for current brain size evolution theories.
Collapse
|
25
|
York RA, Byrne A, Abdilleh K, Patil C, Streelman T, Finger TE, Fernald RD. Behavioral evolution contributes to hindbrain diversification among Lake Malawi cichlid fish. Sci Rep 2019; 9:19994. [PMID: 31882605 PMCID: PMC6934501 DOI: 10.1038/s41598-019-55894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
The evolutionary diversification of animal behavior is often associated with changes in the structure and function of nervous systems. Such evolutionary changes arise either through alterations of individual neural components (“mosaically”) or through scaling of the whole brain (“concertedly”). Here we show that the evolution of a courtship behavior in Malawi cichlid fish is associated with rapid, extensive, and specific diversification of orosensory, gustatory centers in the hindbrain. We find that hindbrain volume varies significantly between species that build pit (depression) compared to castle (mound) type bowers and that this trait is evolving rapidly among castle-building species. Molecular analyses of neural activity via immediate early gene expression indicate a functional role for hindbrain structures during bower building. Finally, comparisons of bower building species in neighboring Lake Tanganyika suggest parallel patterns of neural diversification to those in Lake Malawi. Our results suggest that mosaic brain evolution via alterations to individual brain structures is more extensive and predictable than previously appreciated.
Collapse
Affiliation(s)
- Ryan A York
- Department of Biology, Stanford University, Stanford, California, 94305, USA. .,Department of Neurobiology, Stanford University, Stanford, California, 94305, USA.
| | - Allie Byrne
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Kawther Abdilleh
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Chinar Patil
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Todd Streelman
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, 80045, USA.,Rocky Mountain Taste and Smell Center, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, California, 94305, USA.,Neuroscience Institute, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
26
|
Ashbrook DG, Cahill S, Hager R. A Cross-Species Systems Genetics Analysis Links APBB1IP as a Candidate for Schizophrenia and Prepulse Inhibition. Front Behav Neurosci 2019; 13:266. [PMID: 31920576 PMCID: PMC6914690 DOI: 10.3389/fnbeh.2019.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Prepulse inhibition (PPI) of the startle response is a highly conserved form of sensorimotor gating, disruption of which is found in schizophrenia patients and their unaffected first-degree relatives. PPI can be measured in many species, and shows considerable phenotypic variation between and within rodent models. This makes PPI a useful endophenotype. Genome-wide association studies (GWAS) have been carried out to identify genetic variants underlying schizophrenia, and these suggest that schizophrenia is highly polygenic. GWAS have been unable to account for the high heritability of schizophrenia seen in family studies, partly because of the low power of GWAS due to multiple comparisons. By contrast, complementary mouse model linkage studies often have high statistical power to detect variants for behavioral traits but lower resolution, producing loci that include tens or hundreds of genes. To capitalize on the advantages of both GWAS and genetic mouse models, our study uses a cross-species approach to identify novel genes associated with PPI regulation, which thus may contribute to the PPI deficits seen in schizophrenia. Results: Using experimental data from the recombinant inbred (RI) mouse panel BXD, we identified two significant loci affecting PPI. These genomic regions contain genetic variants which influence PPI in mice and are therefore candidates that may be influencing aspects of schizophrenia in humans. We next investigated these regions in whole-genome data from the Psychiatric Genomics Consortium (PGC) schizophrenia GWAS and identify one novel candidate gene (ABPP1IP) that was significantly associated with PPI in mice and risk of schizophrenia in humans. A systems genetics approach demonstrates that APBB1IP coexpresses with several other genes related to schizophrenia in several brain regions. Gene coexpression and enrichment analysis shows clear links between APBB1IP and the immune system. Conclusion: The combination of human GWAS and mouse quantitative trait loci (QTL) from some of the largest study systems available has enabled us to identify a novel gene, APBB1IP, which influences schizophrenia in humans and PPI in mice.
Collapse
Affiliation(s)
- David G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Stephanie Cahill
- Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Evolution and Genomic Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Brain structure differences between solitary and social wasp species are independent of body size allometry. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:911-916. [PMID: 31705196 DOI: 10.1007/s00359-019-01374-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 09/12/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Evolutionary transitions in social behavior are often associated with changes in species' brain architecture. A recent comparative analysis showed that the structure of brains of wasps in the family Vespidae differed between solitary and social species: the mushroom bodies, a major integrative brain region, were larger relative to brain size in the solitary species. However, the earlier study did not account for body size effects, and species' relative mushroom body size increases with body size in social Vespidae. Here we extend the previous analysis by measuring the effects of body size variation on brain structure differences between social and solitary vespid wasps. We asked whether total brain volume was greater relative to body size in the solitary species, and whether relative mushroom body size was greater in solitary species, after accounting for body size effects. Both total brain volume and relative mushroom body volume were significantly greater in the solitary species after accounting for body size differences. Therefore, body size allometry did not explain the solitary versus social species differences in brain structure. The evolutionary transition from solitary to social behavior in Vespidae was accompanied by decreases in total brain size and in relative mushroom body size.
Collapse
|
28
|
D'Aniello B, Di Cosmo A, Scandurra A, Pinelli C. Mosaic and Concerted Brain Evolution: The Contribution of Microscopic Comparative Neuroanatomy in Lower Vertebrates. Front Neuroanat 2019; 13:86. [PMID: 31607870 PMCID: PMC6773805 DOI: 10.3389/fnana.2019.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Biagio D'Aniello
- Department of Biology, University of Naples “Federico II”, MSA Campus, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples “Federico II”, MSA Campus, Naples, Italy
| | - Anna Scandurra
- Department of Biology, University of Naples “Federico II”, MSA Campus, Naples, Italy
| | - Claudia Pinelli
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
29
|
Barbeito-Andrés J, Castro-Fonseca E, Qiu LR, Bernal V, Lent R, Henkelman M, Lukowiak K, Gleiser PM, Hallgrimsson B, Gonzalez PN. Region-specific changes in Mus musculus brain size and cell composition under chronic nutrient restriction. ACTA ACUST UNITED AC 2019; 222:jeb.204651. [PMID: 31395680 DOI: 10.1242/jeb.204651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/01/2019] [Indexed: 11/20/2022]
Abstract
Nutrition is one of the most influential environmental factors affecting the development of different tissues and organs. It is suggested that under nutrient restriction the growth of the brain is spared as a result of the differential allocation of resources from other organs. However, it is not clear whether this sparing occurs brain-wide. Here, we analyzed morphological changes and cell composition in different regions of the offspring mouse brain after maternal exposure to nutrient restriction during pregnancy and lactation. Using high-resolution magnetic resonance imaging, we found that brain regions were differentially sensitive to maternal protein restriction and exhibited particular patterns of volume reduction. The cerebellum was reduced in absolute and relative volume, while cortex volume was relatively preserved. Alterations in cell composition (examined by the isotropic fractionator method) and organization of white matter (measured by diffusor tensor images) were also region specific. These changes were not related to the metabolic rate of the regions and were only partially explained by their specific growth trajectories. This study is a first step towards understanding the mechanisms of regional brain sparing at microstructural and macrostructural levels resulting from undernutrition.
Collapse
Affiliation(s)
- Jimena Barbeito-Andrés
- Institute for Studies in Neuroscience and Complex Systems Studies, ENyS, CONICET, CP 1888 Buenos Aires, Argentina
| | - Emily Castro-Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21941-590, Brazil
| | - Lily R Qiu
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Valeria Bernal
- Anthropology Department, School of Natural Sciences, National University of La Plata, CP 1900 Buenos Aires, Argentina
| | - Roberto Lent
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, CEP 21941-590, Brazil
| | - Mark Henkelman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON M5T 3H7, Canada
| | - Kenneth Lukowiak
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Pablo M Gleiser
- Medical Physics Department, Bariloche Atomic Centre, Bariloche CP 8400, Río Negro, Argentina
| | - Benedikt Hallgrimsson
- Department of Cell Biology and Anatomy, McCaig Institute for Bone and Joint Health, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paula N Gonzalez
- Institute for Studies in Neuroscience and Complex Systems Studies, ENyS, CONICET, CP 1888 Buenos Aires, Argentina
| |
Collapse
|
30
|
Structural Variability in the Human Brain Reflects Fine-Grained Functional Architecture at the Population Level. J Neurosci 2019; 39:6136-6149. [PMID: 31152123 DOI: 10.1523/jneurosci.2912-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
Human brain structure topography is thought to be related in part to functional specialization. However, the extent of such relationships is unclear. Here, using a data-driven, multimodal approach for studying brain structure across the lifespan (N = 484, n = 260 females), we demonstrate that numerous structural networks, covering the entire brain, follow a functionally meaningful architecture. These gray matter networks (GMNs) emerge from the covariation of gray matter volume and cortical area at the population level. We further reveal fine-grained anatomical signatures of functional connectivity. For example, within the cerebellum, a structural separation emerges between lobules that are functionally connected to distinct, mainly sensorimotor, cognitive and limbic regions of the cerebral cortex and subcortex. Structural modes of variation also replicate the fine-grained functional architecture seen in eight well defined visual areas in both task and resting-state fMRI. Furthermore, our study shows a structural distinction corresponding to the established segregation between anterior and posterior default-mode networks (DMNs). These fine-grained GMNs further cluster together to form functionally meaningful larger-scale organization. In particular, we identify a structural architecture bringing together the functional posterior DMN and its anticorrelated counterpart. In summary, our results demonstrate that the relationship between structural and functional connectivity is fine-grained, widespread across the entire brain, and driven by covariation in cortical area, i.e. likely differences in shape, depth, or number of foldings. These results suggest that neurotrophic events occur during development to dictate that the size and folding pattern of distant, functionally connected brain regions should vary together across subjects.SIGNIFICANCE STATEMENT Questions about the relationship between structure and function in the human brain have engaged neuroscientists for centuries in a debate that continues to this day. Here, by investigating intersubject variation in brain structure across a large number of individuals, we reveal modes of structural variation that map onto fine-grained functional organization across the entire brain, and specifically in the cerebellum, visual areas, and default-mode network. This functionally meaningful structural architecture emerges from the covariation of gray matter volume and cortical folding. These results suggest that the neurotrophic events at play during development, and possibly evolution, which dictate that the size and folding pattern of distant brain regions should vary together across subjects, might also play a role in functional cortical specialization.
Collapse
|
31
|
Kamhi JF, Ilieş I, Traniello JFA. Social Complexity and Brain Evolution: Comparative Analysis of Modularity and Integration in Ant Brain Organization. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:4-18. [PMID: 30982030 DOI: 10.1159/000497267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/27/2019] [Indexed: 11/19/2022]
Abstract
The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.
Collapse
Affiliation(s)
- J Frances Kamhi
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA, .,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Iulian Ilieş
- Healthcare Systems Engineering Institute, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - James F A Traniello
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
32
|
The endocast of StW 573 (“Little Foot”) and hominin brain evolution. J Hum Evol 2019; 126:112-123. [DOI: 10.1016/j.jhevol.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022]
|
33
|
Potter HG, Ashbrook DG, Hager R. Offspring genetic effects on maternal care. Front Neuroendocrinol 2019; 52:195-205. [PMID: 30576700 DOI: 10.1016/j.yfrne.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 12/17/2018] [Indexed: 12/21/2022]
Abstract
Parental care is found widely across animal taxa and is manifest in a range of behaviours from basic provisioning in cockroaches to highly complex behaviours seen in mammals. The evolution of parental care is viewed as the outcome of an evolutionary cost/benefit trade-off between investing in current and future offspring, leading to the selection of traits in offspring that influence parental behaviour. Thus, level and quality of parental care are affected by both parental and offspring genetic differences that directly and indirectly influence parental care behaviour. While significant research effort has gone into understanding how parental genomes affect parental, and mostly maternal, behaviour, few studies have investigated how offspring genomes affect parental care. In this review, we bring together recent findings across different fields focussing on the mechanism and genetics of offspring effects on maternal care in mammals.
Collapse
Affiliation(s)
- Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - David G Ashbrook
- Department of Genetics, Genomics and Informatics, Translational Science Research Building, Room 415, University of Tennessee Health Science Center, 71 S Manassas St, Memphis, TN 38103, United States
| | - Reinmar Hager
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
34
|
Extreme Enlargement of the Cerebellum in a Clade of Teleost Fishes that Evolved a Novel Active Sensory System. Curr Biol 2018; 28:3857-3863.e3. [PMID: 30449664 DOI: 10.1016/j.cub.2018.10.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/26/2018] [Accepted: 10/15/2018] [Indexed: 11/23/2022]
Abstract
Brains, and the distinct regions that make up brains, vary widely in size across vertebrates [1, 2]. Two prominent hypotheses have been proposed to explain brain region scaling evolution. The mosaic hypothesis proposes that changes in the relative sizes of particular brain regions are the result of selection acting independently on those regions [2, 3]. The concerted hypothesis proposes that the brain evolves as a coordinated structure due to developmental constraints [4]. These hypotheses have been widely debated [3-7], and recent studies suggest a combination of the two best describes vertebrate brain region scaling [8-10]. However, no study has addressed how the mosaic and concerted models relate to the evolution of novel behavioral phenotypes. We addressed this question using African mormyroid fishes. The mormyroids have evolved a novel active electrosensory system and are well known for having extreme encephalization [11] and a large cerebellum [2, 12], which is cited as a possible example of mosaic evolution [2]. We found that compared to outgroups without active electrosensing, mormyroids experienced mosaic increases in the sizes of the cerebellum and hindbrain, and mosaic decreases in the sizes of the telencephalon, optic tectum, and olfactory bulb. However, the evolution of extreme encephalization within mormyroids was associated with concerted changes in the sizes of all brain regions. This suggests that mosaic evolutionary change in the regional composition of the brain is most likely to occur alongside the evolution of novel behavioral functions, but not with the evolution of extreme encephalization.
Collapse
|
35
|
Knoll AT, Jiang K, Levitt P. Quantitative trait locus mapping and analysis of heritable variation in affiliative social behavior and co-occurring traits. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12431. [PMID: 29052939 PMCID: PMC5910301 DOI: 10.1111/gbb.12431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/04/2017] [Accepted: 10/14/2017] [Indexed: 02/06/2023]
Abstract
Humans exhibit broad heterogeneity in affiliative social behavior. Twin and family studies show that individual differences in core dimensions of social behavior are heritable, yet there are knowledge gaps in understanding the underlying genetic and neurobiological mechanisms. Animal genetic reference panels (GRPs) provide a tractable strategy for examining the behavioral and genetic architecture of complex traits. Here, using males from 50 mouse strains from the BXD GRP, 4 domains of affiliative social behavior-social approach, social recognition, direct social interaction (DSI) (partner sniffing) and vocal communication-were examined in 2 widely used behavioral tasks-the 3-chamber and DSI tasks. There was continuous and broad variation in social and nonsocial traits, with moderate to high heritability of social approach sniff preference (0.31), ultrasonic vocalization (USV) count (0.39), partner sniffing (0.51), locomotor activity (0.54-0.66) and anxiety-like behavior (0.36). Principal component analysis shows that variation in social and nonsocial traits are attributable to 5 independent factors. Genome-wide mapping identified significant quantitative trait loci for USV count on chromosome (Chr) 18 and locomotor activity on Chr X, with suggestive loci and candidate quantitative trait genes identified for all traits with one notable exception-partner sniffing in the DSI task. The results show heritable variation in sociability, which is independent of variation in activity and anxiety-like traits. In addition, a highly heritable and ethological domain of affiliative sociability-partner sniffing-appears highly polygenic. These findings establish a basis for identifying functional natural variants, leading to a new understanding typical and atypical sociability.
Collapse
Affiliation(s)
- A. T. Knoll
- Program in Developmental NeurogeneticsInstitute for the Developing Mind, The Saban Research Institute, Children’s Hospital Los AngelesLos AngelesCA
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - K. Jiang
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - P. Levitt
- Program in Developmental NeurogeneticsInstitute for the Developing Mind, The Saban Research Institute, Children’s Hospital Los AngelesLos AngelesCA
- Department of PediatricsKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| |
Collapse
|
36
|
Samuk K, Xue J, Rennision DJ. Exposure to predators does not lead to the evolution of larger brains in experimental populations of threespine stickleback. Evolution 2018; 72:916-929. [PMID: 29392719 DOI: 10.1111/evo.13444] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 01/22/2023]
Abstract
Natural selection is often invoked to explain differences in brain size among vertebrates. However, the particular agents of selection that shape brain size variation remain obscure. Recent studies suggest that predators may select for larger brains because increased cognitive and sensory abilities allow prey to better elude predators. Yet, there is little direct evidence that exposure to predators causes the evolution of larger brains in prey species. We experimentally tested this prediction by exposing families of 1000-2000 F2 hybrid benthic-limnetic threespine stickleback to predators under naturalistic conditions, along with matched controls. After two generations of selection, we found that fish from the predator addition treatment had significantly smaller brains (specifically smaller telencephalons and optic lobes) than fish from the control treatment. After an additional generation of selection, we reared experimental fish in a common environment and found that this difference in brain size was maintained in the offspring of fish from the predator addition treatment. Our results provide direct experimental evidence that (a) predators can indeed drive the evolution of brain size--but not in the fashion commonly expected and (b) that the tools of experimental evolution can be used to the study the evolution of the vertebrate brain.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Jan Xue
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diana J Rennision
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Ashbrook DG, Mulligan MK, Williams RW. Post-genomic behavioral genetics: From revolution to routine. GENES, BRAIN, AND BEHAVIOR 2018; 17:e12441. [PMID: 29193773 PMCID: PMC5876106 DOI: 10.1111/gbb.12441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
What was once expensive and revolutionary-full-genome sequence-is now affordable and routine. Costs will continue to drop, opening up new frontiers in behavioral genetics. This shift in costs from the genome to the phenome is most notable in large clinical studies of behavior and associated diseases in cohorts that exceed hundreds of thousands of subjects. Examples include the Women's Health Initiative (www.whi.org), the Million Veterans Program (www. RESEARCH va.gov/MVP), the 100 000 Genomes Project (genomicsengland.co.uk) and commercial efforts such as those by deCode (www.decode.com) and 23andme (www.23andme.com). The same transition is happening in experimental neuro- and behavioral genetics, and sample sizes of many hundreds of cases are becoming routine (www.genenetwork.org, www.mousephenotyping.org). There are two major consequences of this new affordability of massive omics datasets: (1) it is now far more practical to explore genetic modulation of behavioral differences and the key role of gene-by-environment interactions. Researchers are already doing the hard part-the quantitative analysis of behavior. Adding the omics component can provide powerful links to molecules, cells, circuits and even better treatment. (2) There is an acute need to highlight and train behavioral scientists in how best to exploit new omics approaches. This review addresses this second issue and highlights several new trends and opportunities that will be of interest to experts in animal and human behaviors.
Collapse
Affiliation(s)
- D G Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| | - M K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| | - R W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, College of Medicine, Memphis, Tennessee
| |
Collapse
|
38
|
Moore JM, DeVoogd TJ. Concerted and mosaic evolution of functional modules in songbird brains. Proc Biol Sci 2018; 284:rspb.2017.0469. [PMID: 28490627 DOI: 10.1098/rspb.2017.0469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/10/2017] [Indexed: 11/12/2022] Open
Abstract
Vertebrate brains differ in overall size, composition and functional capacities, but the evolutionary processes linking these traits are unclear. Two leading models offer opposing views: the concerted model ascribes major dimensions of covariation in brain structures to developmental events, whereas the mosaic model relates divergent structures to functional capabilities. The models are often cast as incompatible, but they must be unified to explain how adaptive changes in brain structure arise from pre-existing architectures and developmental mechanisms. Here we show that variation in the sizes of discrete neural systems in songbirds, a species-rich group exhibiting diverse behavioural and ecological specializations, supports major elements of both models. In accordance with the concerted model, most variation in nucleus volumes is shared across functional domains and allometry is related to developmental sequence. Per the mosaic model, residual variation in nucleus volumes is correlated within functional systems and predicts specific behavioural capabilities. These comparisons indicate that oscine brains evolved primarily as a coordinated whole but also experienced significant, independent modifications to dedicated systems from specific selection pressures. Finally, patterns of covariation between species and brain areas hint at underlying developmental mechanisms.
Collapse
Affiliation(s)
- Jordan M Moore
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
39
|
Montgomery SH, Mundy NI, Barton RA. Brain evolution and development: adaptation, allometry and constraint. Proc Biol Sci 2017; 283:rspb.2016.0433. [PMID: 27629025 DOI: 10.1098/rspb.2016.0433] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/19/2016] [Indexed: 01/08/2023] Open
Abstract
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These constraints are poorly understood, but in principle could be either developmental or functional. The developmental constraints hypothesis suggests that individual components (brain and body size, or individual brain components) tend to evolve together because natural selection operates on relatively simple developmental mechanisms that affect the growth of all parts in a concerted manner. The functional constraints hypothesis suggests that correlated change reflects the action of selection on distributed functional systems connecting the different sub-components, predicting more complex patterns of mosaic change at the level of the functional systems and more complex genetic and developmental mechanisms. These hypotheses are not mutually exclusive but make different predictions. We review recent genetic and neurodevelopmental evidence, concluding that functional rather than developmental constraints are the main cause of the observed patterns.
Collapse
Affiliation(s)
- Stephen H Montgomery
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Nicholas I Mundy
- Department of Zoology, University of Cambridge, St Andrews Street, Cambridge CB2 3EJ, UK
| | - Robert A Barton
- Evolutionary Anthropology Research Group, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK
| |
Collapse
|
40
|
Keagy J, Braithwaite VA, Boughman JW. Brain differences in ecologically differentiated sticklebacks. Curr Zool 2017; 64:243-250. [PMID: 30402065 PMCID: PMC5905471 DOI: 10.1093/cz/zox074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/20/2017] [Indexed: 11/12/2022] Open
Abstract
Populations that have recently diverged offer a powerful model for studying evolution. Ecological differences are expected to generate divergent selection on multiple traits, including neurobiological ones. Animals must detect, process, and act on information from their surroundings and the form of this information can be highly dependent on the environment. We might expect different environments to generate divergent selection not only on the sensory organs, but also on the brain regions responsible for processing sensory information. Here, we test this hypothesis using recently evolved reproductively isolated species pairs of threespine stickleback fish Gasterosteus aculeatus that have well-described differences in many morphological and behavioral traits correlating with ecological differences. We use a state-of-the-art method, magnetic resonance imaging, to get accurate volumetric data for 2 sensory processing regions, the olfactory bulbs and optic tecta. We found a tight correlation between ecology and the size of these brain regions relative to total brain size in 2 lakes with intact species pairs. Limnetic fish, which rely heavily on vision, had relatively larger optic tecta and smaller olfactory bulbs compared with benthic fish, which utilize olfaction to a greater extent. Benthic fish also had larger total brain volumes relative to their body size compared with limnetic fish. These differences were erased in a collapsed species pair in Enos Lake where anthropogenic disturbance has led to intense hybridization. Together these data indicate that evolution of sensory processing regions can occur rapidly and independently.
Collapse
Affiliation(s)
- Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801, USA.,Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Victoria A Braithwaite
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, PA 16802, USA
| | - Janette W Boughman
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
41
|
Systems genetics identifies a role for Cacna2d1 regulation in elevated intraocular pressure and glaucoma susceptibility. Nat Commun 2017; 8:1755. [PMID: 29176626 PMCID: PMC5701146 DOI: 10.1038/s41467-017-00837-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a multi-factorial blinding disease in which genetic factors play an important role. Elevated intraocular pressure is a highly heritable risk factor for primary open angle glaucoma and currently the only target for glaucoma therapy. Our study helps to better understand underlying genetic and molecular mechanisms that regulate intraocular pressure, and identifies a new candidate gene, Cacna2d1, that modulates intraocular pressure and a promising therapeutic, pregabalin, which binds to CACNA2D1 protein and lowers intraocular pressure significantly. Because our study utilizes a genetically diverse population of mice with known sequence variants, we are able to determine that the intraocular pressure-lowering effect of pregabalin is dependent on the Cacna2d1 haplotype. Using human genome-wide association study (GWAS) data, evidence for association of a CACNA2D1 single-nucleotide polymorphism and primary open angle glaucoma is found. Importantly, these results demonstrate that our systems genetics approach represents an efficient method to identify genetic variation that can guide the selection of therapeutic targets. Elevated intraocular pressure (IOP) is a heritable risk factor for primary open angle glaucoma. Using forward mouse genetics, cell biology, pharmacology and human genetic data, the authors identify CACNA2D1 as an IOP risk gene that can be therapeutically targeted by the drug pregabalin in animal models.
Collapse
|
42
|
Beaudet A, Dumoncel J, de Beer F, Durrleman S, Gilissen E, Oettlé A, Subsol G, Thackeray JF, Braga J. The endocranial shape of Australopithecus africanus: surface analysis of the endocasts of Sts 5 and Sts 60. J Anat 2017; 232:296-303. [PMID: 29148040 DOI: 10.1111/joa.12745] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2017] [Indexed: 11/30/2022] Open
Abstract
Assessment of global endocranial morphology and regional neuroanatomical changes in early hominins is critical for the reconstruction of evolutionary trajectories of cerebral regions in the human lineage. Early evidence of cortical reorganization in specific local areas (e.g. visual cortex, inferior frontal gyrus) is perceptible in the non-human South African hominin fossil record. However, to date, little information is available regarding potential global changes in the early hominin brain. The introduction of non-invasive imaging techniques opens up new perspectives for the study of hominin brain evolution. In this context, our primary aim in this study is to explore the organization of the Australopithecus africanus endocasts, and highlight the nature and extent of the differences distinguishing A. africanus from the extant hominids at both local and global scales. By means of X-ray-based imaging techniques, we investigate two A. africanus specimens from Sterkfontein Member 4, catalogued as Sts 5 and Sts 60, respectively a complete cranium and a partial cranial endocast. Endocrania were virtually reconstructed and compared by using a landmark-free registration method based on smooth and invertible surface deformation. Both local and global information provided by our deformation-based approach are used to perform statistical analyses and topological mapping of inter-specific variation. Statistical analyses indicate that the endocranial shape of Sts 5 and Sts 60 approximates the Pan condition. Furthermore, our study reveals substantial differences with respect to the extant human condition, particularly in the parietal regions. Compared with Pan, the endocranial shape of the fossil specimens differs in the anterior part of the frontal gyri.
Collapse
Affiliation(s)
- Amélie Beaudet
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, University of Pretoria, Pretoria, South Africa
| | - Jean Dumoncel
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France.,Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France
| | - Frikkie de Beer
- Radiation Science Department, South African Nuclear Energy Corporation (Necsa), Pelindaba, South Africa
| | - Stanley Durrleman
- Institut du Cerveau et de la Moelle épinière, Aramis Team, INRIA Paris, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium.,Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
| | - Anna Oettlé
- Department of Anatomy, University of Pretoria, Pretoria, South Africa.,Department of Anatomy and Histology, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Gérard Subsol
- Montpellier Laboratory of Informatics, Robotics and Microelectronics, UMR 5506 CNRS, Université de Montpellier, Montpellier, France
| | - John Francis Thackeray
- Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - José Braga
- Laboratoire d'Anthropologie Moléculaire et Imagerie de Synthèse, UMR 5288 CNRS-Université de Toulouse (Paul Sabatier), Toulouse Cedex, France.,Evolutionary Studies Institute and School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
43
|
Harrison PW, Montgomery SH. Genetics of Cerebellar and Neocortical Expansion in Anthropoid Primates: A Comparative Approach. BRAIN, BEHAVIOR AND EVOLUTION 2017; 89:274-285. [PMID: 28683440 PMCID: PMC5637284 DOI: 10.1159/000477432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022]
Abstract
What adaptive changes in brain structure and function underpin the evolution of increased cognitive performance in humans and our close relatives? Identifying the genetic basis of brain evolution has become a major tool in answering this question. Numerous cases of positive selection, altered gene expression or gene duplication have been identified that may contribute to the evolution of the neocortex, which is widely assumed to play a predominant role in cognitive evolution. However, the components of the neocortex co-evolve with other functionally interdependent regions of the brain, most notably in the cerebellum. The cerebellum is linked to a range of cognitive tasks and expanded rapidly during hominoid evolution. Here we present data that suggest that, across anthropoid primates, protein-coding genes with known roles in cerebellum development were just as likely to be targeted by selection as genes linked to cortical development. Indeed, based on currently available gene ontology data, protein-coding genes with known roles in cerebellum development are more likely to have evolved adaptively during hominoid evolution. This is consistent with phenotypic data suggesting an accelerated rate of cerebellar expansion in apes that is beyond that predicted from scaling with the neocortex in other primates. Finally, we present evidence that the strength of selection on specific genes is associated with variation in the volume of either the neocortex or the cerebellum, but not both. This result provides preliminary evidence that co-variation between these brain components during anthropoid evolution may be at least partly regulated by selection on independent loci, a conclusion that is consistent with recent intraspecific genetic analyses and a mosaic model of brain evolution that predicts adaptive evolution of brain structure.
Collapse
Affiliation(s)
- Peter W. Harrison
- Department of Genetics, Evolution and Environment, University College London, London, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen H. Montgomery
- Department of Genetics, Evolution and Environment, University College London, London, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
44
|
Carlisle A, Selwood L, Hinds LA, Saunders N, Habgood M, Mardon K, Weisbecker V. Testing hypotheses of developmental constraints on mammalian brain partition evolution, using marsupials. Sci Rep 2017; 7:4241. [PMID: 28652619 PMCID: PMC5484667 DOI: 10.1038/s41598-017-02726-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
There is considerable debate about whether the partition volumes of the mammalian brain (e.g. cerebrum, cerebellum) evolve according to functional selection, or whether developmental constraints of conserved neurogenetic scheduling cause predictable partition scaling with brain size. Here we provide the first investigation of developmental constraints on partition volume growth, derived from contrast-enhanced micro-computed tomography of hydrogel-stabilized brains from three marsupial species. ANCOVAs of partition vs. brain volume scaling, as well as growth curve comparisons, do not support several hypotheses consistent with developmental constraints: brain partition growth significantly differs between species, or between developing vs. adult marsupials. Partition growth appears independent of adult brain volume, with no discernable growth spurts/lags relatable to internal structural change. Rather, adult proportion differences appear to arise through growth rate/duration heterochrony. Substantial phylogenetic signal in adult brain partitions scaling with brain volume also counters expectations of development-mediated partition scaling conservatism. However, the scaling of olfactory bulb growth is markedly irregular, consistent with suggestions that it is less constrained. The very regular partition growth curves suggest intraspecific developmental rigidity. We speculate that a rigid, possibly neuromer-model-like early molecular program might be responsible both for regular growth curves within species and impressions of a link between neurogenesis and partition evolution.
Collapse
Affiliation(s)
- Alison Carlisle
- The University of Queensland, School of Biological Sciences, St. Lucia, 4072 QLD, Australia
| | - Lynne Selwood
- The University of Melbourne, School of BioSciences, Parkville, 3010, VIC, Australia
| | - Lyn A Hinds
- CSIRO Health and Biosecurity Flagship, Canberra, 2601, ACT, Australia
| | - Norman Saunders
- The University of Melbourne, Pharmacology and Therapeutics, Parkville, 3010, VIC, Australia
| | - Mark Habgood
- The University of Melbourne, Pharmacology and Therapeutics, Parkville, 3010, VIC, Australia
| | - Karine Mardon
- The University of Queensland, Centre of Advanced Imaging, St. Lucia, 4072, QLD, Australia
| | - Vera Weisbecker
- The University of Queensland, School of Biological Sciences, St. Lucia, 4072 QLD, Australia.
| |
Collapse
|
45
|
Brain size is reduced by selection for tameness in Red Junglefowl- correlated effects in vital organs. Sci Rep 2017; 7:3306. [PMID: 28607425 PMCID: PMC5468340 DOI: 10.1038/s41598-017-03236-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023] Open
Abstract
During domestication animals have undergone changes in size of brain and other vital organs. We hypothesize that this could be a correlated effect to increased tameness. Red Junglefowl (ancestors of domestic chickens) were selected for divergent levels of fear of humans for five generations. The parental (P0) and the fifth selected generation (S5) were culled when 48–54 weeks old and the brains were weighed before being divided into telencephalon, cerebellum, mid brain and optic lobes. Each single brain part as well as the liver, spleen, heart and testicles were also weighed. Brains of S5 birds with high fear scores (S5 high) were heavier both in absolute terms and when corrected for body weight. The relative weight of telencephalon (% of brain weight) was significantly higher in S5 high and relative weight of cerebellum was lower. Heart, liver, testes and spleen were all relatively heavier (% of body weight) in S5 high. Hence, selection for tameness has changed the size of the brain and other vital organs in this population and may have driven the domesticated phenotype as a correlated response.
Collapse
|
46
|
Porcu P, O'Buckley TK, Lopez MF, Becker HC, Miles MF, Williams RW, Morrow AL. Initial genetic dissection of serum neuroactive steroids following chronic intermittent ethanol across BXD mouse strains. Alcohol 2017; 58:107-125. [PMID: 27884493 DOI: 10.1016/j.alcohol.2016.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 10/20/2022]
Abstract
Neuroactive steroids modulate alcohol's impact on brain function and behavior. Ethanol exposure alters neuroactive steroid levels in rats, humans, and some mouse strains. We conducted an exploratory analysis of the neuroactive steroids (3α,5α)-3-hydroxypregnan-20-one (3α,5α-THP), (3α,5α)-3,21-dihydroxypregnan-20-one (3α,5α-THDOC), and pregnenolone across 126-158 individuals and 19 fully inbred strains belonging to the BXD family, which were subjected to air exposure, or chronic intermittent ethanol (CIE) exposure. Neuroactive steroids were measured by gas chromatography-mass spectrometry in serum following five cycles of CIE or air exposure (CTL). Pregnenolone levels in CTLs range from 272 to 578 pg/mL (strain variation of 2.1 fold with p = 0.049 for strain main effect), with heritability of 0.20 ± 0.006 (SEM), whereas in CIE cases values range from 304 to 919 pg/mL (3.0-fold variation, p = 0.007), with heritability of 0.23 ± 0.005. 3α,5α-THP levels in CTLs range from 375 to 1055 pg/mL (2.8-fold variation, p = 0.0007), with heritability of 0.28 ± 0.01; in CIE cases they range from 460 to 1022 pg/mL (2.2-fold variation, p = 0.004), with heritability of 0.23 ± 0.005. 3α,5α-THDOC levels in CTLs range from 94 to 448 pg/mL (4.8-fold variation, p = 0.002), with heritability of 0.30 ± 0.01, whereas levels in CIE cases do not differ significantly. However, global averages across all BXD strains do not differ between CTL and CIE for any of the steroids. 3α,5α-THDOC levels were lower in females than males in both groups (CTL -53%, CIE -55%, p < 0.001). Suggestive quantitative trait loci are identified for pregnenolone and 3α,5α-THP levels. Genetic variation in 3α,5α-THP was not correlated with two-bottle choice ethanol consumption in CTL or CIE-exposed animals. However, individual variation in 3α,5α-THP correlated negatively with ethanol consumption in both groups. Moreover, strain variation in neuroactive steroid levels correlated with numerous behavioral phenotypes of anxiety sensitivity accessed in GeneNetwork, consistent with evidence that neuroactive steroids modulate anxiety-like behavior.
Collapse
|
47
|
Li Z, Guo B, Yang J, Herczeg G, Gonda A, Balázs G, Shikano T, Calboli FCF, Merilä J. Deciphering the genomic architecture of the stickleback brain with a novel multilocus gene-mapping approach. Mol Ecol 2017; 26:1557-1575. [DOI: 10.1111/mec.14005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Zitong Li
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Baocheng Guo
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Jing Yang
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Gábor Herczeg
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
- Behavioural Ecology Group; Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány1/C 1117 Budapest Hungary
| | - Abigél Gonda
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Gergely Balázs
- Behavioural Ecology Group; Department of Systematic Zoology and Ecology; Eötvös Loránd University; Pázmány Péter sétány1/C 1117 Budapest Hungary
| | - Takahito Shikano
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Federico C. F. Calboli
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| | - Juha Merilä
- Ecological Genetics Research Unit; Department of Biosciences; University of Helsinki; P.O. Box 65 FI-00014 Helsinki Finland
| |
Collapse
|
48
|
Ashbrook DG, Hager R. Social Interactions and Indirect Genetic Effects on Complex Juvenile and Adult Traits. Methods Mol Biol 2017; 1488:499-517. [PMID: 27933541 DOI: 10.1007/978-1-4939-6427-7_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Most animal species are social in one form or another, yet many studies in rodent model systems use either individually housed animals or ignore potential confounds caused by group housing. While such social interaction effects on developmental and behavioral traits are well established, the genetic basis of social interactions has not been researched in as much detail. Specifically, the effects of genetic variation in social partners on the phenotype of a focal individual have mostly been studied at the phenotypic level. Such indirect genetic effects (IGEs), where the genotype of one individual influences the phenotype of a second individual, can have important evolutionary and medically relevant consequences. In this chapter, we give a brief outline of social interaction effects, and how systems genetics approaches using recombinant inbred populations can be used to investigate indirect genetic effects specifically, including maternal genetic effects. We discuss experimental designs for the study of IGEs and show how indirect genetic loci can be identified that underlie social interaction effects, their mechanisms, and consequences for trait variation in focal individuals.
Collapse
Affiliation(s)
- David G Ashbrook
- Dept. of Biological Sciences University of Toronto Scarborough Science Wing, SW3261265 Military Trail, Toronto, ON, M1C, UK
| | - Reinmar Hager
- Department of Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, C1.261 Michael Smith Bldg., Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Variability of brain anatomy for three common mouse strains. Neuroimage 2016; 142:656-662. [DOI: 10.1016/j.neuroimage.2016.03.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 11/23/2022] Open
|
50
|
Henriksen R, Johnsson M, Andersson L, Jensen P, Wright D. The domesticated brain: genetics of brain mass and brain structure in an avian species. Sci Rep 2016; 6:34031. [PMID: 27687864 PMCID: PMC5043184 DOI: 10.1038/srep34031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022] Open
Abstract
As brain size usually increases with body size it has been assumed that the two are tightly constrained and evolutionary studies have therefore often been based on relative brain size (i.e. brain size proportional to body size) rather than absolute brain size. The process of domestication offers an excellent opportunity to disentangle the linkage between body and brain mass due to the extreme selection for increased body mass that has occurred. By breeding an intercross between domestic chicken and their wild progenitor, we address this relationship by simultaneously mapping the genes that control inter-population variation in brain mass and body mass. Loci controlling variation in brain mass and body mass have separate genetic architectures and are therefore not directly constrained. Genetic mapping of brain regions indicates that domestication has led to a larger body mass and to a lesser extent a larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. Domestication has traditionally been linked to brain mass regression, based on measurements of relative brain mass, which confounds the large body mass augmentation due to domestication. Our results refute this concept in the chicken.
Collapse
Affiliation(s)
- R. Henriksen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - M. Johnsson
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - L. Andersson
- Dept of Medical Biochemistry and Microbiology, Uppsala University, BMC, Husargatan 3, Uppsala 75123, Sweden
| | - P. Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| | - D. Wright
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58183, Sweden
| |
Collapse
|