1
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
3
|
Debashish Biswal, Songbiao Li. Transcription Factors in Cardiac Remodeling: Latest Advances. CYTOL GENET+ 2024; 58:234-245. [DOI: 10.3103/s0095452724030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 01/25/2024] [Accepted: 05/18/2024] [Indexed: 01/03/2025]
|
4
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
6
|
Das A, Yesupatham S, Allison D, Tanwar H, Gnanasekaran J, Kear B, Wang X, Wang S, Zachariadou C, Abbasi Y, Chung M, Ozato K, Liu C, Foster B, Thumbigere-Math V. Murine IRF8 Mutation Offers New Insight into Osteoclast and Root Resorption. J Dent Res 2024; 103:318-328. [PMID: 38343385 PMCID: PMC10985390 DOI: 10.1177/00220345231222173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Interferon regulatory factor 8 (IRF8), a transcription factor expressed in immune cells, functions as a negative regulator of osteoclasts and helps maintain dental and skeletal homeostasis. Previously, we reported that a novel mutation in the IRF8 gene increases susceptibility to multiple idiopathic cervical root resorption (MICRR), a form of tooth root resorption mediated by increased osteoclast activity. The IRF8 G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. To investigate the molecular basis of MICRR and IRF8 function in osteoclastogenesis, we generated Irf8 knock-in (KI) mice using CRISPR/Cas9 technique modeling the human IRF8G388S mutation. The heterozygous (Het) and homozygous (Homo) Irf8 KI mice showed no gross morphological defects, and the development of hematopoietic cells was unaffected and similar to wild-type (WT) mice. The Irf8 KI Het and Homo mice showed no difference in macrophage gene signatures important for antimicrobial defenses and inflammatory cytokine production. Consistent with the phenotype observed in MICRR patients, Irf8 KI Het and Homo mice demonstrated significantly increased osteoclast formation and resorption activity in vivo and in vitro when compared to WT mice. The oral ligature-inserted Het and Homo mice displayed significantly increased root resorption and osteoclast-mediated alveolar bone loss compared to WT mice. The increased osteoclastogenesis noted in KI mice is due to the inability of IRF8G388S mutation to inhibit NFATc1-dependent transcriptional activation and downstream osteoclast specific transcripts, as well as its impact on autophagy-related pathways of osteoclast differentiation. This translational study delineates the IRF8 domain important for osteoclast function and provides novel insights into the IRF8 mutation associated with MICRR. IRF8G388S mutation mainly affects osteoclastogenesis while sparing immune cell development and function. These insights extend beyond oral health and significantly advance our understanding of skeletal disorders mediated by increased osteoclast activity and IRF8's role in osteoclastogenesis.
Collapse
Affiliation(s)
- A. Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S.K. Yesupatham
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - D. Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - H. Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - J. Gnanasekaran
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - B. Kear
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - X. Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - S. Wang
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - C. Zachariadou
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Y. Abbasi
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - M.K. Chung
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - K. Ozato
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - C. Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - B.L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - V. Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Long H, Steimle JD, Grisanti Canozo FJ, Kim JH, Li X, Morikawa Y, Park M, Turaga D, Adachi I, Wythe JD, Samee MAH, Martin JF. Endothelial cells adopt a pro-reparative immune responsive signature during cardiac injury. Life Sci Alliance 2024; 7:e202201870. [PMID: 38012001 PMCID: PMC10681909 DOI: 10.26508/lsa.202201870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.
Collapse
Affiliation(s)
- Hali Long
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Xiao Li
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Minjun Park
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Iki Adachi
- Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Joshua D Wythe
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Tuo H, Li W, Zhao W, Zhao J, Li D, Jin L. Shikonin alleviates doxorubicin-induced cardiotoxicity via Mst1/Nrf2 pathway in mice. Sci Rep 2024; 14:924. [PMID: 38195835 PMCID: PMC10776756 DOI: 10.1038/s41598-024-51675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024] Open
Abstract
Doxorubicin (DOX) is a popular and potent anticancer drug, but its cardiotoxicity limits its clinical application. Shikonin has a wide range of biological functions, including antioxidant and anti-inflammatory effects. The aim of this study was to investigate the effects of shikonin on DOX-induced cardiac injury and to identify the underlying mechanisms. Mice receiving shikonin showed reduced cardiac injury response and enhanced cardiac function after DOX administration. Shikonin significantly attenuated DOX-induced oxidative damage, inflammation accumulation and cardiomyocyte apoptosis. Shikonin protects against DOX-induced cardiac injury by inhibiting Mammalian sterile 20-like kinase 1 (Mst1) and oxidative stress and activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In conclusion, shikonin alleviates DOX-induced cardiotoxicity by inhibiting Mst1 and activating Nrf2. Shikonin may be used to treat DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Juan Zhao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danni Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
| |
Collapse
|
9
|
Pane R, Laib L, Formoso K, Détrait M, Sainte-Marie Y, Bourgailh F, Ruffenach N, Faugeras H, Simon I, Lhuillier E, Lezoualc'h F, Conte C. Macromolecular Complex Including MLL3, Carabin and Calcineurin Regulates Cardiac Remodeling. Circ Res 2024; 134:100-113. [PMID: 38084599 DOI: 10.1161/circresaha.123.323458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Cardiac hypertrophy is an intermediate stage in the development of heart failure. The structural and functional processes occurring in cardiac hypertrophy include extensive gene reprogramming, which is dependent on epigenetic regulation and chromatin remodeling. However, the chromatin remodelers and their regulatory functions involved in the pathogenesis of cardiac hypertrophy are not well characterized. METHODS Protein interaction was determined by immunoprecipitation assay in primary cardiomyocytes and mouse cardiac samples subjected or not to transverse aortic constriction for 1 week. Chromatin immunoprecipitation and DNA sequencing (ChIP-seq) experiments were performed on the chromatin of adult mouse cardiomyocytes. RESULTS We report that the calcium-activated protein phosphatase CaN (calcineurin), its endogenous inhibitory protein carabin, the STK24 (STE20-like protein kinase 3), and the histone monomethyltransferase, MLL3 (mixed lineage leukemia 3) form altogether a macromolecular complex at the chromatin of cardiomyocytes. Under basal conditions, carabin prevents CaN activation while the serine/threonine kinase STK24 maintains MLL3 inactive via phosphorylation. After 1 week of transverse aortic constriction, both carabin and STK24 are released from the CaN-MLL3 complex leading to the activation of CaN, dephosphorylation of MLL3, and in turn, histone H3 lysine 4 monomethylation. Selective cardiac MLL3 knockdown mitigates hypertrophy, and chromatin immunoprecipitation and DNA sequencing analysis demonstrates that MLL3 is de novo recruited at the transcriptional start site of genes implicated in cardiomyopathy in stress conditions. We also show that CaN and MLL3 colocalize at chromatin and that CaN activates MLL3 histone methyl transferase activity at distal intergenic regions under hypertrophic conditions. CONCLUSIONS Our study reveals an unsuspected epigenetic mechanism of CaN that directly regulates MLL3 histone methyl transferase activity to promote cardiac remodeling.
Collapse
Affiliation(s)
- Roberto Pane
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Loubna Laib
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Karina Formoso
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Maximin Détrait
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Yannis Sainte-Marie
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Florence Bourgailh
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Nolan Ruffenach
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Hanamée Faugeras
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Ilias Simon
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Emeline Lhuillier
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
- GeT-Sante, Plateforme Genome et Transcriptome, GenoToul, Toulouse, France (E.L.)
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| | - Caroline Conte
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université de Toulouse III-Paul Sabatier, France (R.P., L.L., K.F., M.D.., Y.S.-M., F.B., N.R., H.F., I.S., E.L., F.L., C.C.)
| |
Collapse
|
10
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Liu Y, Yang G, Huo S, Wu J, Ren P, Cao Y, Gao J, Tong L, Min D. Lutein suppresses ferroptosis of cardiac microvascular endothelial cells via positive regulation of IRF in cardiac hypertrophy. Eur J Pharmacol 2023; 959:176081. [PMID: 37797674 DOI: 10.1016/j.ejphar.2023.176081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Cardiac microvascular dysfunction contributes to cardiac hypertrophy (CH) and can progress to heart failure. Lutein is a carotenoid with various pharmacological properties, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. Limited research has been conducted on the effects of lutein on pressure overload-induced CH. Studies have shown that CH is accompanied by ferroptosis in the cardiac microvascular endothelial cells (CMECs). This study aimed to investigate the effect of lutein on ferroptosis of CMECs in CH. The transcription factor interferon regulatory factor (IRF) is associated with immune system function, tumor suppression, and apoptosis. The results of this study suggested that pressure overload primarily inhibits IRF expression, resulting in endothelial ferroptosis. Administration of lutein increased the expression of IRF, providing protection to endothelial cells during pressure overload. IRF silencing downregulated solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) expression, leading to the induction of ferroptosis in CMECs. Lutein supplementation suppressed endothelial ferroptosis by upregulating IRF. These data suggest that IRF may function as a transcription factor for SLC7A11 and that lutein represses ferroptosis in CMECs by upregulating IRF expression. Therefore, targeting IRF may be a promising therapeutic strategy for effective cardioprotection in patients with CH and heart failure.
Collapse
Affiliation(s)
- Yang Liu
- Department of Basic Nursing, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Guanlin Yang
- Key Laboratory of Ministry of Education for Traditional Chinese Medicine Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Shiqiao Huo
- Department of Rehabilitation, Beijing Rehabilitation Hospital of Capital Medical University, Beijing, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing, Heilongjiang, China
| | - Jingquan Gao
- Department of Nursing, School of Medicine, Lishui University, Lishui, China.
| | - Liquan Tong
- Department of General Surgery, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China.
| | - Dongyu Min
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| |
Collapse
|
12
|
Chen Y, Fang ZM, Yi X, Wei X, Jiang DS. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis 2023; 14:205. [PMID: 36944609 PMCID: PMC10030804 DOI: 10.1038/s41419-023-05716-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death driven by excessive lipid peroxidation. Inflammation is one common and effective physiological event that protects against various stimuli to maintain tissue homeostasis. However, the dysregulation of inflammatory responses can cause imbalance of the immune system, cell dysfunction and death. Recent studies have pointed out that activation of inflammation, including the activation of multiple inflammation-related signaling pathways, can lead to ferroptosis. Among the related signal transduction pathways, we focused on five classical inflammatory pathways, namely, the JAK-STAT, NF-κB, inflammasome, cGAS-STING and MAPK signaling pathways, and expounded on their roles in ferroptosis. To date, many agents have shown therapeutic effects on ferroptosis-related diseases by modulating the aforementioned pathways in vivo and in vitro. Moreover, the regulatory effects of these pathways on iron metabolism and lipid peroxidation have been described in detail, contributing to further understanding of the pathophysiological process of ferroptosis. Taken together, targeting these pathways related to inflammation will provide appropriate ways to intervene ferroptosis and diseases.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Poschel DB, Kehinde-Ige M, Klement JD, Yang D, Merting AD, Savage NM, Shi H, Liu K. IRF8 Regulates Intrinsic Ferroptosis through Repressing p53 Expression to Maintain Tumor Cell Sensitivity to Cytotoxic T Lymphocytes. Cells 2023; 12:310. [PMID: 36672246 PMCID: PMC9856547 DOI: 10.3390/cells12020310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.
Collapse
Affiliation(s)
- Dakota B. Poschel
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Mercy Kehinde-Ige
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - John D. Klement
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Dafeng Yang
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Alyssa D. Merting
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Natasha M. Savage
- Department of Pathology, Medical College of Georgia, Augusta, GA 30912, USA
| | - Huidong Shi
- Georgia Cancer Center, Augusta, GA 30912, USA
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta, GA 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| |
Collapse
|
14
|
Transient Receptor Potential Vanilloid Type 1 Protects Against Pressure Overload-Induced Cardiac Hypertrophy by Promoting Mitochondria-Associated Endoplasmic Reticulum Membranes. J Cardiovasc Pharmacol 2022; 80:430-441. [PMID: 35881904 PMCID: PMC9439698 DOI: 10.1097/fjc.0000000000001301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/28/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Transient receptor potential vanilloid type 1 (TRPV1) is a nonselective cation channel that mediates the relationship between mitochondrial function and pathological myocardial hypertrophy. However, its underlying mechanisms remain unclear. This study aimed to investigate whether TRPV1 activation improves the morphology and function of intracellular mitochondria to protect cardiomyocytes after pressure overload-induced myocardial hypertrophy. The myocardial hypertrophy model was established by performing transverse aortic constriction surgery in C57BL/6 J male mice. The data revealed that TRPV1 activation significantly reduced myocardial hypertrophy, promoted ejection fraction% and fractional shortening%, and decreased the left ventricular internal diameter in end-diastole and left ventricular internal diameter in end-systole after transverse aortic constriction. Moreover, in vitro experiments revealed that TRPV1 reduces cardiomyocyte area and improves mitochondrial function by promoting mitochondria-associated endoplasmic reticulum membranes (MAMs) formation in a phenylephrine-treated cardiomyocyte hypertrophy model. TRPV1 up-regulates the phosphorylation levels of AMP-activated protein kinase and expression of mitofusin2 (MFN2). TRPV1 function is blocked by single-stranded RNA interfering with silent interfering MFN2. Activation of TRPV1 reduced mitochondrial reactive oxygen species caused by phenylephrine, whereas disruption of MAMs by siMFN2 abolished TRPV1-mediated mitochondrial protection. Our findings suggest that TRPV1 effectively protects against pressure overload-induced cardiac hypertrophy by promoting MAM formation and conserved mitochondrial function via the AMP-activated protein kinase/MFN2 pathway in cardiomyocytes.
Collapse
|
15
|
IRF8: Mechanism of Action and Health Implications. Cells 2022; 11:cells11172630. [PMID: 36078039 PMCID: PMC9454819 DOI: 10.3390/cells11172630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor of the IRF protein family. IRF8 was originally identified as an essentialfactor for myeloid cell lineage commitment and differentiation. Deletion of Irf8 leads to massive accumulation of CD11b+Gr1+ immature myeloid cells (IMCs), particularly the CD11b+Ly6Chi/+Ly6G− polymorphonuclear myeloid-derived suppressor cell-like cells (PMN-MDSCs). Under pathological conditions such as cancer, Irf8 is silenced by its promoter DNA hypermethylation, resulting in accumulation of PMN-MDSCs and CD11b+ Ly6G+Ly6Clo monocytic MDSCs (M-MDSCs) in mice. IRF8 is often silenced in MDSCs in human cancer patients. MDSCs are heterogeneous populations of immune suppressive cells that suppress T and NK cell activity to promote tumor immune evasion and produce growth factors to exert direct tumor-promoting activity. Emerging experimental data reveals that IRF8 is also expressed in non-hematopoietic cells. Epithelial cell-expressed IRF8 regulates apoptosis and represses Osteopontin (OPN). Human tumor cells may use the IRF8 promoter DNA methylation as a mechanism to repress IRF8 expression to advance cancer through acquiring apoptosis resistance and OPN up-regulation. Elevated OPN engages CD44 to suppress T cell activation and promote tumor cell stemness to advance cancer. IRF8 thus is a transcription factor that regulates both the immune and non-immune components in human health and diseases.
Collapse
|
16
|
Shengyu C, Yinhua L, Yuanhong L, Jinbo Z, Can F, Hao X, Changjiang Z. Selenium alleviates heart remodeling through Sirt1/AKT/GSK-3β pathway. Int Immunopharmacol 2022; 111:109158. [PMID: 35987147 DOI: 10.1016/j.intimp.2022.109158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/10/2022] [Indexed: 11/05/2022]
Abstract
Selenium, reported as an important medium for maintaining the body's homeostasis, acts to have multiple bioeffects including anti-inflammatory, anti-oxidant and anti-apoptosis effects. However, its role in heart failure still remains unclear. In this study, we explored the effects of selenium on heart failure and its possible mechanism. The heart failure models were induced by aortic banding and isoproterenol. H&E, TUNEL and PSR staining were performed to detect the degree of cardiomyocyte hypertrophy, apoptosis rates and heart fibrosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect different mRNA levels, and western blot was applied to assess the expressions of relative proteins. Immunofluorescence staining was used to evaluate α-SMA density. We first found that treatment of selenium alleviated heart fibrosis and the development of heart failure but not cardiomyocyte cross sectional areas. Besides, selenium improved heart levels of superoxide dismutase2 (SOD2), glutathione peroxidase (Gpx) and glutathione (GSH) and the activity of SOD, accompanied by decreased apoptosis rate. In addition, our in vitro study has shown that selenium reduced mRNA levels of collagen Ⅰ and collagen III, expressions of a-SMA, p-AKT/AKT and p-GSK-3β/ GSK-3β, apoptosis rates and reactive oxygen species (ROS) levels in H9C2 cardio-myoblasts treated with TGF-β1. Moreover, the level of Sirt1 was found to be up-regulated by selenium which effects were weakened after the administration of small interfering RNA (siRNA)-Sirt1 or EX527 (inhibitor of Sirt1). Our current results have demonstrated that the protective effects of selenium on heart hypertrophy is through the regulation of Sirt1 and AKT/GSK-3β pathway.
Collapse
Affiliation(s)
- Cui Shengyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Luo Yinhua
- Department of Central Hospital of Tujia and Miao Autonomous Prefecture, Hubei University of Medicine, Shiyan, China
| | - Li Yuanhong
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Zhao Jinbo
- Cardiovascular Disease Center, Central Hospital of Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, China
| | - Fang Can
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xia Hao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Wuhan University, Wuhan, China; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Zhang Changjiang
- Department of Cardiology, Minda Hospital of Hubei Minzu University, Enshi, China.
| |
Collapse
|
17
|
ANGPTL8 is a negative regulator in pathological cardiac hypertrophy. Cell Death Dis 2022; 13:621. [PMID: 35851270 PMCID: PMC9293964 DOI: 10.1038/s41419-022-05029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023]
Abstract
Pathological cardiac hypertrophy is an independent risk factor for heart failure and is considered a target for the treatment of heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. We aimed to investigate the role of angiopoietin-like protein 8 (ANGPTL8) in pathological cardiac hypertrophy. We found that serum ANGPTL8 levels were significantly increased in hypertensive patients with cardiac hypertrophy and in mice with cardiac hypertrophy induced by Ang II or TAC. Furthermore, the secretion of ANGPTL8 from the liver was increased during hypertrophic processes, which were triggered by Ang II. In the Ang II- and transverse aortic constriction (TAC)-induced mouse cardiac hypertrophy model, ANGPTL8 deficiency remarkably accelerated cardiac hypertrophy and fibrosis with deteriorating cardiac dysfunction. Accordingly, both recombinant human full-length ANGPTL8 (rANGPTL8) protein and ANGPTL8 overexpression significantly mitigated Ang II-induced cell enlargement in primary neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Mechanistically, the antihypertrophic effects of ANGPTL8 depended on inhibiting Akt and GSK-3β activation, and the Akt activator SC-79 abolished the antihypertrophic effects of rANGPTL8 in vitro. Moreover, we demonstrated that ANGPTL8 directly bound to the paired Ig-like receptor PIRB (LILRB3) by RNA-seq and immunoprecipitation-mass screening. Remarkably, the antihypertrophic effects of ANGPTL8 were largely blocked by anti-LILRB3 and siRNA-LILRB3. Our study indicated that ANGPTL8 served as a novel negative regulator of pathological cardiac hypertrophy by binding to LILRB3 (PIRB) and inhibiting Akt/GSK3β activation, suggesting that ANGPTL8 may provide synergistic effects in combination with AT1 blockers and become a therapeutic target for cardiac hypertrophy and heart failure.
Collapse
|
18
|
Gao M, Cai Q, Si H, Shi S, Wei H, Lv M, Wang X, Dong T. Isoliquiritigenin attenuates pathological cardiac hypertrophy via regulating AMPKα in vivo and in vitro. J Mol Histol 2022; 53:679-689. [PMID: 35834120 DOI: 10.1007/s10735-022-10090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Isoliquiritigenin (ISL) is a type of flavonoid, derived from the root of the legume plant Glycyrrhiza, that has multiple pharmacological properties. However, its role in cardiac remodeling induced by pressure overload has yet to be fully elucidated. Aortic banding (AB) surgery was used to establish a cardiac hypertrophy model in male C57BL/6 mice. Mice were randomly divided into four groups (n = 20 per group) as follows: Sham + vehicle, sham + ISL, AB + vehicle and AB + ISL. ISL was administered to the mice intragastrically for 1 week after the operation. To evaluate the role of ISL in mice challenged with AB, echocardiography, histological analysis and molecular biochemistry examinations were performed. ISL treatment decreased cardiac hypertrophy and improved cardiac dysfunction induced by pressure overload. In addition, ISL decreased the cross-sectional area of cardiomyocytes. Furthermore, ISL reversed the AB-mediated increase in phosphorylated (p-)mTOR and p-ERK protein levels and further increased the protein expression of p-AMP-activated protein kinase (AMPK)α in response to AB, whereas knockout of AMPKα abolished the protective effects of ISL. The present study suggested that ISL could suppress pressure overload-induced cardiac hypertrophy through the activation of AMPKα. Therefore, ISL may serve as a therapeutic target for cardiac remodeling.
Collapse
Affiliation(s)
- Meiling Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Cai
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Haichao Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Shi
- Department of Anesthesiology, Hubei Provincial Peoples Hospital affiliated to Wuhan University, Wuhan, China
| | - Huixia Wei
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Miaomiao Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofan Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Liu LB, Huang SH, Qiu HL, Cen XF, Guo YY, Li D, Ma YL, Xu M, Tang QZ. Limonin stabilises SIRT6 by activating USP10 in cardiac hypertrophy. Br J Pharmacol 2022; 179:4516-4533. [PMID: 35727596 DOI: 10.1111/bph.15899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Limonin, a natural tetracyclic triterpenoid extract, exerts extensive pharmacological effects; however, its role in cardiac hypertrophy remains to be elucidated. We investigated the beneficial effects of limonin on cardiac hypertrophy and explored the potential mechanisms. EXPERIMENTAL APPROACH C57/BL6 male mice were subjected to aortic banding (AB) surgery and neonatal rat cardiac myocytes (NRCMs) were stimulated with phenylephrine (PE) to evaluate the effects of limonin on cardiac hypertrophy. KEY RESULTS Limonin markedly improved the cardiac function and heart weight in AB operation mice. In addition, limonin-treated mice and NRCMs produced fewer cardiac hypertrophy markers than those treated with the vehicle in hypertrophic groups. Sustained AB- or PE-stimulation impaired cardiac sirtuin 6 (SIRT6) protein levels, which were partially rescued by limonin and subsequently enhanced the activity of PPARα, and Sirt6 siRNA inhibited the anti-hypertrophic effects of limonin in vitro. Interestingly, limonin did not influence Sirt6 mRNA levels, but controlled its ubiquitin levels. Thus, the protein biosynthesis inhibitor, cycloheximide (CHX), and proteasome inhibitor, MG-132, were used to determine SIRT6 protein expression levels. Under PE stimulation, limonin increased SIRT6 protein levels in the presence of CHX, but it didn't influence SIRT6 expression in the presence of MG-132, suggesting that limonin promotes SIRT6 abundance by inhibiting its ubiquitination degradation. Furthermore, limonin inhibited the degradation of SIRT6 by activating ubiquitin-specific peptidase (Cuspidi et al.)-10, while USP10 siRNA abrogated the beneficial effects of limonin. CONCLUSION AND IMPLICATIONS Limonin mediates the ubiquitination and degradation of SIRT6 by activating USP10, providing an attractive therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Li-Bo Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Hong-Liang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Xian-Feng Cen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Ying-Ying Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| |
Collapse
|
20
|
Aiyasiding X, Liao HH, Feng H, Zhang N, Lin Z, Ding W, Yan H, Zhou ZY, Tang QZ. Liquiritin Attenuates Pathological Cardiac Hypertrophy by Activating the PKA/LKB1/AMPK Pathway. Front Pharmacol 2022; 13:870699. [PMID: 35592411 PMCID: PMC9110825 DOI: 10.3389/fphar.2022.870699] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Liquiritin (LQ) is one of the main flavonoids extracted from the roots of Glycyrrhiza spp., which are widely used in traditional Chinese medicine. Studies in both cellular and animal disease models have shown that LQ attenuates or prevents oxidative stress, inflammation, and apoptosis. However, the potential therapeutic effects of LQ on pressure overload-induced cardiac hypertrophy have not been so far explored. Therefore, we investigated the cardioprotective role of LQ and its underlying mechanisms in the aortic banding (AB)-induced cardiac hypertrophy mouse model. Methods and Results: Starting 3 days after AB surgery, LQ (80 mg/kg/day) was administered daily over 4 weeks. Echocardiography and pressure-volume loop analysis indicated that LQ treatment markedly improved hypertrophy-related cardiac dysfunction. Moreover, hematoxylin and eosin, picrosirius red, and TUNEL staining showed that LQ significantly inhibited cardiomyocyte hypertrophy, interstitial fibrosis, and apoptosis. Western blot assays further showed that LQ activated LKB1/AMPKα2/ACC signaling and inhibited mTORC1 phosphorylation in cardiomyocytes. Notably, LQ treatment failed to prevent cardiac dysfunction, hypertrophy, and fibrosis in AMPKα2 knockout (AMPKα2−/−) mice. However, LQ still induced LKB1 phosphorylation in AMPKα2−/− mouse hearts. In vitro experiments further demonstrated that LQ inhibited Ang II-induced hypertrophy in neonatal rat cardiomyocytes (NRCMs) by increasing cAMP levels and PKA activity. Supporting the central involvement of the cAMP/PKA/LKB1/AMPKα2 signaling pathway in the cardioprotective effects of LQ, inhibition of Ang II-induced hypertrophy and induction of LKB1 and AMPKα phosphorylation were no longer observed after inhibiting PKA activity. Conclusion: This study revealed that LQ alleviates pressure overload-induced cardiac hypertrophy in vivo and inhibits Ang II-induced cardiomyocyte hypertrophy in vitro via activating cAMP/PKA/LKB1/AMPKα2 signaling. These findings suggest that LQ might be a valuable adjunct to therapeutic approaches for treating pathological cardiac remodeling.
Collapse
Affiliation(s)
- Xiahenazi Aiyasiding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Han Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zi-Ying Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
21
|
Xue H, Shi H, Zhang F, Li H, Li C, Han Q. RIP3 Contributes to Cardiac Hypertrophy by Influencing MLKL-Mediated Calcium Influx. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5490553. [PMID: 35464769 PMCID: PMC9023175 DOI: 10.1155/2022/5490553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/17/2022] [Indexed: 11/27/2022]
Abstract
Receptor-interacting protein 3(RIP3), a RIP family member, has been reported as a critical regulator of necroptosis and involves in the pathogenesis of various heart diseases. However, its role in the development of myocardial hypertrophy after pressure overload is unclear. We aimed to investigate the roles of RIP3 in pathological cardiac hypertrophy. A rat model of myocardial hypertrophy induced by the aortic banding method was used in this study. Neonatal rat cardiomyocytes (NRCMs) were stimulated with angiotensin II (Ang-II) or phenylephrine (PE) to induce neurohumoral stress. Our results showed that RIP3 level was significantly elevated in the hypertrophic myocardium tissues from patients, rats subjected to AB surgery, and NRCMs treated with Ang-II or PE. After downregulation of RIP3 expression in NRCMs, the phenotypes of myocardial hypertrophy were obviously alleviated. In mechanism, we demonstrated that RIP3 interacts with mixed lineage kinase domain-like protein (MLKL) and promotes its cell membrane localization to increase the influx of calcium within cells, thereby mediating the development of myocardial hypertrophy. More interestingly, we found the blockage of calcium influx by 2-aminoethoxydiphenyl borate, and lanthanum chloride efficiently reverses RIP3-induced cardiac remodeling in NRCMs. Taken together, our findings indicate a key role of the RIP3-MLKL signaling pathway in myocardial hypertrophy, which may be a novel promising treatment strategy for myocardial hypertrophy.
Collapse
Affiliation(s)
- Honghong Xue
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hongtao Shi
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fan Zhang
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chao Li
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qinghua Han
- Department of Cardiology, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
22
|
Trott AJ, Greenwell BJ, Karhadkar TR, Guerrero-Vargas NN, Escobar C, Buijs RM, Menet JS. Lack of food intake during shift work alters the heart transcriptome and leads to cardiac tissue fibrosis and inflammation in rats. BMC Biol 2022; 20:58. [PMID: 35236346 PMCID: PMC8892784 DOI: 10.1186/s12915-022-01256-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Background Many epidemiological studies revealed that shift work is associated with an increased risk of a number of pathologies, including cardiovascular diseases. An experimental model of shift work in rats has additionally been shown to recapitulate aspects of metabolic disorders observed in human shift workers, including increased fat content and impaired glucose tolerance, and used to demonstrate that restricting food consumption outside working hours prevents shift work-associated obesity and metabolic disturbance. However, the way distinct shift work parameters, such as type of work, quantity, and duration, affect cardiovascular function and the underlying mechanisms, remains poorly understood. Here, we used the rat as a model to characterize the effects of shift work in the heart and determine whether they can be modulated by restricting food intake during the normal active phase. Results We show that experimental shift work reprograms the heart cycling transcriptome independently of food consumption. While phases of rhythmic gene expression are distributed across the 24-h day in control rats, they are clustered towards discrete times in shift workers. Additionally, preventing food intake during shift work affects the expression level of hundreds of genes in the heart, including genes encoding components of the extracellular matrix and inflammatory markers found in transcriptional signatures associated with pressure overload and cardiac hypertrophy. Consistent with this, the heart of shift worker rats not eating during work hours, but having access to food outside of shift work, exhibits increased collagen 1 deposition and displays increased infiltration by immune cells. While maintaining food access during shift work has less effects on gene expression, genes found in transcriptional signatures of cardiac hypertrophy remain affected, and the heart of shift worker rats exhibits fibrosis without inflammation. Conclusions Together, our findings unraveled differential effects of food consumption on remodeled transcriptional profiles of the heart in shift worker rats. They also provide insights into how shift work affects cardiac function and suggest that some interventions aiming at mitigating metabolic disorders in shift workers may have adverse effects on cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01256-9.
Collapse
Affiliation(s)
- Alexandra J Trott
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.,Program of Genetics, Texas A&M University, College Station, TX, 77843, USA.,Center for Biological Clock Research, Texas A&M University, College Station, TX, 77843, USA
| | - Ben J Greenwell
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.,Program of Genetics, Texas A&M University, College Station, TX, 77843, USA.,Center for Biological Clock Research, Texas A&M University, College Station, TX, 77843, USA
| | - Tejas R Karhadkar
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.,Program of Genetics, Texas A&M University, College Station, TX, 77843, USA
| | - Natali N Guerrero-Vargas
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Jerome S Menet
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA. .,Program of Genetics, Texas A&M University, College Station, TX, 77843, USA. .,Center for Biological Clock Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
23
|
Wang H, Joshi P, Hong SH, Maye PF, Rowe DW, Shin DG. Predicting the targets of IRF8 and NFATc1 during osteoclast differentiation using the machine learning method framework cTAP. BMC Genomics 2022; 23:14. [PMID: 34991467 PMCID: PMC8740472 DOI: 10.1186/s12864-021-08159-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Interferon regulatory factor-8 (IRF8) and nuclear factor-activated T cells c1 (NFATc1) are two transcription factors that have an important role in osteoclast differentiation. Thanks to ChIP-seq technology, scientists can now estimate potential genome-wide target genes of IRF8 and NFATc1. However, finding target genes that are consistently up-regulated or down-regulated across different studies is hard because it requires analysis of a large number of high-throughput expression studies from a comparable context. METHOD We have developed a machine learning based method, called, Cohort-based TF target prediction system (cTAP) to overcome this problem. This method assumes that the pathway involving the transcription factors of interest is featured with multiple "functional groups" of marker genes pertaining to the concerned biological process. It uses two notions, Gene-Present Sufficiently (GP) and Gene-Absent Insufficiently (GA), in addition to log2 fold changes of differentially expressed genes for the prediction. Target prediction is made by applying multiple machine-learning models, which learn the patterns of GP and GA from log2 fold changes and four types of Z scores from the normalized cohort's gene expression data. The learned patterns are then associated with the putative transcription factor targets to identify genes that consistently exhibit Up/Down gene regulation patterns within the cohort. We applied this method to 11 publicly available GEO data sets related to osteoclastgenesis. RESULT Our experiment identified a small number of Up/Down IRF8 and NFATc1 target genes as relevant to osteoclast differentiation. The machine learning models using GP and GA produced NFATc1 and IRF8 target genes different than simply using a log2 fold change alone. Our literature survey revealed that all predicted target genes have known roles in bone remodeling, specifically related to the immune system and osteoclast formation and functions, suggesting confidence and validity in our method. CONCLUSION cTAP was motivated by recognizing that biologists tend to use Z score values present in data sets for the analysis. However, using cTAP effectively presupposes assembling a sizable cohort of gene expression data sets within a comparable context. As public gene expression data repositories grow, the need to use cohort-based analysis method like cTAP will become increasingly important.
Collapse
Affiliation(s)
- Honglin Wang
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Seung-Hyun Hong
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| | - Peter F. Maye
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, Storrs, USA
| |
Collapse
|
24
|
Gong FH, Chen XL, Zhang Q, Xiao XQ, Yang YS, Song BJ, Chao SP, Cheng WL. MicroRNA-183 as a Novel Regulator Protects Against Cardiomyocytes Hypertrophy via Targeting TIAM1. Am J Hypertens 2022; 35:87-95. [PMID: 32870256 DOI: 10.1093/ajh/hpaa144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/10/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs serve as important regulators of the pathogenesis of cardiac hypertrophy. Among them, miR-183 is well documented as a novel tumor suppressor in previous studies, whereas it exhibits a downregulated expression in cardiac hypertrophy recently. The present study was aimed to examine the effect of miR-183 on cardiomyocytes hypertrophy. METHODS Angiotensin II (Ang II) was used for establishment of cardiac hypertrophy model in vitro. Neonatal rat ventricular cardiomyocytes transfected with miR-183 mimic or negative control were further utilized for the phenotype analysis. Moreover, the bioinformatics analysis and luciferase reporter assays were used for exploring the potential target of miR-183 in cardiomyocytes. RESULTS We observed a significant decreased expression of miR-183 in hypertrophic cardiomyocytes. Overexpression of miR-183 significantly attenuated the cardiomyocytes size morphologically and prohypertrophic genes expression. Moreover, we demonstrated that TIAM1 was a direct target gene of miR-183 verified by bioinformatics analysis and luciferase reporter assays, which showed a decreased mRNA and protein expression in the cardiomyocytes transfected with miR-183 upon Ang II stimulation. Additionally, the downregulated TIAM1 expression was required for the attenuated effect of miR-183 on cardiomyocytes hypertrophy. CONCLUSIONS Taken together, these evidences indicated that miR-183 acted as a cardioprotective regulator for the development of cardiomyocytes hypertrophy via directly regulation of TIAM1.
Collapse
Affiliation(s)
- Fu-han Gong
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Xi-Lu Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-qiang Xiao
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Yong-sheng Yang
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Bian-jing Song
- Department of Cardiology, Tongren Municipal People’s Hospital, Tongren, China
| | - Sheng-ping Chao
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Spironolactone Inhibits Cardiomyocyte Hypertrophy by Regulating the Ca 2+/Calcineurin/p-NFATc3 Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3843830. [PMID: 34956570 PMCID: PMC8702305 DOI: 10.1155/2021/3843830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the protective effect and molecular mechanism of spironolactone in isoproterenol-induced cardiomyocyte hypertrophy. In this study, primary cardiomyocytes were extracted from the heart of neonatal rats. After stable culture, they were processed with isoproterenol alone or isoproterenol (10 μM) combined with different doses (low dose of 10 μM and high dose of 50 μM), and the cellular activity was determined by MTT experiment. The volume of cells was measured with an inverted microscope and CIAS-1000 cell image analysis system. The mRNA expression levels of ANP and BNP in cells were explored by RT-qPCR. The levels of ANP and BNP proteins and NFATc3 phosphorylation in the nucleus were detected by western blot. The extracellular Ca2+ concentration and CaN activity were measured by colorimetry with the kit. Isoproterenol significantly enlarged the volume of cardiomyocytes (p < 0.001), upregulated mRNA and expression levels of ANP and BNP proteins (p < 0.001), increased extracellular Ca2+ concentration and CaN activity (p < 0.001), and upregulated NFATc3 phosphorylation in the nucleus (p < 0.001). The volume of cells treated with isoproterenol combined with different doses of spironolactone significantly decreased compared with those treated with isoproterenol alone (p < 0.001). mRNA and expression levels of ANP and BNP proteins downregulated significantly (p < 0.001). The extracellular Ca2+ (p < 0.01) concentration and CaN activity (p < 0.001) decreased significantly, and NFATc3 phosphorylation in the nucleus downregulated significantly (p < 0.001). There was no significant difference in cell volume (p=0.999), ANP and BNP mRNA (p=0.695), expression levels of proteins, CaN activity (0.154), and NFATc3 phosphorylation in the nucleus between the cells treated with isoproterenol combined with high-dose spironolactone and those in the control group. In conclusion, spironolactone can reverse isoproterenol-induced cardiomyocyte hypertrophy by inhibiting the Ca2+/CaN/NFATc3 pathway.
Collapse
|
26
|
Chen YJ, Li Y, Guo X, Huo B, Chen Y, He Y, Xiao R, Zhu XH, Jiang DS, Wei X. Upregulation of IRF9 Contributes to Pulmonary Artery Smooth Muscle Cell Proliferation During Pulmonary Arterial Hypertension. Front Pharmacol 2021; 12:773235. [PMID: 34925032 PMCID: PMC8672195 DOI: 10.3389/fphar.2021.773235] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is a critical pathological feature in the pathogenesis of pulmonary arterial hypertension (PAH), but the regulatory mechanisms remain largely unknown. Herein, we demonstrated that interferon regulatory factor 9 (IRF9) accelerated PASMCs proliferation by regulating Prohibitin 1 (PHB1) expression and the AKT-GSK3β signaling pathway. Compared with control groups, the rats treated with chronic hypoxia (CH), monocrotaline (MCT) or sugen5416 combined with chronic hypoxia (SuHx), and mice challenged with CH had significantly thickened pulmonary arterioles and hyperproliferative PASMCs. More importantly, the protein level of IRF9 was found to be elevated in the thickened medial wall of the pulmonary arterioles in all of these PAH models. Notably, overexpression of IRF9 significantly promoted the proliferation of rat and human PASMCs, as evidenced by increased cell counts, EdU-positive cells and upregulated biomarkers of cell proliferation. In contrast, knockdown of IRF9 suppressed the proliferation of rat and human PASMCs. Mechanistically, IRF9 directly restrained PHB1 expression and interacted with AKT to inhibit the phosphorylation of AKT at thr308 site, which finally led to mitochondrial dysfunction and PASMC proliferation. Unsurprisingly, MK2206, a specific inhibitor of AKT, partially reversed the PASMC proliferation inhibited by IRF9 knockdown. Thus, our results suggested that elevation of IRF9 facilitates PASMC proliferation by regulating PHB1 expression and AKT signaling pathway to affect mitochondrial function during the development of PAH, which indicated that targeting IRF9 may serve as a novel strategy to delay the pathological progression of PAH.
Collapse
Affiliation(s)
- Yong-Jie Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yi Li
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
27
|
Fang Y, Wang S, Lv J, Zhao Z, Guo N, Wu G, Tong J, Wang Z. Slc39a2-Mediated Zinc Homeostasis Modulates Innate Immune Signaling in Phenylephrine-Induced Cardiomyocyte Hypertrophy. Front Cardiovasc Med 2021; 8:736911. [PMID: 34790705 PMCID: PMC8592093 DOI: 10.3389/fcvm.2021.736911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023] Open
Abstract
Zinc dyshomeostasis has been involved in the pathogenesis of cardiac hypertrophy; however, the dynamic regulation of intracellular zinc and its downstream signaling in cardiac hypertrophy remain largely unknown. Using Zincpyr1 staining, we found a significant decrease of intracellular Zinc concentration in phenylephrine (PE)-induced hypertrophy of neonatal rat ventricular myocytes (NRVMs). We then screened SLC39 family members responsible for zinc uptake and identified Slc39a2 as the only one altered by PE treatment. Slc39a2 knockdown in NRVMs reduced the intracellular Zinc level, and exacerbated the hypertrophic responses to PE treatment. In contrast, adenovirus-mediated Slc39a2 overexpression enhanced zinc uptake and suppressed PE-induced Nppb expression. RNA sequencing analysis showed a pro-hypertrophic transcriptome reprogramming after Slc39a2 knockdown. Interestingly, the innate immune signaling pathways, including NOD signaling, TOLL-like receptor, NFκB, and IRFs, were remarkably enriched in the Slc39a2-regulated genes. Slc39a2 deficiency enhanced the phosphorylation of P65 NFκB and STAT3, and reduced the expression of IκBα. Finally, the expression of IRF7 was significantly increased by Slc39a2 knockdown, which was in turn suppressed by IRF7 knockdown. Our data demonstrate that zinc homeostasis mediated by a Slc39a2/IRF7 regulatory circuit contributes to the alteration of innate immune signaling in cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Yu Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Lv
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Pharmacy, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Chen P, Wen Z, Shi W, Li Z, Chen X, Gao Y, Xu S, Gong Q, Deng J. Effects of Sodium Ferulate on Cardiac Hypertrophy Are via the CaSR-Mediated Signaling Pathway. Front Pharmacol 2021; 12:674570. [PMID: 34690749 PMCID: PMC8526863 DOI: 10.3389/fphar.2021.674570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
As a common complication of many cardiovascular diseases, cardiac hypertrophy is characterized by increased cardiac cell volume, reorganization of the cytoskeleton, and the reactivation of fetal genes such as cardiac natriuretic peptide and β-myosin heavy chain. Cardiac hypertrophy is a distinguishing feature of some cardiovascular diseases. Our previous study showed that sodium ferulate (SF) alleviates myocardial hypertrophy induced by coarctation of the abdominal aorta, and these protective effects may be related to the inhibition of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling pathways. This study investigated the inhibitory effect and mechanism of SF on myocardial hypertrophy in spontaneously hypertensive rats (SHRs). The effects of SF on cardiac hypertrophy were evaluated using echocardiographic measurement, pathological analysis, and detection of atrial natriuretic peptide (ANP) and β-myosin heavy chain (β-MHC) expression. To investigate the mechanisms underlying the anti-hypertrophic effects of SF, the calcium-sensing receptor (CaSR), calcineurin (CaN), nuclear factor of activated T cells 3 (NFAT3), zinc finger transcription factor 4 (GATA4), protein kinase C beta (PKC-β), Raf-1, extracellular signal-regulated kinase 1/2 (ERK 1/2), and mitogen-activated protein kinase phosphatase-1 (MKP-1) were detected by molecular biology techniques. Treatment with SF ameliorated myocardial hypertrophy in 26-week-old SHRs. In addition, it downregulated the levels of ANP, β-MHC, CaSR, CaN, NFAT3, phosphorylated GATA4 (p-GATA4), PKC-β, Raf-1, and p-ERK 1/2; and upregulated the levels of p-NFAT3 and MKP-1. These results suggest that the effects of SF on cardiac hypertrophy are related to regulation of the CaSR-mediated signaling pathway.
Collapse
Affiliation(s)
- Panpan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhaoqin Wen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Wanlan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Zhongli Li
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Xiaoyan Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Yang Gao
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Shangfu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Peng M, Liu Y, Xu Y, Li L, Li Y, Yang H. Cathelicidin-WA ameliorates diabetic cardiomyopathy by inhibiting the NLRP3 inflammasome. Cell Cycle 2021; 20:2278-2290. [PMID: 34585633 DOI: 10.1080/15384101.2021.1981631] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cathelicidin-WA (CWA) is a novel cathelicidin peptide isolated from snakes that has been suggested to exert anti-inflammatory effects. The aim of our study was to investigate whether cathelicidin-WA (CWA) could protect the heart from diabetic cardiomyopathy (DCM). Streptozotocin (STZ) injection was used to establish a mouse model of DCM. CWA peptide (2 mg/kg or 8 mg/kg) was continuously administered to the mice from 10 weeks to 16 weeks after STZ injection. The mice in the DCM group exhibited cardiac dysfunction, while 8 mg/kg CWA ameliorated this cardiac dysfunction. Cardiac fibrosis, inflammation, and oxidative stress as well as cardiomyocyte apoptosis in the DCM mice were decreased by treatment with 8 mg/kg CWA. We isolated neonatal rat cardiomyocytes and stimulated the cells with high glucose to establish an in vitro model of myocyte cell injury. Consistently, CWA inhibited high glucose-induced cell death, inflammation and oxidative stress in the myocytes. Moreover, CWA reduced the formation of the NLR family pyrin domain-containing 3 (NRLP3) inflammasome by regulating thioredoxin-interacting protein expression and p65 activation. NLRP3 overexpression inhibited the beneficial effects of CWA on the heart during DCM and on high glucose-induced myocyte injury. In summary, CWA attenuates cardiac injury and preserves cardiac function during DCM by targeting the NLRP3 pathway.Abbreviations: AAV9: Adeno associated virus; AGE: Advanced Glycation End products; CWA: Cathelicidin-WA; DCM: diabetic cardiomyopathy; Gpx: glutathione peroxidase; HG: high glucose; IL: Interleukin; NLR: Family Pyrin Domain Containing 3 (NRLP3); TXNIP: Thioredoxin interacting protein; LVEF: left ventricular ejection fraction; MDA: Malondialdehyde; MnSOD: manganese superoxide dismutase; NADPH: Nicotinamide adenine dinucleotide phosphate; NAC: N-acetyl-cysteine; NRCMs: Neonatal rat cardiomyocytes; ROS: reactive oxygen species; STZ: Streptozotocin; TNFa: tumor necrosis factor a.
Collapse
Affiliation(s)
- Meng Peng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawei Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Hepatic interferon regulatory factor 8 expression mediates liver ischemia/reperfusion injury in mice. Biochem Pharmacol 2021; 192:114728. [PMID: 34400126 DOI: 10.1016/j.bcp.2021.114728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is an inevitable complication of hepatic surgery occasioned by liver transplantation and resection. The progression from liver ischemia to reperfusion injury is accompanied by abnormal metabolism, Kupffer cell activation, neutrophil recruitment and the release of cytokines. Activation of several interferon regulatory factors (IRFs) has been reported to either enhance or restrict I/R progression, but the role of IRF8 in the regulation of I/R injury progression is still unknown. In this study, we explore the IRF8 function in the I/R-mediated liver injury using overexpressed hepatic IRF8 and knockout mice. According to our results, IRF8 knockout mice had significantly lower inflammatory cells infiltration, inflammatory cytokines release and serum aspartate aminotransferase/alanine aminotransferase levels that improved the necrotic injury after I/R, unlike the control mice. Conversely, the overexpression of IRF8 in WT mice markedly aggravated the liver structure damage and its abnormal function. We further showed that IRF8-mediated inflammatory cells infiltration were partly dependent on early autophagy and NF-κΒ signal pathway during I/R. AAV8-IRF8-I/R mice pretreated with autophagy inhibitor hydroxychloroquine and NF-κΒ signal pathway inhibitor secukinumab could drastically reverse the IRF8-mediated increase of neutrophil infiltration and chemokine release at different degrees. This work uncovered a critical role of IRF8 in the modulation of the hepatic microenvironment and as a potential target in the initial treatment of I/R injury.
Collapse
|
31
|
Zhang B, Mao S, Liu X, Li S, Zhou H, Gu Y, Liu W, Fu L, Liao C, Wang P. MiR-125b inhibits cardiomyocyte apoptosis by targeting BAK1 in heart failure. Mol Med 2021; 27:72. [PMID: 34238204 PMCID: PMC8268255 DOI: 10.1186/s10020-021-00328-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/10/2021] [Indexed: 01/27/2023] Open
Abstract
Background Although miR-125b plays a crucial role in many human cancers. However, its function in heart failure (HF) remains unclear. Our study aimed to investigate its involvement in heart failure. Methods In this study, the mouse HF model was successfully constructed through transverse aortic constriction (TAC) operation. Changes in mRNA and protein levels in isolated myocytes and heart tissues were examined using qRT-PCR, Western blot and Immunohistochemical staining and immunofluorescent staining. Changes in cardiac functions were examined using ultrasound. Interactions between miR-125b and BAK1 was analyzed using the luciferase reporter assay. Cardiomyocyte apoptosis was evaluated using the TUNEL staining. Results We found that miR-125b expression was significantly downregulated in myocardial tissues of HF mice. Moreover, miR-125b upregulation in HF mice injected with agomir-125b efficiently ameliorated cardiac function. Further, miR-125b upregulation significantly decreased the protein levels of apoptosis-related makers c-caspase 3 and Bax, while increased Bcl-2 expression. In addition, BAK1 was identified as a direct target of miR-125b. As expected, BAK1 overexpression observably reversed the effect of agomir-125b on cardiac function and on the expression of apoptosis-related makers in the heart tissues of HF mice. Conclusions Taken together, miR-125b overexpression efficiently attenuated cardiac function injury of HF mice by targeting BAK1 through inhibiting cardiomyocyte apoptosis, suggesting that miR-125b/BAK1 axis might be a potential target for the diagnosis or treatment of HF. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00328-w.
Collapse
Affiliation(s)
- Bei Zhang
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Shanyong Mao
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.,Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xingde Liu
- Guizhou Medical University, No. 9 Beijing Road, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China. .,Department of Cardiology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Sha Li
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Haiyan Zhou
- Departmentof Clinical Research Centre, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Ying Gu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang City, Guizhou, 550014, People's Republic of China
| | - Lei Fu
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Chunyan Liao
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| | - Pengzhen Wang
- Department of Ultrasound Medicine, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi Street, Yunyan District, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
32
|
Sophoricoside ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Biosci Rep 2021; 40:226492. [PMID: 32964914 PMCID: PMC7677750 DOI: 10.1042/bsr20200661] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 02/01/2023] Open
Abstract
Aim: The study aims to evaluate protective effects of sophoricoside (Sop) on cardiac hypertrophy. Meanwhile, the potential and significance of Sop should be broadened and it should be considered as an attractive drug for the treatment of pathological cardiac hypertrophy and heart failure. Methods: Using the phenylephrine (PE)-induced neonatal rat cardiomyocytes (NRCMs) enlargement model, the potent protection of Sop against cardiomyocytes enlargement was evaluated. The function of Sop was validated in mice received transverse aortic coarctation (TAC) or sham surgery. At 1 week after TAC surgery, mice were treated with Sop for the following 4 weeks, the hearts were harvested after echocardiography examination. Results: Our study revealed that Sop significantly mitigated TAC-induced heart dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis. Mechanistically, Sop treatment induced a remarkable activation of AMPK/mTORC1-autophagy cascade following sustained hypertrophic stimulation. Importantly, the protective effect of Sop was largely abolished by the AMPKα inhibitor Compound C, suggesting an AMPK activation-dependent manner of Sop function on suppressing pathological cardiac hypertrophy. Conclusion: Sop ameliorates cardiac hypertrophy by activating AMPK/mTORC1-mediated autophagy. Hence, Sop might be an attractive candidate for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
|
33
|
Das A, Wang X, Kang J, Coulter A, Shetty AC, Bachu M, Brooks SR, Dell'Orso S, Foster BL, Fan X, Ozato K, Somerman MJ, Thumbigere-Math V. Monocyte Subsets With High Osteoclastogenic Potential and Their Epigenetic Regulation Orchestrated by IRF8. J Bone Miner Res 2021; 36:199-214. [PMID: 32804442 PMCID: PMC8168257 DOI: 10.1002/jbmr.4165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Osteoclasts (OCs) are bone-resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type (WT) mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C- monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8-deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Amitabh Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Xiaobei Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Jessica Kang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Alyssa Coulter
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA.,Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Stefania Dell'Orso
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA
| | - Martha J Somerman
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| |
Collapse
|
34
|
Li PL, Liu H, Chen GP, Li L, Shi HJ, Nie HY, Liu Z, Hu YF, Yang J, Zhang P, Zhang XJ, She ZG, Li H, Huang Z, Zhu L. STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy. Hypertension 2020; 76:1219-1230. [PMID: 32862709 DOI: 10.1161/hypertensionaha.120.14752] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathological cardiac hypertrophy is one of the major predictors and inducers of heart failure, the end stage of various cardiovascular diseases. However, the molecular mechanisms underlying pathogenesis of pathological cardiac hypertrophy remain largely unknown. Here, we provided the first evidence that STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) is a key negative regulator of this disease. We found that the expression of STEAP3 was reduced in pressure overload-induced hypertrophic hearts and phenylephrine-induced hypertrophic cardiomyocytes. In a transverse aortic constriction-triggered mouse cardiac hypertrophy model, STEAP3 deficiency remarkably deteriorated cardiac hypertrophy and fibrosis, whereas the opposite phenotype was observed in the cardiomyocyte-specific STEAP3 overexpressing mice. Accordingly, STEAP3 significantly mitigated phenylephrine-induced cell enlargement in primary neonatal rat cardiomyocytes. Mechanistically, via RNA-seq and immunoprecipitation-mass screening, we demonstrated that STEAP3 directly bond to Rho family small GTPase 1 and suppressed the activation of downstream mitogen-activated protein kinase-extracellular signal-regulated kinase signaling cascade. Remarkably, the antihypertrophic effect of STEAP3 was largely blocked by overexpression of constitutively active mutant Rac1 (G12V). Our study indicates that STEAP3 serves as a novel negative regulator of pathological cardiac hypertrophy by blocking the activation of the Rac1-dependent signaling cascade and may contribute to exploring effective therapeutic strategies of pathological cardiac hypertrophy treatment.
Collapse
Affiliation(s)
- Peng-Long Li
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hui Liu
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China.,Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Guo-Peng Chen
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Ling Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hong-Jie Shi
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Hong-Yu Nie
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| | - Zhen Liu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China
| | - Yu-Feng Hu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Juan Yang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Peng Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (Y.-F.H., P.Z.)
| | - Xiao-Jing Zhang
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zhi-Gang She
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Hongliang Li
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China.,Department of Cardiology, Renmin Hospital of Wuhan University, China (J.Y., X.-J.Z., Z.-G.S., H. Li, L. Z.)
| | - Zan Huang
- From the College of Life Sciences (P.-L.L., H. Liu, L.L., Z.H.), Wuhan University, China
| | - Lihua Zhu
- Institute of Model Animal (P.-L.L., H. Liu, G.-P.C., L.L., H.-J.S., H.-Y.N., Z.L., Y.-F.H., J.Y., P.Z., X.-J.Z., Z.-G.S., H. Li, L. Z.), Wuhan University, China.,School of Basic Medical Sciences (G.-P.C., H.-Y.N., H. Li), Wuhan University, China
| |
Collapse
|
35
|
Zhang X, Lei F, Wang XM, Deng KQ, Ji YX, Zhang Y, Li H, Zhang XD, Lu Z, Zhang P. NULP1 Alleviates Cardiac Hypertrophy by Suppressing NFAT3 Transcriptional Activity. J Am Heart Assoc 2020; 9:e016419. [PMID: 32805187 PMCID: PMC7660797 DOI: 10.1161/jaha.120.016419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The development of pathological cardiac hypertrophy involves the coordination of a series of transcription activators and repressors, while their interplay to trigger pathological gene reprogramming remains unclear. NULP1 (nuclear localized protein 1) is a member of the basic helix-loop-helix family of transcription factors and its biological functions in pathological cardiac hypertrophy are barely understood. Methods and Results Immunoblot and immunostaining analyses showed that NULP1 expression was consistently reduced in the failing hearts of patients and hypertrophic mouse hearts and rat cardiomyocytes. Nulp1 knockout exacerbates aortic banding-induced cardiac hypertrophy pathology, which was significantly blunted by transgenic overexpression of Nulp1. Signal pathway screening revealed the nuclear factor of activated T cells (NFAT) pathway to be dramatically suppressed by NULP1. Coimmunoprecipitation showed that NULP1 directly interacted with the topologically associating domain of NFAT3 via its C-terminal region, which was sufficient to suppress NFAT3 transcriptional activity. Inactivation of the NFAT pathway by VIVIT peptides in vivo rescued the aggravated pathogenesis of cardiac hypertrophy resulting from Nulp1 deficiency. Conclusions NULP1 is an endogenous suppressor of NFAT3 signaling under hypertrophic stress and thus negatively regulates the pathogenesis of cardiac hypertrophy. Targeting overactivated NFAT by NULP1 may be a novel therapeutic strategy for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Fang Lei
- Institute of Model Animal Wuhan University Wuhan China
| | - Xiao-Ming Wang
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Ke-Qiong Deng
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Yan-Xiao Ji
- Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| | - Yan Zhang
- Institute of Model Animal Wuhan University Wuhan China
| | - Hongliang Li
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China.,Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
| | - Xiao-Dong Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Zhibing Lu
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Peng Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
36
|
Liu ZY, Lu M, Liu J, Wang ZN, Wang WW, Li Y, Song ZJ, Xu L, Liu Q, Li FH. MicroRNA-144 regulates angiotensin II-induced cardiac fibroblast activation by targeting CREB. Exp Ther Med 2020; 20:2113-2121. [PMID: 32765685 PMCID: PMC7401692 DOI: 10.3892/etm.2020.8901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is involved in adverse cardiac remodeling and heart failure, which is the leading cause of deteriorated cardiac function. Accumulative evidence has elucidated that microRNAs (miRNAs) play important roles in the pathogenesis of cardiac fibrosis. However, the exact molecular mechanism underlying miR-144 in cardiac fibrosis remains unknown. In the present study, a transverse aortic constriction (TAC) mouse model and angiotensin II (Ang II)-induced cardiac fibroblasts (CFs) were constructed in order to investigate the expression levels of miR-144. It was demonstrated that miR-144 was significantly downregulated following pathological stimuli. CFs infected with miR-144 mimics were then used to test the effect of miR-144 on CF activation in vitro. The results revealed that overexpression of miR-144 led to a dramatically decreased proliferation and migration ability in CFs, as well as the transformation from fibroblasts to myofibroblasts, which was characterized by the decreased expression of collagen-I, collagen-III, CTGF, fibronectin and α-SMA. By contrast, such effects could be reversed by miR-144 knockdown. Mechanistically, the bioinformatics analysis and luciferase reporter assay in the present study demonstrated that cAMP response element-binding protein (CREB) was a direct target of miR-144, and the expression of CREB was attenuated by miR-144. The results of the present study demonstrated that miR-144 played a key role in CF activation, partially by targeting CREB, which further suggested that the overexpression of miR-144 may be a promising strategy for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Mingjun Lu
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jing Liu
- Department of Endocrinology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Zhao-Ning Wang
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Wei-Wei Wang
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Yong Li
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Zhi-Jing Song
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Lingling Xu
- Department of Cardiology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Qian Liu
- Department of Orthopedics, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Feng-Hua Li
- Department of Endocrinology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| |
Collapse
|
37
|
Bhagwan JR, Mosqueira D, Chairez-Cantu K, Mannhardt I, Bodbin SE, Bakar M, Smith JGW, Denning C. Isogenic models of hypertrophic cardiomyopathy unveil differential phenotypes and mechanism-driven therapeutics. J Mol Cell Cardiol 2020; 145:43-53. [PMID: 32531470 PMCID: PMC7487780 DOI: 10.1016/j.yjmcc.2020.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a prevalent and complex cardiovascular condition. Despite being strongly associated with genetic alterations, wide variation of disease penetrance, expressivity and hallmarks of progression complicate treatment. We aimed to characterize different human isogenic cellular models of HCM bearing patient-relevant mutations to clarify genetic causation and disease mechanisms, hence facilitating the development of effective therapeutics. METHODS We directly compared the p.β-MHC-R453C and p.ACTC1-E99K HCM-associated mutations in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and their healthy isogenic counterparts, generated using CRISPR/Cas9 genome editing technology. By harnessing several state-of-the-art HCM phenotyping techniques, these mutations were investigated to identify similarities and differences in disease progression and hypertrophic signaling pathways, towards establishing potential targets for pharmacological treatment. CRISPR/Cas9 knock-in of the genetically-encoded calcium indicator R-GECO1.0 to the AAVS1 locus into these disease models resulted in calcium reporter lines. RESULTS Confocal line scan analysis identified calcium transient arrhythmias and intracellular calcium overload in both models. The use of optogenetics and 2D/3D contractility assays revealed opposing phenotypes in the two mutations. Gene expression analysis highlighted upregulation of CALM1, CASQ2 and CAMK2D, and downregulation of IRF8 in p.β-MHC-R453C mutants, whereas the opposite changes were detected in p.ACTC1-E99K mutants. Contrasting profiles of nuclear translocation of NFATc1 and MEF2 between the two HCM models suggest differential hypertrophic signaling pathway activation. Calcium transient abnormalities were rescued with combination of dantrolene and ranolazine, whilst mavacamten reduced the hyper-contractile phenotype of p.ACTC1-E99K hiPSC-CMs. CONCLUSIONS Our data show that hypercontractility and molecular signaling within HCM are not uniform between different gene mutations, suggesting that a 'one-size fits all' treatment underestimates the complexity of the disease. Understanding where the similarities (arrhythmogenesis, bioenergetics) and differences (contractility, molecular profile) lie will allow development of therapeutics that are directed towards common mechanisms or tailored to each disease variant, hence providing effective patient-specific therapy.
Collapse
Affiliation(s)
- Jamie R Bhagwan
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Diogo Mosqueira
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| | - Karolina Chairez-Cantu
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sara E Bodbin
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - Mine Bakar
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK
| | - James G W Smith
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK; Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia,NR4 7UQ, UK
| | - Chris Denning
- Division of Cancer & Stem Cells, Biodiscovery Institute, University of Nottingham, NG7 2RD, UK.
| |
Collapse
|
38
|
Zhou H, Li N, Yuan Y, Jin YG, Wu Q, Yan L, Bian ZY, Deng W, Shen DF, Li H, Tang QZ. Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-κB pathway. J Mol Med (Berl) 2020; 98:691-705. [PMID: 32280997 DOI: 10.1007/s00109-020-01896-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
Cardiac hypertrophy is a complex pathological process, and the molecular mechanisms underlying hypertrophic remodeling have not been clearly elucidated. Leukocyte immunoglobulin-like receptor B4 (lilrb4) is an inhibitory transmembrane protein that is necessary for the regulation of various cellular signaling pathways. To investigate whether lilrb4 plays a role in cardiac hypertrophy, we performed aortic banding in lilrb4 knockout mice, lilrb4 cardiac-specific transgenic mice, and their wild-type littermates. Cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. We found that lilrb4 was expressed both in myocardial tissue and on cultured cardiomyocytes under basal conditions, but the expression was obviously decreased in mouse hearts following aortic banding and in cardiomyocytes treated with angiotensin II. Lilrb4 disruption aggravated cardiac hypertrophy, fibrosis, and dysfunction in response to pressure overload. Conversely, the cardiac overexpression of lilrb4 led to the opposite effects. Moreover, lilrb4 overexpression inhibited angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, we determined that the cardioprotective effect of lilrb4 was mediated through an interaction with SHP-2, the preservation of phosphorylated SHP-2, and the inhibition of the NF-κB pathway. In addition, SHP-2 knockdown in cardiomyocytes eliminated the inhibitory effects of lilrb4 on angiotensin II-induced hypertrophy and NF-κB activation. Our results suggest that lilrb4 protects against pathological cardiac hypertrophy via the SHP-2-dependent inhibition of the NF-κB pathway and may act as a potential therapeutic target for cardiac hypertrophy. KEY MESSAGES: Lilrb4 expression is decreased by hypertrophic stimuli. Lilrb4 protects against pathological cardiac hypertrophy. Lilrb4 interacts with SHP-2 and inhibits NF-κB pathway.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Zhou-Yan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
39
|
Chen Y, Ge Z, Huang S, Zhou L, Zhai C, Chen Y, Hu Q, Cao W, Weng Y, Li Y. Delphinidin attenuates pathological cardiac hypertrophy via the AMPK/NOX/MAPK signaling pathway. Aging (Albany NY) 2020; 12:5362-5383. [PMID: 32209725 PMCID: PMC7138591 DOI: 10.18632/aging.102956] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play a pivotal role in the development of pathological cardiac hypertrophy. Delphinidin, a natural flavonoid, was reported to exert marked antioxidative effects. Therefore, we investigated whether delphinidin ameliorates pathological cardiac hypertrophy via inhibiting oxidative stress. In this study, male C57BL/6 mice were treated with DMSO or delphinidin after surgery. Neonatal rat cardiomyocytes (NRCMs) were treated with angiotensin II (Ang II) and delphinidin in vitro. Eighteen-month-old mice were administered delphinidin to investigate the effect of delphinidin on aging-related cardiac hypertrophy. Through analyses of hypertrophic cardiomyocyte growth, fibrosis and cardiac function, delphinidin was demonstrated to confer resistance to aging- and transverse aortic constriction (TAC)-induced cardiac hypertrophy in vivo and attenuate Ang II-induced cardiomyocyte hypertrophy in vitro by significantly suppressing hypertrophic growth and the deposition of fibrosis. Mechanistically, delphinidin reduced ROS accumulation upon Ang II stimulation through the direct activation of AMP-activated protein kinase (AMPK) and subsequent inhibition of the activity of Rac1 and expression of p47phox. In addition, excessive levels of ERK1/2, P38 and JNK1/2 phosphorylation induced by oxidative stress were abrogated by delphinidin. Delphinidin was conclusively shown to repress pathological cardiac hypertrophy by modulating oxidative stress through the AMPK/NADPH oxidase (NOX)/mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Youming Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shixing Huang
- Department of Cardiac Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Lei Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, China
| | - Changlin Zhai
- Department of Cardiology, The First Affiliated Hospital of Jiaxing University, Zhejiang 314000, China
| | - Yuhan Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qiuyue Hu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wei Cao
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yuteng Weng
- Department of Implantology, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yanyan Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
40
|
Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C, Chen Z, Yu C, Xia X, Liao Q, Jose PA, Zeng C, Wu G. Long Noncoding RNA Ahit Protects Against Cardiac Hypertrophy Through SUZ12 (Suppressor of Zeste 12 Protein Homolog)-Mediated Downregulation of MEF2A (Myocyte Enhancer Factor 2A). Circ Heart Fail 2020; 13:e006525. [PMID: 31957467 DOI: 10.1161/circheartfailure.119.006525] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Long noncoding RNA (lncRNA) can regulate various physiological and pathological processes through multiple molecular mechanisms in cis and in trans. However, the role of lncRNAs in cardiac hypertrophy is yet to be fully elucidated. METHODS A mouse lncRNA microarray was used to identify differentially expressed lncRNAs in the mouse hearts following transverse aortic constriction-induced pressure overload comparing to the sham-operated samples. The direct impact of one lncRNA, Ahit, on cardiomyocyte hypertrophy was characterized in neonatal rat cardiomyocytes in response to phenylephrine by targeted knockdown and overexpression. The in vivo function of Ahit was analyzed in mouse hearts by using cardiac-specific adeno-associated virus, serotype 9-short hairpin RNA to knockdown Ahit in combination with transverse aortic constriction. Using catRAPID program, an interaction between Ahit and SUZ12 (suppressor of zeste 12 protein homolog) was predicted and validated by RNA immunoprecipitation and immunoblotting following RNA pull-down. Chromatin immunoprecipitation was performed to determine SUZ12 or H3K27me3 occupancy on the MEF2A (myocyte enhancer factor 2A) promoter. Finally, the expression of human Ahit (leukemia-associated noncoding IGF1R activator RNA 1 [LUNAR1]) in the serum samples from patients of hypertrophic cardiomyopathy was tested by quantitative real-time polymerase chain reaction. RESULTS A previously unannotated lncRNA, antihypertrophic interrelated transcript (Ahit), was identified to be upregulated in the mouse hearts after transverse aortic constriction. Inhibition of Ahit induced cardiac hypertrophy, both in vitro and in vivo, associated with increased expression of MEF2A, a critical transcriptional factor involved in cardiac hypertrophy. In contrast, overexpression of Ahit significantly attenuated stress-induced cardiac hypertrophy in vitro. Furthermore, Ahit was significantly upregulated in serum samples of patients diagnosed with hypertensive heart disease versus nonhypertrophic hearts (1.46±0.17 fold, P=0.0325). Mechanistically, Ahit directly bound and recruited SUZ12, a core PRC2 (polycomb repressive complex 2) protein, to the promoter of MEF2A, triggering its trimethylation on H3 lysine 27 (H3K27me3) residues and mediating the downregulation of MEF2A, thereby preventing cardiac hypertrophy. CONCLUSIONS Ahit is a lncRNA with a significant role in cardiac hypertrophy regulation through epigenomic modulation. Ahit is a potential therapeutic target of cardiac hypertrophy.
Collapse
Affiliation(s)
- Junyi Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Yang Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cong Lan
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Chuanwei Li
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Zhi Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Cheng Yu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Xuewei Xia
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Qiao Liao
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology. The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.)
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.).,Cardiovascular Research Center, Chongqing College, University of Chinese Academy of Sciences, Chongqing, P.R. China (C.Z.)
| | - Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, P.R. China (J.Y., Y.Y., Z.X., C.L., C.C., C.L., Z.C., C.Y., X.X., Q.L., C.Z., G.W.)
| |
Collapse
|
41
|
Niu X, Zhang J, Zhang L, Hou Y, Pu S, Chu A, Bai M, Zhang Z. Weighted Gene Co-Expression Network Analysis Identifies Critical Genes in the Development of Heart Failure After Acute Myocardial Infarction. Front Genet 2019; 10:1214. [PMID: 31850068 PMCID: PMC6889910 DOI: 10.3389/fgene.2019.01214] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The development of heart failure (HF) remains a common complication following an acute myocardial infarction (AMI), and is associated with substantial adverse outcomes. However, the specific predictive biomarkers and candidate therapeutic targets for post-infarction HF have not been fully established. We sought to perform a weighted gene co-expression network analysis (WGCNA) to identify key modules, hub genes, and possible regulatory targets involved in the development of HF following AMI. Methods: Genes exhibiting the most (top 50%) variation in expression levels across samples in a GSE59867 dataset were imported to the WGCNA. Gene Ontology and pathway enrichment analyses were performed on genes identified in the key module by Metascape. Gene regulatory networks were constructed using the microarray probe reannotation and bioinformatics database. Hub genes were screened out from the key module and validated using other datasets. Results: A total of 10,265 most varied genes and six modules were identified between AMI patients who developed HF within 6 months of follow-up and those who did not. Specifically, the blue module was found to be the most significantly related to the development of post-infarction HF. Functional enrichment analysis revealed that the blue module was primarily associated with the inflammatory response, immune system, and apoptosis. Seven transcriptional factors, including SPI1, ZBTB7A, IRF8, PPARG, P65, KLF4, and Fos, were identified as potential regulators of the expression of genes identified in the blue module. Further, non-coding RNAs, including miR-142-3p and LINC00537, were identified as having close interactions with genes from the blue module. A total of six hub genes (BCL3, HCK, PPIF, S100A9, SERPINA1, and TBC1D9B) were identified and validated for their predictive value in identifying future HFs. Conclusions: By using the WGCNA, we provide new insights into the underlying molecular mechanism and molecular markers correlated with HF development following an AMI, which may serve to improve risk stratification, therapeutic decisions, and prognosis prediction in AMI patients.
Collapse
Affiliation(s)
- Xiaowei Niu
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Jingjing Zhang
- Department of Internal Medicine, Baiyin Second People's Hospital, Baiyin, China
| | - Lanlan Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Yangfan Hou
- Department of Digestive, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuangshuang Pu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Aiai Chu
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ming Bai
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Heart Center, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, China.,The Quality Improvement Project for the Diagnosis and Treatment of Complicated Cardiovascular and Cerebrovascular Diseases (2018), The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
42
|
The 5-Lipoxygenase Inhibitor Zileuton Protects Pressure Overload-Induced Cardiac Remodeling via Activating PPAR α. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7536803. [PMID: 31781348 PMCID: PMC6874937 DOI: 10.1155/2019/7536803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/08/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
Abstract
Zileuton has been demonstrated to be an anti-inflammatory agent due to its well-known ability to inhibit 5-lipoxygenase (5-LOX). However, the effects of zileuton on cardiac remodeling are unclear. In this study, the effects of zileuton on pressure overload-induced cardiac remodeling were investigated and the possible mechanisms were examined. Aortic banding was performed on mice to induce a cardiac remodeling model, and the mice were then treated with zileuton 1 week after surgery. We also stimulated neonatal rat cardiomyocytes with phenylephrine (PE) and then treated them with zileuton. Our data indicated that zileuton protected mice from pressure overload-induced cardiac hypertrophy, fibrosis, and oxidative stress. Zileuton also attenuated PE-induced cardiomyocyte hypertrophy in a time- and dose-dependent manner. Mechanistically, we found that zileuton activated PPARα, but not PPARγ or PPARθ, thus inducing Keap and NRF2 activation. This was confirmed with the PPARα inhibitor GW7647 and NRF2 siRNA, which abolished the protective effects of zileuton on cardiomyocytes. Moreover, PPARα knockdown abolished the anticardiac remodeling effects of zileuton in vivo. Taken together, our data indicate that zileuton protects against pressure overload-induced cardiac remodeling by activating PPARα/NRF2 signaling.
Collapse
|
43
|
Duan M, Yuan Y, Liu C, Cai Z, Xie Q, Hu T, Tang Q, Wu Q. Indigo Fruits Ingredient, Aucubin, Protects against LPS-Induced Cardiac Dysfunction in Mice. J Pharmacol Exp Ther 2019; 371:348-359. [PMID: 31467086 DOI: 10.1124/jpet.119.259069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Aucubin (AUB), which is extracted from Eucommia ulmoides Oliver seeds, has been found to possess anti-inflammatory and antiapoptotic properties. Recent studies have indicated that inflammation, oxidative stress, and apoptosis are involved in the pathophysiology of lipopolysaccharide (LPS)-induced cardiac dysfunction. Our study aimed to investigate the effect of AUB on LPS-induced acute cardiac injury. Male C57BL/6 mice were injected with LPS (one 6 mg/kg injection) to induce cardiac dysfunction without or with AUB pretreatment (20 or 80 mg/kg per day) for 1 week. We found that AUB ameliorated cardiac dysfunction, inflammation, oxidative stress, and apoptosis induced by LPS stimulation. Mechanistically, AUB inhibited LPS-induced oxidative stress by decreasing reactive oxygen species and thioredoxin interaction protein (TXNIP) levels. Moreover, AUB suppressed LPS-induced inflammation and apoptosis by reducing nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3)/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/caspase-1 inflammasome formation. Overexpression of NLRP3 in cardiomyocytes attenuated the protective effects of AUB. Interestingly, NLRP3 deficiency ameliorated cardiac function and reduced the inflammatory response and oxidative stress after LPS insult in mice, whereas AUB could not further prevent LPS-induced cardiac dysfunction in NLRP3-deficient mice. In summary, AUB exerts a protective effect against LPS-induced inflammation, oxidative stress, and apoptosis in vivo and in vitro by regulating the TXNIP pathway and inactivating the NLRP3/ASC/caspase-1 inflammasome. Hence, AUB may be a promising agent against LPS-induced cardiac dysfunction. SIGNIFICANCE STATEMENT: Aucubin exerts a protective effect against lipopolysaccharide-induced cardiac dysfunction by regulating nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome.
Collapse
Affiliation(s)
- MingXia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Zhulan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Qingwen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| | - QingQing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.); and Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China (M.-X.D., Y.Y., C.L., Z.C., Q.X., T.H., Q.T., Q.-Q.W.)
| |
Collapse
|
44
|
Liu C, Wu QQ, Cai ZL, Xie SY, Duan MX, Xie QW, Yuan Y, Deng W, Tang QZ. Zingerone attenuates aortic banding-induced cardiac remodelling via activating the eNOS/Nrf2 pathway. J Cell Mol Med 2019; 23:6466-6478. [PMID: 31293067 PMCID: PMC6714175 DOI: 10.1111/jcmm.14540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/31/2019] [Accepted: 06/24/2019] [Indexed: 12/27/2022] Open
Abstract
Cardiac remodelling refers to a series of changes in the size, shape, wall thickness and tissue structure of the ventricle because of myocardial injury or increased pressure load. Studies have shown that cardiac remodelling plays a significant role in the development of heart failure. Zingerone, a monomer component extracted from ginger, has been proven to possess various properties including antioxidant, anti-inflammatory, anticancer and antidiabetic properties. As oxidative stress and inflammation contribute to acute and chronic myocardial injury, we explored the role of zingerone in cardiac remodelling. Mice were subjected to aortic banding (AB) or sham surgery and then received intragastric administration of zingerone or saline for 25 days. In vitro, neonatal rat cardiomyocytes (NRCMs) were treated with zingerone (50 and 250 μmol/L) when challenged with phenylephrine (PE). We observed that zingerone effectively suppressed cardiac hypertrophy, fibrosis, oxidative stress and inflammation. Mechanistically, Zingerone enhanced the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/antioxidant response element (ARE) activation via increasing the phosphorylation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Additionally, we used Nrf2-knockout (KO) and eNOS-KO mice and found that Nrf2 or eNOS deficiency counteracts these cardioprotective effects of zingerone in vivo. Together, we concluded that zingerone may be a potent treatment for cardiac remodelling that suppresses oxidative stress via the eNOS/Nrf2 pathway.
Collapse
Affiliation(s)
- Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhu-Lan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Sai-Yang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ming-Xia Duan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Wen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
45
|
Thumbigere-Math V, Foster BL, Bachu M, Yoshii H, Brooks S, Coulter A, Chavez MB, Togi S, Neely AL, Deng Z, Mansky KC, Ozato K, Somerman MJ. Inactivating Mutation in IRF8 Promotes Osteoclast Transcriptional Programs and Increases Susceptibility to Tooth Root Resorption. J Bone Miner Res 2019; 34:1155-1168. [PMID: 30840779 PMCID: PMC6663587 DOI: 10.1002/jbmr.3690] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/16/2022]
Abstract
This is the first study to our knowledge to report a novel mutation in the interferon regulatory factor 8 gene (IRF8G388S ) associated with multiple idiopathic tooth root resorption, a form of periodontal disease. The IRF8G388S variant in the highly conserved C-terminal motif is predicted to alter the protein structure, likely impairing IRF8 function. Functional assays demonstrated that the IRF8G388S mutant promoted osteoclastogenesis and failed to inhibit NFATc1-dependent transcriptional activation when compared with IRF8WT control. Further, similar to subjects with heterozygous IRF8G388S mutation, Irf8+/- mice exhibited increased osteoclast activity in the mandibular alveolar bone surrounding molar teeth. Immunohistochemistry illustrated increased NFATc1 expression in the dentoalveolar region of Irf8-/- and Irf8+/- mice when compared with Irf8+/+ controls. Genomewide analyses revealed that IRF8 constitutively bound to regulatory regions of several thousand genes in osteoclast precursors, and genetic aberration of IRF8 significantly enhanced many osteoclast-specific transcripts. Collectively, this study delineates the critical role of IRF8 in defining osteoclast lineage and osteoclast transcriptional program, which may help in better understanding of various osteoclast-mediated disorders, including periodontal disease. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brian L. Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Mahesh Bachu
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Hiroaki Yoshii
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Stephen Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alyssa Coulter
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael B. Chavez
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Sumihito Togi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Anthony L. Neely
- Department of Periodontology and Dental Hygiene, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Zuoming Deng
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, USA
| | - Keiko Ozato
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Martha J. Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
46
|
Xu M, Wan CX, Huang SH, Wang HB, Fan D, Wu HM, Wu QQ, Ma ZG, Deng W, Tang QZ. Oridonin protects against cardiac hypertrophy by promoting P21-related autophagy. Cell Death Dis 2019; 10:403. [PMID: 31127082 PMCID: PMC6534559 DOI: 10.1038/s41419-019-1617-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
Autophagy is an endogenous protective process; the loss of autophagy could destabilize proteostasis and elevate intracellular oxidative stress, which is critically involved in the development of cardiac hypertrophy and heart failure. Oridonin, a natural tetracycline diterpenoid from the Chinese herb Rabdosia, has autophagy activation properties. In this study, we tested whether oridonin protects against cardiac hypertrophy in mice and cardiomyocytes. We implemented aortic banding to induce a cardiac hypertrophy mouse model, and oridonin was given by gavage for 4 weeks. Neonatal rat cardiomyocytes were stimulated with angiotensin II to simulate neurohumoural stress. Both in vivo and in vitro studies suggested that oridonin treatment mitigated pressure overload-induced cardiac hypertrophy and fibrosis, and also preserved heart function. Mice that received oridonin exhibited increased antioxidase activities and suppressed oxidative injury compared with the aortic banding group. Moreover, oridonin enhanced myocardial autophagy in pressure-overloaded hearts and angiotensin II-stimulated cardiomyocytes. Mechanistically, we discovered that oridonin administration regulated myocardial P21, and cytoplasmic P21 activated autophagy via regulating Akt and AMPK phosphorylation. These findings were further corroborated in a P21 knockout mouse model. Collectively, pressure overload-induced autophagy dysfunction causes intracellular protein accumulation, resulting in ROS injury while aggravating cardiac hypertrophy. Thus, our data show that oridonin promoted P21-related autophagic lysosomal degradation, hence attenuating oxidative injury and cardiac hypertrophy.
Collapse
Affiliation(s)
- Man Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Chun-Xia Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Si-Hui Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Zhen-Guo Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, China.
| |
Collapse
|
47
|
Li X, Li B, Jiang H. Identification of time‑series differentially expressed genes and pathways associated with heart failure post‑myocardial infarction using integrated bioinformatics analysis. Mol Med Rep 2019; 19:5281-5290. [PMID: 31059043 PMCID: PMC6522961 DOI: 10.3892/mmr.2019.10190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/13/2019] [Indexed: 12/31/2022] Open
Abstract
Heart failure (HF) secondary to acute myocardial infarction (AMI) is a public health concern. The current study aimed to investigate differentially expressed genes (DEGs) and their possible function in HF post-myocardial infarction. The GSE59867 dataset included microarray data from peripheral blood samples obtained from HF and non-HF patients following AMI at 4 time points (admission, discharge, and 1 and 6 months post-AMI). Time-series DEGs were analyzed using R Bioconductor. Functional enrichment analysis was performed, followed by analysis of protein-protein interactions (PPIs). A total of 108 DEGs on admission, 32 DEGs on discharge, 41 DEGs at 1 month post-AMI and 19 DEGs at 6 months post-AMI were identified. Among these DEGs, 4 genes were downregulated at all the 4 time points. These included fatty acid desaturase 2, leucine rich repeat neuronal protein 3, G-protein coupled receptor 15 and adenylate kinase 5. Functional enrichment analysis revealed that these DEGs were mainly enriched in ‘inflammatory response’, ‘immune response’, ‘toll-like receptor signaling pathway’ and ‘NF-κβ signaling pathway’. Furthermore, PPI network analysis revealed that C-X-C motif chemokine ligand 8 and interleukin 1β were hub genes. The current study identified candidate DEGs and pathways that may serve important roles in the development of HF following AMI. The results obtained in the current study may guide the development of novel therapeutic agents for HF following AMI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bin Li
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
48
|
Li W, Yu B, Ai F, Chen Z. BRG1, the key regulator in heart development and its physiopathology. Int J Cardiol 2019; 279:145. [PMID: 30704646 DOI: 10.1016/j.ijcard.2018.09.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China; Department of Evidence-based Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, PR China.
| |
Collapse
|
49
|
Yu Y, Cai J, She Z, Li H. Insights into the Epidemiology, Pathogenesis, and Therapeutics of Nonalcoholic Fatty Liver Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801585. [PMID: 30828530 PMCID: PMC6382298 DOI: 10.1002/advs.201801585] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Indexed: 05/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease which affects ≈25% of the adult population worldwide, placing a tremendous burden on human health. The disease spectrum ranges from simple steatosis to steatohepatitis, fibrosis, and ultimately, cirrhosis and carcinoma, which are becoming leading reasons for liver transplantation. NAFLD is a complex multifactorial disease involving myriad genetic, metabolic, and environmental factors; it is closely associated with insulin resistance, metabolic syndrome, obesity, diabetes, and many other diseases. Over the past few decades, countless studies focusing on the investigation of noninvasive diagnosis, pathogenesis, and therapeutics have revealed different aspects of the mechanism and progression of NAFLD. However, effective pharmaceuticals are still in development. Here, the current epidemiology, diagnosis, animal models, pathogenesis, and treatment strategies for NAFLD are comprehensively reviewed, emphasizing the outstanding breakthroughs in the above fields and promising medications in and beyond phase II.
Collapse
Affiliation(s)
- Yao Yu
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Jingjing Cai
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Zhigang She
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| | - Hongliang Li
- Department of CardiologyRenmin Hospital of Wuhan UniversityJiefang Road 238Wuhan430060P. R. China
- Institute of Model AnimalWuhan UniversityDonghu Road 115Wuhan430071P. R. China
| |
Collapse
|
50
|
Xu M, Liu PP, Li H. Innate Immune Signaling and Its Role in Metabolic and Cardiovascular Diseases. Physiol Rev 2019; 99:893-948. [PMID: 30565509 DOI: 10.1152/physrev.00065.2017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The innate immune system is an evolutionarily conserved system that senses and defends against infection and irritation. Innate immune signaling is a complex cascade that quickly recognizes infectious threats through multiple germline-encoded cell surface or cytoplasmic receptors and transmits signals for the deployment of proper countermeasures through adaptors, kinases, and transcription factors, resulting in the production of cytokines. As the first response of the innate immune system to pathogenic signals, inflammatory responses must be rapid and specific to establish a physical barrier against the spread of infection and must subsequently be terminated once the pathogens have been cleared. Long-lasting and low-grade chronic inflammation is a distinguishing feature of type 2 diabetes and cardiovascular diseases, which are currently major public health problems. Cardiometabolic stress-induced inflammatory responses activate innate immune signaling, which directly contributes to the development of cardiometabolic diseases. Additionally, although the innate immune elements are highly conserved in higher-order jawed vertebrates, lower-grade jawless vertebrates lack several transcription factors and inflammatory cytokine genes downstream of the Toll-like receptors (TLRs) and retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) pathways, suggesting that innate immune signaling components may additionally function in an immune-independent way. Notably, recent studies from our group and others have revealed that innate immune signaling can function as a vital regulator of cardiometabolic homeostasis independent of its immune function. Therefore, further investigation of innate immune signaling in cardiometabolic systems may facilitate the discovery of new strategies to manage the initiation and progression of cardiometabolic disorders, leading to better treatments for these diseases. In this review, we summarize the current progress in innate immune signaling studies and the regulatory function of innate immunity in cardiometabolic diseases. Notably, we highlight the immune-independent effects of innate immune signaling components on the development of cardiometabolic disorders.
Collapse
Affiliation(s)
- Meng Xu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Peter P Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan , China ; Medical Research Center, Zhongnan Hospital of Wuhan University , Wuhan , China ; Animal Experiment Center, Wuhan University , Wuhan , China ; Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Ontario , Canada
| |
Collapse
|