1
|
Hao J, Huang Z, Zhang S, Song K, Wang J, Gao C, Fang Z, Zhang N. Deciphering the multifaceted roles and clinical implications of 2-hydroxyglutarate in cancer. Pharmacol Res 2024; 209:107437. [PMID: 39349213 DOI: 10.1016/j.phrs.2024.107437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
Increasing evidence indicates that 2-hydroxyglutarate (2HG) is an oncometabolite that drives tumour formation and progression. Due to mutations in isocitrate dehydrogenase (IDH) and the dysregulation of other enzymes, 2HG accumulates significantly in tumour cells. Due to its structural similarity to α-ketoglutarate (αKG), accumulated 2HG leads to the competitive inhibition of αKG-dependent dioxygenases (αKGDs), such as KDMs, TETs, and EGLNs. This inhibition results in epigenetic alterations in both tumour cells and the tumour microenvironment. This review comprehensively discusses the metabolic pathways of 2HG and the subsequent pathways influenced by elevated 2HG levels. We will delve into the molecular mechanisms by which 2HG exerts its oncogenic effects, particularly focusing on epigenetic modifications. This review will also explore the various methods available for the detection of 2HG, emphasising both current techniques and emerging technologies. Furthermore, 2HG shows promise as a biomarker for clinical diagnosis and treatment. By integrating these perspectives, this review aims to provide a comprehensive overview of the current understanding of 2HG in cancer biology, highlight the importance of ongoing research, and discuss future directions for translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jie Hao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Ziyi Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Siyue Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Kefan Song
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Juncheng Wang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhiqing Fang
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Fiorini G, Marshall SA, Figg WD, Myers WK, Brewitz L, Schofield CJ. Human prolyl hydroxylase domain 2 reacts with O 2 and 2-oxoglutarate to enable formation of inactive Fe(III).2OG.hypoxia-inducible-factor α complexes. Sci Rep 2024; 14:26162. [PMID: 39478091 PMCID: PMC11525979 DOI: 10.1038/s41598-024-75761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
Hypoxia inducible transcription factors (HIFs) mediate the hypoxic response in metazoans. When sufficient O2 is present, Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases (human PHD1-3) promote HIFα degradation via prolyl-hydroxylation. We report crystallographic, spectroscopic, and biochemical characterization of stable and inactive PHD2.Fe(III).2OG complexes. Aerobic incubation of PHD2 with Fe(II) and 2OG enables formation of PHD2.Fe(III).2OG complexes which bind HIF1-2α to give inactive PHD2.Fe(III).2OG.HIF1-2α complexes. The Fe(III) oxidation state in the inactive complexes was shown by EPR spectroscopy. L-Ascorbate hinders formation of the PHD2.Fe(III).2OG.(+/-HIFα) complexes and slowly regenerates them to give the catalytically active PHD2.Fe(II).2OG complex. Crystallographic comparison of the PHD2.Fe(III).2OG.HIF2α complex with the analogous anaerobic Fe(II) complex reveals near identical structures. Exposure of the anaerobic PHD2.Fe(II).2OG.HIF2α crystals to O2 enables in crystallo hydroxylation. The resulting PHD2.product structure, manifests conformational changes compared to the substrate structures. The results have implications for the role of the PHDs in hypoxia sensing and open new opportunities for inhibition of the PHDs and other 2OG dependent oxygenases by promoting formation of stable Fe(III) complexes.
Collapse
Affiliation(s)
- Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Stephen A Marshall
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - William K Myers
- Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR, UK
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
3
|
Belle R, Saraç H, Salah E, Bhushan B, Szykowska A, Roper G, Tumber A, Kriaucionis S, Burgess-Brown N, Schofield CJ, Brown T, Kawamura A. Focused Screening Identifies Different Sensitivities of Human TET Oxygenases to the Oncometabolite 2-Hydroxyglutarate. J Med Chem 2024; 67:4525-4540. [PMID: 38294854 PMCID: PMC10983004 DOI: 10.1021/acs.jmedchem.3c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Ten-eleven translocation enzymes (TETs) are Fe(II)/2-oxoglutarate (2OG) oxygenases that catalyze the sequential oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine in eukaryotic DNA. Despite their roles in epigenetic regulation, there is a lack of reported TET inhibitors. The extent to which 2OG oxygenase inhibitors, including clinically used inhibitors and oncometabolites, modulate DNA modifications via TETs has been unclear. Here, we report studies on human TET1-3 inhibition by a set of 2OG oxygenase-focused inhibitors, employing both enzyme-based and cellular assays. Most inhibitors manifested similar potencies for TET1-3 and caused increases in cellular 5hmC levels. (R)-2-Hydroxyglutarate, an oncometabolite elevated in isocitrate dehydrogenase mutant cancer cells, showed different degrees of inhibition, with TET1 being less potently inhibited than TET3 and TET2, potentially reflecting the proposed role of TET2 mutations in tumorigenesis. The results highlight the tractability of TETs as drug targets and provide starting points for selective inhibitor design.
Collapse
Affiliation(s)
- Roman Belle
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Hilal Saraç
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Eidarus Salah
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Bhaskar Bhushan
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| | - Aleksandra Szykowska
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Grace Roper
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
| | - Anthony Tumber
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig
Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Nicola Burgess-Brown
- Centre
for Medicines Discovery, University of Oxford, Old Road Campus Research Building,
Roosevelt Drive, OX3 7DQ Oxford, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Ineos Oxford
Institute for Antimicrobial Research, University
of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Tom Brown
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Akane Kawamura
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
- Chemistry
− School of Natural and Environmental Sciences, Bedson Building, Newcastle University, NE1 7RU Newcastle upon Tyne, United Kingdom
- Radcliffe
Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human
Genetics, Roosevelt Drive, OX3 7BN Oxford, United Kingdom
| |
Collapse
|
4
|
Cai M, Zhao J, Ding Q, Wei J. Oncometabolite 2-hydroxyglutarate regulates anti-tumor immunity. Heliyon 2024; 10:e24454. [PMID: 38293535 PMCID: PMC10826830 DOI: 10.1016/j.heliyon.2024.e24454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
"Oncometabolite" 2-hydroxyglutarate (2-HG) is an aberrant metabolite found in tumor cells, exerting a pivotal influence on tumor progression. Recent studies have unveiled its impact on the proliferation, activation, and differentiation of anti-tumor T cells. Moreover, 2-HG regulates the function of innate immune components, including macrophages, dendritic cells, natural killer cells, and the complement system. Elevated levels of 2-HG hinder α-KG-dependent dioxygenases (α-KGDDs), contributing to tumorigenesis by disrupting epigenetic regulation, genome integrity, hypoxia-inducible factors (HIF) signaling, and cellular metabolism. The chiral molecular structure of 2-HG produces two enantiomers: D-2-HG and L-2-HG, each with distinct origins and biological functions. Efforts to inhibit D-2-HG and leverage the potential of L-2-HG have demonstrated efficacy in cancer immunotherapy. This review delves into the metabolism, biological functions, and impacts on the tumor immune microenvironment (TIME) of 2-HG, providing a comprehensive exploration of the intricate relationship between 2-HG and antitumor immunity. Additionally, we examine the potential clinical applications of targeted therapy for 2-HG, highlighting recent breakthroughs as well as the existing challenges.
Collapse
Affiliation(s)
- Mengyuan Cai
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyi Zhao
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiang Ding
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jifu Wei
- Department of Pharmacy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
5
|
Yin WJ. A bacterial enzyme may correct 2-HG accumulation in human cancers. Front Oncol 2023; 13:1235191. [PMID: 37546420 PMCID: PMC10399246 DOI: 10.3389/fonc.2023.1235191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023] Open
Abstract
A significant proportion of lower-grade glioma as well as many other types of human cancers are associated with neomorphic mutations in IDH1/2 genes (mIDH1/2). These mutations lead to an aberrant accumulation of 2-hydroxyglutarate (2-HG). Interestingly, even cancers without mIDH1/2 can exhibit increased levels of 2-HG due to factors like hypoxia and extracellular acidity. Mounting evidence demonstrates that 2-HG competitively inhibits α-ketoglutarate dependent enzymes, such as JmjC-domain-containing histone demethylases (JHDMs), ten-eleven translocation enzymes (TETs), and various dioxygenases (e.g., RNA m6A demethylases and prolyl hydroxylases). Consequently, the hypermethylation of DNA, RNA, and histones, and the abnormal activities of hypoxia-inducible factors (HIFs) have profound impacts on the establishment of cancer metabolism and microenvironment, which promote tumor progression. This connection between the oncometabolite 2-HG and glioma holds crucial implications for treatments targeting this disease. Here, I hypothesize that an ectopic introduction of a bacterial 2-hydroxyglutarate synthase (2-HG synthase) enzyme into cancer cells with 2-HG accumulation could serve as a promising enzyme therapy for glioma and other types of cancers. While absent in human metabolism, 2-HG synthase in bacterial species catalyzes the conversion of 2-HG into propionyl-CoA and glyoxylate, two metabolites that potentially possess anti-tumor effects. For a broad spectrum of human cancers with 2-HG accumulation, 2-HG synthase-based enzyme therapy holds the potential to not only correct 2-HG induced cancer metabolism but also transform an oncometabolite into metabolic challenges within cancer cells.
Collapse
Affiliation(s)
- William J. Yin
- Oconee County High School, Watkinsville, GA, United States
- Bio-Imaging Research Center, The University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Hu K, Ding Y, Zhu H, Jing X, He W, Yu H, Wang X. Glutamate dehydrogenase1 supports HIF-1α stability to promote colorectal tumorigenesis under hypoxia. EMBO J 2023; 42:e112675. [PMID: 37092319 PMCID: PMC10267683 DOI: 10.15252/embj.2022112675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
Abstract
Tumor cells surviving hypoxic stress acquire the ability to drive cancer progression. To explore the contribution of dehydrogenases to the low oxygen concentration response, we used siRNAs targeting 163 dehydrogenase-coding genes and discovered that glutamate dehydrogenase 1 (GDH1) plays a critical role in regulating colorectal cancer (CRC) cell survival under hypoxia. We observed that GDH1 deficiency had an inhibitory effect on CRC occurrence and impaired hypoxia-inducible factor 1-alpha (HIF-1α) stability even under hypoxia. Mechanistically, hypoxia triggered p300 recruitment to GDH1, promoting its acetylation at K503 and K527. GDH1 acetylation at K527 induced the formation of a GDH1 complex with EGLN1/HIF-1α; in contrast, GDH1 acetylation at K503 reinforced its affinity for α-ketoglutarate (αKG), and glutamate production. In line with this view, αKG is a product of GDH1 under normoxia, but hypoxia stimulation reversed GDH1 enzyme activity and αKG consumption by the EGLN1/HIF-1α complex, increasing HIF-1α stability and promoting CRC progression. Clinically, hypoxia-modulated GDH1 AcK503/527 can be used as a biomarker of CRC progression and is a potential target for CRC treatment.
Collapse
Affiliation(s)
- Kunhua Hu
- Guangdong Key Laboratory of Liver Disease ResearchThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Yufeng Ding
- School of Life Sciences, Precise Genome Engineering CenterGuangzhou UniversityGuangzhouChina
| | - Hongwen Zhu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor ResearchShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Xiaoqian Jing
- Department of General Surgery, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weiling He
- The First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouChina
| | - Hua Yu
- School of Life Sciences, Precise Genome Engineering CenterGuangzhou UniversityGuangzhouChina
| | - Xiongjun Wang
- School of Life Sciences, Precise Genome Engineering CenterGuangzhou UniversityGuangzhouChina
| |
Collapse
|
7
|
Tang LW, Mallela AN, Deng H, Richardson TE, Hervey-Jumper SL, McBrayer SK, Abdullah KG. Preclinical modeling of lower-grade gliomas. Front Oncol 2023; 13:1139383. [PMID: 37051530 PMCID: PMC10083350 DOI: 10.3389/fonc.2023.1139383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
Models for human gliomas prove critical not only to advancing our understanding of glioma biology but also to facilitate the development of therapeutic modalities. Specifically, creating lower-grade glioma (LGG) models has been challenging, contributing to few investigations and the minimal progress in standard treatment over the past decade. In order to reliably predict and validate the efficacies of novel treatments, however, LGG models need to adhere to specific standards that recapitulate tumor genetic aberrations and micro-environment. This underscores the need to revisit existing models of LGG and explore prospective models that may bridge the gap between preclinical insights and clinical translation. This review first outlines a set of criteria aimed to address the current challenges hindering model development. We then evaluate the strengths and weaknesses of existing preclinical models of LGG with respect to these established standards. To conclude, the review discusses potential future directions for integrating existing models to maximize the exploration of disease mechanisms and therapeutics development.
Collapse
Affiliation(s)
- Lilly W. Tang
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Arka N. Mallela
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hansen Deng
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Timothy E. Richardson
- Department of Pathology, Cell and Molecular Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Samuel K. McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kalil G. Abdullah
- Physician Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Quaye JA, Gadda G. The Pseudomonas aeruginosa PAO1 metallo flavoprotein d-2-hydroxyglutarate dehydrogenase requires Zn 2+ for substrate orientation and activation. J Biol Chem 2023; 299:103008. [PMID: 36775127 PMCID: PMC10034468 DOI: 10.1016/j.jbc.2023.103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate (D2HG) dehydrogenase (PaD2HGDH) oxidizes D2HG to 2-ketoglutarate during the vital l-serine biosynthesis and is a potential therapeutic target against P. aeruginosa. PaD2HGDH, which oxidizes d-malate as an alternative substrate, has been demonstrated to be a metallo flavoprotein that requires Zn2+ for activity. However, the role of Zn2+ in the enzyme has not been elucidated, making it difficult to rationalize why nature employs both a redox center and a metal ion for catalysis in PaD2HGDH and other metallo flavoenzymes. In this study, recombinant His-tagged PaD2HGDH was purified to high levels in the presence of Zn2+ or Co2+ to investigate the metal's role in catalysis. We found that the flavin reduction step was reversible and partially rate limiting for the enzyme's turnover at pH 7.4 with either D2HG or d-malate with similar rate constants for both substrates, irrespective of whether Zn2+ or Co2+ was bound to the enzyme. The steady-state pL profiles of the kcat and kcat/Km values with d-malate demonstrate that Zn2+ mediates the activation of water coordinated to the metal. Our data are consistent with a dual role for the metal, which orients the hydroxy acid substrate in the enzyme's active site and rapidly deprotonates the substrate to yield an alkoxide species for hydride transfer to the flavin. Thus, we propose a catalytic mechanism for PaD2HGDH oxidation that establishes Zn2+ as a cofactor required for substrate orientation and activation during enzymatic turnover.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
9
|
Quaye JA, Gadda G. Uncovering Zn 2+ as a cofactor of FAD-dependent Pseudomonas aeruginosa PAO1 d-2-hydroxyglutarate dehydrogenase. J Biol Chem 2023; 299:103007. [PMID: 36775126 PMCID: PMC10025160 DOI: 10.1016/j.jbc.2023.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Pseudomonas aeruginosa couples the oxidation of d-2-hydroxyglutarate (D2HG) to l-serine biosynthesis for survival, using d-2-hydroxyglutarate dehydrogenase from P. aeruginosa (PaD2HGDH). Knockout of PaD2HGDH impedes P. aeruginosa growth, making PaD2HGDH a potential target for therapeutics. Previous studies showed that the enzyme's activity increased with Zn2+, Co2+, or Mn2+ but did not establish the enzyme's metal composition and whether the metal is an activator or a required cofactor for the enzyme, which we addressed in this study. Comparable to the human enzyme, PaD2HGDH showed only 15% flavin reduction with D2HG or d-malate. Upon purifying PaD2HGDH with 1 mM Zn2+, the Zn2+:protein stoichiometry was 2:1, yielding an enzyme with ∼40 s-1kcat for d-malate. Treatment with 1 mM EDTA decreased the Zn2+:protein ratio to 1:1 without changing the kinetic parameters with d-malate. We observed complete enzyme inactivation for the metalloapoenzyme with 100 mM EDTA treatment, suggesting that Zn2+ is essential for PaD2HGDH activity. The presence of Zn2+ increased the flavin N3 atom pKa value to 11.9, decreased the flavin ε450 at pH 7.4 from 13.5 to 11.8 mM-1 cm-1, and yielded a charged transfer complex with a broad absorbance band >550 nm, consistent with a Zn2+-hydrate species altering the electronic properties of the enzyme-bound FAD. The exogenous addition of Zn2+, Co2+, Cd2+, Mn2+, or Ni2+ to the metalloapoenzyme reactivated the enzyme in a sigmoidal pattern, consistent with an induced fit rapid-rearrangement mechanism. Collectively, our data demonstrate that PaD2HGDH is a Zn2+-dependent metallo flavoprotein, which requires Zn2+ as an essential cofactor for enzyme activity.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; The Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
10
|
Abstract
Germline loss-of-function mutations of the VHL tumor suppressor gene cause von Hippel–Lindau disease, which is associated with an increased risk of hemangioblastomas, clear cell renal cell carcinomas (ccRCCs), and paragangliomas. This Review describes mechanisms involving the VHL gene product in oxygen sensing, protein degradation, and tumor development and current therapeutic strategies targeting these mechanisms. The VHL gene product is the substrate recognition subunit of a ubiquitin ligase that targets the α subunit of the heterodimeric hypoxia-inducible factor (HIF) transcription factor for proteasomal degradation when oxygen is present. This oxygen dependence stems from the requirement that HIFα be prolyl-hydroxylated on one (or both) of two conserved prolyl residues by members of the EglN (also called PHD) prolyl hydroxylase family. Deregulation of HIF, and particularly HIF2, drives the growth of VHL-defective ccRCCs. Drugs that inhibit the HIF-responsive gene product VEGF are now mainstays of ccRCC treatment. An allosteric HIF2 inhibitor was recently approved for the treatment of ccRCCs arising in the setting of VHL disease and has advanced to phase III testing for sporadic ccRCCs based on promising phase I/II data. Orally available EglN inhibitors are being tested for the treatment of anemia and ischemia. Five of these agents have been approved for the treatment of anemia in the setting of chronic kidney disease in various countries around the world.
Collapse
|
11
|
Lin P, Crooks DR, Linehan WM, Fan TWM, Lane AN. Resolving Enantiomers of 2-Hydroxy Acids by Nuclear Magnetic Resonance. Anal Chem 2022; 94:12286-12291. [PMID: 36040304 PMCID: PMC9539631 DOI: 10.1021/acs.analchem.2c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biologically important 2-hydroxy carboxylates such as lactate, malate, and 2-hydroxyglutarate exist in two enantiomeric forms that cannot be distinguished under achiral conditions. The D and L (or R, S) enantiomers have different biological origins and functions, and therefore, there is a need for a simple method for resolving, identifying, and quantifying these enantiomers. We have adapted and improved a chiral derivatization technique for nuclear magnetic resonance (NMR), which needs no chromatography for enantiomer resolution, with greater than 90% overall recovery. This method was developed for 2-hydroxyglutarate (2HG) to produce diastereomers resolvable by column chromatography. We have applied the method to lactate, malate, and 2HG. The limit of quantification was determined to be about 1 nmol for 2HG with coefficients of variation of less than 5%. We also demonstrated the method on an extract of a renal carcinoma bearing an isocitrate dehydrogenase-2 (IDH2) variant that produces copious quantities of 2HG and showed that it is the D enantiomer that was exclusively produced. We also demonstrated in the same experiment that the lactate produced in the same sample was the L enantiomer.
Collapse
Affiliation(s)
- Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, Kentucky 40536, United States.,Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
12
|
Shi DD, Savani MR, Levitt MM, Wang AC, Endress JE, Bird CE, Buehler J, Stopka SA, Regan MS, Lin YF, Puliyappadamba VT, Gao W, Khanal J, Evans L, Lee JH, Guo L, Xiao Y, Xu M, Huang B, Jennings RB, Bonal DM, Martin-Sandoval MS, Dang T, Gattie LC, Cameron AB, Lee S, Asara JM, Kornblum HI, Mak TW, Looper RE, Nguyen QD, Signoretti S, Gradl S, Sutter A, Jeffers M, Janzer A, Lehrman MA, Zacharias LG, Mathews TP, Losman JA, Richardson TE, Cahill DP, DeBerardinis RJ, Ligon KL, Xu L, Ly P, Agar NYR, Abdullah KG, Harris IS, Kaelin WG, McBrayer SK. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma. Cancer Cell 2022; 40:939-956.e16. [PMID: 35985343 PMCID: PMC9515386 DOI: 10.1016/j.ccell.2022.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022]
Abstract
Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.
Collapse
Affiliation(s)
- Diana D Shi
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA 02215, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Milan R Savani
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael M Levitt
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam C Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jennifer E Endress
- Ludwig Cancer Center, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Cylaina E Bird
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Joseph Buehler
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Fen Lin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vinesh T Puliyappadamba
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Januka Khanal
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Laura Evans
- Bayer HealthCare Pharmaceuticals, Inc., Cambridge, MA 02142, USA
| | - Joyce H Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Xiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bofu Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Rebecca B Jennings
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis M Bonal
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Misty S Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tammie Dang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren C Gattie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Amy B Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sungwoo Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - John M Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Behavioral Sciences, and Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, ON M5G 2M9, Canada; The Princess Margaret Cancer Centre and Ontario Cancer Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Ryan E Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA 02210, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Gradl
- Bayer AG, Muellerstrasse 178, 13353 Berlin, Germany
| | | | - Michael Jeffers
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, NJ 07981, USA
| | | | - Mark A Lehrman
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Timothy E Richardson
- Department of Pathology, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Translational Neuro-Oncology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Pathology, Children's Hospital Boston, Boston, MA 02115, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kalil G Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Isaac S Harris
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Samuel K McBrayer
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA.
| |
Collapse
|
13
|
Bouthillette LM, Aniebok V, Colosimo DA, Brumley D, MacMillan JB. Nonenzymatic Reactions in Natural Product Formation. Chem Rev 2022; 122:14815-14841. [PMID: 36006409 DOI: 10.1021/acs.chemrev.2c00306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biosynthetic mechanisms of natural products primarily depend on systems of protein catalysts. However, within the field of biosynthesis, there are cases in which the inherent chemical reactivity of metabolic intermediates and substrates evades the involvement of enzymes. These reactions are difficult to characterize based on their reactivity and occlusion within the milieu of the cellular environment. As we continue to build a strong foundation for how microbes and higher organisms produce natural products, therein lies a need for understanding how protein independent or nonenzymatic biosynthetic steps can occur. We have classified such reactions into four categories: intramolecular, multicomponent, tailoring, and light-induced reactions. Intramolecular reactions is one of the most well studied in the context of biomimetic synthesis, consisting of cyclizations and cycloadditions due to the innate reactivity of the intermediates. There are two subclasses that make up multicomponent reactions, one being homologous multicomponent reactions which results in dimeric and pseudodimeric natural products, and the other being heterologous multicomponent reactions, where two or more precursors from independent biosynthetic pathways undergo a variety of reactions to produce the mature natural product. The third type of reaction discussed are tailoring reactions, where postmodifications occur on the natural products after the biosynthetic machinery is completed. The last category consists of light-induced reactions involving ecologically relevant UV light rather than high intensity UV irradiation that is traditionally used in synthetic chemistry. This review will cover recent nonenzymatic biosynthetic mechanisms and include sources for those reviewed previously.
Collapse
Affiliation(s)
- Leah M Bouthillette
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Victor Aniebok
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Dominic A Colosimo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - David Brumley
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| | - John B MacMillan
- Deparment of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390 United States
| |
Collapse
|
14
|
Dai W, Li Y, Sun W, Ji M, Bao R, Chen J, Xu S, Dai Y, Chen Y, Liu W, Ge C, Sun W, Mo W, Guo C, Xu X. Silencing of OGDHL promotes liver cancer metastasis by enhancing hypoxia inducible factor 1 α protein stability. Cancer Sci 2022; 114:1309-1323. [PMID: 36000493 PMCID: PMC10067421 DOI: 10.1111/cas.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases associated with a high rate of mortality. Frequent intrahepatic spread, extrahepatic metastasis, and tumor invasiveness are the main factors responsible for the poor prognosis of patients with HCC. Hypoxia-inducible factor 1 (HIF-1) has been verified to play a critical role in the metastasis of HCC. HIFs are also known to be modulated by small molecular metabolites, thus highlighting the need to understand the complexity of their cellular regulation in tumor metastasis. In this study, lower expression levels of oxoglutarate dehydrogenase-like (OGDHL) were strongly correlated with aggressive clinicopathologic characteristics, such as metastasis and invasion in three independent cohorts featuring a total of 281 postoperative HCC patients. The aberrant expression of OGDHL reduced cell invasiveness and migration in vitro and HCC metastasis in vivo, whereas the silencing of OGDHL promoted these processes in HCC cells. The pro-metastatic role of OGDHL downregulation is most likely attributed to its upregulation of HIF-1α transactivation activity and the protein stabilization by promoting the accumulation of L-2-HG to prevent the activity of HIF-1α prolyl hydroxylases, which subsequently causes an epithelial-mesenchymal transition process in HCC cells. These results demonstrate that OGDHL is a dominant factor that modulates the metastasis of HCC.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yueyue Li
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Ji
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Renjun Bao
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China.,Suzhou Medical College of Soochow University, Suzhou, China
| | - Jianqing Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Shuqi Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Ying Dai
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Yiming Chen
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenjing Liu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chao Ge
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wei Sun
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Mo
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
15
|
Zhang F, Niu M, Guo K, Ma Y, Fu Q, Liu Y, Feng Z, Mi W, Wang L. The immunometabolite S-2-hydroxyglutarate exacerbates perioperative ischemic brain injury and cognitive dysfunction by enhancing CD8 + T lymphocyte-mediated neurotoxicity. J Neuroinflammation 2022; 19:176. [PMID: 35799259 PMCID: PMC9264651 DOI: 10.1186/s12974-022-02537-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Metabolic dysregulation and disruption of immune homeostasis have been widely associated with perioperative complications including perioperative ischemic stroke. Although immunometabolite S-2-hydroxyglutarate (S-2HG) is an emerging regulator of immune cells and thus triggers the immune response, it is unclear whether and how S-2HG elicits perioperative ischemic brain injury and exacerbates post-stroke cognitive dysfunction. Methods Perioperative ischemic stroke was induced by transient middle cerebral artery occlusion for 60 min in C57BL/6 mice 1 day after ileocecal resection. CD8+ T lymphocyte activation and invasion of the cerebrovascular compartment were measured using flow cytometry. Untargeted metabolomic profiling was performed to detect metabolic changes in sorted CD8+ T lymphocytes after ischemia. CD8+ T lymphocytes were transfected with lentivirus ex vivo to mobilize cell proliferation and differentiation before being transferred into recombination activating gene 1 (Rag1−/−) stroke mice. Results The perioperative stroke mice exhibit more severe cerebral ischemic injury and neurological dysfunction than the stroke-only mice. CD8+ T lymphocyte invasion of brain parenchyma and neurotoxicity augment cerebral ischemic injury in the perioperative stroke mice. CD8+ T lymphocyte depletion reverses exacerbated immune-mediated cerebral ischemic brain injury in perioperative stroke mice. Perioperative ischemic stroke triggers aberrant metabolic alterations in peripheral CD8+ T cells, in which S-2HG is more abundant. S-2HG alters CD8+ T lymphocyte proliferation and differentiation ex vivo and modulates the immune-mediated ischemic brain injury and post-stroke cognitive dysfunction by enhancing CD8+ T lymphocyte-mediated neurotoxicity. Conclusion Our study establishes that S-2HG signaling-mediated activation and neurotoxicity of CD8+ T lymphocytes might exacerbate perioperative ischemic brain injury and may represent a promising immunotherapy target in perioperative ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02537-4.
Collapse
Affiliation(s)
- Faqiang Zhang
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Mu Niu
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, 221002, China
| | - Kaikai Guo
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang Fu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zeguo Feng
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Long Wang
- Department of Pain Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Peng S, Chen H, Chen L, Yang G, Liu J, Cheng X, Tang Y. Beyond Isocitrate Dehydrogenase Mutations: Emerging Mechanisms for the Accumulation of the Oncometabolite 2-Hydroxyglutarate. Chem Res Toxicol 2022; 35:115-124. [PMID: 35018778 DOI: 10.1021/acs.chemrestox.1c00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2-Hydroxyglutarate (2-HG) is an unconventional oncometabolite of α-ketoglutarate. Isocitrate dehydrogenase mutation is generally acknowledged to be the main cause of 2-HG accumulation. In isocitrate dehydrogenase mutant tumors, 2-HG accumulation inhibits α-ketoglutarate/Fe(II)-dependent dioxygenases, resulting in epigenetic alterations. Recently, the increase of 2-HG has also been observed in the cases of mitochondrial dysfunction and hypoxia. In these cases, 2-HG not only inhibits α-ketoglutarate/Fe(II)-dependent dioxygenases to regulate epigenetics but also affects other cellular pathways, such as regulating hypoxia-inducible transcription factors and glycolysis. These provide a new perspective for the study of 2-HG.
Collapse
Affiliation(s)
- Shufen Peng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huimin Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guang Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingjing Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Cadoux-Hudson T, Schofield CJ, McCullagh JS. Isocitrate dehydrogenase gene variants in cancer and their clinical significance. Biochem Soc Trans 2021; 49:2561-2572. [PMID: 34854890 PMCID: PMC8786286 DOI: 10.1042/bst20210277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Human isocitrate dehydrogenase (IDH) genes encode for the IDH1, 2 & 3 isoenzymes which catalyse the formation of 2-oxoglutarate from isocitrate and are essential for normal mammalian metabolism. Although mutations in these genes in cancer were long thought to lead to a 'loss of function', combined genomic and metabolomic studies led to the discovery that a common IDH 1 mutation, present in low-grade glioma and acute myeloid leukaemia (AML), yields a variant (R132H) with a striking change of function leading to the production of (2R)-hydroxyglutarate (2HG) which consequently accumulates in large quantities both within and outside cells. Elevated 2HG is proposed to promote tumorigenesis, although the precise mechanism by which it does this remains uncertain. Inhibitors of R132H IDH1, and other subsequently identified cancer-linked 2HG producing IDH variants, are approved for clinical use in the treatment of chemotherapy-resistant AML, though resistance enabled by additional substitutions has emerged. In this review, we provide a current overview of cancer linked IDH mutations focussing on their distribution in different cancer types, the effects of substitution mutations on enzyme activity, the mode of action of recently developed inhibitors, and their relationship with emerging resistance-mediating double mutations.
Collapse
Affiliation(s)
- Thomas Cadoux-Hudson
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Institute for Antimicrobial Research, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
18
|
Huang S, Wang Z, Zhao L. The Crucial Roles of Intermediate Metabolites in Cancer. Cancer Manag Res 2021; 13:6291-6307. [PMID: 34408491 PMCID: PMC8364365 DOI: 10.2147/cmar.s321433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic alteration, one of the hallmarks of cancer cells, is important for cancer initiation and development. To support their rapid growth, cancer cells alter their metabolism so as to obtain the necessary energy and building blocks for biosynthetic pathways, as well as to adjust their redox balance. Once thought to be merely byproducts of metabolic pathways, intermediate metabolites are now known to mediate epigenetic modifications and protein post-transcriptional modifications (PTM), as well as connect cellular metabolism with signal transduction. Consequently, they can affect a myriad of processes, including proliferation, apoptosis, and immunity. In this review, we summarize multiple representative metabolites involved in glycolysis, the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle, lipid synthesis, ketogenesis, methionine metabolism, glutamine metabolism, and tryptophan metabolism, focusing on their roles in chromatin and protein modifications and as signal-transducing messengers.
Collapse
Affiliation(s)
- Sisi Huang
- Hengyang School of Medicine, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Zhiqin Wang
- Department of Geriatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| |
Collapse
|
19
|
Coller HA. The return of quiescence metabolites. Nat Cell Biol 2021; 23:303-304. [PMID: 33795872 DOI: 10.1038/s41556-021-00640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA. .,Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA. .,Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
21
|
Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ 2021; 28:1149-1158. [PMID: 33473180 PMCID: PMC8027425 DOI: 10.1038/s41418-020-00729-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Philip Eaton
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| |
Collapse
|
22
|
Abstract
2-Hydroxyglutarate (2-HG) is structurally similar to α-ketoglutarate (α-KG), which is an intermediate product of the tricarboxylic acid (TCA) cycle; it can be generated by reducing the ketone group of α-KG to a hydroxyl group. The significant role that 2-HG plays has been certified in the pathophysiology of 2-hydroxyglutaric aciduria (2HGA), tumors harboring mutant isocitrate dehydrogenase 1/2 (IDH1/2mt), and in clear cell renal cell carcinoma (ccRCC). It is taken as an oncometabolite, raising much attention on its oncogenic mechanism. In recent years, 2-HG has been verified to accumulate in the context of hypoxia or acidic pH, and there are also researches confirming the vital role that 2-HG plays in the fate decision of immune cells. Therefore, 2-HG not only participates in tumorigenesis. This text will also summarize 2-HG’s identities besides being an oncometabolite and will discuss their enlightenment for future research and clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Abstract
2-Oxoglutarate-dependent dioxygenases (2OGDDs) are a superfamily of enzymes that play diverse roles in many biological processes, including regulation of hypoxia-inducible factor-mediated adaptation to hypoxia, extracellular matrix formation, epigenetic regulation of gene transcription and the reprogramming of cellular metabolism. 2OGDDs all require oxygen, reduced iron and 2-oxoglutarate (also known as α-ketoglutarate) to function, although their affinities for each of these co-substrates, and hence their sensitivity to depletion of specific co-substrates, varies widely. Numerous 2OGDDs are recurrently dysregulated in cancer. Moreover, cancer-specific metabolic changes, such as those that occur subsequent to mutations in the genes encoding succinate dehydrogenase, fumarate hydratase or isocitrate dehydrogenase, can dysregulate specific 2OGDDs. This latter observation suggests that the role of 2OGDDs in cancer extends beyond cancers that harbour mutations in the genes encoding members of the 2OGDD superfamily. Herein, we review the regulation of 2OGDDs in normal cells and how that regulation is corrupted in cancer.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
24
|
Li Z, Zhen S, Su K, Tumber A, Yu Q, Dong Y, McDonough M, Schofield CJ, Zhang X. A small-molecule probe for monitoring binding to prolyl hydroxylase domain 2 by fluorescence polarisation. Chem Commun (Camb) 2020; 56:14199-14202. [PMID: 33111730 DOI: 10.1039/d0cc06353c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Inhibition of the dioxygen sensing hypoxia-inducible factor prolyl hydroxylases has potential therapeutic benefit for treatment of diseases, including anaemia. We describe the discovery of a small-molecule probe useful for monitoring binding to human prolyl hydroxylase domain 2 (PHD2) via fluorescence polarisation. The assay is suitable for high-throughput screening of PHD inhibitors with both weak and strong affinities, as shown by work with clinically used inhibitors and naturally occurring PHD inhibitors.
Collapse
Affiliation(s)
- Zhihong Li
- Laboratory of Drug Design and Discovery, Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Significance: Cancer cells are stabilized in an undifferentiated state similar to stem cells. This leads to profound modifications of their metabolism, which further modifies their genetics and epigenetics as malignancy progresses. Specific metabolites and enzymes may serve as clinical markers of cancer progression. Recent Advances: Both 2-hydroxyglutarate (2HG) enantiomers are associated with reprogrammed metabolism, in grade III/IV glioma, glioblastoma, and acute myeloid leukemia cells, and numerous other cancer types, while acting also in the cross talk of tumors with immune cells. 2HG contributes to specific alternations in cancer metabolism and developed oxidative stress, while also inducing decisions on the differentiation of naive T lymphocytes, and serves as a signal messenger in immune cells. Moreover, 2HG inhibits chromatin-modifying enzymes, namely 2-oxoglutarate-dependent dioxygenases, and interferes with hypoxia-inducible factor (HIF) transcriptome reprogramming and mammalian target of rapamycin (mTOR) pathway, thus dysregulating gene expression and further promoting cancerogenesis. Critical Issues: Typically, heterozygous mutations within the active sites of isocitrate dehydrogenase isoform 1 (IDH1)R132H and mitochondrial isocitrate dehydrogenase isoform 2 (IDH2)R140Q provide cells with millimolar r-2-hydroxyglutarate (r-2HG) concentrations, whereas side activities of lactate and malate dehydrogenase form submillimolar s-2-hydroxyglutarate (s-2HG). However, even wild-type IDH1 and IDH2, notably under shifts toward reductive carboxylation glutaminolysis or changes in other enzymes, lead to "intermediate" 0.01-0.1 mM 2HG levels, for example, in breast carcinoma compared with 10-8M in noncancer cells. Future Directions: Uncovering further molecular metabolism details specific for given cancer cell types and sequence-specific epigenetic alternations will lead to the design of diagnostic approaches, not only for predicting patients' prognosis or uncovering metastases and tumor remissions but also for early diagnostics.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
26
|
Crispo F, Pietrafesa M, Condelli V, Maddalena F, Bruno G, Piscazzi A, Sgambato A, Esposito F, Landriscina M. IDH1 Targeting as a New Potential Option for Intrahepatic Cholangiocarcinoma Treatment-Current State and Future Perspectives. Molecules 2020; 25:molecules25163754. [PMID: 32824685 PMCID: PMC7464324 DOI: 10.3390/molecules25163754] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma is a primary malignancy of the biliary tract characterized by late and unspecific symptoms, unfavorable prognosis, and few treatment options. The advent of next-generation sequencing has revealed potential targetable or actionable molecular alterations in biliary tumors. Among several identified genetic alterations, the IDH1 mutation is arousing interest due to its role in epigenetic and metabolic remodeling. Indeed, some IDH1 point mutations induce widespread epigenetic alterations by means of a gain-of-function of the enzyme, which becomes able to produce the oncometabolite 2-hydroxyglutarate, with inhibitory activity on α-ketoglutarate-dependent enzymes, such as DNA and histone demethylases. Thus, its accumulation produces changes in the expression of several key genes involved in cell differentiation and survival. At present, small-molecule inhibitors of IDH1 mutated enzyme are under investigation in preclinical and clinical phases as promising innovative treatments for IDH1-mutated intrahepatic cholangiocarcinomas. This review examines the molecular rationale and the results of preclinical and early-phase studies on novel pharmacological agents targeting mutant IDH1 in cholangiocarcinoma patients. Contextually, it will offer a starting point for discussion on combined therapies with metabolic and epigenetic drugs, to provide molecular support to target the interplay between metabolism and epigenetics, two hallmarks of cancer onset and progression.
Collapse
Affiliation(s)
- Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Francesca Maddalena
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Giuseppina Bruno
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
| | - Annamaria Piscazzi
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
| | - Alessandro Sgambato
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (F.E.); (M.L.); Tel.: +39-081-746-3145 (F.E.); +39-088-173-6426 (M.L.)
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture (PZ), Italy; (F.C.); (M.P.); (V.C.); (F.M.); (A.S.)
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy; (G.B.); (A.P.)
- Correspondence: (F.E.); (M.L.); Tel.: +39-081-746-3145 (F.E.); +39-088-173-6426 (M.L.)
| |
Collapse
|
27
|
Isocitrate dehydrogenase variants in cancer - Cellular consequences and therapeutic opportunities. Curr Opin Chem Biol 2020; 57:122-134. [PMID: 32777735 PMCID: PMC7487778 DOI: 10.1016/j.cbpa.2020.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Abnormal metabolism is common in cancer cells and often correlates with mutations in genes encoding for enzymes involved in small-molecule metabolism. Isocitrate dehydrogenase 1 (IDH1) is the most frequently mutated metabolic gene in cancer. Cancer-associated substitutions in IDH1 and IDH2 impair wild-type production of 2-oxoglutarate and reduced nicotinamide adenine dinucleotide phosphate (NADPH) from isocitrate and oxidised nicotinamide adenine dinucleotide phosphate (NADP+ ), and substantially promote the IDH variant catalysed conversion of 2-oxoglutarate to d-2-hydroxyglutarate (d-2HG). Elevated d-2HG is a biomarker for some cancers, and inhibition of IDH1 and IDH2 variants is being pursued as a medicinal chemistry target. We provide an overview of the types of cancer-associated IDH variants, discuss some of the proposed consequences of altered metabolism as a result of elevated d-2HG, summarise therapeutic efforts targeting IDH variants and identify areas for future research.
Collapse
|
28
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
29
|
Abstract
The study of cancer metabolism has evolved vastly beyond the remit of tumour proliferation and survival with the identification of the role of 'oncometabolites' in tumorigenesis. Simply defined, oncometabolites are conventional metabolites that, when aberrantly accumulated, have pro-oncogenic functions. Their discovery has led researchers to revisit the Warburg hypothesis, first postulated in the 1950s, of aberrant metabolism as an aetiological determinant of cancer. As such, the identification of oncometabolites and their utilization in diagnostics and prognostics, as novel therapeutic targets and as biomarkers of disease, are areas of considerable interest in oncology. To date, fumarate, succinate, L-2-hydroxyglutarate (L-2-HG) and D-2-hydroxyglutarate (D-2-HG) have been characterized as bona fide oncometabolites. Extensive metabolic reprogramming occurs during tumour initiation and progression in renal cell carcinoma (RCC) and three oncometabolites - fumarate, succinate and L-2-HG - have been implicated in this disease process. All of these oncometabolites inhibit a superfamily of enzymes known as α-ketoglutarate-dependent dioxygenases, leading to epigenetic dysregulation and induction of pseudohypoxic phenotypes, and also have specific pro-oncogenic capabilities. Oncometabolites could potentially be exploited for the development of novel targeted therapies and as biomarkers of disease.
Collapse
Affiliation(s)
- Cissy Yong
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Grant D Stewart
- Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
30
|
Winter H, Kaisaki PJ, Harvey J, Giacopuzzi E, Ferla MP, Pentony MM, Knight SJ, Sharma RA, Taylor JC, McCullagh JS. Identification of Circulating Genomic and Metabolic Biomarkers in Intrahepatic Cholangiocarcinoma. Cancers (Basel) 2019; 11:E1895. [PMID: 31795195 PMCID: PMC6966597 DOI: 10.3390/cancers11121895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is an aggressive cancer arising from the bile ducts with a need for earlier diagnosis and a greater range of treatment options. KRAS/NRAS mutations are common in ICC tumours and 6-32% of patients also have isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) gene mutations associated with metabolic changes. This feasibility study investigated sequencing circulating tumour DNA (ctDNA) combined with metabolite profiling of plasma as a method for biomarker discovery in ICC patients. Plasma was collected from four ICC patients receiving radio-embolisation and healthy controls at multiple time points. ctDNA was sequenced using Ampliseq cancer hotspot panel-v2 on Ion Torrent PGM for single nucleotide variants (SNV) detection and with Illumina whole genome sequencing for copy number variants (CNV) and further targeted examination for SNVs. Untargeted analysis of metabolites from patient and control plasma was performed using liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS). Metabolite identification was performed using multi-parameter comparisons with analysis of authentic standards, and univariate statistical analysis was performed to identify differences in metabolite abundance between patient and control samples. Recurrent somatic SNVs and CNVs were identified in ctDNA from three out of four patients that included both NRAS and IDH1 mutations linked to ICC. Plasma metabolite analysis revealed biomarker metabolites associated with ICC and in particular 2-hydroxyglutarate (2-HG) levels were elevated in both samples from the only patient showing a variant allele in IDH1. A reduction in the number of CNVs was observed with treatment. This study demonstrates that ctDNA and metabolite levels can be identified and correlated in ICC patient blood samples and differentiated from healthy controls. We conclude that combining genomic and metabolic analysis of plasma offers an effective approach to biomarker identification with potential for disease stratification and early detection studies.
Collapse
Affiliation(s)
- Helen Winter
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
- NIHR Oxford Biomedical Research Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
- Bristol Cancer Institute, Horfield Rd, Bristol BS2 8ED, UK
| | - Pamela J. Kaisaki
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - Joe Harvey
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| | - Edoardo Giacopuzzi
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - Matteo P. Ferla
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - Melissa M. Pentony
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - Samantha J.L. Knight
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - Ricky A. Sharma
- NIHR Oxford Biomedical Research Centre, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK;
- NIHR University College London Hospitals Biomedical Research Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Jenny C. Taylor
- National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (H.W.); (P.J.K.); (E.G.); (M.P.F.); (M.M.P.); (J.C.T.)
| | - James S.O. McCullagh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK;
| |
Collapse
|
31
|
Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: Enzymatic jewels or jinxes? Biochim Biophys Acta Rev Cancer 2019; 1871:406-418. [PMID: 31034925 DOI: 10.1016/j.bbcan.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
Jumonji C domain-containing (JMJD) proteins are mostly epigenetic regulators that demethylate histones. However, a hitherto neglected subfamily of JMJD proteins, evolutionarily distant and characterized by their relatively small molecular weight, exerts different functions by hydroxylating proteins and RNA. Recently, unsuspected proteolytic and tyrosine kinase activities were also ascribed to some of these small JMJD proteins, further increasing their enzymatic versatility. Here, we discuss the ten human small JMJD proteins (HIF1AN, HSPBAP1, JMJD4, JMJD5, JMJD6, JMJD7, JMJD8, RIOX1, RIOX2, TYW5) and their diverse physiological functions. In particular, we focus on the roles of these small JMJD proteins in cancer and other maladies and how they are modulated in diseased cells by an altered metabolic milieu, including hypoxia, reactive oxygen species and oncometabolites. Because small JMJD proteins are enzymes, they are amenable to inhibition by small molecules and may represent novel targets in the therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
32
|
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, Mills EL. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019; 1:16-33. [PMID: 31032474 PMCID: PMC6485344 DOI: 10.1038/s42255-018-0014-7] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.
Collapse
Affiliation(s)
- Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Casalino-Matsuda SM, Wang N, Ruhoff PT, Matsuda H, Nlend MC, Nair A, Szleifer I, Beitel GJ, Sznajder JI, Sporn PHS. Hypercapnia Alters Expression of Immune Response, Nucleosome Assembly and Lipid Metabolism Genes in Differentiated Human Bronchial Epithelial Cells. Sci Rep 2018; 8:13508. [PMID: 30202079 PMCID: PMC6131151 DOI: 10.1038/s41598-018-32008-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Hypercapnia, the elevation of CO2 in blood and tissues, commonly occurs in severe acute and chronic respiratory diseases, and is associated with increased risk of mortality. Recent studies have shown that hypercapnia adversely affects innate immunity, host defense, lung edema clearance and cell proliferation. Airway epithelial dysfunction is a feature of advanced lung disease, but the effect of hypercapnia on airway epithelium is unknown. Thus, in the current study we examined the effect of normoxic hypercapnia (20% CO2 for 24 h) vs normocapnia (5% CO2), on global gene expression in differentiated normal human airway epithelial cells. Gene expression was assessed on Affymetrix microarrays, and subjected to gene ontology analysis for biological process and cluster-network representation. We found that hypercapnia downregulated the expression of 183 genes and upregulated 126. Among these, major gene clusters linked to immune responses and nucleosome assembly were largely downregulated, while lipid metabolism genes were largely upregulated. The overwhelming majority of these genes were not previously known to be regulated by CO2. These changes in gene expression indicate the potential for hypercapnia to impact bronchial epithelial cell function in ways that may contribute to poor clinical outcomes in patients with severe acute or advanced chronic lung diseases.
Collapse
Affiliation(s)
- S Marina Casalino-Matsuda
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
| | - Naizhen Wang
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peder T Ruhoff
- Department of Technology and Innovation, University of Southern Denmark, Odense, Denmark
| | - Hiroaki Matsuda
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Physical Sciences & Engineering, Wilbur Wright College, Chicago, Illinois, United States of America
| | - Marie C Nlend
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Division of Protein and Cellular Analysis, Thermo Fisher Scientific, Rockford, Illinois, United States of America
| | - Aisha Nair
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, United States of America
| | - Greg J Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Jacob I Sznajder
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Peter H S Sporn
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
34
|
Bonnici J, Tumber A, Kawamura A, Schofield CJ. Inhibitors of both the N-methyl lysyl- and arginyl-demethylase activities of the JmjC oxygenases. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170071. [PMID: 29685975 PMCID: PMC5915715 DOI: 10.1098/rstb.2017.0071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Jumonji C (JmjC) family of 2-oxoglutarate (2OG)-dependent oxygenases have established roles in the regulation of transcription via the catalysis of demethylation of Nε-methylated lysine residues in histone tails, especially the N-terminal tail of histone H3. Most human JmjC Nɛ -methyl lysine demethylases (KDMs) are complex enzymes, with 'reader domains' in addition to their catalytic domains. Recent biochemical evidence has shown that some, but not all, JmjC KDMs also have Nω-methyl arginyl demethylase (RDM) activity. JmjC KDM activity has been linked to multiple cancers and some JmjC proteins are therapeutic targets. It is, therefore, important to test not only whether compounds in development inhibit the KDM activity of targeted JmjC demethylases, but also whether they inhibit other activities of these proteins. Here we report biochemical studies on the potential dual inhibition of JmjC KDM and RDM activities using a model JmjC demethylase, KDM4E (JMJD2E). The results reveal that all of the tested compounds inhibit both the KDM and RDM activities, raising questions about the in vivo effects of the inhibitors.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Joanna Bonnici
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Anthony Tumber
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
35
|
Abstract
Hypoxia is a common feature in solid tumors and is associated with cancer progression. The main regulators of the hypoxic response are hypoxia-inducible transcription factors (HIFs) that guide the cellular adaptation to hypoxia by gene activation. The actual oxygen sensing is performed by HIF prolyl hydroxylases (PHDs) that under normoxic conditions mark the HIF-α subunit for degradation. Cancer progression is not regulated only by the cancer cells themselves but also by the whole tumor microenvironment, which consists of cellular and extracellular components. Hypoxic conditions also affect the stromal compartment, where stromal cells are in close contact with the cancer cells. The important function of HIF in cancer cells has been shown by many animal models and described in hundreds of reviews, but less in known about PHDs and even less PHDs in stromal cells. Here, we review hypoxic signaling in tumors, mainly in the tumor stroma, with a focus on HIFs and PHDs.
Collapse
Affiliation(s)
- Anu Laitala
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| | - Janine T Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Copenhagen, Denmark
| |
Collapse
|
36
|
Bailey PSJ, Nathan JA. Metabolic Regulation of Hypoxia-Inducible Transcription Factors: The Role of Small Molecule Metabolites and Iron. Biomedicines 2018; 6:biomedicines6020060. [PMID: 29772792 PMCID: PMC6027492 DOI: 10.3390/biomedicines6020060] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/11/2018] [Accepted: 05/15/2018] [Indexed: 02/02/2023] Open
Abstract
Hypoxia-inducible transcription factors (HIFs) facilitate cellular adaptations to low-oxygen environments. However, it is increasingly recognised that HIFs may be activated in response to metabolic stimuli, even when oxygen is present. Understanding the mechanisms for the crosstalk that exists between HIF signalling and metabolic pathways is therefore important. This review focuses on the metabolic regulation of HIFs by small molecule metabolites and iron, highlighting the latest studies that explore how tricarboxylic acid (TCA) cycle intermediates, 2-hydroxyglutarate (2-HG) and intracellular iron levels influence the HIF response through modulating the activity of prolyl hydroxylases (PHDs). We also discuss the relevance of these metabolic pathways in physiological and disease contexts. Lastly, as PHDs are members of a large family of 2-oxoglutarate (2-OG) dependent dioxygenases that can all respond to metabolic stimuli, we explore the broader role of TCA cycle metabolites and 2-HG in the regulation of 2-OG dependent dioxygenases, focusing on the enzymes involved in chromatin remodelling.
Collapse
Affiliation(s)
- Peter S J Bailey
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| | - James A Nathan
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
37
|
Kluckova K, Tennant DA. Metabolic implications of hypoxia and pseudohypoxia in pheochromocytoma and paraganglioma. Cell Tissue Res 2018; 372:367-378. [PMID: 29450727 PMCID: PMC5915505 DOI: 10.1007/s00441-018-2801-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Hypoxia is a critical driver of cancer pathogenesis, directly inducing malignant phenotypes such as epithelial-mesenchymal transition, stem cell-like characteristics and metabolic transformation. However, hypoxia-associated phenotypes are often observed in cancer in the absence of hypoxia, a phenotype known as pseudohypoxia, which is very well documented in specific tumour types, including in paraganglioma/pheochromocytoma (PPGL). Approximately 40% of the PPGL tumours carry a germ line mutation in one of a number of susceptibility genes of which those that are found in succinate dehydrogenase (SDH) or in von Hippel-Lindau (VHL) genes manifest a strong pseudohypoxic phenotype. Mutations in SDH are oncogenic, forming tumours in a select subset of tissues, but the cause for this remains elusive. Although elevated succinate levels lead to increase in hypoxia-like signalling, there are other phenotypes that are being increasingly recognised in SDH-mutated PPGL, such as DNA hypermethylation. Further, recently unveiled changes in metabolic re-wiring of SDH-deficient cells might help to decipher cancer related roles of SDH in the future. In this review, we will discuss the various implications that the malfunctioning SDH can have and its impact on cancer development.
Collapse
Affiliation(s)
- Katarina Kluckova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
38
|
Hollinshead KER, Munford H, Eales KL, Bardella C, Li C, Escribano-Gonzalez C, Thakker A, Nonnenmacher Y, Kluckova K, Jeeves M, Murren R, Cuozzo F, Ye D, Laurenti G, Zhu W, Hiller K, Hodson DJ, Hua W, Tomlinson IP, Ludwig C, Mao Y, Tennant DA. Oncogenic IDH1 Mutations Promote Enhanced Proline Synthesis through PYCR1 to Support the Maintenance of Mitochondrial Redox Homeostasis. Cell Rep 2018; 22:3107-3114. [PMID: 29562167 PMCID: PMC5883319 DOI: 10.1016/j.celrep.2018.02.084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 01/04/2023] Open
Abstract
Since the discovery of mutations in isocitrate dehydrogenase 1 (IDH1) in gliomas and other tumors, significant efforts have been made to gain a deeper understanding of the consequences of this oncogenic mutation. One aspect of the neomorphic function of the IDH1 R132H enzyme that has received less attention is the perturbation of cellular redox homeostasis. Here, we describe a biosynthetic pathway exhibited by cells expressing mutant IDH1. By virtue of a change in cellular redox homeostasis, IDH1-mutated cells synthesize excess glutamine-derived proline through enhanced activity of pyrroline 5-carboxylate reductase 1 (PYCR1), coupled to NADH oxidation. Enhanced proline biosynthesis partially uncouples the electron transport chain from tricarboxylic acid (TCA) cycle activity through the maintenance of a lower NADH/NAD+ ratio and subsequent reduction in oxygen consumption. Thus, we have uncovered a mechanism by which tumor cell survival may be promoted in conditions associated with perturbed redox homeostasis, as occurs in IDH1-mutated glioma.
Collapse
Affiliation(s)
- Kate E R Hollinshead
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Haydn Munford
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Katherine L Eales
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Chiara Bardella
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Molecular & Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chunjie Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wulumuqi Road, Shanghai 200040, China; Institute of Biomedical Sciences, Fudan University, #131 Dong'an Road, Shanghai 200040, China
| | | | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yannic Nonnenmacher
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark Jeeves
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert Murren
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Federica Cuozzo
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Dan Ye
- Institute of Biomedical Sciences, Fudan University, #131 Dong'an Road, Shanghai 200040, China
| | - Giulio Laurenti
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Ian P Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, #12 Middle Wulumuqi Road, Shanghai 200040, China; Institute of Biomedical Sciences, Fudan University, #131 Dong'an Road, Shanghai 200040, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai 200040, China; The Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200040, China
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
39
|
Abstract
2-Oxoglutarate (2OG)-dependent oxygenases (2OGXs) catalyze a remarkably diverse range of oxidative reactions. In animals, these comprise hydroxylations and N-demethylations proceeding via hydroxylation; in plants and microbes, they catalyze a wider range including ring formations, rearrangements, desaturations, and halogenations. The catalytic flexibility of 2OGXs is reflected in their biological functions. After pioneering work identified the roles of 2OGXs in collagen biosynthesis, research revealed they also function in plant and animal development, transcriptional regulation, nucleic acid modification/repair, fatty acid metabolism, and secondary metabolite biosynthesis, including of medicinally important antibiotics. In plants, 2OGXs are important agrochemical targets and catalyze herbicide degradation. Human 2OGXs, particularly those regulating transcription, are current therapeutic targets for anemia and cancer. Here, we give an overview of the biochemistry of 2OGXs, providing examples linking to biological function, and outline how knowledge of their enzymology is being exploited in medicine, agrochemistry, and biocatalysis.
Collapse
Affiliation(s)
- Md Saiful Islam
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Thomas M Leissing
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Rasheduzzaman Chowdhury
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| | - Richard J Hopkinson
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom; .,Current affiliation for Richard J. Hopkinson: Leicester Institute of Structural and Chemical Biology and Department of Chemistry, University of Leicester, Leicester LE1 7RH, United Kingdom;
| | - Christopher J Schofield
- The Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom;
| |
Collapse
|
40
|
Ye D, Guan KL, Xiong Y. Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates. Trends Cancer 2018; 4:151-165. [PMID: 29458964 PMCID: PMC5884165 DOI: 10.1016/j.trecan.2017.12.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/30/2022]
Abstract
Isocitrate dehydrogenases (IDH1/2) are frequently mutated in multiple types of human cancer, resulting in neomorphic enzymes that convert α-ketoglutarate (α-KG) to 2-hydroxyglutarate (2-HG). The current view on the mechanism of IDH mutation holds that 2-HG acts as an antagonist of α-KG to competitively inhibit the activity of α-KG-dependent dioxygenases, including those involved in histone and DNA demethylation. Recent studies have implicated 2-HG in activities beyond epigenetic modification. Multiple enzymes have been discovered that lack mutations but that can nevertheless produce 2-HG promiscuously under hypoxic or acidic conditions. Therapies are being developed to treat IDH-mutant cancers by targeting either the mutant IDH enzymes directly or the pathways sensitized by 2-HG.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
41
|
Yeh TL, Leissing TM, Abboud MI, Thinnes CC, Atasoylu O, Holt-Martyn JP, Zhang D, Tumber A, Lippl K, Lohans CT, Leung IKH, Morcrette H, Clifton IJ, Claridge TDW, Kawamura A, Flashman E, Lu X, Ratcliffe PJ, Chowdhury R, Pugh CW, Schofield CJ. Molecular and cellular mechanisms of HIF prolyl hydroxylase inhibitors in clinical trials. Chem Sci 2017; 8:7651-7668. [PMID: 29435217 PMCID: PMC5802278 DOI: 10.1039/c7sc02103h] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.
Collapse
Affiliation(s)
- Tzu-Lan Yeh
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Thomas M Leissing
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Martine I Abboud
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Cyrille C Thinnes
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Onur Atasoylu
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - James P Holt-Martyn
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Dong Zhang
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Anthony Tumber
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Structural Genomics Consortium (SGC) , University of Oxford , Oxford OX3 7DQ , UK
| | - Kerstin Lippl
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher T Lohans
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Ivanhoe K H Leung
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Helen Morcrette
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Ian J Clifton
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Timothy D W Claridge
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Akane Kawamura
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
- Radcliffe Department of Medicine , Division of Cardiovascular Medicine , BHF Centre of Research Excellence , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - Emily Flashman
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Xin Lu
- Ludwig Institute for Cancer Research , Nuffield Department of Clinical Medicine , University of Oxford , Oxford OX3 7DQ , UK
| | - Peter J Ratcliffe
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
- The Francis Crick Institute , 1 Midland Road , London NW1 1AT , UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| | - Christopher W Pugh
- Target Discovery Institute (TDI) , Nuffield Department of Medicine , University of Oxford , NDMRB Roosevelt Drive , Oxford OX3 7FZ , UK
| | - Christopher J Schofield
- Chemistry Research Laboratory , Department of Chemistry , University of Oxford , Oxford OX1 3TA , UK .
| |
Collapse
|
42
|
Sadiku P, Willson JA, Dickinson RS, Murphy F, Harris AJ, Lewis A, Sammut D, Mirchandani AS, Ryan E, Watts ER, Thompson AR, Marriott HM, Dockrell DH, Taylor CT, Schneider M, Maxwell PH, Chilvers ER, Mazzone M, Moral V, Pugh CW, Ratcliffe PJ, Schofield CJ, Ghesquiere B, Carmeliet P, Whyte MK, Walmsley SR. Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. J Clin Invest 2017; 127:3407-3420. [PMID: 28805660 PMCID: PMC5669581 DOI: 10.1172/jci90848] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Pranvera Sadiku
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Joseph A. Willson
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecca S. Dickinson
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fiona Murphy
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison J. Harris
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amy Lewis
- Academic Unit of Respiratory Medicine and
| | | | - Ananda S. Mirchandani
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilise Ryan
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily R. Watts
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Helen M. Marriott
- Academic Unit of Immunology and Infectious Diseases, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - David H. Dockrell
- Academic Unit of Immunology and Infectious Diseases, Department of Infection, Immunity and Cardiovascular Disease, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Cormac T. Taylor
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Martin Schneider
- General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Patrick H. Maxwell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Massimilliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, Leuven, Belgium
| | - Veronica Moral
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | | | | | | | - Bart Ghesquiere
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Leuven, Belgium
| | - Moira K.B. Whyte
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah R. Walmsley
- MRC/University of Edinburgh Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
43
|
Coupling between d-3-phosphoglycerate dehydrogenase and d-2-hydroxyglutarate dehydrogenase drives bacterial l-serine synthesis. Proc Natl Acad Sci U S A 2017; 114:E7574-E7582. [PMID: 28827360 DOI: 10.1073/pnas.1619034114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
l-Serine biosynthesis, a crucial metabolic process in most domains of life, is initiated by d-3-phosphoglycerate (d-3-PG) dehydrogenation, a thermodynamically unfavorable reaction catalyzed by d-3-PG dehydrogenase (SerA). d-2-Hydroxyglutarate (d-2-HG) is traditionally viewed as an abnormal metabolite associated with cancer and neurometabolic disorders. Here, we reveal that bacterial anabolism and catabolism of d-2-HG are involved in l-serine biosynthesis in Pseudomonas stutzeri A1501 and Pseudomonas aeruginosa PAO1. SerA catalyzes the stereospecific reduction of 2-ketoglutarate (2-KG) to d-2-HG, responsible for the major production of d-2-HG in vivo. SerA combines the energetically favorable reaction of d-2-HG production to overcome the thermodynamic barrier of d-3-PG dehydrogenation. We identified a bacterial d-2-HG dehydrogenase (D2HGDH), a flavin adenine dinucleotide (FAD)-dependent enzyme, that converts d-2-HG back to 2-KG. Electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) are also essential in d-2-HG metabolism through their capacity to transfer electrons from D2HGDH. Furthermore, while the mutant with D2HGDH deletion displayed decreased growth, the defect was rescued by adding l-serine, suggesting that the D2HGDH is functionally tied to l-serine synthesis. Substantial flux flows through d-2-HG, being produced by SerA and removed by D2HGDH, ETF, and ETFQO, maintaining d-2-HG homeostasis. Overall, our results uncover that d-2-HG-mediated coupling between SerA and D2HGDH drives bacterial l-serine synthesis.
Collapse
|
44
|
M Gagné L, Boulay K, Topisirovic I, Huot MÉ, Mallette FA. Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends Cell Biol 2017; 27:738-752. [PMID: 28711227 DOI: 10.1016/j.tcb.2017.06.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023]
Abstract
Gliomas and leukemias remain highly refractory to treatment, thus highlighting the need for new and improved therapeutic strategies. Mutations in genes encoding enzymes involved in the tricarboxylic acid (TCA) cycle, such as the isocitrate dehydrogenases 1 and 2 (IDH1/2), are frequently encountered in astrocytomas and secondary glioblastomas, as well as in acute myeloid leukemias; however, the precise molecular mechanisms by which these mutations promote tumorigenesis remain to be fully characterized. Gain-of-function mutations in IDH1/2 have been shown to stimulate production of the oncogenic metabolite R-2-hydroxyglutarate (R-2HG), which inhibits α-ketoglutarate (αKG)-dependent enzymes. We review recent advances on the elucidation of oncogenic functions of IDH1/2 mutations, and of the associated oncometabolite R-2HG, which link altered metabolism of cancer cells to epigenetics, RNA methylation, cellular signaling, hypoxic response, and DNA repair.
Collapse
Affiliation(s)
- Laurence M Gagné
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada
| | - Karine Boulay
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada; Gerald Bronfman Department of Oncology, and Departments of Experimental Medicine, and Biochemistry, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada.
| | - Frédérick A Mallette
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
45
|
Dang L, Su SSM. Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development. Annu Rev Biochem 2017; 86:305-331. [DOI: 10.1146/annurev-biochem-061516-044732] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lenny Dang
- Agios Pharmaceuticals Inc., Cambridge, Massachusetts 02139;,
| | | |
Collapse
|
46
|
Vitamin C in Stem Cell Biology: Impact on Extracellular Matrix Homeostasis and Epigenetics. Stem Cells Int 2017; 2017:8936156. [PMID: 28512473 PMCID: PMC5415867 DOI: 10.1155/2017/8936156] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/05/2017] [Indexed: 12/30/2022] Open
Abstract
Transcription factors and signaling molecules are well-known regulators of stem cell identity and behavior; however, increasing evidence indicates that environmental cues contribute to this complex network of stimuli, acting as crucial determinants of stem cell fate. l-Ascorbic acid (vitamin C (VitC)) has gained growing interest for its multiple functions and mechanisms of action, contributing to the homeostasis of normal tissues and organs as well as to tissue regeneration. Here, we review the main functions of VitC and its effects on stem cells, focusing on its activity as cofactor of Fe+2/αKG dioxygenases, which regulate the epigenetic signatures, the redox status, and the extracellular matrix (ECM) composition, depending on the enzymes' subcellular localization. Acting as cofactor of collagen prolyl hydroxylases in the endoplasmic reticulum, VitC regulates ECM/collagen homeostasis and plays a key role in the differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes, and tendons. In the nucleus, VitC enhances the activity of DNA and histone demethylases, improving somatic cell reprogramming and pushing embryonic stem cell towards the naive pluripotent state. The broad spectrum of actions of VitC highlights its relevance for stem cell biology in both physiology and disease.
Collapse
|
47
|
Zhikrivetskaya SO, Snezhkina AV, Zaretsky AR, Alekseev BY, Pokrovsky AV, Golovyuk AL, Melnikova NV, Stepanov OA, Kalinin DV, Moskalev AA, Krasnov GS, Dmitriev AA, Kudryavtseva AV. Molecular markers of paragangliomas/pheochromocytomas. Oncotarget 2017; 8:25756-25782. [PMID: 28187001 PMCID: PMC5421967 DOI: 10.18632/oncotarget.15201] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/23/2017] [Indexed: 12/14/2022] Open
Abstract
Paragangliomas/pheochromocytomas comprise rare tumors that arise from the extra-adrenal paraganglia, with an incidence of about 2 to 8 per million people each year. Approximately 40% of cases are due to genetic mutations in at least one out of more than 30 causative genes. About 25-30% of pheochromocytomas/paragangliomas develop under the conditions of a hereditary tumor syndrome a third of which are caused by mutations in the VHL gene. Together, the gene mutations in this disorder have implicated multiple processes including signaling pathways, translation initiation, hypoxia regulation, protein synthesis, differentiation, survival, proliferation, and cell growth. The present review contemplates the mutations associated with the development of pheochromocytomas/paragangliomas and their potential to serve as specific markers of these tumors and their progression. These data will improve our understanding of the pathogenesis of these tumors and likely reveal certain features that may be useful for early diagnostics, malignancy prognostics, and the determination of new targets for disease therapeutics.
Collapse
Affiliation(s)
| | | | - Andrew R Zaretsky
- M.M. Shemyakin - Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Oleg A Stepanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
48
|
L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol 2017; 13:494-500. [PMID: 28263965 PMCID: PMC5516644 DOI: 10.1038/nchembio.2307] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
The metabolite 2-hydroxyglutarate (2HG) can be produced as either a D(R)- or L(S)- enantiomer, each of which inhibits alpha-ketoglutarate (αKG)-dependent enzymes involved in diverse biologic processes. Oncogenic mutations in isocitrate dehydrogenase produce D-2HG, which causes a pathologic blockade in cell differentiation. On the other hand, oxygen limitation leads to accumulation of L-2HG, which can facilitate physiologic adaptation to hypoxic stress in both normal and malignant cells. Here we demonstrate that purified lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) catalyze stereospecific production of L-2HG via ‘promiscuous’ reduction of the alternative substrate αKG. Acidic pH enhances production of L-2HG by promoting a protonated form of αKG that binds to a key residue in the substrate-binding pocket of LDHA. Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia. These findings offer insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.
Collapse
|
49
|
Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y, Lobo K, Persson AI, Reis GF, McKnight TR, Holland EC, Phillips JJ, Weaver VM. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 2016; 18:1336-1345. [PMID: 27820599 PMCID: PMC5361403 DOI: 10.1038/ncb3429] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022]
Abstract
Increased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM. Gain- and loss-of-function xenograft manipulations demonstrated that a mutant IDH1 restricts glioma aggression by reducing HIF1α-dependent TNC expression to decrease ECM stiffness and mechanosignalling. Recurrent IDH1-mutant patient gliomas had a stiffer TNC-enriched ECM that our studies attributed to reduced miR-203 suppression of HIF1α and TNC mediated via a tension-dependent positive feedback loop. Thus, our work suggests that elevated ECM stiffness can independently foster glioblastoma aggression and contribute to glioblastoma recurrence via bypassing the protective activity of IDH1 mutational status.
Collapse
Affiliation(s)
- Yekaterina A. Miroshnikova
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Janna K. Mouw
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - J. Matthew Barnes
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Michael W. Pickup
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Johnathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | - Youngmi Kim
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, Washington 98109, USA
| | - Khadjia Lobo
- Magnetic Resonance Science Center, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Anders I. Persson
- Department of Neurology, University of California, San Francisco, California 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94158, USA
- Brain Tumor Research Center, Helen Diller Family Cancer Research Center, University of California San Francisco, San Francisco, California 94143, USA
- UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California San Francisco, San Francisco, California 94143, USA
| | - Gerald F. Reis
- Department of Pathology, University of California, San Francisco, California 94143, USA
| | - Tracy R. McKnight
- Magnetic Resonance Science Center, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143, USA
| | - Eric C. Holland
- Division of Human Biology and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Department of Neurosurgery and Alvord Brain Tumor Center, University of Washington, Seattle, Washington 98109, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94158, USA
- Brain Tumor Research Center, Helen Diller Family Cancer Research Center, University of California San Francisco, San Francisco, California 94143, USA
- UCSF Comprehensive Cancer Center, Helen Diller Family Cancer Research Center, University of California San Francisco, San Francisco, California 94143, USA
- Department of Pathology, University of California, San Francisco, California 94143, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
- Department of Anatomy and Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California 94143, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
50
|
Zhang M, Cheng ST, Wang HY, Wu JH, Luo YM, Wang Q, Wang FX, Xia GX. iTRAQ-based proteomic analysis of defence responses triggered by the necrotrophic pathogen Rhizoctonia solani in cotton. J Proteomics 2016; 152:226-235. [PMID: 27871873 DOI: 10.1016/j.jprot.2016.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/12/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
The soil-borne necrotrophic pathogen fungus Rhizoctonia solani is destructive, causing disease in various important crops. To date, little is known about the host defence mechanism in response to invasion of R. solani. Here, an iTRAQ-based proteomic analysis was employed to investigate pathogen-responsive proteins in the disease tolerant/resistant cotton cultivar CRI35. A total of 174 differentially accumulated proteins (DAPs) were identified after inoculation of cotton plants with R. solani. Functional categorization analysis indicated that these DAPs can be divided into 12 subclasses. Notably, a large portion of DAPs are known to function in reactive oxygen species (ROS) metabolism and the expression of several histone-modifying and DNA methylating proteins were significantly induced upon challenge with the fungus, indicating that the redox homeostasis and epigenetic regulation are important for cotton defence against the pathogen. Additionally, the expression of proteins involved in phenylpropanoid biosynthesis was markedly changed in response to pathogen invasion, which may reflect a particular contribution of secondary metabolism in protection against the fungal attack in cotton. Together, our results indicate that the defence response of cotton plants to R. solani infection is active and multifaceted and involves the induction of proteins from various innate immunity-related pathways. SIGNIFICANCE Cotton damping-off is a destructive disease caused by the necrotrophic fungus Rhizoctonia solani. To date, the host defence mechanism involved in the disease protection remains largely unknown. Here, we reported the first proteomic analysis on cotton immune responses against R. solani infection. Employing iTRAQ technique, we obtained a total of 174 differentially accumulated proteins (DAPs) that can be classified into 12 functional groups. Further analysis indicated that ROS homeostasis, epigenetic regulation and phenylpropanoid biosynthesis were tightly associated with the innate immune responses against R. solani infection in cotton. The obtained data provide not only important information for understanding the molecular mechanism involved in plant-R. solani interaction but also application clues for genetic breeding of crops with improved R. solani resistance.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shou-Ting Cheng
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Yun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Jia-He Wu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China
| | - Yuan-Ming Luo
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Microbial Resources, Beijing 100101, China
| | - Qian Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Microbial Resources, Beijing 100101, China
| | - Fu-Xin Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| | - Gui-Xian Xia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Plant Genomics, Beijing 100101, China.
| |
Collapse
|