1
|
Stiel AC, Ntziachristos V. Controlling the sound of light: photoswitching optoacoustic imaging. Nat Methods 2024; 21:1996-2007. [PMID: 39322752 DOI: 10.1038/s41592-024-02396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Optoacoustic (photoacoustic) imaging advances allow high-resolution optical imaging much deeper than optical microscopy. However, while label-free optoacoustics have already entered clinical application, biological imaging is in need of ubiquitous optoacoustic labels for use in ways that are similar to how fluorescent proteins propelled optical microscopy. We review photoswitching advances that shine a new light or, in analogy, 'bring a new sound' to biological optoacoustic imaging. Based on engineered labels and novel devices, switching uses light or other energy forms and enables signal modulation and synchronous detection for maximizing contrast and detection sensitivity over other optoacoustic labels. Herein, we explain contrast enhancement in the spectral versus temporal domains and review labels and key concepts of switching and their properties to modulate optoacoustic signals. We further outline systems and applications and discuss how switching can enable optoacoustic imaging of cellular or molecular contrast at depths and resolutions beyond those of other optical methods.
Collapse
Affiliation(s)
- Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Protein Engineering for Superresolution Microscopy Lab, University of Regensburg, Regensburg, Germany.
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
| |
Collapse
|
2
|
Zhang Y, Cong Y, Bailey TS, Dubois LJ, Theys J, Lambin P. Harnessing native-cryptic plasmids for stable overexpression of heterologous genes in Clostridium butyricum DSM 10702 for industrial and medical applications. Microbiol Res 2024; 288:127889. [PMID: 39217797 DOI: 10.1016/j.micres.2024.127889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Clostridium butyricum has emerged as a promising candidate for both industrial and medical biotechnologies, underscoring the key pursuit of stable gene overexpression in engineering C. butyricum. Unlike antibiotic-selective vectors, native-cryptic plasmids can be utilized for antibiotic-free expression systems in bacteria but have not been effectively exploited in C. butyricum to date. This study focuses on leveraging these plasmids, pCB101 and pCB102, in C. butyricum DSM10702 for stable gene overexpression without antibiotic selection via efficient gene integration using the SacB-based allelic exchange method. Integration of reporter IFP2.0 and glucuronidase generated sustained near-infrared fluorescence and robust enzyme activity across successive subcultures. Furthermore, successful secretion of a cellulase, Cel9M, and the human interleukin 10 from pCB102 highlights native-cryptic plasmids' potential in conferring stable gene products for industrial and medical applications in C. butyricum. This work appears to be the first study to harness the Clostridium native-cryptic plasmid for stable gene overexpression without antibiotics, thereby advancing the biotechnological prospects of C. butyricum.
Collapse
Affiliation(s)
- Yanchao Zhang
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands.
| | - Ying Cong
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Tom S Bailey
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University, Maastricht 6229 ER, the Netherlands
| |
Collapse
|
3
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Köhler AR, Haußer J, Harsch A, Bernhardt S, Häußermann L, Brenner LM, Lungu C, Olayioye MA, Bashtrykov P, Jeltsch A. Modular dual-color BiAD sensors for locus-specific readout of epigenome modifications in single cells. CELL REPORTS METHODS 2024; 4:100739. [PMID: 38554702 PMCID: PMC11045877 DOI: 10.1016/j.crmeth.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/02/2024]
Abstract
Dynamic changes in the epigenome at defined genomic loci play crucial roles during cellular differentiation and disease development. Here, we developed dual-color bimolecular anchor detector (BiAD) sensors for high-sensitivity readout of locus-specific epigenome modifications by fluorescence microscopy. Our BiAD sensors comprise an sgRNA/dCas9 complex as anchor and double chromatin reader domains as detector modules, both fused to complementary parts of a split IFP2.0 fluorophore, enabling its reconstitution upon binding of both parts in close proximity. In addition, a YPet fluorophore is recruited to the sgRNA to mark the genomic locus of interest. With these dual-color BiAD sensors, we detected H3K9me2/3 and DNA methylation and their dynamic changes upon RNAi or inhibitor treatment with high sensitivity at endogenous genomic regions. Furthermore, we showcased locus-specific H3K36me2/3 readout as well as H3K27me3 and H3K9me2/3 enrichment on the inactive X chromosome, highlighting the broad applicability of our dual-color BiAD sensors for single-cell epigenome studies.
Collapse
Affiliation(s)
- Anja R Köhler
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Johannes Haußer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Annika Harsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Steffen Bernhardt
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lilia Häußermann
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Lisa-Marie Brenner
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Cristiana Lungu
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
5
|
Jiang XX, Hou YN, Lu LW, Zhao KH. Monomeric Far-red and Near-infrared Fluorescent Biliproteins of Ultrahigh Brightness. Chembiochem 2024:e202400068. [PMID: 38623786 DOI: 10.1002/cbic.202400068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Far-red and near-infrared fluorescent proteins have regions of maximum transmission in most tissues and can be widely used as fluorescent biomarkers. We report that fluorescent phycobiliproteins originating from the phycobilisome core subunit ApcF2 can covalently bind biliverdin, named BDFPs. To further improve BDFPs, we conducted a series of studies. Firstly, we mutated K53Q and T144A of BDFPs to increase their effective brightness up to 190 % in vivo. Secondly, by homochromatic tandem fusion of high-brightness BDFPs to achieve monomerization, which increases the effective brightness by up to 180 % in vivo, and can effectively improve the labeling effect. By combining the above two approaches, the brightness of the tandem BDFPs was much improved compared with that of the previously reported fluorescent proteins in a similar spectral range. The tandem BDFPs were expressed stably while maintaining fluorescence in mammalian cells and Caenorhabditis elegans. They were also photostable and resistant to high temperature, low pH, and chemical denaturation. The tandem BDFPs advantages were proved in applications as biomarkers for imaging in super-resolution microscopy.
Collapse
Affiliation(s)
- Xiang-Xiang Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Nan Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li-Wen Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
6
|
Chung CI, Yang J, Yang X, Liu H, Ma Z, Szulzewsky F, Holland EC, Shen Y, Shu X. Phase separation of YAP-MAML2 differentially regulates the transcriptome. Proc Natl Acad Sci U S A 2024; 121:e2310430121. [PMID: 38315854 PMCID: PMC10873646 DOI: 10.1073/pnas.2310430121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024] Open
Abstract
Phase separation (PS) drives the formation of biomolecular condensates that are emerging biological structures involved in diverse cellular processes. Recent studies have unveiled PS-induced formation of several transcriptional factor (TF) condensates that are transcriptionally active, but how strongly PS promotes gene activation remains unclear. Here, we show that the oncogenic TF fusion Yes-associated protein 1-Mastermind like transcriptional coactivator 2 (YAP-MAML2) undergoes PS and forms liquid-like condensates that bear the hallmarks of transcriptional activity. Furthermore, we examined the contribution of PS to YAP-MAML2-mediated gene expression by developing a chemogenetic tool that dissolves TF condensates, allowing us to compare phase-separated and non-phase-separated conditions at identical YAP-MAML2 protein levels. We found that a small fraction of YAP-MAML2-regulated genes is further affected by PS, which include the canonical YAP target genes CTGF and CYR61, and other oncogenes. On the other hand, majority of YAP-MAML2-regulated genes are not affected by PS, highlighting that transcription can be activated effectively by diffuse complexes of TFs with the transcriptional machinery. Our work opens new directions in understanding the role of PS in selective modulation of gene expression, suggesting differential roles of PS in biological processes.
Collapse
Affiliation(s)
- Chan-I. Chung
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Junjiao Yang
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Xiaoyu Yang
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Hongjiang Liu
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Zhimin Ma
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Yin Shen
- Department of Neurology, Institute for Human Genetics, Weill Institute for Neurosciences, University of California, San Francisco, CA94158
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California–San Francisco, San Francisco, CA94158
- Cardiovascular Research Institute, University of California–San Francisco, San Francisco, CA94158
| |
Collapse
|
7
|
Zhang Y, Kubiak AM, Bailey TS, Claessen L, Hittmeyer P, Dubois L, Theys J, Lambin P. Development of a CRISPR-Cas12a system for efficient genome engineering in clostridia. Microbiol Spectr 2023; 11:e0245923. [PMID: 37947521 PMCID: PMC10715149 DOI: 10.1128/spectrum.02459-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Continued efforts in developing the CRISPR-Cas systems will further enhance our understanding and utilization of Clostridium species. This study demonstrates the development and application of a genome-engineering tool in two Clostridium strains, Clostridium butyricum and Clostridium sporogenes, which have promising potential as probiotics and oncolytic agents. Particular attention was given to the folding of precursor crRNA and the role of this process in off-target DNA cleavage by Cas12a. The results provide the guidelines necessary for efficient genome engineering using this system in clostridia. Our findings not only expand our fundamental understanding of genome-engineering tools in clostridia but also improve this technology to allow use of its full potential in a plethora of biotechnological applications.
Collapse
Affiliation(s)
- Yanchao Zhang
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Aleksandra M. Kubiak
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- Exomnis Biotech BV, Maastricht, The Netherlands
| | - Tom S. Bailey
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Luuk Claessen
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Philip Hittmeyer
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
- LivingMed Biotech SRL, Liège, Belgium
| | - Ludwig Dubois
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- M-Lab, Department of Precision Medicine, GROW - School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Li X, Combs JD, Salaita K, Shu X. Polarized focal adhesion kinase activity within a focal adhesion during cell migration. Nat Chem Biol 2023; 19:1458-1468. [PMID: 37349581 PMCID: PMC10732478 DOI: 10.1038/s41589-023-01353-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/03/2023] [Indexed: 06/24/2023]
Abstract
Focal adhesion kinase (FAK) relays integrin signaling from outside to inside cells and contributes to cell adhesion and motility. However, the spatiotemporal dynamics of FAK activity in single FAs is unclear due to the lack of a robust FAK reporter, which limits our understanding of these essential biological processes. Here we have engineered a genetically encoded FAK activity sensor, dubbed FAK-separation of phases-based activity reporter of kinase (SPARK), which visualizes endogenous FAK activity in living cells and vertebrates. Our work reveals temporal dynamics of FAK activity during FA turnover. Most importantly, our study unveils polarized FAK activity at the distal tip of newly formed single FAs in the leading edge of a migrating cell. By combining FAK-SPARK with DNA tension probes, we show that tensions applied to FAs precede FAK activation and that FAK activity is proportional to the strength of tension. These results suggest tension-induced polarized FAK activity in single FAs, advancing the mechanistic understanding of cell migration.
Collapse
Affiliation(s)
- Xiaoquan Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
9
|
Zhang H, Papadaki S, Sun X, Wang X, Drobizhev M, Yao L, Rehbock M, Köster RW, Wu L, Namikawa K, Piatkevich KD. Quantitative assessment of near-infrared fluorescent proteins. Nat Methods 2023; 20:1605-1616. [PMID: 37666982 DOI: 10.1038/s41592-023-01975-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/29/2023] [Indexed: 09/06/2023]
Abstract
Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.
Collapse
Affiliation(s)
- Hanbin Zhang
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Stavrini Papadaki
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoting Sun
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xinyue Wang
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Mikhail Drobizhev
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Luxia Yao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Michel Rehbock
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Reinhard W Köster
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lianfeng Wu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Kazuhiko Namikawa
- Division of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
To TL, Li X, Shu X. Spying on SARS-CoV-2 with Fluorescent Tags and Protease Reporters. Viruses 2023; 15:2005. [PMID: 37896782 PMCID: PMC10612051 DOI: 10.3390/v15102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The SARS-CoV-2 coronavirus has caused worldwide disruption through the COVID-19 pandemic, providing a sobering reminder of the profound impact viruses can have on human well-being. Understanding virus life cycles and interactions with host cells lays the groundwork for exploring therapeutic strategies against virus-related diseases. Fluorescence microscopy plays a vital role in virus imaging, offering high spatiotemporal resolution, sensitivity, and spectroscopic versatility. In this opinion piece, we first highlight two recent techniques, SunTag and StayGold, for the in situ imaging of viral RNA translation and viral assembly. Next, we discuss a new class of genetically encoded fluorogenic protease reporters, such as FlipGFP, which can be customized to monitor SARS-CoV-2's main (Mpro) or papain-like (PLpro) protease activity. These assays have proven effective in identifying potential antivirals through high-throughput screening, making fluorogenic viral protease reporters a promising platform for viral disease diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Xiaoquan Li
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Chen YL, Xie XX, Zhong N, Sun LC, Lin D, Zhang LJ, Weng L, Jin T, Cao MJ. Research Progresses and Applications of Fluorescent Protein Antibodies: A Review Focusing on Nanobodies. Int J Mol Sci 2023; 24:4307. [PMID: 36901737 PMCID: PMC10002328 DOI: 10.3390/ijms24054307] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Since the discovery of fluorescent proteins (FPs), their rich fluorescence spectra and photochemical properties have promoted widespread biological research applications. FPs can be classified into green fluorescent protein (GFP) and its derivates, red fluorescent protein (RFP) and its derivates, and near-infrared FPs. With the continuous development of FPs, antibodies targeting FPs have emerged. The antibody, a class of immunoglobulin, is the main component of humoral immunity that explicitly recognizes and binds antigens. Monoclonal antibody, originating from a single B cell, has been widely applied in immunoassay, in vitro diagnostics, and drug development. The nanobody is a new type of antibody entirely composed of the variable domain of a heavy-chain antibody. Compared with conventional antibodies, these small and stable nanobodies can be expressed and functional in living cells. In addition, they can easily access grooves, seams, or hidden antigenic epitopes on the surface of the target. This review provides an overview of various FPs, the research progress of their antibodies, particularly nanobodies, and advanced applications of nanobodies targeting FPs. This review will be helpful for further research on nanobodies targeting FPs, making FPs more valuable in biological research.
Collapse
Affiliation(s)
- Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xin-Xin Xie
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Zhong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Duanquan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling-Jing Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ling Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tengchuan Jin
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei 230007, China
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
12
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
13
|
Fluorogenic reporter enables identification of compounds that inhibit SARS-CoV-2. Nat Microbiol 2023; 8:121-134. [PMID: 36604514 PMCID: PMC9831272 DOI: 10.1038/s41564-022-01288-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus SARS-CoV-2 causes the severe disease COVID-19. SARS-CoV-2 infection is initiated by interaction of the viral spike protein and host receptor angiotensin-converting enzyme 2 (ACE2). We report an improved bright and reversible fluorogenic reporter, named SURF (split UnaG-based reversible and fluorogenic protein-protein interaction reporter), that we apply to monitor real-time interactions between spike and ACE2 in living cells. SURF has a large dynamic range with a dark-to-bright fluorescence signal that requires no exogenous cofactors. Utilizing this reporter, we carried out a high-throughput screening of small-molecule libraries. We identified three natural compounds that block replication of SARS-CoV-2 in both Vero cells and human primary nasal and bronchial epithelial cells. Cell biological and biochemical experiments validated all three compounds and showed that they block the early stages of viral infection. Two of the inhibitors, bruceine A and gamabufotalin, were also found to block replication of the Delta and Omicron variants of SARS-CoV-2. Both bruceine A and gamabufotalin exhibited potent antiviral activity in K18-hACE2 and wild-type C57BL6/J mice, as evidenced by reduced viral titres in the lung and brain, and protection from alveolar and peribronchial inflammation in the lung, thereby limiting disease progression. We propose that our fluorescent assay can be applied to identify antiviral compounds with potential as therapeutic treatment for COVID-19 and other respiratory diseases.
Collapse
|
14
|
Trachman RJ, Link KA, Knutson JR, Ferré-D'Amaré AR. Characterizing Fluorescence Properties of Turn-on RNA Aptamers. Methods Mol Biol 2023; 2568:25-36. [PMID: 36227560 PMCID: PMC9812286 DOI: 10.1007/978-1-0716-2687-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fluorescent RNA aptamers are tools for studying RNA localization and interactions in vivo. The photophysical properties of these in vitro selected RNAs should be characterized prior to cellular imaging experiments. Here, we describe the process of determining the fluorophore affinity, fluorescence enhancement, and fluorescence lifetime(s) of the Mango-III fluorescence turn-on aptamer. Parameters determined through these protocols will aid in establishing conditions for live-cell imaging.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Katie A Link
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Jay R Knutson
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
15
|
Hou Y, Höppner A, Rao AG, Lahav Y, Kumar Das P, Ding W, Jiang X, Hu J, Schapiro I, Noy D, Zhao K. Control of a far‐red/near‐infrared spectral switch in an artificial fluorescent biliprotein derived from allophycocyanin. Protein Sci 2022. [DOI: 10.1002/pro.4412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Nan Hou
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Astrid Höppner
- Center for Structural Studies Heinrich‐Heine‐Universität Düsseldorf Germany
| | - Aditya G. Rao
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| | - Yigal Lahav
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
| | - Prabir Kumar Das
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
| | - Wen‐Long Ding
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Xiang‐Xiang Jiang
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Ji‐Ling Hu
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research, Institute for Chemistry The Hebrew University of Jerusalem Jerusalem Israel
| | - Dror Noy
- MIGAL‐Galilee Research Institute S. Industrial Zone Kiryat Shmona Israel
- Faculty of Sciences and Technology Tel‐Hai Academic College Upper Galilee Israel
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural Microbiology Huazhong Agricultural University Wuhan China
| |
Collapse
|
16
|
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1975-1989. [PMID: 35906527 DOI: 10.1007/s43630-022-00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.
Collapse
|
17
|
Hou YN, Ding WL, Jiang XX, Hu JL, Tan ZZ, Zhao KH. New Far-Red and Near-Infrared Fluorescent Phycobiliproteins with Excellent Brightness and Photostability. Chembiochem 2022; 23:e202200267. [PMID: 35811374 DOI: 10.1002/cbic.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/10/2022] [Indexed: 11/11/2022]
Abstract
Far-red and near-infrared fluorescent proteins can be used as fluorescence biomarkers in the region of maximal transmission of most tissues and facilitate multiplexing. Recently, we reported the generation and properties of far-red and near-infrared fluorescent phycobiliproteins, termed BeiDou Fluorescent Proteins (BDFPs), which can covalently bind the more readily accessible biliverdin. Far-red BDFPs maximally fluoresce at ∼670 nm, while near-infrared BDFPs fluoresce at ∼710 nm. In this work, we molecularly evolved BDFPs as follows: (a) mutations L58Q, S68R and M81K of BDFPs, which can maximally enhance the effective brightness in vivo by 350 %; (b) minimization and monomerization of far-red BDFPs 2.1, 2.2, 2.3, and near-infrared BDFPs 2.4, 2.5 and 2.6. These newly developed BDFPs are remarkably brighter than the formerly reported far-red and near-infrared fluorescent proteins. Their advantages are demonstrated by biolabeling in mammalian cells using super-resolution microscopy.
Collapse
Affiliation(s)
- Ya-Nan Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xiang-Xiang Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ji-Ling Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Zi-Zhu Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Liu F, Hu H, Deng M, Xiang Z, Guo Y, Guan X, Li D, Hu Q, Lei W, Peng H, Chu J. A Bright Monomeric Near-Infrared Fluorescent Protein with an Excitation Peak at 633 nm for Labeling Cellular Protein and Reporting Protein-Protein Interaction. ACS Sens 2022; 7:1855-1866. [PMID: 35775925 DOI: 10.1021/acssensors.2c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bright monomeric near-infrared fluorescent proteins (NIR-FPs) are useful as markers for labeling proteins and cells and as sensors for reporting molecular activities in living cells and organisms. However, current monomeric NIR-FPs are dim under excitation with common 633/635/640 nm lasers, limiting their broad use in cellular/subcellular level imaging. Here, we report a bright monomeric NIR-FP with maximum excitation at 633 nm, named mIFP663, engineered from Xanthomonas campestris pv Campestris phytochrome (XccBphP). mIFP663 has high molecular brightness with a large extinction coefficient (86,600 M-1 cm-1) and a decent quantum yield (19.4%), and high cellular brightness that is 3-6 times greater than those of spectrally similar NIR-FPs in HEK293T cells in the presence of exogenous BV. Moreover, we demonstrate that mIFP663 is able to label critical cellular and viral proteins without perturbing subcellular localization and virus replication, respectively. Finally, with mIFP663, we engineer improved bimolecular fluorescence complementation (BiFC) and new bioluminescent resonance energy transfer (BRET) systems to detect protein-protein interactions in living cells.
Collapse
Affiliation(s)
- Feng Liu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengying Deng
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zongqin Xiang
- Department of Neurosurgery, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuting Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinmeng Guan
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Institute for Infection and Immunity, St George's, University of London, London SW17 0RE, United Kingdom
| | - Wenliang Lei
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510630, China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| |
Collapse
|
19
|
Nienhaus K, Nienhaus GU. Genetically encodable fluorescent protein markers in advanced optical imaging. Methods Appl Fluoresc 2022; 10. [PMID: 35767981 DOI: 10.1088/2050-6120/ac7d3f] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Optical fluorescence microscopy plays a pivotal role in the exploration of biological structure and dynamics, especially on live specimens. Progress in the field relies, on the one hand, on technical advances in imaging and data processing and, on the other hand, on progress in fluorescent marker technologies. Among these, genetically encodable fluorescent proteins (FPs) are invaluable tools, as they allow facile labeling of live cells, tissues or organisms, as these produce the FP markers all by themselves after introduction of a suitable gene. Here we cover FP markers from the GFP family of proteins as well as tetrapyrrole-binding proteins, which further complement the FP toolbox in important ways. A broad range of FP variants have been endowed, by using protein engineering, with photophysical properties that are essential for specific fluorescence microscopy techniques, notably those offering nanoscale image resolution. We briefly introduce various advanced imaging methods and show how they utilize the distinct properties of the FP markers in exciting imaging applications, with the aim to guide researchers toward the design of powerful imaging experiments that are optimally suited to address their biological questions.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| | - Gerd Ulrich Nienhaus
- Karlsruhe Institute of Technology, Wolfgang Gaede Str. 1, Karlsruhe, 76131, GERMANY
| |
Collapse
|
20
|
Fehér A, Schnúr A, Muenthaisong S, Bellák T, Ayaydin F, Várady G, Kemter E, Wolf E, Dinnyés A. Establishment and characterization of a novel human induced pluripotent stem cell line stably expressing the iRFP720 reporter. Sci Rep 2022; 12:9874. [PMID: 35701501 PMCID: PMC9198085 DOI: 10.1038/s41598-022-12956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022] Open
Abstract
Stem cell therapy has great potential for replacing beta-cell loss in diabetic patients. However, a key obstacle to cell therapy’s success is to preserve viability and function of the engrafted cells. While several strategies have been developed to improve engrafted beta-cell survival, tools to evaluate the efficacy within the body by imaging are limited. Traditional labeling tools, such as GFP-like fluorescent proteins, have limited penetration depths in vivo due to tissue scattering and absorption. To circumvent this limitation, a near-infrared fluorescent mutant version of the DrBphP bacteriophytochrome, iRFP720, has been developed for in vivo imaging and stem/progenitor cell tracking. Here, we present the generation and characterization of an iRFP720 expressing human induced pluripotent stem cell (iPSC) line, which can be used for real-time imaging in various biological applications. To generate the transgenic cells, the CRISPR/Cas9 technology was applied. A puromycin resistance gene was inserted into the AAVS1 locus, driven by the endogenous PPP1R12C promoter, along with the CAG-iRFP720 reporter cassette, which was flanked by insulator elements. Proper integration of the transgene into the targeted genomic region was assessed by comprehensive genetic analysis, verifying precise genome editing. Stable expression of iRFP720 in the cells was confirmed and imaged by their near-infrared fluorescence. We demonstrated that the reporter iPSCs exhibit normal stem cell characteristics and can be efficiently differentiated towards the pancreatic lineage. As the genetically modified reporter cells show retained pluripotency and multilineage differentiation potential, they hold great potential as a cellular model in a variety of biological and pharmacological applications.
Collapse
Affiliation(s)
- Anita Fehér
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | - Andrea Schnúr
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary
| | | | - Tamás Bellák
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary.,Department of Anatomy, Histology and Embryology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, 6724, Hungary
| | - Ferhan Ayaydin
- Functional Cell Biology and Immunology Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, University of Szeged (HCEMM-USZ), Szeged, 6720, Hungary.,Laboratory of Cellular Imaging, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - György Várady
- Research Centre for Natural Sciences, Institute of Enzymology, Budapest, 1117, Hungary
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, LMU Munich, 81377, Munich, Germany.,Centre for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764, Oberschleißheim, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - András Dinnyés
- BioTalentum Ltd, Aulich Lajos Street 26, Gödöllő, 2100, Hungary. .,HCEMM-USZ Stem Cell Research Group, Hungarian Centre of Excellence for Molecular Medicine, Szeged, 6723, Hungary. .,Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary. .,Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllő, 2100, Hungary.
| |
Collapse
|
21
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
22
|
Keum H, Yoo D, Jon S. Photomedicine based on heme-derived compounds. Adv Drug Deliv Rev 2022; 182:114134. [PMID: 35122881 DOI: 10.1016/j.addr.2022.114134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/16/2021] [Accepted: 01/30/2022] [Indexed: 02/08/2023]
Abstract
Photoimaging and phototherapy have become major platforms for the diagnosis and treatment of various health complications. These applications require a photosensitizer (PS) that is capable of absorbing light from a source and converting it into other energy forms for detection and therapy. While synthetic inorganic materials such as quantum dots and gold nanorods have been widely explored for their medical diagnosis and photodynamic (PDT) and photothermal (PTT) therapy capabilities, translation of these technologies has lagged, primarily owing to potential cytotoxicity and immunogenicity issues. Of the various photoreactive molecules, the naturally occurring endogenous compound heme, a constituent of red blood cells, and its derivatives, porphyrin, biliverdin and bilirubin, have shown immense potential as noteworthy candidates for clinically translatable photoreactive agents, as evidenced by previous reports. While porphyrin-based photomedicines have attracted significant attention and are well documented, research on photomedicines based on two other heme-derived compounds, biliverdin and bilirubin, has been relatively lacking. In this review, we summarize the unique photoproperties of heme-derived compounds and outline recent efforts to use them in biomedical imaging and phototherapy applications.
Collapse
|
23
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
24
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
25
|
Sakai K, Kondo Y, Fujioka H, Kamiya M, Aoki K, Goto Y. Near-infrared imaging in fission yeast using a genetically encoded phycocyanobilin biosynthesis system. J Cell Sci 2021; 134:273759. [PMID: 34806750 DOI: 10.1242/jcs.259315] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Near-infrared fluorescent protein (iRFP) is a bright and stable fluorescent protein with near-infrared excitation and emission maxima. Unlike the other conventional fluorescent proteins, iRFP requires biliverdin (BV) as a chromophore. Here, we report that phycocyanobilin (PCB) functions as a brighter chromophore for iRFP than BV, and that biosynthesis of PCB allows live-cell imaging with iRFP in the fission yeast Schizosaccharomyces pombe. We initially found that fission yeast cells did not produce BV and therefore did not show any iRFP fluorescence. The brightness of iRFP-PCB was higher than that of iRFP-BV both in vitro and in fission yeast. We introduced SynPCB2.1, a PCB biosynthesis system, into fission yeast, resulting in the brightest iRFP fluorescence. To make iRFP readily available in fission yeast, we developed an endogenous gene tagging system with iRFP and all-in-one integration plasmids carrying the iRFP-fused marker proteins together with SynPCB2.1. These tools not only enable the easy use of multiplexed live-cell imaging in fission yeast with a broader color palette, but also open the door to new opportunities for near-infrared fluorescence imaging in a wider range of living organisms. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
26
|
Barrantes FJ. Fluorescence sensors for imaging membrane lipid domains and cholesterol. CURRENT TOPICS IN MEMBRANES 2021; 88:257-314. [PMID: 34862029 DOI: 10.1016/bs.ctm.2021.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while "talking" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual ("no staining") staining.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Chia HE, Koebke KJ, Rangarajan AA, Koropatkin NM, Marsh ENG, Biteen JS. New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chem Biol 2021; 16:2109-2115. [PMID: 34652894 PMCID: PMC11180495 DOI: 10.1021/acschembio.1c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bilin-binding fluorescent proteins like UnaG-bilirubin are noncovalent ligand-dependent reporters for oxygen-free microscopy but are restricted to blue and far-red fluorescence. Here we describe a high-throughput screening approach to provide a new UnaG-ligand pair that can be excited in the 532 nm green excitation microscopy channel. We identified a novel orange UnaG-ligand pair that maximally emits at 581 nm. Whereas the benzothiazole-based ligand itself is nominally fluorescent, the compound binds UnaG with high affinity (Kd = 3 nM) to induce a 2.5-fold fluorescence intensity enhancement and a 10 nm red shift. We demonstrated this pair in the anaerobic fluorescence microscopy of the prevalent gut bacterium Bacteroides thetaiotaomicron and in Escherichia coli. This UnaG-ligand pair can also be coupled to IFP2.0-biliverdin to differentiate cells in mixed-species two-color imaging. Our results demonstrate the versatility of the UnaG ligand-binding pocket and extend the ability to image cells at longer wavelengths in anoxic environments.
Collapse
Affiliation(s)
- Hannah E Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Karl J Koebke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Aathmaja A Rangarajan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - E Neil G Marsh
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Machado JH, Ting R, Lin JY, Rodriguez EA. A self-labeling protein based on the small ultra-red fluorescent protein, smURFP. RSC Chem Biol 2021; 2:1221-1226. [PMID: 34458834 PMCID: PMC8341759 DOI: 10.1039/d1cb00127b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022] Open
Abstract
Self-labeling proteins have revolutionized super-resolution and sensor imaging. Tags recognize a bioorthogonal substrate for covalent attachment. We show the small Ultra-Red Fluorescent Protein (smURFP) is a self-labeling protein. The substrate is fluorogenic, fluoresces when attached, and quenches fluorescent cargo. The smURFP-tag has novel properties for tool development.
Collapse
Affiliation(s)
- John-Hanson Machado
- Department of Chemistry, The George Washington University Washington DC 20052 USA
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine New York NY 10065 USA
- Antelope Surgical, Biolabs@NYULangone New York NY 10014 USA
| | - John Y Lin
- Tasmanian School of Medicine, University of Tasmania Hobart Tasmania 7000 Australia
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University Washington DC 20052 USA
| |
Collapse
|
29
|
|
30
|
Iyer A, Baranov M, Foster AJ, Chordia S, Roelfes G, Vlijm R, van den Bogaart G, Poolman B. Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chem Biol 2021; 16:891-904. [PMID: 33913682 PMCID: PMC8154248 DOI: 10.1021/acschembio.1c00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022]
Abstract
Fluorogenic protein tagging systems have been less developed for prokaryotes than for eukaryotic cell systems. Here, we extend the concept of noncovalent fluorogenic protein tags in bacteria by introducing transcription factor-based tags, namely, LmrR and RamR, for probe binding and fluorescence readout under aerobic and anaerobic conditions. We developed two chemogenetic protein tags that impart fluorogenicity and a longer fluorescence lifetime to reversibly bound organic fluorophores, hence the name Chemogenetic Tags with Probe Exchange (CTPEs). We present an extensive characterization of 30 fluorophores reversibly interacting with the two different CTPEs and conclude that aromatic planar structures bind with high specificity to the hydrophobic pockets of these tags. The reversible binding of organic fluorophores to the CTPEs and the superior photophysical properties of organic fluorophores enable long-term fluorescence microscopy of living bacterial cells. Our protein tags provide a general tool for investigating (sub)cellular protein localization and dynamics, protein-protein interactions, and prolonged live-cell microscopy, even under oxygen-free conditions.
Collapse
Affiliation(s)
- Aditya Iyer
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim Baranov
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alexander J. Foster
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Shreyans Chordia
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Rifka Vlijm
- Molecular
Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Geert van den Bogaart
- Department
of Molecular Immunology, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department
of Biochemistry, Groningen Biomolecular Sciences and Biotechnology
Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
31
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
32
|
Hall C, von Grabowiecki Y, Pearce SP, Dive C, Bagley S, Muller PAJ. iRFP (near-infrared fluorescent protein) imaging of subcutaneous and deep tissue tumours in mice highlights differences between imaging platforms. Cancer Cell Int 2021; 21:247. [PMID: 33941186 PMCID: PMC8091726 DOI: 10.1186/s12935-021-01918-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo imaging using fluorescence is used in cancer biology for the detection, measurement and monitoring of tumours. This can be achieved with the expression of fluorescent proteins such as iRFP, which emits light at a wavelength less attenuated in biological tissues compared to light emitted by other fluorescent proteins such as GFP or RFP. Imaging platforms capable of detecting fluorescent tumours in small animals have been developed but studies comparing the performance of these platforms are scarce. RESULTS Through access to three platforms from Xenogen, Bruker and Li-Cor, we compared their ability to detect iRFP-expressing subcutaneous tumours as well as tumours localised deeper within the body of female NSG mice. Each platform was paired with proprietary software for image analyse, but the output depends on subjective decisions from the user. To more objectively compare platforms, we developed an 'in house' software-based approach which results in lower measured variability between mice. CONCLUSIONS Our comparisons showed that all three platforms allowed for reliable detection and monitoring of subcutaneous iRFP tumour growth. The biggest differences between platforms became apparent when imaging deeper tumours with the Li-Cor platform detecting most tumours and showing the highest dynamic range.
Collapse
Affiliation(s)
- C Hall
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Y von Grabowiecki
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - S P Pearce
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - C Dive
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - S Bagley
- Visualisation, Irradiation and Analysis, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - P A J Muller
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK.
| |
Collapse
|
33
|
Abstract
Near-infrared (NIR) luminescent materials have emerged as a growing field of interest, particularly for imaging and optics applications in biology, chemistry, and physics. However, the development of materials for this and other use cases has been hindered by a range of issues that prevents their widespread use beyond benchtop research. This review explores emerging trends in some of the most promising NIR materials and their applications. In particular, we focus on how a more comprehensive understanding of intrinsic NIR material properties might allow researchers to better leverage these traits for innovative and robust applications in biological and physical sciences.
Collapse
Affiliation(s)
- Christopher T. Jackson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Sanghwa Jeong
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
34
|
Nishihara R, Suzuki K, Kim SB, Paulmurugan R. Highly Bright NIR-BRET System for Imaging Molecular Events in Live Cells. Methods Mol Biol 2021; 2274:247-259. [PMID: 34050477 DOI: 10.1007/978-1-0716-1258-3_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The present protocol demonstrates a novel mammalian cell imaging platform exerting a bioluminescence resonance energy transfer (BRET) system. This platform achieves a ~300 nm blue-to-near infrared shift of the emission (NIR-BRET) with the development of a unique coelenterazine (CTZ) derivative named BBlue2.3 and a fusion reporter protein probe named iRFP-RLuc8.6-535SG. The best NIR-BRET shift was achieved by tuning the blue emission peak of BBlue2.3 to a Soret band of the iRFP. In mammalian cells, BBlue2.3 emits light that is ~50-fold brighter than DeepBlueC in cell imaging when combined with RLuc8.6-535SG. This NIR-BRET platform is sufficiently brighter to be used for imaging live mammalian cells at single-cell level, and also for imaging metastases in deep tissues in live mice without generating considerable autoluminescence. This unique optical platform provides the brightest NIR-BLI template that can be used for imaging a diverse group of cellular events in living subjects.
Collapse
Affiliation(s)
- Ryo Nishihara
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, Yokohama, Kanagawa, Japan
| | - Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
35
|
Kubicek-Sutherland JZ, Makarov NS, Stromberg ZR, Lenz KD, Castañeda C, Mercer AN, Mukundan H, McDaniel H, Ramasamy K. Exploring the Biocompatibility of Near-IR CuInSe xS 2-x/ZnS Quantum Dots for Deep-Tissue Bioimaging. ACS APPLIED BIO MATERIALS 2020; 3:8567-8574. [PMID: 35019627 DOI: 10.1021/acsabm.0c00939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Near-infrared (NIR) emitting quantum dots (QDs) with emission in the biological transparency windows (NIR-I: 650-950 nm and NIR-II: 1000-1350 nm) are promising candidates for deep-tissue bioimaging. However, they typically contain toxic heavy metals such as cadmium, mercury, arsenic, or lead. We report on the biocompatibility of high brightness CuInSexS2-x/ZnS (CISeS/ZnS) QDs with a tunable emission covering the visible to NIR (550-1300 nm peak emission) and quantify the transmission of their photoluminescence through multiple biological components to evaluate their use as imaging agents. In general, CISeS/ZnS QDs were less cytotoxic to mouse fibroblast cells when compared with commercial CdSe/ZnS and InP/ZnS QDs. Surprisingly, InP/ZnS QDs significantly upregulated expression of apoptotic genes in mouse fibroblast cells, while cells exposed to CISeS/ZnS QDs did not. These findings provide insight into biocompatibility and cytotoxicity of CISeS/ZnS QDs that could be used for bioimaging.
Collapse
Affiliation(s)
- Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Zachary R Stromberg
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Amanda N Mercer
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | | |
Collapse
|
36
|
Montecinos-Franjola F, Lin JY, Rodriguez EA. Fluorescent proteins for in vivo imaging, where's the biliverdin? Biochem Soc Trans 2020; 48:2657-2667. [PMID: 33196077 DOI: 10.1042/bst20200444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10-18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.
Collapse
Affiliation(s)
| | - John Y Lin
- School of Medicine, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Erik A Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC 20052, U.S.A
| |
Collapse
|
37
|
Qian Y, Cosio DMO, Piatkevich KD, Aufmkolk S, Su WC, Celiker OT, Schohl A, Murdock MH, Aggarwal A, Chang YF, Wiseman PW, Ruthazer ES, Boyden ES, Campbell RE. Improved genetically encoded near-infrared fluorescent calcium ion indicators for in vivo imaging. PLoS Biol 2020; 18:e3000965. [PMID: 33232322 PMCID: PMC7723245 DOI: 10.1371/journal.pbio.3000965] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/08/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Near-infrared (NIR) genetically encoded calcium ion (Ca2+) indicators (GECIs) can provide advantages over visible wavelength fluorescent GECIs in terms of reduced phototoxicity, minimal spectral cross talk with visible light excitable optogenetic tools and fluorescent probes, and decreased scattering and absorption in mammalian tissues. Our previously reported NIR GECI, NIR-GECO1, has these advantages but also has several disadvantages including lower brightness and limited fluorescence response compared to state-of-the-art visible wavelength GECIs, when used for imaging of neuronal activity. Here, we report 2 improved NIR GECI variants, designated NIR-GECO2 and NIR-GECO2G, derived from NIR-GECO1. We characterized the performance of the new NIR GECIs in cultured cells, acute mouse brain slices, and Caenorhabditis elegans and Xenopus laevis in vivo. Our results demonstrate that NIR-GECO2 and NIR-GECO2G provide substantial improvements over NIR-GECO1 for imaging of neuronal Ca2+ dynamics. This study describes improved genetically encoded near-infrared fluorescent calcium ion indicators, demonstrating that they enable robust detection of neuronal activity in cultured cells, rodent brain slices, Caenorhabditis elegans, and Xenopus laevis.
Collapse
Affiliation(s)
- Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Danielle M. Orozco Cosio
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Kiryl D. Piatkevich
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Sarah Aufmkolk
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wan-Chi Su
- LumiSTAR Biotechnology, Nangang District, Taipei City, Taiwan
| | - Orhan T. Celiker
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Anne Schohl
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Mitchell H. Murdock
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Abhi Aggarwal
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, United States of America
| | - Yu-Fen Chang
- LumiSTAR Biotechnology, Nangang District, Taipei City, Taiwan
| | - Paul W. Wiseman
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Edward S. Ruthazer
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Edward S. Boyden
- Departments of Biological Engineering, Media Arts and Sciences, Brain and Cognitive Sciences, McGovern Institute, Koch Institute, Center for Neurobiological Engineering, MIT, and Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
38
|
Chen M, Yan C, Ma Y, Zhang XE. A tandem near-infrared fluorescence complementation system with enhanced fluorescence for imaging protein-protein interactions in vivo. Biomaterials 2020; 268:120544. [PMID: 33253968 DOI: 10.1016/j.biomaterials.2020.120544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Bimolecular fluorescence complementation (BiFC) is an effective tool for visualizing protein-protein interactions (PPIs). However, a BiFC system with long wavelength and high fluorescence intensity is yet to be developed for in vivo imaging. In this study, we constructed a tandem near-infrared BiFC (tBiFC) system by splitting a near-infrared phytochrome, IFP2.0. This system allows the identification and visualization of PPIs in live cells and living mice. The photophysical properties of the complementary fluorescence of the tBiFC system were similar to those of its parent protein IFP2.0, but the intensity was twice that of a single-copy IFP2.0-based BiFC system. Compared with previously reported near infrared BiFC systems-iRFP-BiFC and IFP1.4-BiFC-the signal intensity of the tBiFC system increased by ~1.48- and ~400-fold for weak PPIs in living cells, and ~1.51- and ~8-fold for strong PPIs, respectively. When applied to imaging PPIs in live mice, the complementary fluorescence intensity of the tBiFC system was also significantly higher than that of the other near-infrared BiFC systems. The use of this bright phytochrome in a tandem arrangement constitutes a powerful tool for imaging PPIs in the near infrared region.
Collapse
Affiliation(s)
- Minghai Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuang Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xian-En Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
39
|
Abstract
Cyanobacteriochromes (CBCRs) are photoswitchable linear tetrapyrrole (bilin)-based light sensors in the phytochrome superfamily with a broad spectral range from the near UV through the far red (330 to 760 nm). The recent discovery of far-red absorbing CBCRs (frCBCRs) has garnered considerable interest from the optogenetic and imaging communities because of the deep penetrance of far-red light into mammalian tissue and the small size of the CBCR protein scaffold. The present studies were undertaken to determine the structural basis for far-red absorption by JSC1_58120g3, a frCBCR from the thermophilic cyanobacterium Leptolyngbya sp. JSC-1 that is a representative member of a phylogenetically distinct class. Unlike most CBCRs that bind phycocyanobilin (PCB), a phycobilin naturally occurring in cyanobacteria and only a few eukaryotic phototrophs, JSC1_58120g3's far-red absorption arises from incorporation of the PCB biosynthetic intermediate 181,182-dihydrobiliverdin (181,182-DHBV) rather than the more reduced and more abundant PCB. JSC1_58120g3 can also yield a far-red-absorbing adduct with the more widespread linear tetrapyrrole biliverdin IXα (BV), thus circumventing the need to coproduce or supplement optogenetic cell lines with PCB. Using high-resolution X-ray crystal structures of 181,182-DHBV and BV adducts of JSC1_58120g3 along with structure-guided mutagenesis, we have defined residues critical for its verdin-binding preference and far-red absorption. Far-red sensing and verdin incorporation make this frCBCR lineage an attractive template for developing robust optogenetic and imaging reagents for deep tissue applications.
Collapse
|
40
|
Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. Cell Metab 2020; 32:767-785.e7. [PMID: 32941799 PMCID: PMC7642184 DOI: 10.1016/j.cmet.2020.08.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/07/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Axons in the mature central nervous system (CNS) fail to regenerate after axotomy, partly due to the inhibitory environment constituted by reactive glial cells producing astrocytic scars, chondroitin sulfate proteoglycans, and myelin debris. We investigated this inhibitory milieu, showing that it is reversible and depends on glial metabolic status. We show that glia can be reprogrammed to promote morphological and functional regeneration after CNS injury in Drosophila via increased glycolysis. This enhancement is mediated by the glia derived metabolites: L-lactate and L-2-hydroxyglutarate (L-2HG). Genetically/pharmacologically increasing or reducing their bioactivity promoted or impeded CNS axon regeneration. L-lactate and L-2HG from glia acted on neuronal metabotropic GABAB receptors to boost cAMP signaling. Local application of L-lactate to injured spinal cord promoted corticospinal tract axon regeneration, leading to behavioral recovery in adult mice. Our findings revealed a metabolic switch to circumvent the inhibition of glia while amplifying their beneficial effects for treating CNS injuries.
Collapse
|
41
|
Toda S, McKeithan WL, Hakkinen TJ, Lopez P, Klein OD, Lim WA. Engineering synthetic morphogen systems that can program multicellular patterning. Science 2020; 370:327-331. [PMID: 33060357 DOI: 10.1126/science.abc0033] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022]
Abstract
In metazoan tissues, cells decide their fates by sensing positional information provided by specialized morphogen proteins. To explore what features are sufficient for positional encoding, we asked whether arbitrary molecules (e.g., green fluorescent protein or mCherry) could be converted into synthetic morphogens. Synthetic morphogens expressed from a localized source formed a gradient when trapped by surface-anchoring proteins, and they could be sensed by synthetic receptors. Despite their simplicity, these morphogen systems yielded patterns reminiscent of those observed in vivo. Gradients could be reshaped by altering anchor density or by providing a source of competing inhibitor. Gradient interpretation could be altered by adding feedback loops or morphogen cascades to receiver cell response circuits. Orthogonal cell-cell communication systems provide insight into morphogen evolution and a platform for engineering tissues.
Collapse
Affiliation(s)
- Satoshi Toda
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| | - Wesley L McKeithan
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Teemu J Hakkinen
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Pilar Lopez
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Wendell A Lim
- Cell Design Institute, Department of Cellular and Molecular Pharmacology, and Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
42
|
Zhou X, Mehta S, Zhang J. Genetically Encodable Fluorescent and Bioluminescent Biosensors Light Up Signaling Networks. Trends Biochem Sci 2020; 45:889-905. [PMID: 32660810 PMCID: PMC7502535 DOI: 10.1016/j.tibs.2020.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Cell signaling networks are intricately regulated in time and space to determine the responses and fates of cells to different cues. Genetically encodable fluorescent and bioluminescent biosensors enable the direct visualization of these spatiotemporal signaling dynamics within the native biological context, and have therefore become powerful molecular tools whose unique benefits are being used to address challenging biological questions. We first review the basis of biosensor design and remark on recent technologies that are accelerating biosensor development. We then discuss a few of the latest advances in the development and application of genetically encodable fluorescent and bioluminescent biosensors that have led to scientific or technological breakthroughs.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Aissa HB, Gautier A. Engineering Glowing Chemogenetic Hybrids for Spying on Cells. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hela Ben Aissa
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
| | - Arnaud Gautier
- École normale supérieure PSL University CNRS, Laboratoire des biomolécules, LBM Sorbonne Université 75005 Paris France
- Institut Universitaire de France Paris France
| |
Collapse
|
44
|
Aksenova V, Smith A, Lee H, Bhat P, Esnault C, Chen S, Iben J, Kaufhold R, Yau KC, Echeverria C, Fontoura B, Arnaoutov A, Dasso M. Nucleoporin TPR is an integral component of the TREX-2 mRNA export pathway. Nat Commun 2020; 11:4577. [PMID: 32917881 PMCID: PMC7486939 DOI: 10.1038/s41467-020-18266-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/14/2020] [Indexed: 11/24/2022] Open
Abstract
Nuclear pore complexes (NPCs) are important for cellular functions beyond nucleocytoplasmic trafficking, including genome organization and gene expression. This multi-faceted nature and the slow turnover of NPC components complicates investigations of how individual nucleoporins act in these diverse processes. To address this question, we apply an Auxin-Induced Degron (AID) system to distinguish roles of basket nucleoporins NUP153, NUP50 and TPR. Acute depletion of TPR causes rapid and pronounced changes in transcriptomic profiles. These changes are dissimilar to shifts observed after loss of NUP153 or NUP50, but closely related to changes caused by depletion of mRNA export receptor NXF1 or the GANP subunit of the TRanscription-EXport-2 (TREX-2) mRNA export complex. Moreover, TPR depletion disrupts association of TREX-2 subunits (GANP, PCID2, ENY2) to NPCs and results in abnormal RNA transcription and export. Our findings demonstrate a unique and pivotal role of TPR in gene expression through TREX-2- and/or NXF1-dependent mRNA turnover.
Collapse
Affiliation(s)
- Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra Smith
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hangnoh Lee
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20879, USA
| | - Shane Chen
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - James Iben
- Molecular Genomics Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20879, USA
| | - Ross Kaufhold
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ka Chun Yau
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carlos Echeverria
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Beatriz Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Khan FI, Hassan F, Anwer R, Juan F, Lai D. Comparative Analysis of Bacteriophytochrome Agp2 and Its Engineered Photoactivatable NIR Fluorescent Proteins PAiRFP1 and PAiRFP2. Biomolecules 2020; 10:biom10091286. [PMID: 32906690 PMCID: PMC7564321 DOI: 10.3390/biom10091286] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Two photoactivatable near infrared fluorescent proteins (NIR FPs) named “PAiRFP1” and “PAiRFP2” are formed by directed molecular evolution from Agp2, a bathy bacteriophytochrome of Agrobacterium tumefaciens C58. There are 15 and 24 amino acid substitutions in the structure of PAiRFP1 and PAiRFP2, respectively. A comprehensive molecular exploration of these bacteriophytochrome photoreceptors (BphPs) are required to understand the structure dynamics. In this study, the NIR fluorescence emission spectra for PAiRFP1 were recorded upon repeated excitation and the fluorescence intensity of PAiRFP1 tends to increase as the irradiation time was prolonged. We also predicted that mutations Q168L, V244F, and A480V in Agp2 will enhance the molecular stability and flexibility. During molecular dynamics (MD) simulations, the average root mean square deviations of Agp2, PAiRFP1, and PAiRFP2 were found to be 0.40, 0.49, and 0.48 nm, respectively. The structure of PAiRFP1 and PAiRFP2 were more deviated than Agp2 from its native conformation and the hydrophobic regions that were buried in PAiRFP1 and PAiRFP2 core exposed to solvent molecules. The eigenvalues and the trace of covariance matrix were found to be high for PAiRFP1 (597.90 nm2) and PAiRFP2 (726.74 nm2) when compared with Agp2 (535.79 nm2). It was also found that PAiRFP1 has more sharp Gibbs free energy global minima than Agp2 and PAiRFP2. This comparative analysis will help to gain deeper understanding on the structural changes during the evolution of photoactivatable NIR FPs. Further work can be carried out by combining PCR-based directed mutagenesis and spectroscopic methods to provide strategies for the rational designing of these PAiRFPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (F.H.); (F.J.)
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
- Correspondence: ; Tel.: +86-182-0052-9516
| |
Collapse
|
46
|
Chia HE, Zuo T, Koropatkin NM, Marsh EG, Biteen JS. Imaging living obligate anaerobic bacteria with bilin-binding fluorescent proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2020; 1:1-6. [PMID: 33313576 PMCID: PMC7731933 DOI: 10.1016/j.crmicr.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/25/2022] Open
Abstract
Fluorescent tools such as green fluorescent protein (GFP) have been used extensively as reporters in biochemistry and microbiology, but GFP and other conventional fluorescent proteins are restricted to aerobic environments. This limitation precludes fluorescence studies of anaerobic ecologies including polymicrobial communities in the human gut microbiome and in soil microbiomes, which profoundly affect health, disease, and the environment. To address this limitation, we describe the first implementation of two bilin-binding fluorescent proteins (BBFPs), UnaG and IFP2.0, as oxygen-independent fluorescent labels for live-cell imaging in anaerobic bacteria. Expression of UnaG or IFP2.0 in the prevalent gut bacterium Bacteroides thetaiotaomicron (B. theta) results in detectable fluorescence upon the addition of the bilirubin or biliverdin ligand, even in anaerobic conditions. Furthermore, these BBFPs can be used in two-color imaging to differentiate cells expressing either UnaG or IFP2.0; UnaG and IFP2.0 can also be used to distinguish B. theta from other common gut bacterial species in mixed-culture live-cell imaging. BBFPs are promising fluorescent tools for live-cell imaging investigations of otherwise inaccessible anaerobic polymicrobial communities.
Collapse
Affiliation(s)
- Hannah E. Chia
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tiancheng Zuo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Nicole M. Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Julie S. Biteen
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Das S, Zhao L, Crooke SN, Tran L, Bhattacharya S, Gaucher EA, Finn MG. Stabilization of Near-Infrared Fluorescent Proteins by Packaging in Virus-like Particles. Biomacromolecules 2020; 21:2432-2439. [DOI: 10.1021/acs.biomac.0c00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Soumen Das
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Liangjun Zhao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Stephen N. Crooke
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Lily Tran
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Sonia Bhattacharya
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| | - Eric A. Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
- School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30306, United States
| |
Collapse
|
48
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Dinnyes A, Schnur A, Muenthaisong S, Bartenstein P, Burcez CT, Burton N, Cyran C, Gianello P, Kemter E, Nemeth G, Nicotra F, Prepost E, Qiu Y, Russo L, Wirth A, Wolf E, Ziegler S, Kobolak J. Integration of nano- and biotechnology for beta-cell and islet transplantation in type-1 diabetes treatment. Cell Prolif 2020; 53:e12785. [PMID: 32339373 PMCID: PMC7260069 DOI: 10.1111/cpr.12785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/30/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
Regenerative medicine using human or porcine β‐cells or islets has an excellent potential to become a clinically relevant method for the treatment of type‐1 diabetes. High‐resolution imaging of the function and faith of transplanted porcine pancreatic islets and human stem cell–derived beta cells in large animals and patients for testing advanced therapy medicinal products (ATMPs) is a currently unmet need for pre‐clinical/clinical trials. The iNanoBIT EU H2020 project is developing novel highly sensitive nanotechnology‐based imaging approaches allowing for monitoring of survival, engraftment, proliferation, function and whole‐body distribution of the cellular transplants in a porcine diabetes model with excellent translational potential to humans. We develop and validate the application of single‐photon emission computed tomography (SPECT) and optoacoustic imaging technologies in a transgenic insulin‐deficient pig model to observe transplanted porcine xeno‐islets and in vitro differentiated human beta cells. We are progressing in generating new transgenic reporter pigs and human‐induced pluripotent cell (iPSC) lines for optoacoustic imaging and testing them in transplantable bioartificial islet devices. Novel multifunctional nanoparticles have been generated and are being tested for nuclear imaging of islets and beta cells using a new, high‐resolution SPECT imaging device. Overall, the combined multidisciplinary expertise of the project partners allows progress towards creating much needed technological toolboxes for the xenotransplantation and ATMP field, and thus reinforces the European healthcare supply chain for regenerative medicinal products.
Collapse
Affiliation(s)
- Andras Dinnyes
- Biotalentum Ltd, Hungary, Godollo, Hungary.,Sichuan University, College of Life Sciences, Chengdu, China.,Department of Dermatology and Allergology, Research Institute of Translational Biomedicine, University of Szeged, Szeged, Hungary
| | | | | | - Peter Bartenstein
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | | | | - Clemens Cyran
- Department of Clinical Radiology, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | - Pierre Gianello
- Health Science Sector - Laboratory of Experimental Surgery and Transplantation, Université Catholique de Louvain, Brussels, Belgium
| | - Elisabeth Kemter
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Gabor Nemeth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | - Yi Qiu
- iThera Medical GmbH, Munchen, Germany
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andras Wirth
- Mediso Medical Imaging Systems, Budapest, Hungary
| | - Eckhard Wolf
- Faculty of Veterinary Medicine, Gene Center and Department of Biochemistry, Ludwig-Maximilians University, Munchen, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, Faculty of Medicine, Ludwig-Maximilians University, Munchen, Germany
| | | |
Collapse
|
50
|
Li J, Li B, Sun J, Ma C, Wan S, Li Y, Göstl R, Herrmann A, Liu K, Zhang H. Engineered Near-Infrared Fluorescent Protein Assemblies for Robust Bioimaging and Therapeutic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000964. [PMID: 32162422 DOI: 10.1002/adma.202000964] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 05/21/2023]
Abstract
Fluorescent proteins are investigated extensively as markers for the imaging of cells and tissues that are treated by gene transfection. However, limited transfection efficiency and lack of targeting restrict the clinical application of this method rooted in the challenging development of robust fluorescent proteins for in vivo bioimaging. To address this, a new type of near-infrared (NIR) fluorescent protein assemblies manufactured by genetic engineering is presented. Due to the formation of well-defined nanoparticles and spectral operation within the phototherapeutic window, the NIR protein aggregates allow stable and specific tumor imaging via simple exogenous injection. Importantly, in vivo tumor metastases are tracked and this overcomes the limitations of in vivo imaging that can only be implemented relying on the gene transfection of fluorescent proteins. Concomitantly, the efficient loading of hydrophobic drugs into the protein nanoparticles is demonstrated facilitating the therapy of tumors in a mouse model. It is believed that these theranostic NIR fluorescent protein assemblies, hence, show great potential for the in vivo detection and therapy of cancer.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Chao Ma
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sikang Wan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuanxin Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Robert Göstl
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
| | - Andreas Herrmann
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, Aachen, 52074, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|